On considère la fonction $f : \mathbb{R} \to \mathbb{R}$ définie par $f(x) = \frac{x}{2} + \frac{1}{x}$ et la suite $(u_n)_{n \in \mathbb{N}}$ définie par récurrence : $\begin{bmatrix} u_0 = 1 \\ u_{n+1} = f(u_n) \end{bmatrix}.$

On note I = [1, 2].

- Etudier la continuité et la dérivabilité de f sur I. Dresser le tableau de ses variations sur I.
- Montrer que, pour tout x ∈ I, f(x) ∈ I et en déduire que pour tout n ∈ N, u_n est définie et appartient à I.
- Montrer avec soin que si la suite (u_n)_{n∈N} converge alors sa limite l appartient à I et vérifie f(l) = l.
- En déduire que si la suite (u_n)_{n∈N} converge alors sa limite est √2.
- Montrer, à l'aide de l'inégalité des accroissements finis, que

pour tous
$$x$$
 et y dans I , $|f(x) - f(y)| \le \frac{1}{2}|x - y|$

- 6. En déduire que pour tout $n \in \mathbb{N}$: $|u_{n+1} \sqrt{2}| \leq \frac{1}{2} |u_n \sqrt{2}|$.
- 7. Montrer que pour tout $n \in \mathbb{N}$: $|u_n \sqrt{2}| \le \frac{1}{2^{n+1}}$.
- Que peut-on en conclure pour la suite (u_n)_{n∈N}?
- Comment obtenir, à l'aide des résultats précédents, une approximation de √2 par un nombre rationnel avec une erreur inférieure à 10⁻²?