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Résumé 8
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2.2.2 Début de l’étude . . . . . . . . . . . . . . . . . . . . . 62
2.2.3 Construction de la fonction Fp . . . . . . . . . . . . . 100
2.2.4 Supposons Pn non connu (construction de Fp, suite) . 129
2.2.5 Construction de la fonction αM . . . . . . . . . . . . . 140
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3.8 Autres formules intéressantes . . . . . . . . . . . . . . . . . . 202

3.8.1 Nombres factoriels et divisibilité par Pn . . . . . . . . 202
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généralisée . . . . . . . . . . . . . . . . . . . . . . . . . 225
3.8.7 Produit de nombres factoriels et divisibilité par M,
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III Répartition exacte des Nombres Premiers 284

Introduction 286

7 Reconstitution de Pn par les formules de type s(M) et I(M)287
7.1 Rappels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
7.2 Etude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
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13 Les règles logiques 385
13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
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cycliques 447

Introduction 449

21 Principes de base 450
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Résumé global

Mon objectif a été de trouver une formule mathématique permettant de
factoriser un nombre entier N en produit de nombres premiers (avec leur
puissance). J’appelleD(N) cette formule. Ces travaux m’ont permis d’établir
des liens avec d’autres disciplines, lorsque cela a été possible.

Cette formule D(N) (par son domaine de définition) appliquée à une onde
(phénomène physique) permet de décomposer toute onde. En appliquant
cette formule par hypothèse à la longueur d’onde ou à la période d’un photon
(peu importe, car les résultats sont identiques), on doit alors admettre qu’il
existe un minimum de longueur et un minimum de période. L’espace et le
temps ne peuvent plus être considérés que comme étant discontinus, confor-
mément aux limites représentées par la longueur de PLANCK et par le temps
de PLANCK.

La formule D(N) contient la formule f(M ;x) qui ne donne que des résultats
“binaires” (0 ou 1), il est même possible (par substitution de variable) d’en
extraire d’autres qui permettent de reconstituer une porte logique NAND ou
bien une porte logique NOR (algèbre de BOOLE ). Le calcul propositionnel
classique devient donc intégralement interprétable en fonction de ces formules
qui traitent uniquement la primalité des entiers. Ce qui permet également
d’établir un lien avec les ondes physiques.

De plus, parallèment à ces formules et l’agèbre de BOOLE qui permet une
étude complémentaire, les travaux portent sur des énoncés constructibles en
dehors de tout raisonnement cohérent. La démarche est non-conventionnelle,
mais cependant, elle permet d’intégrer un énoncé dont on peut considérer
que la valeur de vérité peut être indifféremment 0 ou 1 (on peut même
considérer que les 2 états sont superposés). La preuve apportée ne tire aucune
conclusion directe du théorème de GODEL (ce qui serait un abus), bien que
celui-ci constitue une partie de la réflexion. Il semblerait que ce phénomène
soit fondamentalement indéterministe. En tenant compte du domaine de
définition de D(N) et dans le cas des phénomènes cycliques, ce phénomène
trouve d’ailleurs une représentation géométrique (physique) qui le représente
fidèlement, et même assez simplement.
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L’ensemble de cette théorie se fixe pour objectif de représenter tous ces
phénomènes par une synthèse. Le but le plus élevé étant de donner une
représentation physique au photon.
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Résumé par chapitre

Chapitre I : formule mathématique de factorisation d’un
nombre entier (en produits de nombres premiers)

- Il existe une formule mathématique permettant de factoriser un nombre
entier N (en produit de nombres premiers avec leur puissance respective),
nommée D(N) (D pour “Décomposition”). Son domaine de définition est
N ∈ N tel que N ≥ 2 (voir sous-partie “2.3 Théorème de décomposition
d’un nombre entier N en produit de facteurs premiers”).

- La formule de MINÁC-WILLANS est un cas particulier de la formuleD(N),
qui a été nommée s(M) (voir sous-partie “3.1 Formule simplifiée s(M)”).

- La formule I(M) = s(2.M + 2) = s(M + 2).s(M + 3), assimilable à
une “impulsion” (voir sous-partie “3.4 Formule d’Impulsion Première
I(M)”), permet d’établir un lien entre les polynômes à coefficients entiers et
leur(s) racines lorsqu’elle(s) existe(nt) (voir Chapitre II).

- Ces 2 dernières formules permettent de reconstituer une porte logique
NAND ou une porte logique NOR, ce qui permet d’établir un lien avec
l’algèbre de BOOLE (voir sous-partie “3.7 Equivalences de formules”,
paragraphe “Autres cas intéressant, un cas “binaire””). Le calcul
propositionnel classique devient donc intégralement interprétable en fonction
de ces formules qui traite uniquement la primalité des entiers.

- Une nouvelle forme d’écriture de la fonction ζ de RIEMANN est donnée (voir
sous-partie “3.8.8 Réécriture de la fonction ζ (Zêta) de RIEMANN ”,
ce qui permet d’établir un lien intéressant avec le Chapitre IV.

- La formule D(N) ne permettant pas d’être pratique d’exploitation, des
pistes visant à alléger la simplification des calculs de D(N) sont avancées.
Ce qui est également l’objet du Chapitre IV.

Cependant, en oubliant volontairement la complexité des calculs de la formule
D(N), mais en ne tenant compte seulement que de son domaine de définition
et en associant la variable N à une grandeur physique, il est possible d’envi-
sager une théorie physique.
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Chapitre II : reconstitution de fonctions connues, liens
avec les polynômes

La formule I(M) permet également d’établir un lien direct avec les racines
des polynômes aux coefficients entiers et de degré quelconque (voir sous-
partie “5.3 Généralisation avec les polynômes”).

Chapitre III : Répartition exacte des nombres premiers

Ces 2 formules citées, s(M) et I(M), permettent de donner un équivalent
à la méthode de MINÁC-WILLANS (différente dans la forme) pour donner
la répartition exacte des nombres premiers (voir sous-partie “7.3 Formule
Pn de répartition exacte des nombres premiers”), ce qui ne rend pas
encore les calculs pratiques... L’utilité d’une formule dont le calcul serait
optimal (objectif du Chapitre IV) se fait sentir ici aussi.

Chapitre IV : Etude de la fonction ζ de RIEMANN et
du nombre π

Le but de ce chapitre est de rechercher une méthode qui permette de simplifier
ou de rendre le calcul optimal afin d’obtenir des nombres premiers. Comme le
montre la sous-partie “3.8.7 Produit de nombres factoriels et divisibilité
par M, généralisation” du Chapitre I, les calculs peuvent être réduits
(le but étant de donner une formule sous la forme qui permet de rendre le
calcul optimal, c’est-à-dire de le réduire le plus possible).

De plus, l’étude d’autres fonctions de la forme de la fonction ζ, et la fonction ζ
révèlent des régularités communes qui permettraient d’atteindre cet objectif
de manière “directe”. Le prix à payer étant un travail long et des efforts
très importants à fournir, ce chapitre est largement en cours de réalisation.
Cependant, il fait partie de mes priorités. Il ne sera publié intégralement que
lorsque j’estimerai que mes travaux le concernant auront atteint une maturité
satisfaisante.
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Chapitre V : Réflexions logiques et philosophiques

- Tout d’abord, les méthodes employées dans ce chapitre peuvent parfois
parâıtre non-conventionnelles mais cependant nécessaire à la compréhension
du phénomène suivant. L’intérêt (entre autre) est la preuve logique qu’il soit
possible de construire des énoncés en dehors de tout raisonnement cohérent
(voir partie “14 Preuve de la liberté”, et notamment la sous-partie “14.5
Preuve complète : incomplétude et variable de valeur de vérité
indéfinissable”). La preuve apportée ne tire aucune conclusion directe du
théorème de GODEL (ce qui serait un abus), bien que celui-ci constitue une
partie non-négligeable de la réflexion.

En reliant les valeurs de vérités des énoncés tels que E = [ l’énoncé E est
indémontrable ] aux tables de vérité de l’algèbre de BOOLE, il est possible
d’établir qu’un tel énoncé ne peut être construit qu’en dehors de toute règle
de logique. Il est même possible d’établir qu’un tel énoncé a une valeur de
vérité U qui possède indifféremment les 2 états vrai ou faux (il est même
possible de concevoir que ces 2 états soient superposés) sans que cela ne pose
de problème de cohérence.

Notre réalité ne peut pas être décrite de manière exclusivement déterministe,
car si tel était le cas, nous pourrions à partir d’une formule (ou d’une loi
physique) déduire toutes les autres, ce qui pourrait être retranscrit par des
portes logiques “OU EXCLUSIF ” uniquement. Or, l’énoncé E ne peut pas
être retranscrit à l’aide de ce type de porte logique uniquement. Cependant,
il peut être retranscrit à l’aide d’un autre type de portes logiques (connues),
qui confirment qu’un énoncé puisse être indifféremment être vrai ou faux.

- De plus, ce chapitre fixe des limites à ce qu’il est possible de concevoir
lorsque l’on envisage d’aboutir à une théorie physique.

- Pour finir, la démarche n’étant pas conventionnelle, je dois cependant
l’assumer. Ce chapitre m’a demandé d’importants efforts d’organisation, de
réorganisation, de rectifications et de reformulations (depuis la 1ière publi-
cation) pour rendre compréhensible ce phénomène. Bien que je ne sois pas
parfaitement satisfait de ce chapitre, ne passez pas à côté de l’idée que je vais
essayer d’exprimer! En effet, elle me parâıt être d’une importance fonda-
mentale. Je ne serais que ravi que l’on arrive à me prouver le
contraire par des moyens logiques équivalents! N’hésitez donc pas à me
contredire si nécessaire : le débat peut faire émerger quelquechose de plus grand!
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Chapitre VI : Théorie physique de décomposition des
phénomènes cycliques

Tout ceci nous amène au dernier chapitre (travaux en cours) qui propose de
faire la synthèse de l’ensemble des chapitre précédent.

