Non linear differential quation

K. Massin

16 mai 2017

Sommaire

0.1 Introduction 4
0.2 Resolution 4

0.1 Introduction

This essay deals with 1st order non linear differential equations without second member. Here is the equation :

$$
\begin{equation*}
a y^{\prime}+b y^{n}=0, a, b, n \in R \tag{1}
\end{equation*}
$$

It's known that for every 1st order ODE without second member, the solutions are exprimed by an exponentional function like $y=A e^{k x}$.
We can try this approach for our problem.

0.2 Resolution

Then we have :

$$
\begin{gather*}
a y^{\prime}+b y^{n}=0 \tag{2}\\
a\left(A e^{k x}\right)^{\prime}+b\left(A e^{k x}\right)^{n}=0 \tag{3}
\end{gather*}
$$

Remind the derivate of the function e^{x} is particuliar : $\left(e^{x}\right)^{\prime}=e^{x}$ Applying the derivate's laws and after simplification, we have :

$$
\begin{equation*}
k e^{k} x+\frac{b}{a} A^{n-1} e^{n k x}=0 \tag{4}
\end{equation*}
$$

In order to clarify the next calculations, we set $r=e^{k x}$:

$$
\begin{equation*}
k r+\frac{b}{a} A^{n-1} r^{n}=0 \tag{5}
\end{equation*}
$$

We can factorize yet :

$$
\begin{equation*}
r\left(k+\frac{b}{a} A^{n-1} r^{n-1}\right)=0 \tag{6}
\end{equation*}
$$

A product of two factors is zero if and only if at least one of the two factors is zero. However, r can not be zero here.
Indeed, if $r=0$, then $e^{k x}=0$ or also $k=\frac{\ln (0)}{x}$ but $\ln (0)$ does not exist, so $r \neq 0$ and the second part of this product is necessarily zero.
Then the equation become :

$$
\begin{equation*}
k+\frac{b}{a} A^{n-1} r^{n-1}=0 \tag{7}
\end{equation*}
$$

And we can reintroduce $e^{k x}=r$:

$$
\begin{equation*}
k+\frac{b}{a} A^{n-1} e^{(n-1) k x}=0 \tag{8}
\end{equation*}
$$

Here is an equation solvable via the Lambert function, denoted $\mathrm{W}(x)$. For the next calculations, we set :
$-x e^{x}=y \rightarrow \mathrm{~W}(y)=x$

- $\lambda=\frac{b}{a} A^{n-1}$

So :

$$
\begin{equation*}
k+\lambda e^{(n-1) k x}=0 \tag{9}
\end{equation*}
$$

After some rearrangements, we obtain an issue to use the Lambert function :

$$
\begin{gather*}
\lambda e^{(n-1) k x}=-k \tag{10}\\
\lambda=\frac{-k}{e^{(n-1) k x}} \tag{11}\\
\lambda=-k e^{-(n-1) k x} \tag{12}\\
\lambda(n-1) x=-(n-1) k x e^{-(n-1) k x} \tag{13}
\end{gather*}
$$

Remind we don't care about x, but about k.
Then we find :

$$
\begin{equation*}
\mathrm{W}(\lambda(n-1) x)=-(n-1) k x \tag{14}
\end{equation*}
$$

It is now enough to isolate k :

$$
\begin{equation*}
k=\frac{\mathrm{W}(\lambda(n-1) x)}{-(n-1) x} \tag{15}
\end{equation*}
$$

Finally :

$$
\begin{equation*}
k=\frac{\mathrm{W}\left(\frac{b}{a} A^{n-1}(n-1) x\right)}{-(n-1) x} \tag{16}
\end{equation*}
$$

We succeed to determine k, but a problem survive : k depends on A. $y(x)$ does not look like the exponentional function $A e^{k x}$. To solve the problem, it is assumed that $A=1$.
So $y=e^{k x}$ and k become :

$$
\begin{equation*}
k=\frac{\mathrm{W}\left(\frac{b}{a}(n-1) x\right)}{-(n-1) x} \tag{17}
\end{equation*}
$$

We can introduce k in the function's expression, and we notice that x can be simplified, x supposed different than zero.

$$
\begin{equation*}
y(x)=e^{-\frac{W\left(\frac{b}{a}(n-1) x\right)}{n-1}} \tag{18}
\end{equation*}
$$

