As another example, use (14.13b) to calculate $d(u\sigma)$, where u is a vector-valued 0-form (vector) and σ is a scalar-valued 1-form (1-form):

$$d(u\sigma) = (du) \wedge \sigma + u d\sigma.$$

If one were following the practice of earlier chapters, one would have written $\boldsymbol{u} \otimes \boldsymbol{\sigma}$ where $\boldsymbol{u}\boldsymbol{\sigma}$ appears here, $\boldsymbol{u} \otimes \boldsymbol{d}\boldsymbol{\sigma}$ instead of $\boldsymbol{u} \cdot \boldsymbol{d}\boldsymbol{\sigma}$, and $\boldsymbol{e}_{\alpha} \otimes \boldsymbol{e}_{\beta}$ instead of $\boldsymbol{e}_{\alpha}\boldsymbol{e}_{\beta}$. However, to avoid overcomplication in the notation, all such tensor product symbols are omitted here and hereafter.

Equations (14.12) and (14.13) do more than define the (extended) exterior derivative \mathbf{d} and provide a way to use it in computations. They also allow one to define and calculate the antisymmetrized second derivatives, e.g., $\mathbf{d}^2\mathbf{v}$. The relation

$$d^2v = \Re v$$

where \mathbf{v} is a vector will then introduce the "operator-valued" or " $\binom{1}{1}$ -tensor valued" curvature 2-form \mathcal{R} . The notation of the extended exterior derivative puts a new look on the old apparatus of base vectors and parallel transport, and opens a way to calculate the curvature 2-form \mathcal{R} .

Let the vector field \mathbf{v} be expanded in terms of some field of basis vectors \mathbf{e}_{μ} ; thus

$$\mathbf{v} = \mathbf{e}_{\mu} v^{\mu}$$

Then the exterior derivative of this vector is

$$dv = de_{\mu}v^{\mu} + e_{\mu} dv^{\mu}.$$

Expand the typical vector-valued 1-form de_{μ} in the form

$$de_{\mu} = e_{\nu} \omega^{\nu}_{\mu}. \tag{14.14}$$

Here the "components" $\boldsymbol{\omega}_{\mu}^{\nu}$ in the expansion of \boldsymbol{de}_{μ} are 1-forms. Recall from equation (10.13) that the typical $\boldsymbol{\omega}_{\mu}^{\nu}$ is related to the connection coefficients by

$$\boldsymbol{\omega}^{\nu}_{\mu} = \Gamma^{\nu}_{\mu\lambda} \boldsymbol{\omega}^{\lambda}. \tag{14.15}$$

Therefore the expansion of the "vector" (really, "vector-valued 1-form") is

$$d\mathbf{v} = \mathbf{e}_{n}(dv^{\mu} + \boldsymbol{\omega}^{\mu}_{n}v^{\nu}). \tag{14.16}$$

Now differentiate once again to find

$$\begin{aligned} \mathbf{d}^{2}\mathbf{v} &= \mathbf{d}\mathbf{e}_{\alpha} \wedge (\mathbf{d}v^{\alpha} + \boldsymbol{\omega}^{\alpha}{}_{\nu}v^{\nu}) \\ &+ \mathbf{e}_{\mu}(\mathbf{d}^{2}v^{\mu} + \mathbf{d}\boldsymbol{\omega}^{\mu}{}_{\nu}v^{\nu} - \boldsymbol{\omega}^{\mu}{}_{\nu} \wedge \mathbf{d}v^{\nu}) \\ &= \mathbf{e}_{\mu}(\boldsymbol{\omega}^{\mu}{}_{\alpha} \wedge \mathbf{d}v^{\alpha} + \boldsymbol{\omega}^{\mu}{}_{\alpha} \wedge \boldsymbol{\omega}^{\alpha}{}_{\nu}v^{\nu} \\ &+ \mathbf{d}^{2}v^{\mu} + \mathbf{d}\boldsymbol{\omega}^{\mu}{}_{\nu}v^{\nu} - \boldsymbol{\omega}^{\mu}{}_{\alpha} \wedge \mathbf{d}v^{\alpha}). \end{aligned}$$

The simplifications made here use (1) the equation (14.14), for a second time; and (2) the product rule (14.13a), which introduced the minus sign in the last term, ready