- Associer la variable N de la formule D(N) à une variable physique comme
la longueur d’onde du photon permet de concevoir l’existence d’une unité
de mesure indivisible de longueur, d’un minimum pour la longueur d’onde
(λmin = 2, unités naturelles de PLANCK ) et la discontinuité de l’espace.

- Associer la variable N de la formule D(N) à une variable physique comme la
période d’un phénomène cyclique (ou photon) permet de concevoir l’existence
d’une unité de mesure indivisible de durée, d’un minimum pour la période
(Tmin = 2, unités naturelles de PLANCK ) et la discontinuité du temps.

D’où l’existence d’un maximum pour la fréquence fmax = 1/2 et d’un maximum
pour la fréquence angulaire ωmax = π pour tout phénomène cyclique.

- En supposant l’existence d’éléments indivisibles et identiques appartenant
à un ensemble, associer la variable N de la formule D(N) à la quantité
d’éléments de cet un ensemble permet de concevoir qu’il soit possible de
décomposer un ensemble d’éléments en sous-ensembles fondamentaux. Ainsi,
cela implique également d’admettre :

∗ l’existence d’une unité de mesure indivisible (la valeur 1, évidemment),

∗ l’existence d’une limite minimum pour un sous-ensemble (Nmin = 2
éléments, le cas de l’intrication impose 1 groupe d’au moins 2 photons),

∗ que nos mesures ne puissent être que discontinues (domaine de définition
des nombres entiers).

- Le domaine de définition de la formule D(N) donne ainsi un cadre et les
limites (avec entre autres ωmax = π) pour la représentation géométrique du
phénomène fondamentalement indéterministe évoqué dans le Chapitre V.

- L’objectif de ce chapitre (objectif non atteint car les travaux sont encore en
cours de réalisation) est de proposer un modèle de représentation géométrique
au photon, afin d’envisager (je l’espère) une possible représentaion du phéno-
mène d’intrication quantique.
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Pour finir

Ce que j’ai voulu mettre en évidence, et il ne faut finalement retenir que cela,
c’est que l’on ne peut que constater qu’il existe des conditions favorables
à l’émergence d’un tel indéterminisme, le “plus profond” indéterminisme
possible :

∗ Une formule mathématique D(N) qui permet de donner un domaine
de définition à une vairaible N , et donc un cadre de représentation
géométrique si l’on admet que l’on puisse associer N à une grandeur
physique (la longueur d’onde, la période ou la quantité d’éléments d’un
ensemble);

∗ Pour la variable indéfinissable U , la mise en présence de 2 éléments
indivisibles et identiques dans le cas limite ωmax = π : une seule
configuration au départ qui permet 2 interprétations possibles (indiffé-
remment), 2 interprétations qui sont même dans des états binaires
“superposés”. La mise en présence d’un 3ième élément supplémentaire
indivisible et identique aux 2 autres permet d’aboutir à 2 conséquences
potentiellement équiprobables, dont uniquement l’une des 2 peut effec-
tivement se réaliser. Il est fort probable que ce phénomène soit très
répandu.

∗ Cette représentation doit enfin permettre de rendre compte des effets
de la relativité dans une particule en mouvement par rapport à un
observateur (en cours de réalisation, bien que les idées essentiels soient
indiquées).

Cette conception des choses (relativement simple à représenter géométri-
quement, finalement) permettrait aussi de donner une raison aux phénomènes
cycliques et à la diversité des formes d’assemblages de matière.

En fait, j’ai la forte intuition que tôt ou tard, les sciences seront amenées
à examiner un cas physique équivalent à celui. Notamment la recherche
du domaine robotique et la cybernétique, ce qui permettrait de donner aux
robots une “liberté” , une autonomie, à l’instar des êtres vivants, de pouvoir
faire des choix cohérents OU en dehors de toute cohérence logique (dans cette
éventualité, je préconise d’ailleurs toujours la vigilance).
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CHAPITRE I

Formule Mathématique de
Factorisation d’un Nombre

Entier (en Produit de Nombres
Premiers)
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Introduction générale

Les travaux qui vont suivre sont issus d’une remarque simple mais d’une
importance fondamentale sur la régularité des variations de la puisssance
de chaque nombre premier Pn, dont la puissance est notée αn, dans le cas
de la factorisation d’un nombre entier positif N ≥ 2. L’étude sera divisée
en plusieurs parties car elle fait intervenir plusieurs formules utiles pour
atteindre cet objectif. Nous terminerons en donnant simplement une formule
unique permettant cette factorisation d’un nombre entier en produit de
nombres premiers.

Je précise que je suis l’auteur unique de ces réflexions, de ces démonstrations,
de ces travaux et de leurs conclusions, et du contenu de ces 6 chapitres dont
le plan est donné précédemment.

Je désire par avance prévenir le lecteur que je ne suis pas mathématicien ou
scientifique de profession. J’ai pourtant un goût et un intérêt très prononcé
pour ces diciplines, et les thèmes de la logique en général, activités auxquelles
j’aimerais participer davantage. J’aime m’intéresser avant tout aux problèmes
non résolus. Pour cette raison, on pourrait trouver que mes démonstrations
seraient peut-être un peu rapides, mais je donnerai des exemples en nombre
suffisant lorsque nécessaire pour vous convaincre de l’importance d’un phéno-
mène qui semble se manifester dans un ordre, et non pas au hasard. Je
me suis intéressé de très près aux nombres premiers après m’être intéressé
aux systèmes réguliers auxquels j’ai trouvé des formules en marge de ma
formation scolaire. Je pense désormais que les nombres premiers apparaissent
de manière régulière, je désire donc informer le plus possible sur mes décou-
vertes. Il existe une formulation pour dire que les nombres premiers ne
sont divisible que par 1 et par eux-même, il doit donc exister une formule
équivalente pour l’exprimer aussi en langage mathématique. Le but est
clairement de connâıtre de manière précise la répartition des nombres premiers,
ou à quels “moments” ils apparaissent. Pour cela, les travaux sont divisés
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en deux ensembles importants. Un Premier Chapitre qui porte sur la
factorisation d’un nombre entier en produit de nombres premiers, les deux
chapitres suivants portent sur la répartition exacte des nombres premiers.
Il m’a semblé intéressant d’aborder un Deuxième Chapitre du fait des
propriétés de fonctions étudiées dans le Premier Chapitre. En effet, celui-
ci permettra d’établir des liens intéressants entre divers fonctions connues
(notamment les polynômes à coefficients entiers). Le Troisième Chapitre
donne la répartition exacte des nombres premiers (en conséquence des formules
étudiées dans le premier et dans le Deuxième Chapitre).

Par conséquent et j’insiste sur ce point, ces travaux sont plus une réflexion
permettant de fournir des réponses théoriques aux problèmes liés aux nombres
premiers qu’une méthode pratique pour parvenir à des calculs rapides.

L’étude du Quatrième Chapitre se propose au contraire de rechercher une
méthode pour rendre optimal le calcul des nombres prmiers (partiellement
vue en Chapitre I), l’objectif étant de les rendre exploitable en pratique, ce
qui en fait un chapitre nettement plus ambitieux.

Le Cinquième Chapitre permet de développer des approches strictement
logiques, mais aussi philosiques qu’il m’a semblé intéressant d’exposer. Il est
au moins aussi important que les autres étant donné qu’il permet de nous
guider au Sixième Chapitre en donnant un ensemble de règles utiles pour
une orientation vers la représentation de phénomènes physiques.

Finalement, et s’appuyant sur les chapitres précédents, ce Dernier Chapitre
se propose d’établir un lien avec des phénomènes physiques cycliques, et
notamment un lien avec des phénomènes quantique (mathématiques appli-
quées), en faisant la synthèse des points essentiels que nous allons étudier au
cours de cette théorie.

A noter :

Une démonstration plus complète de ce qui va suivre est proposée dans
la partie intitulée “2 Démonstration complète” (page 52). La partie
“1 Factorisation et mécanique des puissances” (page 21) n’étant ici que
pour appuyer et renforcer par des exemples précis la partie démonstration.
Celle-ci permet également de s’accoutumer et à se persuader du phénomène
régulier qui se produit concernant les nombres premiers.

Page 18 sur 514



Rappels

- Tout d’abord, Il a déjà été démontré de plusieurs manières différentes
dans l’Histoire qu’il existe une infinité de nombres premiers.

- Rappelons que tout nombre N ∈ N, tel que N ≥ 2, est factorisable en
produit de nombres premiers Pn ∈ P (n ∈ N, n ≥ 1) de cette manière :

N = Pα1
1 × Pα2

2 × Pα3
3 × ...× Pαn

n

avec P1 = 2, et tel que P1 < P2 < P3 < ... < Pn,
P1, P2, P3, ..., Pn étant des nombres premiers consécutifs
(c’est-à-dire P1 = 2, P2 = 3, P3 = 5, P4 = 7, P5 = 11...).

- Nous pourrions nous limiter à un nombre de termes “utiles” (limité
par n) ou encore écrire N sous la forme d’un produit d’une infinité de
nombres premiers Pn :

N =
n→+∞∏
n=1

(Pn)αn

Dans ce cas, les termes non utiles aurant leur puissance αn = 0 (notamment
tous les Pn supérieur au plus grand nombre premier utile à la factorisation).

