
Sur la complétude des corps ordonnés
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Introduction

Voici une petite exploration du monde des corps ordonnés. La première section est consacrée
aux premières dé�nitions et premières propriétés sur les corps ordonnés, puis on s'intéresse
dans la deuxième section aux topologie et structure uniforme que l'on peut dé�nir sur ces
corps. Ensuite, dans la troisième section, on étudie la complétude d'un corps ordonné, ce
qui permet notamment de donner quelques dé�nitions axiomatiques possibles du corps des
réels. On termine �nalement avec deux notes sur la classi�cation des corps archimédiens et
sur les corps ordonnables respectivement aux quatrième et cinquième sections, puis quelques
exemples et contre-exemples à la sixième section.

1 Généralités sur les corps ordonnés

Dé�nition 1.1 : Muni d'une relation d'ordre total ≤, on dit qu'un corps K est ordonné si
pour tout x, y, z ∈ K, x, y ≥ 0 implique x · y ≥ 0 et x ≤ y implique x+ z ≤ y+ z (on dit que
≤ est compatible avec les opérations de K).

Dans un tel corps ordonné, on note pour tout x, y ∈ K : [x, y] = {z ∈ K | x ≤ z ≤ y},
[x, y[= {z ∈ K | x ≤ z < y}, ]x, y] = {z ∈ K | x < z ≤ y} et ]x, y[= {z ∈ K | x < z < y}.

Propriété 1.2 : Un corps ordonné est de caractéristique nulle. En particulier, il est de
cardinal in�ni.

Preuve : Soit K un corps ordonné. Suppposons que car(K) = p 6= 0. Alors 0 ≤ (p − 1)1 ≤
p1 = 0, d'où (p−1)1 = 0, ce qui est contradictoire avec la dé�ntion de la caractéristique d'un
corps. Donc car(K) = 0.
Cela a notamment pour conséquence que les éléments de la famille (n1)n∈N sont deux à deux
distincts, donc K est nécessairement in�ni. �

Dans le cadre des corps ordonnés, la notion de morphisme intéressante est celle de morphisme
de corps ordonnés :
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Dé�nition 1.3 : Soient K et C deux corps ordonnés. On dit que ϕ : K → C est un
morphisme de corps ordonnés si c'est un morphismes de corps et si pour tout x, y ∈ K tels
que x ≤ y, on a ϕ(x) ≤ ϕ(y).

Propriété 1.4 : Un corps ordonné admet un sous-corps isomorphe à Q.

Preuve : Soit ϕ :

{
Q → K
p/q 7→ (p1) · (q1)−1 . Montrons que ϕ est un morphismes de corps

ordonnés injectif.

Pour cela, il faut d'abord montrer que pour tout s, q ∈ Z∗ et r, p ∈ Z, ϕ
(
rp
rq

)
= ϕ

(
p
q

)
,

ϕ
(
p
q
r
s

)
= ϕ

(
p
q

)
.ϕ
(
r
s

)
et ϕ

(
p
q +

r
s

)
= ϕ

(
p
q

)
+ ϕ

(
r
s

)
. Cela se montre aisément grâce aux

égalités suivantes : ∀(p, q) ∈ Z × Z∗, pq1 = (p1)(q1), (p1)(q1) = (q1)(p1) et (p1)(q1)−1 =
(q1)−1(p1). Ainsi, ϕ est un morphisme de corps bien dé�ni.

Soit (p, q) ∈ Z × Z∗ tel que ϕ
(
p
q

)
= 0. Alors (p1).(q1)−1 = 0 d'où p1 = 0 ; K étant de

caractéristique nulle, on en déduit p = 0, donc ϕ est injectif.
Soient p

q ,
r
s ∈ Q tels que p

q ≤
r
s . Alors ps ≤ rq et comme 1 > 0 (dans K), on en déduit

que ps1 ≤ rq1 d'où (s1)(p1) ≤ (r1)(q1). Ainsi, (p1)(q1)−1 ≤ (r1)(s1)−1 c'est-à-dire ϕ
(
p
q

)
≤

ϕ
(
r
s

)
, donc ϕ préserve bien l'ordre. �

On confondra souvent Q avec ϕ(Q). En particulier, on pourra noter p/q au lieu de (p1)·(q1)−1.
Remarquons que l'ordre induit sur N ⊂ K correspond à l'ordre usuel sur les entiers. On
retrouve donc les propriétés usuelles sur les maxima et minima d'ensembles d'entiers.

Propriété 1.5 : Soit K un corps ordonné. On dé�nit la valeur absolue de x ∈ K par
|x| = max(x,−x). On a alors les propriétés :

(i) ∀x, y ∈ K, |xy| = |x|.|y|,
(ii) ∀x ∈ K, (|x| = 0⇔ x = 0),
(iii) ∀x, y ∈ K, |x+ y| ≤ |x|+ |y|.

Preuve : Soient x, y ∈ K. Si xy ≥ 0, alors |xy| = −xy ≤ |x|.y ≤ |x|.|y| ; de même, si xy ≥ 0,
|xy| = xy ≤ |x|.y ≤ |x|.|y|. On montre de même que |x+ y| ≤ |x|+ |y|.
Supposons que |x| = 0. Alors x ≤ |x| = 0, et −x ≤ |x| = 0 donc x ≥ 0, c'est-à-dire que
0 ≤ x ≤ 0 d'où x = 0. Comme |0| = 0, on en déduit (ii). �

2 Topologie et structure uniforme

Dé�nition 2.1 : Soit K un corps ordonné. On dé�nit usuellement sur K la topologie de
l'ordre, topologie ayant pour base {{]x− ε, x+ ε[, ε ∈ K+}, x ∈ K}, en notant K+ = {x ∈
K, x > 0}.

Propriété 2.2 : Un corps ordonné (K,≤) est un corps topologique.

