Let $X=X_{1} \times X_{2}$ a topological vector spaces and $f: X_{1} \times X_{2} \rightarrow \mathbb{R}$ a function.
For each $x=\left(x_{1}, x_{2}\right) \in X$ and $y_{1} \in X_{1}$, let us consider the following function defined as follows:

$$
F\left(x, y_{1}\right)=\sup _{\mathcal{V} \in \Omega(x)} \inf _{z \in \mathcal{V}}\left[f\left(y_{1}, z_{2}\right)-\inf _{z^{\prime} \in \mathcal{V}} f\left(z_{1}, z_{2}^{\prime}\right)\right]
$$

where $\Omega(x)$ is the set of all open neighborhoods \mathcal{V} of x.

Problem:

If the function $y_{1} \mapsto f\left(y_{1}, x_{2}\right)$ is quasiconcave $\left(\forall x_{2} \in X_{2}\right)$ then $y_{1} \mapsto F\left(x, y_{1}\right)$ is quasiquancave $(\forall x \in X) ? ? ? ? ?$