- Mais il faut aussi noter que nous aurions pu écrire ce nombre comme
produit de tous les nombres entiers Mi ∈ N, Mi ≥ 2 ainsi :

N =
i→+∞∏
i=1

(Mi)
ai

Dans ce cas, nous pouvons ramener cette formule à la formule précédente
car les seuls termes utiles sont ceux contenant des nombres premiers.
En effet, la plupart des puissances ai pourront être égales à 0, notamment
lorsque Mi /∈ P, et, dans le cas où Mi ∈ P, lorsque Mi n’est pas un
nombre premier utile à la factorisation de N .
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Remarque préalable

Nous noterons que :

N = Pn si
n→+∞∑
n=1

(αn) = 1

Remarquons ici aussi que nous pourrions nous limiter à une somme de termes
utiles plutôt qu’à une somme infinie (Ce que nous tenterons de faire).
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1

Factorisation et mécanique des
puissances

Commençons par la formule suivante :

N =
n→+∞∏
n=1

(Pn)αn

Avec Pn ∈ P (n ∈ N, n ≥ 1),
avec P1 = 2, et tel que P1 < P2 < P3 < ... < Pn,
P1, P2, P3, ..., Pn étant des nombres premiers consécutifs
(c’est-à-dire P1 = 2, P2 = 3, P3 = 5, P4 = 7, P5 = 11...).

Rappel évident :

α1 correspond à la puissance de P1

α2 correspond à la puissance de P2

α3 correspond à la puissance de P3

...
αn correspond à la puissance de Pn

Nous pouvons construire un tableau de référence T.R.1 (qui est immuable)
où la première colonne représente N , et toutes les suivantes représentent les
αn qui correspondent à N :

Exemple préalable pour N = 12, N = 22 × 31 × 50 × 70 × ...× Pn0 × ...
Donc α1 = 2; α2 = 1; α3 = 0; α4 = 0; ... αn = 0; ...
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T.R.1

N α1 α2 α3 α4 α5 α6 α7 ... αn

1 0 0 0 0 0 0 0 ... 0
2 1 0 0 0 0 0 0 0
3 0 1 0 0 0 0 0 0
4 2 0 0 0 0 0 0 0
5 0 0 1 0 0 0 0 0
6 1 1 0 0 0 0 0 0
7 0 0 0 1 0 0 0 0
8 3 0 0 0 0 0 0 0
9 0 2 0 0 0 0 0 0
10 1 0 1 0 0 0 0 ... 0
11 0 0 0 0 1 0 0 0
12 2 1 0 0 0 0 0 0
13 0 0 0 0 0 1 0 0
14 1 0 0 1 0 0 0 0
15 0 1 1 0 0 0 0 0
16 4 0 0 0 0 0 0 0
17 0 0 0 0 0 0 1 0
18 1 2 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0
20 2 0 1 0 0 0 0 ... 0
21 0 1 0 1 0 0 0 0
22 1 0 0 0 1 0 0 0
23 0 0 0 0 0 0 0 0
24 3 1 0 0 0 0 0 0
25 0 0 2 0 0 0 0 0
26 1 0 0 0 0 1 0 0
27 0 3 0 0 0 0 0 0
28 2 0 0 1 0 0 0 0
29 0 0 0 0 0 0 0 0
30 1 1 1 0 0 0 0 ... 0
31 0 0 0 0 0 0 0 0
32 5 0 0 0 0 0 0 0
33 0 1 0 0 1 0 0 0
34 1 0 0 0 0 0 1 0
35 0 0 1 1 0 0 0 0
36 2 2 0 0 0 0 0 0
37 0 0 0 0 0 0 0 0
38 1 0 0 0 0 0 0 0
39 0 1 0 0 0 1 0 0
40 3 0 1 0 0 0 0 ... 0
41 0 0 0 0 0 0 0 0
... ... ... ... ... ... ... ... ... ...
Pn 0 0 0 0 0 0 0 ... 1
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La compréhension de ce tableau est essentielle pour la suite de l’étude de la
factorisation d’un nombre entier. Nous remarquons aisément des symétries
et des régularités à l’intérieur de chaque colonne. De plus, les données de
ce tableau sont immuables (elles seront toujours constantes) : nous pouvons
donc nous en servir en permanence. Par la suite, nous allons donner une
représentation graphique à ces données, et pour plus de lisibilité, nous allons
lier chaque point du graphique par des segments (ceux-ci ne représentant donc
pas une continuité, puisque passer d’un nombre entier à un autre invoque
nécessairement la discontinuité). Comme nous allons le voir, et pour N un
nombre entier positif, chaque graphique correspondant à une puissance αn
est assimilable à une “onde” qui peut être décomposée en somme de plusieurs
ondes plus simples.

Remarque :

Le tableau de référence T.R.1 peut être construit de manière “mécanique”,
une fois que l’on comprend comment se répètent (par symétries) et s’incrémen-
tent les valeurs dans une colonne αn. Nous pouvons déjà constater facilement
qu’un nombre N est un nombre premier si et seulement si la somme de toutes
les valeurs de αn (pour un nombre N , cela correspondant à une ligne complète
de valeurs de αn) vaut 1.
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1.1 Etude de la puissance de 2

Colonne α1, correspondant à P1 = 2 :

Il est important de garder à l’esprit que de cette manière, nous avons regroupé
tous les multiples de 2 (c’est-à-dire P1) grâce à la “courbe” de α1.

On distingue clairement ces symétries sur des longueurs finies :

Une Symétrie verticale S1 en N = 2 de Longueur L1 = 2 sur l’axe N ;
Une Symétrie verticale S2 en N = 4 de Longueur L2 = 6 sur l’axe N ;
Une Symétrie verticale S3 en N = 8 de Longueur L3 = 14 sur l’axe N ;
Une Symétrie verticale S4 en N = 16 de Longueur L4 = 30 sur l’axe N ;
...

Et pour a ∈ N, a ≥ 1 :

Une Symétrie verticale Sa en N = (P1)a de Longueur La = 2.(P1)a − 2 sur
l’axe N .

Notons aussi que le nombre de répétition Ra des sommets de même hauteur
jusqu’à l’axe de symétrie est régulière et que :

Pour S1, on a R1 = P1 − 1
Pour Sa, on a Ra = P1

a − 1

Pour comprendre que la “courbe” α1 est régulière, nous devons garder à
l’esprit qu’elle dépend directement de N . Car dans le cas de cette courbe, P1

voit logiquement sa puissance α1 s’annuler lorsque N est impaire (c’est-à-dire
lorsque N n’est pas multiple de 2) : c’est-à-dire une fois sur 2. Le reste de la
construction est aussi simple car dans les nombres paires restant, nous avons
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ceux qui sont multiples de 21, ceux multiples de 22, ceux multiples de 23, ...
ceux multiples de P1

α1 .

Or, cette façon de procéder nous donne directement la construction de la
courbe α1 comme une superposition d’une infinité de courbes plus simples,
que nous pouvons décomposer comme un somme de courbes α1,x (avec x ∈ N,
x ≥ 1) :

Ces courbes sont répétées d’un sommet à l’autre de manière régulière (la
longueur entre chaque sommet est identique) et infinie.

Nous avons donc :

α1 =
x→+∞∑
x=1

(α1,x)
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Nous devons prendre en compte le caractère périodique de chaque α1,x pour
la construction de leur courbe. les fonctions recherchées devront donc refléter
cette périodicité. De plus, nous devons avoir α1,x = 1 pour N = 0. Nous
sommes dans le cas de la fonction SINUS. De plus α1,x n’admettant pas de
valeur négative mais seulement les valeurs 0 et 1, nous devrons élever cette
fonction au carré. De là, nous déduisons facilement α1,1. Pour les courbes
suivantes, nous devons simplement trouver le moyen d’avoir une fonction
nulle pour certaines valeurs de N réparties régulièrement, ce que permettent
les fonctions polynômiales lorsqu’elles sont associées à la fonction SINUS.
Nous devons finalement diviser ce polynôme P(N) par une fonction qui nous
permette d’avoir la valeur α1,x = 1 au moins tous les 2x pour N . c’est-à-dire
que la fonction SINUS élevée au carré doit valoir 1, ou encore :

sin 2

(
P(N).π

d(N)

)
= 1 (avec d(N) le dénominateur).

Pour qu’un polynôme P(N) s’annule uniquement pour 1, il doit être de la
forme : P(N) = (N − 1).

Pour que ce polynôme s’annule seulement pour 1 et pour 2, il doit être de la
forme : P(N) = (N − 1)(N − 2).

Pour qu’il s’annule seulement pour 1, pour 2 et pour 3, il doit être de la
forme : P(N) = (N − 1)(N − 2)(N − 3).

Pour qu’il s’annule seulement pour 1, pour 2, pour 3, ... et pour y ∈ N,
y ≥ 1, il doit être de la forme : P(N) = (N − 1)(N − 2)(N − 3)...(N − y).

En admettant que N = 0 pour chacune de ces lignes précédentes, le polynôme
sera non nulle, et c’est la valeur du dénominateur d(N) qui permet à la
fonction de prendre 1 pour valeur.
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Avec pour α1,x :

α1,1 = sin 2

(
(N − 1).π

2

)
α1,2 = sin 2

(
(N − 1)(N − 2)(N − 3).π

4

)
α1,3 = sin 2

(
(N − 1)(N − 2)(N − 3)(N − 4)(N − 5)(N − 6)(N − 7).π

32

)
α1,4 = sin 2

(
(N − 1)(N − 2)...(N − 14)(N − 15).π

4096

)
α1,5 = sin 2

(
(N − 1)(N − 2)...(N − 30)(N − 31).π

134217728

)
...

Il y a un lien direct entre le numérateur et le dénominateur car il n’est pas
utile que ce dénominateur soit autre chose qu’une puissance de 2 (il suffit de
faire référence à la trigonométrie). En effet, le numérateur faisant intervenir
N , il sera composé en puissance de 2, on le remarque aisément en remplaçant
N par 0 (pour des raisons pratiques ne gênant pas la suite du raisonnement,
notons que cela fonctionne avec tout autre entier positif). Le dénominateur
doit alors obligatoirement aussi être composé en puissance de 2 (au moins)
mais seulement d’une unité supérieure, ceci afin de permettre la validité des
courbes.