Preuve : Montrons donc que les appliations ψ : (x, y) 7→ x + y et φ : (x, y) 7→ xy sont
continues. Étant donnée la topologie de l'ordre, il su�t de montrer leur continuité en 0. Or
pour tout ε ∈ K+, ψ([−ε/2, ε/2]× [−ε/2, ε/2]) ⊂ [−ε, ε] et φ([−ε, ε]× [−1, 1]) ⊂ [−ε, ε]. �

Dé�nition 2.3 : Soit K un corps. On dit qu'une structure uniforme U est invariange par
translation si pour tout M ∈ U, pour tout (x, y) ∈ K2 et pour tout z ∈ K, (x, y) ∈ M si, et
seulement si, (x+ z, y + z) ∈M .

Théorème 2.4 : Soit K un corps topologique 1. Il existe une unique structure uniforme
invariante par translation et compatible avec la topologie de K. Cette structure uniforme U
est engendré par {NV = {(x, y) ∈ K ×K | x− y ∈ V }, V ∈ V(0)} 2.

1. Ce résultat est en fait valable pour tout espace vectoriel topologique.

2. Il s'agit en réalité de la structure uniforme additive.
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Preuve : Il est clair que U est invariante par translation et compatible avec la topologie
de K puisque pour tout V ∈ V(0) et pour tout x ∈ K, NV (x) = {y ∈ K | x − y ∈ V } =
{x+z | z ∈ V } = x+V . Soit U′ une seconde structure uniforme sur K vérifant les propriétés
du théorème. Soit M ∈ U. Alors il existe V ∈ V(0) tel que V ⊂ M(0). Donc NV ⊂ M . En
e�et, si (x, y) ∈ NV , alors x − y ∈ V d'où x − y ∈ M(0) d'après l'inclusion précédente, et
donc (x− y, 0) ∈M ou (x, y) ∈M par invariance par translation. Donc M ∈ U′, et U′ ⊂ U′.
Soit NV ∈ U. Alors il existe M ∈ U tel que M(0) ⊂ V , d'où M ⊂ NV . En e�et, si (x, y) ∈M
alors (x − y, 0) ∈ M , d'où x − y ∈ V d'après l'inclusion précédente, et (x, y) ∈ NV . Donc
NV ∈ U, et U ⊂ U′. D'où U = U′. �

Ainsi, on dira que K est complet s'il l'est pour la structure uniforme additive.

Dé�nition 2.5 : On dit qu'un corps ordonné K est métrisable s'il existe une distance sur
K compatible avec sa structure uniforme.

Pour traiter de la métrisabilité d'un corps ordonné, nous aurons besoin de la notion de suite
coinitiale :

Dé�nition 2.6 : Soient K un corps ordonné, α un ordinal et (xλ)λ<α ∈ Kα une suite. On
dit que (xλ)λ est coinitiale si pour tout x ∈ K+, il existe β < α tel que 0 < xβ < x.

Théorème 2.7 : Soit K un corps ordonné. Les proprositions suivantes sont équivalentes :
(i) K est métrisable,
(ii) K admet une suite coinitiale 3,
(iii) 0 admet un système fondamental de voisinages dénombrable,
(iv) tout point de K admet un système fondamental de voisinages dénombrable.

Preuve : Pour tout ε ∈ K+ et x ∈ K, Vε(x) = x+ Vε(0) donc (iii) et (iv) sont équivalentes.
Ensuite, s'il existe une suite (an)n ∈ KN coinitiale, alors {[−an, an], n ∈ N} est un système
fondamental de voisinages dénombrable de 0. Réciproquement, si {Vn, n ∈ N} est un système
fondamental de voisinages de 0, alors en �xant pour tout n ∈ N un élément xn ∈ Vn, la suite
(xn)n ainsi construite est coinitiale. Donc (ii) et (iii) sont équivalentes. Si K est métrisable,
alors {Bd(0, 1/n), n ∈ N∗} est un système fondamental de voisinages dénombrable de 0, en
notant d la distance compatible avec la structure uniforme de K.
Supposons qu'il existe une suite coinitiale (an)n dans K. Quitte à en extraire une sous-suite,
on peut supposer que (an)n est décroissante. Dé�nissons les applications :

φ :

 K → K ∪ {∞}

r 7→
{

min{n ∈ N | an < |r|} si r 6= 0
∞ sinon

, puis d :

{
K ×K → R
(r, s) 7→ 2−φ(r−s)

.

En remarquant que pour tout (r, s) ∈ K2, φ(r+ s) ≥ min(φ(r), φ(s)), on en déduit que pour
tout (r, s, t) ∈ K3, d(r, s) = 2−φ(r−t+t−s) ≤ 2min(φ(r−t),φ(t−s)) ≤ max

(
2−φ(r−t), 2−φ(t−s)

)
≤

max(d(r, t), d(s, t)). On véri�e alors que d dé�nit une distance (ultramétrique) sur K.
De plus, pour tout r ∈ K et n ∈ N,Bd(r, 2−n) = {s ∈ K | d(r, s) < 2−n} = {s ∈ K | φ(r−s) >
n} = {s ∈ K | |r − s| < an} = Van(r), donc d est compatible avec la topologie de K. Or
la distance d est clairement invariante par translation, donc la structure uniforme engendrée
par cette métrique sera la structure uniforme additive sur K. Ainsi, K est métrisable. �

3 Complétudes

Dé�nition 3.1 : Soient K un corps ordonné, α un ordinal et (xλ)λ ∈ Kα une suite. On dit
que (xλ)λ converge vers x ∈ K si pour tout ε > 0, il existe β < α tel que pour tout λ ≥ β,
|xλ − x| < ε.

Les propriétés données précédemment de la valeur absolue font que l'on retrouve beaucoup
de propriétés communes avec les limites de suites numériques.

3. De manière générale, lorsque l'on ne précise pas l'ordinal indexant une suite, on considérera qu'il s'agit

de ω.
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Dé�nition 3.2 : Soient K un corps ordonné et (xλ)λ ∈ Kα une suite. On dit que (xλ)λ est
de Cauchy si pour tout ε > 0, il existe β < α tel que pour tout µ, ν ≥ β, |xµ − xν | < ε.
Lorsque l'on ne précise pas l'ordinal qui indexe une telle suite, on considérera que c'est ω.

