

Examen de Mathématiques : contrôle 2

L'utilisation ou la consultation de téléphone est formellement interdite, les calculatrices et les téléphones doivent être rangés et <u>éteints</u>. Les documents sont interdits. Seule une feuille A5 manuscrite au choix de l'étudiant est autorisée. Barème indicatif : 6+4+5+5

Exercice 1: Courbes et surfaces

Soient φ la fonction vectorielle définie par $\varphi(t)=(t^4+t^2;t^2-t;t^2+t+1)$, Ψ le champ scalaire définie par $\Psi(x,y,z)=(y+z)^2-x+1$, \mathcal{C} la courbe définie par $\mathcal{C}=Im(\varphi)=\{\varphi(t)\in\mathbb{R}^3/t\in\mathbb{R}\}$, $\mathcal{S}=\{M\in\mathbb{R}^3/\Psi(M)=0\}\}$ la surface d'équation $\Psi=0$ et A le point (20;6;3).

- 1. Montrer que A appartient à C.
- 2. Montrer que C est inclus dans S.
- 3. Déterminer la tangente T à C en A.
- 4. Déterminer le plan tangent Π à S en A.
- 5. Montrer que $T \subset \Pi$.
- 6. [*] On note h le champ scalaire défini par h(x, y, z) = x yz. Déterminer le minimum de h sur \mathcal{C} .
- 7. [*] On admet que h possède des minima sur S et qu'en ces points les gradients de h et de Ψ sont colinéaires, déterminer ces points et discuter avec la question précédente.

Exercice 2 : calculs d'intégrales

Soient les trois points A:(0;0), B:(1;2), C:(2;0). On note Δ le triangle (ABC) et $\partial \Delta^+$, le bord de Δ parcouru dans le sens trigonométrique.

- 1. Calculer $I = \iint_{\Delta} xy \, dx dy$.
- 2. Calculer $C = \oint_{\partial \Delta^+} xy \, dx$, la circulation du champ de vecteurs $\Psi(x,y) = (xy,0)$, le long de $\partial \Delta^+$.

Exercice 3 : Équations différentielles

Résoudre les trois équations différentielles suivantes :

$$(E_1): y'(x) + 3y(x) + x = 0$$

$$(E_2): y''(x) + 2y'(x) + 5y(x) = e^{2x}$$

(E₃):
$$y''''(x) - 3y''(x) + 2y(x) = x^2$$

Exercice 4 : Équations aux dérivées partielles

- 1. Résoudre l'équation aux dérivées partielles $\frac{\partial f}{\partial x}(x,y) + 2\frac{\partial f}{\partial y}(x,y) = f(x,y)$.
- 2. Résoudre l'équation aux dérivées partielles $2x\frac{\partial f}{\partial x}(x,y)-y\frac{\partial f}{\partial y}(x,y)=f(x,y)$. On pourra poser $X=xy^2, Y=y$ et F(X,Y)=f(x,y).
- 3. Parmi les solutions précédentes déterminer celle pour laquelle, $f(x,x) = x^5 e^{x^3}$.