De plus, en comparant les “α1,x” , nous remarquons aussi une régularité entre
les termes de chaque numérateur (dans les parenthèses) et encore une autre
régularité entre les termes de chaque dénominateur.
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Ici, les valeurs de la puissance (de 2) dans le dénominateur d(N) sont 1; 2;
5; 12; 27; 58; ... Or :

1 = 21 − 1

2 = 22 − 2

5 = 23 − 3

12 = 24 − 4

27 = 25 − 5

58 = 26 − 6

...

... = 2x − x

D’où :

α1,x = sin2

π.
h=(2x−1)∏
h=1

(N − h)

2(2x−x)



Et voici donc la formule de la puissance α1 pour P1 :

α1 =
x→+∞∑
x=1

sin2

π.
h=(2x−1)∏
h=1

(N − h)

2(2x−x)



Page 28 sur 514



1.2 Etude de la puissance de 3

Colonne α2, correspondant à P2 = 3 :

Il est important de garder à l’esprit que de cette manière, nous avons regroupé
tous les multiples de 3 (c’est-à-dire P2) grâce à la courbe de α2.

De la même manière, des symétries apparaissent régulièrement :

Une Symétrie verticale S1 en N = 3 de Longueur L1 = 4 sur l’axe N ;
Une Symétrie verticale S2 en N = 9 de Longueur L2 = 16 sur l’axe N ;
Une Symétrie verticale S3 en N = 27 de Longueur L3 = 52 sur l’axe N ;
Une Symétrie verticale S4 en N = 81 de Longueur L4 = 160 sur l’axe N ;
...

Et pour a ∈ N, a ≥ 1 :

Une Symétrie verticale Sa en N = (P2)a de Longueur La = 2.(P2)a − 2 sur
l’axe N .

Notons aussi que le nombre de répétition Ra des sommets de même hauteur
jusqu’à l’axe de symétrie est régulière et que :

Pour S1, on a R1 = P2 − 1
Pour Sa, on a Ra = P2

a − 1

Pour les mêmes raisons que la courbe α1, α2 est régulière car elle aussi dépend
directement de N . En effet, dans le cas de cette courbe, P2 voit logiquement
sa puissance α2 s’annuler lorsque N n’est pas multiple de 3 : c’est-à-dire une
fois sur 3.

Page 29 sur 514



Le reste de la construction est aussi simple car dans les nombres restants,
nous avons ceux qui sont multiples de 31, ceux multiples de 32, ceux multiples
de 33, ... ceux multiples de P2

α2 .

Or, cette façon de procéder nous donne directement la construction de la
courbe α2 comme une superposition d’une infinité de courbes plus simples,
que nous pouvons décomposer comme un somme de courbes α2,x (avec x ∈ N,
x ≥ 1) :

Ces courbes sont répétées d’un sommet à l’autre de manière régulière (la
longueur entre chaque sommet est identique) et infinie. Nous avons donc :

α2 =
x→+∞∑
x=1

(α2,x)
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De la même manière que pour les courbes de α1,x, nous utiliserons les mêmes
fonctions utiles à la construction des courbes α2,x : c’est-à-dire les fonctions
sin 2, les polynômes (N − 1)(N − 2)...(N − y) , et un dénominateur d(N) qui
devra être nécessairement composé en puissance de 3.

Comme pour les courbes de α1,x, en admettant que N = 0, le polynôme sera
non nulle, et c’est la valeur du dénominateur d(N) qui permet à la fonction de
prendre 1 pour valeur. En cela, la méthode est la même que précédemment.
Mais la différence avec les courbes de α1,x apparâıt ici et pour la suite de
l’étude car nous devrons ensuite encore diviser l’ensemble par une valeur
précise pour que la formule finale α2,x puisse prendre 1 pour valeur lorsque
N est un multiple de 3.

Avec pour α2,x :

α2,1 =
sin 2[(N − 1)(N − 2).π/3]

sin 2(π/3)

α2,2 =
sin 2[(N − 1)(N − 2)...(N − 7)(N − 8).π/33]

sin 2(π/3)

α2,3 =
sin 2[(N − 1)(N − 2)...(N − 25)(N − 26).π/311]

sin 2(π/3)

α2,4 =
sin 2[(N − 1)...(N − 80).π/337]

sin 2(π/3)

α2,5 =
sin 2[(N − 1)...(N − 242).π/3117]

sin 2(π/3)

...

ATTENTION : Il est important de remarquer que cette règle n’est valable
que pour un nombre premier (ici, il s’agit de 3), car nous désirons construire
ce dénominateur d(N) de telle sorte qu’il “compte” le nombre concernant la
puissance de 3 qui résulte du calcul du polynôme au numérateur. Clairement,
nous souhaitons obtenir au dénominateur une puissance de 3 qui soit d’une
unité supérieur à celle du numérateur (on exécute un calcul rapidement en
remplaçant volontairement N par 0).

Poursuivons en comparant les “α2,x” , nous remarquons aussi une régularité
entre les termes de chaque numérateur (dans les parenthèses) et encore une
autre régularité entre les termes de chaque dénominateur.

Page 31 sur 514



Ici, les valeurs de la puissance dans le dénominateur d(N) sont 1; 3; 11; 37;
117; ... Or :

1 =
31 − 1

3− 1
− 1 + 1

3 =
32 − 1

3− 1
− 2 + 1

11 =
33 − 1

3− 1
− 3 + 1

37 =
34 − 1

3− 1
− 4 + 1

117 =
35 − 1

3− 1
− 5 + 1

...

... =
3x − 1

3− 1
− x+ 1

D’où :

α2,x =

sin 2


π.

h=(3x−1)∏
h=1

(N − h)

3( 3x−1
3−1
−x+1)


sin 2(π/3)

Et voici donc la formule de la puissance α2 pour P2 :

α2 =
x→+∞∑
x=1

sin 2


π.

h=(3x−1)∏
h=1

(N − h)

3( 3x−1
3−1
−x+1)


sin 2(π/3)
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1.3 Etude de la puissance de 5

Colonne α3, correspondant à P3 = 5 :

Il est important de garder à l’esprit que de cette manière, nous avons regroupé
tous les multiples de 5 (c’est-à-dire P3) grâce à la courbe de α3.

Nous constatons aussi :

Une Symétrie verticale S1 en N = 5 de Longueur L1 = 8 sur l’axe N ;
Une Symétrie verticale S2 en N = 25 de Longueur L2 = 48 sur l’axe N ;
Une Symétrie verticale S3 en N = 125 de Longueur L3 = 248 sur l’axe N ;
Une Symétrie verticale S4 en N = 625 de Longueur L4 = 1248 sur l’axe N ;
...

Et pour a ∈ N, a ≥ 1 :

Une Symétrie verticale Sa en N = (P3)a de Longueur La = 2.(P3)a − 2 sur
l’axe N .

Remarquons aussi que le nombre de répétition Ra des sommets de même
hauteur jusqu’à l’axe de symétrie :

Pour S1, on a R1 = P3 − 1
Pour Sa, on a Ra = P3

a − 1

Pour les mêmes raisons que la courbe α1, α3 est régulière car elle aussi dépend
directement de N . En effet, dans le cas de cette courbe, P3 voit logiquement
sa puissance α3 s’annuler lorsque N n’est pas multiple de 5 : c’est-à-dire une
fois sur 5.
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Le reste de la construction est aussi simple car dans les nombres restants,
nous avons ceux qui sont multiples de 51, ceux multiples de 52, ceux multiples
de 53, ... ceux multiples de P3

α3 .

Or, cette façon de procéder nous donne directement la construction de la
courbe α3 comme une superposition d’une infinité de courbes plus simples,
que nous pouvons décomposer comme un somme de courbes α3,x (avec x ∈ N,
x ≥ 1) :

Ces courbes sont répétées d’un sommet à l’autre de manière régulière (la
longueur entre chaque sommet est identique) et infinie. Nous avons donc :

α3 =
x→+∞∑
x=1

(α3,x)
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De la même manière que pour les courbes de α2,x, nous utiliserons les mêmes
fonctions utiles à la construction des courbes α3,x : c’est-à-dire les fonctions
sin 2, les polynômes (N − 1)(N − 2)...(N − y) , et un dénominateur d(N) qui
devra être nécessairement composé en puissance de 5.

Comme pour les courbes de α2,x, en admettant que N = 0, le polynôme
sera non nulle, et c’est la valeur du dénominateur d(N) qui permet à la
fonction de prendre 1 pour valeur. En cela, la méthode est la même que
précédemment. Et comme pour les courbes de α2,x, nous devrons ensuite
encore diviser l’ensemble par une valeur précise pour que la formule finale
α3,x puisse prendre 1 pour valeur lorsque N est un multiple de 5.

Avec pour α3,x :

α3,1 =
sin 2[(N − 1)(N − 2)(N − 3)(N − 4).π/5]

sin 2(π/5)

α3,2 =
sin 2[(N − 1)(N − 2)...(N − 23)(N − 24).π/55]

sin 2(π/5)

α3,3 =
sin 2[(N − 1)(N − 2)...(N − 123)(N − 125).π/529]

sin 2(π/5)

α3,4 =
sin 2[(N − 1)(N − 2)...(N − 623)(N − 624).π/5153]

sin 2(π/5)

α3,5 =
sin 2[(N − 1)(N − 2)...(N − 3124)(N − 3125).π/5777]

sin 2(π/5)

...