On rappelle sans démonstration les propriétés élémentaires suivantes :

Propriété 3.3 : Soit K un corps ordonné. On a les propriétés suivantes :
(i) toute suite convergente est de Cauchy,
(ii) toute suite de Cauchy est bornée,
(iii) toute suite de Cauchy admettant une valeur d'adhérence est convergente.

Dé�nition 3.4 : Un corps ordonné est Cauchy-complet si toute suite de Cauchy est conver-
gente.

Dé�nition 3.5 : Soient K un corps ordonné et A ⊂ K une partie majorée. On dit que
M ∈ K est la borne supérieure de A, et on noteM = sup(A), siM est le plus petit majorant
de A 4.

Propriété 3.6 : Soient K un corps ordonné, A ⊂ K et M ∈ K. Alors M = sup(A) si, et
seulement si, M majore A et si pour tout ε ∈ K+, ]M − ε,M ] ∩A 6= ∅.

Preuve : Supposons que M 6= sup(A). Soit M ne majore pas A, soit il existe un majorant
m ∈ K tel que m < M ; dans ce cas, M − m ∈ K+ et ]M − (M − m),M ] ∩ A = ∅.
Réciproquement, si M ne majore pas A alors M 6= sup(A), sinon il existe ε ∈ K+ tel que
]M − ε,M ] ∩A = ∅, mais alors M − ε majore également A d'où M 6= sup(A). �

Dé�nition 3.7 : Un corps ordonné K est Dedekind-complet si toute partie non vide A ⊂ K
majorée admet une borne supérieure.

Dé�nition 3.8 : Soit K un corps ordonné. K est dit archimédien si pour tout ε, δ ∈ K+, il
existe n ∈ N tel que nε > δ.

Propriété 3.9 : Soit K un corps ordonné. Les propriétés suivantes sont équivalentes :
(i) K est archimédien,
(ii) la suite (n)n∈N n'est pas bornée,
(iii) la suite (1/n)n∈N tend vers 0.

Preuve : Supposons K archimédien. Alors pour tout δ ∈ K+, il existe n ∈ N tel que n > δ
donc (n)n n'est pas bornée. Supposons que (n)n n'est pas bornée. Alors pour tout ε ∈ K+, il
existe n ∈ N∗ tel que n > 1/ε d'où 1

n < ε ; la suite (1/n)n étant de plus décroissante, on en
déduit qu'elle tend vers 0. Supposons que (1/n)n tende vers 0. Alors pour tout ε, δ ∈ K+, il
existe n ∈ N∗ tel que 1

n <
ε
δ d'où nε > δ, c'est-à-dire que K est archimédien. �

Propriété 3.10 : Soit K un corps ordonné. On note α(K) le plus petit ordinal α tel qu'il
existe une suite coinitiale indexée par α. Les propriétés suivantes sont équivalentes :

(i) K est complet,
(ii) toute suite de Cauchy indexée par α(K) est convergente,
(iii) toute suite de Cauchy indexée par un ordinal converge.

Preuve : Il est clair que (iii) implique (ii). Montrons que (ii) implique (i). Fixons (aλ)λ<α(K)

une suite coinitiale et F un �ltre de Cauchy ; sans perte de généralité, supposons (aλ)λ<α(K)

décroissante. Alors {Vaλ , λ < α(K)} est un système fondamental d'entourages. Soient x0 ∈ K
et F0 = Va0 . Il est possible de construire une suite (xλ)λ<α(K) de la manière suivante : pour
tout ordinal λ < α(K) non nul, il existe Fλ ∈ F tel que Fλ×Fλ ⊂ Vaλ ; on prend alors xλ ∈ Fλ.
Soient ε ∈ K+ et β un ordinal tel que aβ < ε/2. Soient µ, ν ≥ β. Comme Fµ ∩ Fν 6= ∅, pre-
nons un élément x de cette intersection. Alors |xµ − xν | ≤ |xµ − x|+ |xν − x| ≤ aµ + aν < ε.
Ainsi, (xλ)λ<α(K) est une suite de Cauchy, et doit converger par hypothèse vers un point

4. On peut véri�er que si la borne supérieure existe, alors elle est unique ; on peut donc parler de la borne

supérieure.
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x ∈ K. Soit S0 = {
n⋂
i=1

Fλi , λ1 ≤ λ2 ≤ ... ≤ λn < α(K), n ∈ N∗}. Alors S0 est une base

de �ltre telle que x lui soit adhérent. Notons F0 le �ltre engendré par S0. Comme pour tout
λ < α(K), Fλ ∈ F0, F0 est un �ltre de Cauchy, et par conséquent converge vers x. De plus,
F est clairement plus �n que F0, donc F converge vers x.
Montrons que (i) implique (iii). Soient α un ordinal et (xλ)λ<α une suite de Cauchy. Consi-
dérons le �ltre F associé à cette suite, engendré par {{xλ, µ ≤ λ < α}, µ < α}. Soit ε ∈ K+.
Par dé�nition, il existe β < α tel que pour tout µ, ν ≥ β, |xµ − xν | < ε. Donc {xλ, λ ≥ β}
est petit d'ordre Vε. Par conséquent, F est un �ltre de Cauchy, et converge donc vers un
point x ∈ K. Soit ε ∈ K+. Il existe F ∈ F tel que F ⊂ Vε(x). Or il existe γ < α tel que
{xλ, λ ≥ γ} ⊂ F . Ainsi, pour tout λ ≥ γ, |x−xλ| < ε, c'est-à-dire que (xλ)λ<α converge vers
x. �

Corollaire : Tout corps complet est Cauchy-complet.

Preuve : Si un corps est complet, alors toute suite de Cauchy indexée par un ordinal converge.
En considérant l'ordinal ω, on en déduit que ce corps est Cauchy-complet. �

Propriété 3.11 : Soit (K,+, .,≤) un corps ordonné. Les propriétés suivantes sont équiva-
lentes :

(i) K est complet et archimédien,
(ii) K est Cauchy-complet et archimédien,
(iii) K véri�e la propriété de Bolzano-Weierstrass,
(iv) K a la propriété de la borne supérieure,
(v) K est localement compact.

