350 14. CALCULATION OF CURVATURE

As another example, use (14.13b) to calculate d(uo), where ¢ is a vector-valued
O-form (vector) and o is a scalar-valued 1-form (1-form):

duo) = (du) \ ¢ + u do.

If one were following the practice of earlier chapters, one would have written u ® @
where uo appears here, 4 ® do instead of v do, and e, ® e, instead of e e,
However, to avoid overcomplication in the notation, all such tensor product symbols
are omitted here and hereafter.

Equations (14.12) and (14.13) do more than define the (extended) exterior deriva-
tive d and provide a way to use it in computations. They also allow one to define
and calculate the antisymmetrized second derivatives, e.g., d*v. The relation

d*v = Qv

where v is a vector will then introduce the “operator-valued™ or “(})-tensor valued™
curvature 2-form 9. The notation of the extended exterior derivative puts a new
look on the old apparatus of base vectors and parallel transport, and opens a way
to calculate the curvature 2-form 4.

Let the vector field v be expanded in terms of some field of basis vectors e ,:
thus

v =e, "
Then the exterior derivative of this vector is
dv = de v* + e, dv".
Expand the typical vector-valued 1-form de , in the form
de, = e w’,. (14.14)

Here the “components” w”, in the expansion of de, are l-forms. Recall from
equation (10.13) that the typical w”, is related to the connection coefficients by

w', =T",w" (14.15)
Therefore the expansion of the “vector” (really, “vector-valued 1-form”) is
dv = e (dv* + w" v"). (14.16)
Now differentiate once again to find

d’v = de, N (dv® + w®,v")
+ e, (d*v* + dw* V" — wh, A dv”)
= e, (wh, A dv* + wh', N w* v”
+ d%v* + dw" v’ — w*, N dv?).

The simplifications made here use (1) the equation (14.14), for a second time; and
(2) the product rule (14.13a), which introduced the minus sign in the last term, ready