ATTENTION : Il est important de remarquer que cette règle n’est valable
que pour un nombre premier ici aussi (il s’agit de 5), car nous désirons
construire ce dénominateur d(N) de telle sorte qu’il “compte” le nombre
concernant la puissance de 5 qui résulte du calcul du polynôme au numérateur.
Clairement, nous souhaitons obtenir au dénominateur une puissance de 5
qui soit d’une unité supérieur à celle du numérateur (on exécute un calcul
rapidement en remplaçant volontairement N par 0).

Poursuivons en comparant les “α3,x” , nous remarquons aussi une régularité
entre les termes de chaque numérateur (dans les parenthèses) et encore une
autre régularité entre les termes de chaque dénominateur.
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Ici, les valeurs de la puissance dans le dénominateur d(N) sont 1; 5; 29; 153;
777; ... Or :

1 =
51 − 1

5− 1
− 1 + 1

5 =
52 − 1

5− 1
− 2 + 1

29 =
53 − 1

5− 1
− 3 + 1

153 =
54 − 1

5− 1
− 4 + 1

777 =
55 − 1

5− 1
− 5 + 1

...

... =
5x − 1

5− 1
− x+ 1

D’où :

α3,x =

sin 2


π.

h=(5x−1)∏
h=1

(N − h)

5( 5x−1
5−1
−x+1)


sin 2(π/5)

Et voici donc la formule de la puissance α3 pour P3 :

α3 =
x→+∞∑
x=1

sin 2


π.

h=(5x−1)∏
h=1

(N − h)

5( 5x−1
5−1
−x+1)


sin 2(π/5)
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1.4 Etude de la puissance de 11

Colonne α5, correspondant à P5 = 11.

Dorénavant, comme nous allons le voir, la manière de rédiger les formules est
identique à partir de α3 jusqu’à αn. Mais prenons encore un exemple avec
α5 avant la généralisation (les explications seront plus brèves pour α5).

Il est important de garder à l’esprit que de cette manière, nous avons regroupé
tous les multiples de 11 (c’est-à-dire P5) grâce à la courbe de α5.

Pour a ∈ N, a ≥ 1 : une Symétrie verticale Sa en N = (P5)a de Longueur
La = 2.(P5)a − 2 sur l’axe N .

α5 est régulière car elle dépend directement de N . α5 est composée de la
somme d’une infinité de courbes plus simples que nous noterons α5,x (avec
x ∈ N, x ≥ 1) :

(voir page suivante)
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Ces courbes sont répétées d’un sommet à l’autre de manière régulière (la
longueur entre chaque sommet est identique) et infinie. Nous avons donc :

α5 =
x→+∞∑
x=1

(α5,x)

Avec pour α5,x :

α5,1 =
sin 2[(N − 1)(N − 2)...(N − 10).π/11]

sin 2(π/11)

α5,2 =
sin 2[(N − 1)(N − 2)...(N − 120).π/1111]

sin 2(π/11)

α5,3 =
sin 2[(N − 1)(N − 2)...(N − 1330).π/11131]

sin 2(π/11)

α5,4 =
sin 2[(N − 1)(N − 2)...(N − 14640).π/111461]

sin 2(π/11)
...
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ATTENTION : Cette règle n’est valable que pour un nombre premier (ici,
il s’agit de 11). Nous souhaitons toujours obtenir au dénominateur une
puissance de 11 qui soit d’une unité supérieur à celle du numérateur (on
exécute un calcul rapidement en remplaçant volontairement N par 0).

Ici, les valeurs de la puissance dans le dénominateur d(N) sont 1; 11; 131;
1461; ... Or :

1 =
111 − 1

11− 1
− 1 + 1

11 =
112 − 1

11− 1
− 2 + 1

131 =
113 − 1

11− 1
− 3 + 1

1461 =
114 − 1

11− 1
− 4 + 1

...

... =
11x − 1

11− 1
− x+ 1

Ce qui, au passage, nous permet de prédire la prochaine valeur du dénominateur
d(N) pour α5,5 (ainsi que toutes les valeurs suivantes) :

16101 =
115 − 1

11− 1
− 5 + 1

D’où :

α5 =
x→+∞∑
x=1

sin 2


π.

h=(11x−1)∏
h=1

(N − h)

11( 11x−1
11−1

−x+1)


sin 2(π/11)
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1.5 Etude de la puissance de Pn

Colonne αp, correspondant à Pn.

Nous avons une Symétrie verticale Sa en N = (Pn)a de Longueur
La = 2.(Pn)a − 2 sur l’axe N .

Avec un nombre de répétition Ra des sommets de même hauteur jusqu’à l’axe
de symétrie :

Pour S1, on a R1 = Pn − 1
Pour Sa, on a Ra = Pn

a − 1

αp est régulière (comme précédemeent) car elle dépend directement de N . αp
est composée de la somme d’une infinité de “courbes” plus simples que nous
noterons αp,x (avec x ∈ N, x ≥ 1) :

αp =
x→+∞∑
x=1

sin 2


π.

h=(Pn
x−1)∏

h=1

(N − h)

Pn
(Pnx−1

Pn−1
−x+1)


sin 2(π/Pn)

Après vérification, nous pouvons aisément constater que cette formule inclu
également α1 (pour P1 = 2), ce qui est intéressant si nous nous donnons pour
objectif de généraliser.
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Il est important de garder à l’esprit que de cette manière, nous regroupons
tous les multiples de Pn grâce à ce système de “courbes” de αn. Ainsi, le
calcul entre le dénominateur et le numérateur dans le “sin 2” permet d’obtenir
exclusivement :

- Un nombre rationnel multiplié par π sous la forme 2c.π/Pn

(avec c ∈ N) pour les nombres premiers impaires, de telle sorte que

(2c±1).π/Pn = d.π (avec d ∈ N), et donc un nombre rationnel multiplié
par π sous la forme :

(d.Pn ± 1).π/(2.Pn) ce qui permet αp = 1.

Et aussi un nombre rationnel multiplié par π sous la forme (2c+1).π/2
(avec c ∈ N) pour P1 = 2 qui est le seul nombre premier paire.

Ou bien

- Un nombre entier multiplié par π et donc directement αp = 0, sauf pour
le cas où Pn n’est pas connu et si nous le supposions égale à 4 : pour
x = 1 (seulement), nous obtenons après calcul un nombre rationnel
permettant αp = 2 pour tout N multiple de 4 alors que nous désirons
avoir αp = 0 pour tout N dans ce cas (étant donné qu’en supposant
Pn = 4 pour ce cas, 4 n’est pas un nombre premier). Nous allons donc
aborder une étape supplémentaire pour résoudre ce problème.
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1.6 Problème lorsque Pn est inconnu

Il est primordial de constater que la fonction αp est construite de telle manière
que la formule d(N) du dénominateur ne se calcule qu’en fonction d’un
nombre premier et non d’un autre nombre, c’est-à-dire que sans connâıtre
ce nombre premier, nous pouvons maintenant remplacer Pn par un entier
quelconque supérieur à 1, et obtenir un résultat très proche du résultat
généralisé. Mais si nous nous arrêtions ici, nous rencontrions un problème si
nous supposions que nous ne connaissions pas les nombres premiers dans le
cas suivant :

Si nous supposions en particulier que Pn = 4, nous constaterions que les
résultats obtenus seraient inexactes car la formule est incomplète. Effec-
tivement, αp = 2 pour N multiple de 4. Nous devons donc construire une
fonction qui nous permette de corriger ce problème. C’est-à-dire que nous
devons construire une fonction f(N) qui s’annule tous les multiples de 4 et
qui vaut 1 sinon, ceci afin de ne pas perturber les résultats donnés par le
reste de la formule, ce qui nous permettra de la multiplier à αp :

αn = f(N).αp

Avec sur le même principe de construction que dans les parties précédentes
(sachant que ce que nous recherchons est une fonction complémentaire à celle
de la fonction SINUS ) :

αn = αp. cos 2
(π

4
.(Pn − 1)(Pn − 2)(Pn − 3)

)
αn = αp. cos 2

(
π

4
.

v=3∏
v=1

(Pn − v)

)
Ainsi, nous aurons construit la formule αn permettant de donner les valeurs
des puissances de chaque nombre premier Pn sans même avoir besoin de
connâıtre Pn. En effet, cette formule ayant une valeur nulle dans le cas
où nous prendrions pour Pn un autre nombre qu’un nombre premier, nous
pouvons davantage la généraliser et remplacer Pn dans la formule αn par
M ∈ N, M ≥ 2. D’ailleurs, par la suite nous donnerons la formule de
factorisation sous les 2 formes.

Précisons encore que M est bornée par M ∈ N, M ≥ 2 car la formule de αp
construite contenant l’expression sin 2(π/Pn) sous le “grand” dénominateur,
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si Pn valait 1, le dénominateur vaudrait 0, or, la division par 0 est interdite.
D’autre part, la construction de la fonction αp n’est valable qu’à partir du
nombre 2 étant donné que tout nombre élevé à une puissance supérieur à
1 vaut autre chose que ce nombre lui-même, ce qui n’est pas le cas pour le
nombre 1. En effet, lorsqu’on élève le nombre 1 à une puissance quelconque
supérieur 1, on obtient toujours 1. Cette formule ne peut donc pas le
concerner.

Ceci exclu le nombre 1 de l’ensemble des nombres premiers de façon naturelle,
c’est-à-dire sans supposition ni convention.

Evidemment, le nombre 0 est à exclure également des valeurs que peut
prendre M étant donné que cela amènerait aussi à effectuer une division
par 0.