Preuve : Montrons que (iii) implique (ii). Toute suite de Cauchy étant bornée, elle doit
admettre une valeur d'adhérence, d'où sa convergence. Ainsi,K est Cauchy-complet. Ensuite,
comme pour tout p, q ∈ N, |p − q| ≥ 1, la suite (n)n∈N n'admet pas de valeur d'adhérence.
Elle ne peut donc pas être bornée, et K est alors archimédien.

Montrons que (iv) implique (ii). Soit (xn)n ∈ KN une suite de Cauchy. Une suite de Cauchy
étant bornée, on peut dé�nir, pour tout n ∈ N, yn = sup{xk, k ≥ n}. La suite (yn)n est
alors décroissante et bornée. Notons x = inf{yn, n ∈ N}. Soit ε > 0. Il existe N ∈ N tel
que pour tout p, q ≥ N , |xp − xq| < ε/3. Puis il existe r ∈ N tel que |x − yr| < ε/3.
Notons t = max(N, r). Alors il existe s ≥ t tel que |xs − yt| < ε/3. Remarquons que,
puisque (yn)n est décroissante, pour tout n ≥ r, |x − yn| < ε/3. Ainsi, pour tout n ≥ t,
|xn − x| ≤ |xn − x|+ |xs − yt|+ |yt − x| ≤ ε/3 + ε/3 + ε/3 = ε. Donc (xn)n converge vers x.
K est par conséquent Cauchy-complet.
Supposons par l'absurde que (n)n∈N soit bornée. Alors N admet une borne supérieure s ∈ K.
Alors pour tout ε > 0, il existe n ∈ N tel que s > n > s− ε. Donc pour tout p ≥ n, |s−p| < ε,
ce qui montre que s est une valeur d'adhérence de (n)n∈N, or nous avons vu que cette suite ne
peut pas admettre de valeur d'adhérence. Donc (n)n∈N n'est pas bornée etK est archimédien.

Montrons que (iv) implique (iii). Soit (xn)n ∈ KN une suite bornée. Pour tout n ∈ N,
on peut dé�nir yn = sup{xk, k ≥ n}. Alors la suite décroissante (yn)n converge vers x =
inf{yn, n ∈ N}. En e�et, pour tout ε > 0, il existe N ∈ N tel que x ≤ yN ≤ x − ε ; mais
puisque (yn)n est décroissante, pour tout n ≥ N , |yn−x| ≤ ε. Montrons que x est une valeur
d'adhérence de (xn)n. Soient N ∈ N et ε > 0. Il existe N1 ∈ N tel que pour tout n ≥ N1,
|yn − x| ≤ ε/2. Notons N2 = max(N1, N). Alors il existe r ≥ N2 tel que |yN2

− xr| ≤ ε/2.
Alors |xr − x| ≤ |xr − yN2

|+ |yN2
− x| ≤ ε/2 + ε/2 = ε.

Montrons que (ii) implique (iii). Montrons d'abord qu'une suite monotone non convergente
n'est pas bornée. Soit (xn)n ∈ KN une telle suite. Quitte à considérer (−xn)n, supposons
(xn)n croissante. Comme K est Cauchy-complet, (xn)n n'est pas de Cauchy. Il existe donc
un ε > 0 et deux indices σ(0) < n0 tels que |xσ(0) − xn0

| ≥ ε. On peut alors construire par
récurrence les suites strictement croissantes (nk)k et (σ(k))k telles que pour tout k ∈ N∗,
σ(k), nk ≥ max(σ(k − 1), nk−1), σ(k) < nk et |xσ(k) − xnk | ≥ ε. Ainsi, pour tout k ∈ N,
xσ(k+1)−xσ(k) ≥ xnk−xσ(k) ≥ ε, d'où xσ(k+1) ≥ (k+1)ε+xσ(0). Comme K est archimédien,
la suite (kε)k n'est pas bornée, donc (xn)n n'est pas bornée. Nous venons ainsi de montrer
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que toute suite monotone bornée était convergente.
Soit (xn)n ∈ KN une suite bornée. On dit que l'entier n ∈ N est un indice de type P si pour
tout k ≥ n, xk ≤ xn. Si (xn)n possède une in�nité d'indices de type P, rangeons-les par ordre
croissante : (p0, p1, ...). Alors (xpk)k est décroissante et bornée, elle est donc convergente
et (xn)n admet ainsi une valeur d'adhérence. Si (xn)n possède un nombre �ni d'indices de
type P, notons p le plus grand d'entre eux. Notons σ(0) = p. Par récurrence, on peut alors
construire (σ(n))n telle que pour tout k ∈ N, xσ(k+1) > xσ(k), puisque tout indice supérieur
à p n'est pas un indice de type P. Alors (xσ(n))n est une suite croissante et bornée, donc elle
converge, et (xn)n admet une valeur d'adhérence.

Montrons que (ii) implique (iv). Soit A ⊂ K borné. Si A admet un maximum, il n'y a rien à
montrer. Supposons donc que A n'admet pas de maximum. Soit x0 ∈ A. Dé�nissons la suite

(xn)n par la relation de récurrence : pour tout i ∈ N∗, xi =
{
xi−1 si Pi = ∅
z ∈ A tel que z ≥ 1

i max(Pi)
,

avec Pi = {n ∈ N | ∃z ∈ A, xi−1 ≤ n
i ≤ z}. Alors (xn)n est croissante et bornée. Or nous

avons déjà montré que (i) impliquait que toute suite monotone bornée soit convergente.
Notons donc M la limite de (xn)n. Nous allons montrer que M est la borne supérieure de A.
Comme M est par construction un point d'accumulation de A, il su�t de montrer que M
majore A.
Soit y ∈ A. A n'admettant pas de maximum, il existe z ∈ A tel que z > y. Notons j =
min{i ∈ N | 1

i < z − y} (l'ensemble dont on prend le minimum n'étant pas vide puisque K
est archimédien). Si y ≤ xj−1, alors y ≤ xj par croissance de (xn)n. Supposons y > xj−1.
Alors Pj 6= ∅. En e�et, posons m = min ∈ N | nj ≥ y} (l'ensemble dont on prend le minimum
n'étant pas vide puisque K est archimédien). Alors xj−1 ≤ y ≤ m

j ≤ z. En e�et, si on avait
m
j > z, alors m−1

j = m
j −

1
j ≥ z − (z − y) = y, ce qui est impossible puisque m est le plus

petit entier tel que m
j ≥ y. Donc m ∈ Pj . Par conséquent, xj ≥ 1

j max(Pj) ≥ m
j ≥ y. On

retrouve donc dans tous les cas que y ≤ xj . On peut montrer facilement que, puisque (xn)n
est croissante, xj ≤M , d'où y ≤M , ce qui achève la démonstration.

Montrons que (v) implique (iii). Soit V ∈ V(0) compact. Comme {[−ε, ε], ε > 0} est un
système fondamental de voisinages de 0, il existe ε > 0 tel que [−ε, ε] ⊂ V . Puisque [−ε, ε] est
fermé, on déduit qu'il est compact. Or pour tout η > 0 et pour tout x ∈ K, ϕε,η : x 7→ ηε−1x
et ψx : y 7→ y+x sont continues, donc ϕε,η([−ε, ε]) = [−η, η] et ψx◦ϕε,η([−ε, ε]) = [x−η, x+η]
sont compacts. Ainsi, tous les intervalles fermés sont compacts.
Soit (xn)n ∈ KN une suite bornée. Alors il existe ε > 0 tel que (xn)n ∈ [−ε, ε]N. Par compacité,
le �ltre associé à (xn)n dans [−ε, ε] admet un point d'adhérence, donc (xn)n admet une valeur
d'adhérence. La propriété de Bolzano-Wieirstrass est par conséquent véri�ée.

Montrons que (iii) implique (v). Soit ε > 0. Nous savons que (iii) implique (i), donc K est
complet, et comme [−ε, ε] est fermé dans K, [−ε, ε] est également complet. Soit η > 0. On
sait que (iii) implique (ii), donc K est archimédien. Il existe ainsi p ∈ N tel que pη ≥ 2ε. Alors

[−ε, ε] ⊂
p−1⋃
k=0

]−ε+kη,−ε+(k+1)η[, donc [−ε, ε] admet un recouvrement �ni d'ensembles petits

d'ordre Vη. Donc [−ε, ε] est précompact. Ayant précédemment montré qu'il était complet, on
en déduit qu'il est compact.
Cela étant vrai quelque soit ε > 0 et puisque pour tout x ∈ K, ψx : y 7→ x+ y est continue,
{[x−ε, x+ε], ε > 0} est un système fondamental de voisinages compacts de x. Par conséquent,
K est localement compact.

Finalement, l'équivalence entre (i) et (ii) est donnée par la propriété précédente. Lorsque
K est archimédien, α(K) = ω (la suite (1/n)n est coinitiale), donc K est complet si, et
seulement si, K est Cauchy-complet. �

Théorème 3.12 : Tout corps ordonné complet est isomorphe au corps des réels.

Preuve : Soit K un corps ordonné complet et archimédien. Reprenons l'isomorphisme de
corps ordonnés ϕ entre Q et ϕ(Q) dé�ni à la propriété 1.4. Soit x ∈ R\Q. Montrons que pour
toute suite croissante (xn)n ∈ QN convergeant vers x, (ϕ(xn))n converge vers une unique
limite. Soit (xn)n une telle suite. Comme (xn)n est croissante et que ϕ préserve l'ordre sur
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Q, on en déduit que (ϕ(xn))n est croissante dans K. De même, (xn)n est bornée dans Q donc
(ϕ(xn))n est bornée dans K. Nous avons vu à la propriété précédente que dans K, toute
suite monotone bornée est convergente, donc (ϕ(xn))n converge. Notons l sa limite. Soit
(yn)n ∈ QN une seconde suite croissante convergeant vers x. Notons l′ la limite de (ϕ(yn))n.
En rangeant {xn, yn, n ∈ N} par ordre croissant, on obtient une suite (zn)n ∈ QN ; notons l′′ la
limite de (ϕ(zn))n. Or (ϕ(xn))n et (ϕ(yn))n sont des sous-suites de (ϕ(zn))n, d'où l = l′′ = l′.
On peut dès lors dé�nir ψ : R→ K par ψ|Q = ϕ et pour tout x ∈ R\Q, ψ(x) = lim

n→+∞
ϕ(xn)

où (xn)n est une suite croissante de rationnels convergeant vers x. Montrons que ψ est un
isomorphisme de corps ordonnés.

On sait déjà que pour tout x, y ∈ Q tels que x ≤ y : ψ(x + y) = ϕ(x + y) = ϕ(x) + ϕ(y) =
ψ(x) + ψ(y), ψ(x.y) = ϕ(x.y) = ϕ(x).ϕ(y) = ψ(x).ψ(y), ψ(x) = ϕ(x) ≤ ϕ(y) = ψ(y). Soient
donc x, y ∈ R\Q et (xn)n, (yn)n ∈ QN deux suites croissantes convergeant respectivement
vers x et y. Alors ψ(x + y) = lim

n→+∞
ϕ(xn + yn) = lim

n→+∞
ϕ(xn) + ϕ(yn) = ψ(x) + ψ(y). De

la même manière, on montre que ψ(x.y) = ψ(x).ψ(y). Supposons de plus que x < y. Alors
à partir d'un certain rang N , on a xn < yn. Donc pour tout n ≥ N , ϕ(xn) ≤ ϕ(yn) d'où
ψ(x) ≤ ψ(y). Ainsi, ψ est un morphisme de corps ordonnés.

Soit x ∈ R tel que ψ(x) = 0. Si x ∈ Q, alors nécessairement x = 0. Sinon, �xons une suite
croissante (xn)n ∈ QN convergeant vers x. Alors :

ψ(x) = 0 ⇒ lim
n→+∞

ϕ(xn) = 0

⇒ ∀ε ∈ K+, ∃N ∈ N, ∀n ≥ N, −ε < ϕ(xn) < ε
⇒ ∀ε ∈ ϕ(Q)+, ∃N ∈ N, ∀n ≥ N, −ε < ϕ(xn) < ε
⇒ ∀ε ∈ ϕ(Q)+, ∃N ∈ N, ∀n ≥ N, −ϕ−1(ε) < xn < ϕ−1(ε)
⇒ ∀ε ∈ Q+, ∃N ∈ N, ∀n ≥ N, −ε < xn < ε

La dernière implication venant de la bijectivité de ϕ. On en déduit donc que (xn)n converge
dans Q vers 0, et donc que (xn)n converge dans R vers 0. Or (xn)n converge vers x, d'où par
unicité de la limite : x = 0, c'est-à-dire que ψ est injective.