Notons que depuis le début de l’utilisation de ce système graphique, αn,x
vaut 1 seulement pour les multiples d’un nombre premier, puis d’un nombre
premier élevé au carré, puis d’un nombre premier elevé au cube, ... etc. Voici
donc une formule qui révèle la mécanique des puissances pour la factorisation
d’un nombre entier en produit de nombres premiers.
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- Brève explication sur le problème rencontré pour l’hypothèse de Pn = 4 :

Pour x = 1, pour Pn = 4 et pour cette partie de la formule de αn :

h=(Pn
x−1)∏

h=1

(N − h)

Pn
(Pnx−1

Pn−1
−x+1)

=
(N − 1)(N − 2)(N − 3)

4

Or, lorsqu’on remplace (volontairement) N par 0, le résultat est un nombre
rationnel pour cette partie de la formule. D’ailleurs, pour tout x entier, le
résultat sera de la forme :

2a1 .b1

4a2
avec a1, a2, a3 et b1 ∈ N et b1 non multiple de 2.

Ce qui revient à écrire, pour a2 = 1 + a3 :

2a1 .b1

4a2
=

2(a1−a3).b1

2

Où dans le cas de x = 1, nous avons a1 = a3 = 1, d’où il résulte un nombre

rationnel de la forme
b

2
permettant αp = 2 (alors que pour x ≥ 2, nous avons

a1 > a3, d’où il résulte un nombre entier permettant αp = 0). Il nous fallait
donc une fonction complémentaire à la fonction “sin 2” qui, multipliées entre
elles valaient 0, précisément dans les cas recherchés.

ATTENTION :

Voir la partie “2 démonstration complète” (page 52) pour des explications
approfondies.
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1.7 Formule D(N) de factorisation d’un Nombre

Entier

Rappelons que nous avions noté :

N =
n→+∞∏
n=1

(Pn)αn

Or, nous connaissons maintenant αn, et f(N) nous permet de contourner le
problème de Pn inconnu, nous pouvons donc déduire une formule pour N :

N = D(N) =
n→+∞∏
n=1

(Pn)



cos 2

(
π

4
.
v=3∏
v=1

(Pn − v)

)
sin 2(π/Pn)

.

x→+∞∑
x=1

sin 2


π.

h=(Pn
x−1)∏

h=1

(N − h)

Pn
(Pnx−1

Pn−1
−x+1)





(Attention, il s’agit bien de crochets dans ces formules, et non des symboles
des “valeurs absolues” , ni de ceux des “parties entières” : ils ont donc la
même fonction que de simples parenthèses, ils contiennent αn, c’est-à-dire la
puissance de Pn).

Comme nous avions aussi noté (avec Mi ∈ N, Mi ≥ 2) :

N =
i→+∞∏
i=1

(Mi)
ai

Or nous avons vu (rapidement) que la formule D(N) pouvait s’appliquer
pour tout entier M ∈ N, M ≥ 2 (voir “brève explication” précédemment,
dans la partie “1.6 Problème lorsque Pn est inconnu” page 42, ou pour
la démonstration dans la partie “2 démonstration complète” page 52).
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Notons Mi cet entier M pour faire directement le lien avec cette dernière
formule. Nous pouvons donc aussi déduire une autre formule équivalente
mais “plus générale” pour N :

N = D(N) =
M→+∞∏
M=2

M



cos 2

(
π

4
.
v=3∏
v=1

(M − v)

)
sin 2(π/M)

.

x→+∞∑
x=1

sin 2


π.

h=(Mx−1)∏
h=1

(N − h)

M(Mx−1
M−1

−x+1)





Notons cette grande formule de Décompostion (ou factorisation) de N
en produit de facteurs premiers D(N), et appelons cette formule D(N)
la “Décomposée” de N :

N = D(N)
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1.8 Simplifications possibles pour D(N)

- Restriction du nombre de termes du “grand produit” :

Pour éviter d’avoir à effectuer un calcul infini comme le suppose la formule
de D(N), remarquons que le nombre de termes “utiles” à la foctorisation
d’un nombre entier en nombres premiers est toujours fini. D’ailleurs, le plus
grand de tous ces termes ne peut être plus grand que N lui-même. Mais si
N est un nombre premier, alors le plus grand terme est au maximum égal à
N . Notons :

Mi ≤ N ou (comme nous en venons d’en convenir) M ≤ N

Nous pouvons ainsi borner le produit comme ceci :

N = D(N) =
M=N∏
M=2

M



cos 2

(
π

4
.
v=3∏
v=1

(M − v)

)
sin 2(π/M)

.

x→+∞∑
x=1

sin 2


π.

h=(Mx−1)∏
h=1

(N − h)

M(Mx−1
M−1

−x+1)





Remarquons que cette formule devient plus restrictive pour N puisqu’elle
n’admet pas N < 2. En effet, cette formule induit de traiter les nombres
N pour lesquels N ∈ N, N ≥ 2. Ceci reste cohérent dans le sens où
nous pouvons considérer que pour le cas de N = 1, il ne peut pas y avoir
explicitement de nombre premier qui compose ce nombre.

Une borne ayant été donnée pour le “grand produit”
∏

des termes associés
à M , il nous reste à borner la “grande somme”

∑
des termes de “sin 2”, ce

qui va être plus délicat. En effet, pour remplacer cet “infini”, nous allons
rechercher une formule de Restriction Rn pour x nous permettant de limiter
les calculs aux calculs utiles, ou en tout cas, à moins de calculs inutiles.
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- Recherche d’une formule de Restriction Rn pour la “grande somme”:

Pour un nombre entier N ≥ 2, nous souhaiterions restreindre la grande
somme

∑
des termes de “sin2” à la puissance maximale qui sera utile pour

l’ensemble des nombres premiers concernés par le calcul. Rappelons que
cette grande somme sert à “calculer” la puissance d’un nombre premier de
la factorisation de N .

Etudions cette formule par le biais d’un tableau, par exemple pour P1 = 2 :

N α1(réel) α′1(recherché)

1 0 0
2 1 1
3 0 1
4 2 2
5 0 2
6 1 2
7 0 2
8 3 3
9 0 3
10 1 3
11 0 3
12 2 3
13 0 3
14 1 3
15 0 3
16 4 4
17 0 4

Pour les valeurs de N en rouge :

N = (P1)j (avec j ∈ N)

Donc j =
lnN

lnP1

Nous aimerions borner j à α′1.
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Dans tous les cas de Pn, nous souhaitons avoir :

—————————————

Rn = 0 pour (Pn)0

Rn = 1 pour (Pn)1

Rn = 2 pour (Pn)2

Rn = 3 pour (Pn)3

...

Rn = j pour (Pn)j

—————————————

Pour N = (Pn)j

j =
lnN

lnPn

Représentation graphique de la formule Rn recherchée :

. La courbe noire est celle de Rn = j , la formule de restriction recherchée.

. La courbe rouge est celle de j =
lnN

lnPn
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Cependant il est possible de donner un encadrement :

Pour N ∈ [(Pn)j; (Pn)(j+1) − 1]

⇒ Rn = j

N = D(N) =
M=N∏
M=2

M



cos 2

(
π

4
.
v=3∏
v=1

(M − v)

)
sin 2(π/M)

.

x=Rn∑
x=1

sin 2


π.

h=(Mx−1)∏
h=1

(N − h)

M(Mx−1
M−1

−x+1)





Mais cette borne n’étant pas pleinement satisfaisante (car elle sous-entend
de connâıtre déjà les nombres premiers), il serait de loin préfèrerable de
construire de manière exacte la fonction Rn recherchée (en noire sur le gra-
phique). Pour cela, nous devrons faire appel à d’autres fonctions dont
l’étude est faite en partie “3 Formules Courtes” page 147 (notamment
une fonction d’Impulsion Première I, définie en page 154) , afin de donner
la fonction Rn dans la sous-partie “3.6 Formule de restriction RM(N)”
(page 166). Nous ne reviendrons donc pas sur cette étude, nous nous conten-
terons maintenant de donner cette fonction pour finaliser la formule. Comme
il est nécessaire de comprendre les démonstrations qui suivront cette partie
pour comprendre cette fonction de restriction, il serait plus judicieux de
poursuivre et de ne pas tenir rigueur (pour l’instant) du manque d’explications.

En notant la grande formule D(N) ainsi :

N = D(N) =
M=N∏
M=2

MαM

Notons RM(N) la fonction de restriction en fonction du nombre M (toujours
dans l’hypothèse où le “nième” nombre premier n’est pas connu, et où l’on
remplace Pn dans la formule an par M , ce qui nous donne la formule αM).
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Avec I la fonction d’Impulsion Première définie d’après l’étude consacrée à
RM(N), nous avons :

RM(N) =
b=a∑
b=1

1− I

k=Mb−1∏
k=0

(N − k)


Où les calculs ne sont plus nécessaires (pour des valeurs de a croissantes) dès
que :

1− I

k=Mb−1∏
k=0

(N − k)

 = 0

Ce qui sous-entend finalement que les calculs ne sont plus nécessaires dès que
N est une des valeurs entières de l’intervalle [0;Ma − 1]

Plus précisément, si nous avons :

1− I

[
k=Ma+1−1∏

k=0

(N − k)

]
= 0

Et

1− I

[
k=Ma−1∏
k=0

(N − k)

]
= 1

Alors, la borne supérieur de x dans la formule de αM vaut x = a.

Grâce à la fonction RM(N), nous pouvons limiter les calculs inutiles, sans
pour autant les éviter complètement.
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2

Démonstration complète

Dorénavant, certaines lettres qui vont être utlisées seront les mêmes que
précédemment, mais elles n’auront pas de lien entre elles (exemple pour les
variables comme a, comme b, comme c, comme d ou comme k ...). Nous
préciserons ce changement par une redéfinition des variables concernées.

2.1 Vue d’ensemble des étapes à suivre

Cette grande formuleD(N) de factorisation d’un entier en produit de nombres
premiers peut être vue comme un ensemble regroupant plusieurs “fonctions”
ayant chacune une “tâche” précise à effectuer. C’est justement ce que nous
allons expliquer.