Soit x ∈ K. Puisque ϕ(Z) ⊂ K n'est pas borné, puisque K est archimédien, donc il existe
a0, b0 ∈ ϕ(Z) tels que a0 < x < b0. Dé�nissons les suites (an)n et (bn)n par : ∀n ∈ N,

(an+1, bn+1) =

{ (
an,

an+bn
2

)
si an+bn2 ≥ x(

an+bn
2 , bn

)
sinon

. Alors les suites (an)n et (bn)n sont monotones

(respectivement croissante et décroissante), bornées et pour tout n ∈ N, bn − an = b0−a0
2n .

Donc les suites (an)n et (bn)n convergent vers une même limite, qui d'après l'inégalité, doit
nécessairement être x. Comme (an)n est croissante, convergente et appartient à ϕ(Q)N, on
en déduit que (ϕ−1(an))n est une suite croissante et convergente de rationnels. Notons a la
limite de cette suite. Alors ψ(a) = lim

n→+∞
ϕ(ϕ−1(an)) = lim

n→+∞
an = x. Donc ψ est surjective,

ce qui achève la démonstration. �

Les deux résultats précédents impliquent notamment :

Corollaire : À un isomorphisme près, R est le seul corps ordonné K véri�ant l'une des
propriétés suivantes :

(i) K est archimédien et complet,
(ii) K est archimédien et Cauchy-complet,
(iii) K est localement compact,
(iv) K est Dedekind-complet.

4 Note sur les corps archimédiens

Théorème 4.1 : Un corps ordonné est archimédien si, et seulement si, il est isomorphe à un
corps ordonné K tel que Q ⊂ K ⊂ R.

Avant de démontrer ce théorème, introduisons le lemme suivant :

Lemme : Un corps ordonné K est archimédien si, et seulement si, Q est dense dans K.
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Preuve : Supposons Q dense dans K. Alors pour tout ε ∈ K+, il existe p ∈ Q+ ∩ [−ε, ε]. Or
Q est archimédien, donc il existe n ∈ N∗ tel que p > 1/n, d'où 1/n < ε. On en déduit que le
suite (1/n)n tend vers 0, et donc que K est archimédien.
Réciproquement, supposons K archimédien. Soient x ∈ K et ε ∈ K+. Soit p ∈ N∗ tel que
ε > 1/p et �xons q = min{n ∈ N | np > x} (ces deux éléments existant puisque K est
archimédien). Alors p/q ∈]x, x + ε[. En e�et, on a p/q > x et si l'on avait p/q ≥ x + ε,
on aurait q−1

p ≥ x + ε − 1/p > x, ce qui est impossible vue la dé�nition de q en tant que
minimum. Donc Q est bien dense dans K. �

Preuve du théorème : Nous savons que ϕ−1 est un isomorphisme entre Q et ϕ(Q). La
densité de ϕ(Q) dans K implique que pour tout x ∈ K, il existe une suite (xn)n ∈ ϕ(Q)N

croissante et convergeant vers x. Alors en reprenant la preuve du théorème 3.12, on montre
que (ϕ−1(xn))n converge vers un point ψ(x) ∈ R, puis que l'application ψ introduite est bien
dé�nie et qu'elle consitue un morphisme de corps ordonnés injectif. Dès lors, K est isomorphe
au corps ordonné ψ(K) ⊂ R. �

Propriété 4.2 : Tout corps archimédien est commutatif.

Preuve : C'est un corollaire du théorème précédemment, mais ce résultat peut être montré
directement :

Soient K un corps archimédien et a, b, d ∈ K+. Notons n = min{n ∈ N|nd ≤ a} et m =

min{n ∈ N|nd ≤ b}, ces minima existant puisqueK est archimédien. Alors

{
nd ≤ a ≤ (n+ 1)d
md ≤ b ≤ (m+ 1)d

,

d'où ndmd − (m + 1)d(n + 1)d ≤ ab − ba ≤ (n + 1)d(m + 1)d −mdnd. Or, en développant,
on obtient que ndmd = nmd2. Il en est de même pour (m + 1)d(n + 1)d, (n + 1)d(m + 1)d
et mdnd. Ainsi, −(m + n + 1)d2 ≤ ab − ba ≤ (m + n + 1)d2. Cependant, (m + n + 1)d2 =
(md+ nd+ d)d ≤ (md+ 2nd)d ≤ (2a+ b)d ; d'où −(2a+ b)d ≤ ab− ba ≤ (2a+ b)d. Notons
que cette inégalité est vraie pour tout d ∈ K+ strictement positif.
Supposons par l'absurde que ab − ba 6= 0. K étant archimédien, il existe n ∈ N∗ tel que
n(ab− ba) > (2a+ b) ou n(ba− ab) > (2a+ b). On obtient alors une contradiction en posant
d = 1/n dans l'inégalité précédemment trouvée. Par conséquent, ab = ba.
Supposons maintenant a et b de signe quelconque (mais non nuls). Soient ε, η ∈ {−1, 1}
tels que εa et ηb soient strictement positifs. D'après ce qui précède, (εa)(ηb) = (ηb)(εa). Or
(εa)(ηb) = (εη)ab. Il su�t en e�et de véri�er que a(−b) = −ab (les autres cas s'en déduisant
par symétrie) : a(−b) + ab = a(−b + b) = 0 = a(b − b) = ab + a(−b) d'où la conclusion par
unicité de l'opposé. On trouve donc (εη)ab = (εη)ba, d'où ab = ba puisque εη est non nul.
Si a ou b est nul, alors on a bien sûr ab = ba. Ainsi, pour tout a, b ∈ K, ab = ba et par
conséquent K est bien commutatif. �

Propriété 4.3 : Tout corps archimédien est métrisable.

Preuve : C'est également un corollaire du théorème précédent, mais ce résultat est aussi une
conséquence de ce qui précède : la propriété 3.9 assure que (1/n)n est une suite coinitiale,
d'où on déduit grâce à la propriété 2.7 que le corps est métrisable. �

5 Note sur les corps ordonnables

Dé�nition 5.1 : Un corps K est dit ordonnable s'il existe une relation d'ordre ≤ telle que
(K,≤) soit un corps ordonné.

Théorème 5.2 : Soit K un corps. Alors les propositions suivantes sont équivalentes :
(i) K est ordonnable,
(ii) −1 n'est pas une somme de carrés,

(iii) ∀a1, ..., an ∈ K,

(
n∑
i=1

a2i = 0⇒ a1 = ... = an = 0

)
,

(iv) K contient un élément qui n'est pas une somme de carrés (et car(K) 6= 2).

Preuve : Montrons que (ii) implique (i). Considérons l'ensemble des surcorps de K tels
que −1 ne soit pas une somme de carrés, et remarquons qu'il est inductif pour la relation :
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K1 ≤ K2 si, et seulement si, K1 est un sous-corps de K2. En e�et, toute chaîne (Ki)i∈I de tels
corps est majorée par le corps

⋃
i∈I

Ki. Supposons par l'absurde qu'il existe α1, ..., αn ∈
⋃
i∈I

Ki

tels que −1 =
n∑
i=1

α2
i . Pour tout i ∈ [[1, n]], il existe un corps Ki de la chaîne tel que αi ∈ Ki ;

or, parmi les K1, ...,Kn, il existe un corps Kj les contenant tous et alors on peut dire que
−1 s'écrit comme somme de carrés de Kj , ce qui est contradictoire. Ainsi, par le lemme de
Zorn 5, il existe un corps K̃ maximal pour ≤ parmi les surcorps de K et tels que −1 ne puisse
s'écrire comme une somme de carrés.
Montrons que pour tout γ ∈ K̃, soit γ soit −γ est un carré. Soit donc γ ∈ K̃ qui ne soit pas
un carré. Notons

√
γ une racine de X2 − γ. Alors K̃ ( K̃(

√
γ), donc par dé�nition de K̃, il

existe a1, ..., an, b1, ..., bn ∈ K̃ tels que −1 =
n∑
i=1

(ai + bi
√
γ)2 =

n∑
i=1

(a2i + γb2i ) + 2
√
γ

n∑
i=1

aibi.

Comme
√
γ /∈ K̃, nécessairement

n∑
i=1

aibi = 0. De plus, remarquons que γ ne peut pas s'écrire

comme une somme de carrés dans K̃ puisque dans le cas contraire, −1 serait une somme de
carrés dans K̃. Nous venons donc de montrer que dans K̃ un élément qui n'est pas un carré
n'est pas une somme de carrés, ou de manière équivalente qu'une somme de carrés est un

carré. Comme
n∑
i=1

b2i 6= 0 (sans quoi −1 serait une somme de carrés dans K), on en déduit

que −γ =
12+

n∑
i=1

a2i

n∑
i=1

b2i

est un carré.

On peut alors dé�nir sur K̃ la relation ≤ par : pour tout x, y ∈ K̃, x ≤ y équivaut à y − x
est un carré. Alors on véri�e aisément que (K̃,≤) est un corps ordonné 6, et (K,≤) est ainsi
un sous-corps ordonné de K̃.

Montrons que (i) implique (ii). Si K est ordonnable, les carrés sont nécessairement positif et
en particulier 1 > 0. Donc −1 < 0. Or, si −1 s'écrivait comme une somme de carrés, il serait
positif.

Montrons que (ii) implique (iii). Raisonnons par contraposition et supposons qu'il exite

a1, ..., an ∈ Kn non tous nuls tels que
n∑
k=1

a2k = 0. Soit j ∈ [[1, n]] tel que aj 6= 0. Alors

−1 =
∑

1≤k≤n,k 6=j

(
ak
aj

)2

et donc −1 s'écrit comme une somme de carrés.

Montrons que (iii) implique (ii). Raisonnons par contraposition et supposons qu'il existe

a1, ..., an ∈ Kn tels que −1 =
n∑
k=1

a2k. Alors 1
2 +

n∑
k=1

a2k = 0 avec 1 6= 0.

Il est clair que (ii) implique (iv). Montrons que (iv) implique (i). Pour cela on raisonne comme
précédemment. Soit a ∈ K un élément ne s'écrivant pas comme une somme de carrés. On
montre qu'il existe un corps K̃ maximal pour ≤ dans l'ensemble des surcorps de K tel que a
ne soit pas une somme de carrés, puis que pour tout γ ∈ K̃, γ ou aγ est un carré. On dé�nit
ensuite sur K̃ la relation d'ordre : pour tout x, y ∈ K̃, x ≤ y équivaut à x − y est un carré.
Dès lors, K est un sous-corps du corps ordonné (K̃,≤). �

6 Exemples et contre-exemples

Nous allons répertorier ici quelques exemples de corps ordonnés, puis montrer certaines de
leurs propriétés. On ne considérera pas le corps des réels, l'ayant précisément caractérisé dans
la section précédente.

5. On utilise donc l'axiome du choix dans cette preuve ; on peut en fait simplement utiliser le lemme des

ultra�ltres, hypothèse légèrement moins forte.

6. En fait, puisqu'un carré est toujours positif dans un corps ordonné, c'est la seul relation d'ordre com-

patible avec les opérations de K̃ que l'on peut dé�nir.
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6.1 Corps des rationnels et des complexes

Propriété 6.1 : Q est un corps ordonné archimédien, métrisable, non complet, non Cauchy-
complet, non Dedekink-complet.

Propriété 6.2 : C est un corps non ordonnable, archimédien le sens où pour tout a, b ∈ C∗,
il existe n ∈ N tel que |na| > |b|.