Tout d’abord, si nous reprenons la formule de αn et que nous la réécrivons
sous cette forme :

αn = A.Cc.
x=Rn∑
x=1

sin 2

(
π.Fp

Pn
Fc

)

- Avec Fp =

h=(Pn
x−1)∏

h=1

(N − h)

Fp est la fonction qui permet à l’ensemble “sin 2” de s’annuler de
manière cyclique. Fp permet d’annuler cet ensemble lorsque le nombre
de fois où elle est divisible par Pn est supérieur ou égale à Fc.
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- Avec Fc =
Pn

x − 1

Pn − 1
− x+ 1

Fc est la fonction qui permet de “calculer” la divisibilité de Pn sur
[0;Pn

x] (les facteurs de Pn dans les multiples de Pn que l’on retrouve
dans le calcul de Fp).

. Ainsi, le calcul de sin 2

(
π.Fp

Pn
Fc

)
permet d’obtenir soit 0 (notamment

lorsque N n’est pas divisible par Pn), soit un nombre de la forme
sin 2 (π.ε/Pn) (avec ε ∈ N et non divisible par Pn).

- Avec Cc =
1

sin 2(π/Pn)

Cc est la fonction Coefficient Correcteur qui va permettre à αn de valoir
un nombre entier. En effet, sin 2 (π.ε/Pn) (comme précédemment avec
ε ∈ N et non divisible par Pn) a la même valeur que sin 2(π/Pn).

. Ainsi, le calcul de sin 2

(
π.Fp

Pn
Fc

)
permet d’obtenir soit 0 (lorsque N n’est

pas divisible par Pn), soit 1 (lorsque N est divisible par Pn). Ajoutons
que si nous remplacions Pn par un autre nombre entier qui n’est pas un
nombre premier, le calcul permet aussi d’obtenir 0 (sauf pour Pn = 4
à ce stade du développement).

- Avec A = cos 2[(Pn − 1)(Pn − 2)(Pn − 3).π/4]

A est la fonction qui permet d’éliminer le défaut lorsque Pn est inconnu
et qu’on le suppose égale à 4 (défaut pour x = 1 uniquement).

- Avec Rn = j Pour N ∈ [(Pn)j; (Pn)j+1 − 1]

Rn est la fonction de Restriction permettant de limiter les calculs aux
nombres premiers Pn ≤ N .

. Ainsi, si N est divisible par Pn, la formule αn donne le nombre de
divisibilité(s) par Pn sous la forme d’une puissance de Pn.
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2.2 Démonstration complète

Pour N ∈ N, N ≥ 2, N se décompose en produit de nombres premiers Pn ∈ P
tel que :

N =
n→+∞∏
n=1

(Pn)αn

N ainsi défini contient nécessairement au moins un terme étant un nombre
premier premier Pn. Supposons que Pn ne soit pas connu. Nous désirons
savoir quelle est la “progression” de la puissance de αn pour N .

Evidemment, nous savons déjà que αn = 0 pour N non multiple de Pn. αn
prend une valeur entière si et seulement si N est multiple de Pn, c’est-à-dire
si :

N = t.Pn (avec t ∈ N, t ≥ 1 car 1 n’est pas un nombre premier, par
convention).

Par exemple, si t = Pn alors N = (Pn)2 et donc αn = 2.

Tableau de référence T.R.2 :

(voir page suivante)
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T.R.2

N αn

1 0
2 0
3 0
... ...

Pn − 1 0
Pn 1

Pn + 1 0
... ...

2.Pn − 1 0
2.Pn 1

2.Pn + 1 0
... ...

Pn
2 − 1 0
Pn

2 2
Pn

2 + 1 0
... ...

Pn
2 + 2.Pn − 1 0

Pn
2 + 2.Pn = Pn.(Pn + 2) 1
Pn

2 + 2.Pn + 1 0
... ...

2.Pn
2 − 1 0

2.Pn
2 2

2.Pn
2 + 1 0

... ...
2.Pn

2 + Pn − 1 0
2.Pn

2 + Pn = Pn(2Pn + 1) 1
2.Pn

2 + Pn − 1 0
... ...

Pn
3 − 1 0
Pn

3 3
Pn

3 + 1 0
... ...

2.Pn
αn − Pn − 1 0

2.Pn
αn − Pn = Pn(Pn

(αn−1) − 1) 1
2.Pn

αn − Pn + 1 0
... ...

2.Pn
αn − 1 0

2.Pn
αn αn

2.Pn
αn + 1 0
... ...

2.Pn
αn + Pn − 1 0

2.Pn
αn + Pn 1

2.Pn
αn + Pn + 1 0

... ...
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L’objectif est de trouver une formule qui permette d’obtenir αn en fonction
de N .

Sachant que Pn ∈ P et que 1 n’est pas un nombre premier (par convention),
nous avons :

Pn > (Pn − 1) ≥ 1.

Aucun des nombres sur l’intervalle [1;Pn − 1] n’est divisible par Pn.
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2.2.1 Remarques préalables sur le tableau de référence
T.R.2

. Règle n◦1 :

Nous pouvons relever ceci :

- Sur l’intervalle ]0;Pn[ :

Il n’existe aucun multiple de Pn.

- Sur l’intervalle ]0;Pn
2[ :

Il existe (Pn − 1) multiple(s) de Pn.

En effet, le dernier multiple de Pn de cet intervalle vaut (Pn − 1).Pn.

De plus chaque multiple de Pn est réparti régulièrement : l’écart entre
2 multiples de Pn consécutifs vaut Pn.

- Sur l’intervalle ]0;Pn
3[ :

Il existe (Pn
2 − 1) multiples de Pn,

dont (Pn − 1) sont multiples de Pn
2.

En effet, le dernier multiple de Pn de cet intervalle vaut (Pn
2 − 1).Pn

et le dernier multiple de Pn de cet intervalle vaut (Pn − 1).Pn
2.

De plus chaque multiple de Pn est réparti régulièrement : l’écart entre
2 multiples de Pn consécutifs vaut Pn. De même, pour chaque multiple
de Pn

2, leur répartition est régulière : l’écart entre 2 multiples de Pn
2

consécutifs vaut Pn
2 (le raisonnement étant le même pour la suite, il

est inutle de le réécrire à chaque fois).

- Sur l’intervalle ]0;Pn
4[ :

Il existe (Pn
3 − 1) multiples de Pn,

dont (Pn
2 − 1) sont multiples de Pn

2,

et dont (Pn − 1) sont multiples de Pn
3.
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- Sur l’intervalle ]0;Pn
5[ :

Il existe (Pn
4 − 1) multiples de Pn,

dont (Pn
3 − 1) sont multiples de Pn

2,

dont (Pn
2 − 1) sont multiples de Pn

3,

et dont (Pn − 1) sont multiples de Pn
4.

...

- Sur l’intervalle ]0;Pn
αn [ :

Il existe (Pn
(αn−1) − 1) multiples de Pn,

dont (Pn
(αn−2) − 1) sont multiples de Pn

2,

dont (Pn
(αn−3) − 1) sont multiples de Pn

3,

...

dont (Pn
3 − 1) sont multiples de Pn

(αn−3),

dont (Pn
2 − 1) sont multiples de Pn

(αn−2),

et dont (Pn − 1) sont multiples de Pn
(αn−1).

- De manière générale, pour k ∈ N tel que k ≤ (αn − 1) :

Sur l’intervalle ]0;Pn
αn [ , qui peut encore s’écrire [1;Pn

αn − 1] :

Il existe (Pn
(αn−k−1) − 1) multiples de Pn

(k+1),

dont la répartition de chaque multiples de Pn
(k+1) est régulière puisque

l’écart entre 2 de ces multiples vaut Pn
(k+1).
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. Règle n◦2 :

par construction nous obtenons ce qui suit :

Soit t ∈ N, t ≥ 1, nous avons (t− 1).Pn est multiple de Pn.

Il existe autant de multiples de Pn sur les intervalles du type :

](t− 1).Pn; t.Pn[

Il existe autant de multiples de Pn sur les intervalles du type :

](t− 1).Pn
2; t.Pn

2[

Il existe autant de multiples de Pn sur les intervalles du type :

](t− 1).Pn
3; t.Pn

3[

Il existe autant de multiples de Pn sur les intervalles du type :

](t− 1).Pn
4; t.Pn

4[

...

De manière générale, il existe autant de multiples de Pn sur les intervalles du
type :

](t− 1).Pn
αn ; t.Pn

αn [ qui peut encore s’écrire [(t− 1).Pn
αn + 1; t.Pαn

n − 1]
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Ces multiples sont répartis de manière “symétrique” dans le sens où l’écart
entre 2 multiples consécutifs vaut Pn. Ceci donne à αn des symétries qui
sont localisables sur ces intervalles. En effet, sur cet intervalle, le nombre de
multiples de Pn se déduit ainsi :

(la longeur de l’intervalle est équivalente à la différence de ses 2 bornes)

(t.Pn
αn − 1)− [(t− 1).Pn

αn + 1] = Pn
αn − 2

= Pn
αn − Pn + Pn − 2

= Pn.(Pn
(αn−1) − 1) + (Pn − 2)

Le plus petit nombre premier étant Pn = 2, les relations précédentes et
suivantes sont donc valables pour tout Pn.

(factorisation également valable pour toutes les puissances de Pn
intermédiaires possibles jusqu’à ceci)

= Pn
αn−1.(Pn − 1) + (Pn

αn−1 − 2)

(Pn − 2) n’étant pas multiple de Pn, nous avons toujours sur cet intervalle
(Pn

(αn−1) − 1) multiples de Pn.

(même raisonnement pour toutes les puissance de Pn intermédiaires)

(Pn
(αn−1) − 2) n’étant pas multiple de Pn

(αn−1), nous avons toujours sur cet
intervalle (Pn − 1) multiples de Pn

(αn−1).