6.2 Corps des fractions rationnelles

Dé�nition 6.3 : On dé�nit sur K[X] la valuation X-adique vX : P 7→ max{n ∈ N | Xn|P},
que l'on étend sur K(X) par vX : P/Q 7→ vX(P )− vX(Q). On dé�nit sur K(X) la topologie
X-adique telle que pour tout R ∈ K(X), {R+ (Xn), n ∈ N} est un système fondamental de
voisinages de R. Alors cette topologie est métrisable, via la distance d : (R,S) 7→ 2vX(R−S).
On peut dé�nir sur K(X) l'ordre 0+ en prolongeant l'ordre réel et en considérant X comme
un in�nitésimal positif (X > 0 et ∀x ∈ R∗+, X < x). K(X) est ainsi un corps ordonné dont
la structure uniforme est compatible avec la topologie X-adique et la métrique associée.

Propriété 6.4 : K(X) est un corps ordonné non archimédien, métrisable, non complet, non
Cauchy-complet, non Dedekind-complet.

6.3 Corps des séries de Laurent

Dé�nition 6.5 : Soit K un corps. On note K((X)) l'ensemble des séries formelles de la
forme

∑
n∈Z

anX
n avec (an)n ∈ KZ une suite telle qu'il existe k ∈ Z telle que pour tout n ≤ k,

an = 0. On munit K((X)) des opérations suivantes :
(i) ∀

∑
n∈Z

anX
n,
∑
n∈Z

bnX
n ∈ K((X)),

∑
n∈Z

anX
n +

∑
n∈Z

bnX
n =

∑
n∈Z

(an + bn)X
n,

(ii) ∀
∑
n∈Z

anX
n,
∑
n∈Z

bnX
n,

(∑
n∈Z

anX
n

)(∑
n∈Z

bnX
n

)
=
∑
n∈Z

( ∑
i+j=n

aibj

)
Xn.

Pour tout
∑
n∈Z

anX
n ∈ K((X)), on dé�nit ord

(∑
n∈Z

anX
n

)
=

{
min{n ∈ Z | an 6= 0
+∞ sinon

. On

munit alors K((X)) de la distance d(f, g) = 2− ord(f−g).

Propriété 6.6 : K((X)) est le corps des fractions de l'anneau K[[X]] des séries formelles de
la forme

∑
n∈N

anX
n, avec (an)n ∈ KN.

Propriété 6.7 : K((X)) est le complété de K(X).

Preuve : Une suite (Sn)n ∈ K((X))N, avec Sn = (ank)k, converge si, et seulement si, pour
tout k ∈ Z, (ank)n est stationnaire. On en déduit que la série

∑
n∈N

Sn converge si, et seulement

si, Sn −→
n→+∞

0. Alors K((X)) est complet : si (Sn)n est de Cauchy, (Sn+1 − Sn)n converge

vers 0 donc la série
∑
n∈N

(Sn+1 − Sn) converge. De plus, on peut plonger isométriquement

K(X) dans K((X)), et K(X) est clairement dense dans K((X)). �

Propriété 6.8 : On peut munir K((X)) d'une relation d'ordre étendant l'ordre usuel sur R
et faisant de X un in�niment petit positif. Alors, muni de cet ordre, K((X)) est un corps
ordonné.

Preuve : {g ∈ K((X)) | d(f, g) < 1/2n} = {g ∈ K((X)) | ord(f − g) > n} = f + (Xn+1) =
{g ∈ K((X)) | −Xn < g − f < Xn}. �

Propriété : K((X)) est un corps ordonné métrisable, non archimédien, complet, Cauchy-
complet et non Dedekind-complet.
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6.4 Corps des hyperréels

On dé�nit sur RN les opérations suivantes :
(i) ∀(an)n, (bn)n ∈ RN, (an)n + (bn)n = (an + bn)n,
(ii) ∀(an)n, (bn)n ∈ RN, (an)n · (bn)n = (anbn)n.

Soit U un ultra�ltre non principal sur N. On dé�nit alors la relation d'équivalence R sur RN

par : ∀(an)n, (bn)n ∈ RN, ((an)nR(bn)n ⇔ {n ∈ N | an = bn} ∈ U).
Les opérations passent alors au quotient, on peut donc munir ∗R = RN/R de deux lois de
compositions internes. Ensuite, on dé�nit sur ∗R la relation d'ordre : ∀a, b ∈∗ R, (a ≤ b ⇔
{n ∈ N | an ≤ bn} ∈ U). On véri�e alors facilement que :

Propriété 6.9 : (∗R,≤) est un corps ordonné 7.

On confondra, comme à l'accoutumé, Q avec son image canonique dans ∗R, c'est-à-dire que
pour tout q ∈ Q, on notera q au lieu de (q)n, l'élément neutre de ∗R étant (1)n.

Propriété 6.10 : ∗R n'est pas archimédien. Par conséquent, il n'est pas non plus Dedekind-
complet.

Preuve : Notons ε =
(
1, 12 ,

1
3 , ...,

1
n , ...

)
. Comme dans Q la suite (1/n)n est décroissante et

tend vers 0, pour tout k ∈ N∗, {n ∈ N∗ | 1
n <

1
k} est co�ni donc

8 ε < 1
k . Cela étant vrai pour

tout k ∈ N∗, on en déduit que ∗R n'est pas archimédien. �

Propriété 6.11 : ∗R n'est pas métrisable.

Preuve : D'après la propriété 2.7, il su�t de montrer que toute suite strictement positive
dans ∗R est minorée par un élément strictement postif. Soit (xn)n une telle suite. Pour tout
n ∈ N, l'ensemble {k ∈ N | xn(k) = 0} est co�ni ; sans perte de généralité, il est possible donc
possible de modi�er un nombre �ni de termes dans la suite (xn(k))k pour se ramener au cas
où pour tout k ∈ N, xn(k) > 0.
Soit x ∈∗ R, dé�ni par : ∀k ∈ N, x(k) = min{xi(k), 1 ≤ i ≤ k}. Alors pour tout i ∈ N,
{k ∈ N | x(k) ≤ xi(k)} ⊃ [[i,+∞[[, donc x ≤ xi. On trouve �nalement que 0 < x ≤ xn, pour
tout n ∈ N. �

La question de savoir si ∗R est complet ou Cauchy-complet est assez délicate, et ne sera pas
traitée ici.
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