La longueur de cet intervalle étant constante pour αn constant, elle contient
un nombre de multiples de Pn et de Pn

(αn−1) constant qui est le même pour
tout t (idem pour toutes les puissance de Pn intermédiaires).

Or, pour t = 1, le nombre de multiples de Pn a été défini précédemment :

Il existe (Pn
(αn−k−1) − 1) multiples de Pn

(k+1) sur [1;Pn
αn − 1].
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Des symétries sont donc à constater sur an lorsque αn ≥ 1 :

Sur l’intervalle [1;Pn
αn−1] , il existe une symétrie en

Pn
αn

2
, c’est-à-dire qu’il

existe des symétries entre les intervalles :[
1;
Pn

αn

2

]
et

[
Pn

αn

2
;Pn

αn − 1

]

. Règle n◦3 :

D’après les valeurs que peut prendre N sur l’inervalle suivant ]0;Pn
αn ] , les

nombres N pouvant être multiples de Pn apparaissent régulièrement dans le
tableau de référence T.R.2. Or,

Pn
αn = Pn.Pn

(αn−1)

Et donc, sur l’intervalle ]0;Pn
αn ] , la quantité de nombres N pouvant être

multiples de Pn vaut Pn
(αn−1)

L’intervalle ]0;Pn
αn ] peut aussi s’écrire [1;Pn

αn ]. L’écart (c’est-à-dire la
différence) entre les 2 bornes vaut (Pn

αn − 1).

Si nous faisons varier les bornes de cet intervalle ainsi (de manière à ce que
cet écart soit constant) :

[1 + r;Pn
αn + r] (pour r ∈ N)

Comme l’écart entre ces 2 bornes est exactement le même, la quantité de
nombres N pouvant être multiples de Pn vaut toujours Pn

(αn−1).
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2.2.2 Début de l’étude

Soit k un nombre entier et soit ε un nombre entier non divisible par Pn.
Menons l’étude d’après Le tableau de référence T.R.2 (précédent).

Nous “numéroterons” k et ε par des nombres et des lettres (en indice)
correspondant à chaque cas étudié afin de les différencier. Abordons ces
différents cas en différents points, qui seront une étape vers la démonstration
complète.

Dans les formules, les 3 points de suspensions “...” entre 2 termes de la
même ligne représentent les nombres entiers consécutifs entre ces 2 termes.

• Pour (Pn − 1)! nous avons :

(Pn − 1)! = (Pn − 1).(Pn − 2).(Pn − 3)...3.2.1

= k1 = εn,1

=

h=(Pn−1)∏
h=1

(Pn − h)

Par construction, (Pn − 1)! est un nombre entier non divisible par Pn.

• Pour (Pn
2 − 1)! nous avons :

(Pn
2 − 1)! = Pn.2Pn.3Pn...(Pn − 1)Pn.k2

= (Pn.Pn.Pn...Pn).[(1).(2).(3)...(Pn − 1)].k2

Ici, le nombre de multiples de Pn uniquement est (Pn−1), k2 étant le produit
de tous les autres nombres (k2 est donc un nombre entier), il est non divisible
par Pn (il n’y a aucun multiple de Pn dans k2).

(Pn
2 − 1)! = Pn

(Pn−1).εn,2

avec εn,2 = 1.2.3...(Pn − 1).k2 = (Pn − 1)!.k2
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k2 est donc le produit de tous les nombres non divisibles par Pn, εn,2 n’est
donc pas divisible par Pn.

Et sous une autre forme (en étalant le produit sur plusieurs lignes) :

(Pn
2 − 1)! = (1).(2)...(Pn − 1).(1Pn)

.(Pn + 1)...(2Pn − 1).(2Pn)

.(2Pn + 1)...(3Pn − 1).(3Pn)

. ...

.(Pn
2 − 3Pn + 1)...(Pn

2 − 2Pn − 1).[(Pn − 2).(Pn)]

.(Pn
2 − 2Pn + 1)...(Pn

2 − Pn − 1).[(Pn − 1).(Pn)]

.(Pn
2 − Pn + 1)...(Pn

2 − 1)

Ce qui peut aussi s’écrire :

(Pn
2 − 1)! = (1).(2)...(Pn − 1)

.(Pn + 1)...(2Pn − 1)

.(2Pn + 1)...(3Pn − 1)

. ...

.(Pn
2 − 3Pn + 1)...(Pn

2 − 2Pn − 1)

.(Pn
2 − 2Pn + 1)...(Pn

2 − Pn − 1)

.(Pn
2 − Pn + 1)...(Pn

2 − 1)

.(1Pn).(2Pn).(3Pn)....[(Pn − 2).(Pn)].[(Pn − 1).(Pn)]

D’où :

(Pn
2 − 1)! = (Pn − 1)!

.(Pn + 1)...(2Pn − 1)

.(2Pn + 1)...(3Pn − 1)

. ...

.(Pn
2 − 3Pn + 1)...(Pn

2 − 2Pn − 1)

.(Pn
2 − 2Pn + 1)...(Pn

2 − Pn − 1)

.(Pn
2 − Pn + 1)...(Pn

2 − 1)

.(Pn − 1)!.(Pn)(Pn−1)
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Pour retrouver εn,2 , il suffit d’éliminer dans chaque nombre (c’est-à-dire
entre 2 parenthèses) tous les facteurs de Pn s’il y en a (c’est-à-dire le dernier
terme de la dernière ligne dans notre cas puisqu’il regroupe tous les facteurs
de Pn) :

εn,2 = (Pn − 1)!

.(Pn + 1)...(2Pn − 1)

.(2Pn + 1)...(3Pn − 1)

. ...

.(Pn
2 − 3Pn + 1)...(Pn

2 − 2Pn − 1)

.(Pn
2 − 2Pn + 1)...(Pn

2 − Pn − 1)

.(Pn
2 − Pn + 1)...(Pn

2 − 1)

.(Pn − 1)!

• Pour (Pn
3 − 1)! nous avons :

(Pn
3 − 1)! = Pn.2Pn.3Pn...(Pn

2 − 1)Pn.k3

Ici, le nombre de termes sous la forme a.Pn multiples de Pn est (Pn
2− 1). k3

est le produit de tous les autres nombres, non divisible par Pn. Et le nombre
de multiples de Pn

2 est (Pn − 1), car le produit factoriel se décompose aussi
ainsi :

(Pn
3 − 1)! = Pn

2.2Pn
2.3Pn

2...(Pn − 1)Pn
2.k′3

k′3 est le produit de tous les autres nombres. Ainsi, ce produit factoriel est
divisible par Pn

(Pn
2−1) et par Pn

(Pn−1).

(Pn
3 − 1)! = Pn

(Pn
2−1).Pn

(Pn−1).εn,3 = Pn
(Pn

2+Pn−2).εn,3

Et donc εn,3 n’est pas divisible par Pn.
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Et sous une autre forme (en étalant le produit sur plusieurs lignes et sur
plusieurs pages) :

(Pn
3 − 1)! = (1).(2)...(Pn − 1).(1Pn)

.(Pn + 1)...(2Pn − 1).(2Pn)

.(2Pn + 1)...(3Pn − 1).(3Pn)

. ...

.(Pn
2 − 3Pn + 1)...(Pn

2 − 2Pn − 1).[(Pn − 2).(Pn)]

.(Pn
2 − 2Pn + 1)...(Pn

2 − Pn − 1).[(Pn − 1)(Pn − 2).(Pn)(1)]

.(Pn
2 − Pn + 1)...(Pn

2 − 1).[(Pn
2).(1)]

.(Pn
2 + 1)...(Pn

2 + Pn − 1).[(Pn + 1).(Pn)]

.(Pn
2 + Pn + 1)...(Pn

2 + 2Pn − 1).[(Pn + 2).(Pn)]

.(Pn
2 + 2Pn + 1)...(Pn

2 + 3Pn − 1).[(Pn + 3).(Pn)]

. ...

.(2Pn
2 − 3Pn + 1)...(2Pn

2 − 2Pn − 1).[(Pn − 1).(Pn).(2)]

.(2Pn
2 − 2Pn + 1)...(2Pn

2 − Pn − 1).[(2Pn − 1).(Pn)]

.(2Pn
2 − Pn + 1)...(2Pn

2 − 1).[(Pn
2).(2)]

.(2Pn
2 + 1)...(2Pn

2 + Pn − 1).[(2Pn + 1).(Pn)]

.(2Pn
2 + Pn + 1)...(2Pn

2 + 2Pn − 1).[(Pn + 1).(Pn).(2)]

.(2Pn
2 + 2Pn + 1)...(2Pn

2 + 3Pn − 1).[(2Pn + 3).(Pn)]

. ...

.(3Pn
2 − 3Pn + 1)...(3Pn

2 − 2Pn − 1).[(3Pn − 2).(Pn)]

.(3Pn
2 − 2Pn + 1)...(3Pn

2 − Pn − 1).[(3Pn − 1).(Pn)]

.(3Pn
2 − Pn + 1)...(3Pn

2 − 1).[(Pn
2).(3)]

.(3Pn
2 + 1)...(3Pn

2 + Pn − 1).[(3Pn + 1).(Pn)]

.(3Pn
2 + Pn + 1)...(3Pn

2 + 2Pn − 1).[(3Pn + 2).(Pn)]

.(3Pn
2 + 2Pn + 1)...(3Pn

2 + 3Pn − 1).[(Pn + 1).(Pn).(3)]

. ...

.(Pn
3 − 3Pn

2 − 3Pn + 1)...(Pn
2 − 3Pn

2 − 2Pn − 1).[(Pn
2 − 3Pn − 2).(Pn)]

.(Pn
3 − 3Pn

2 − 2Pn + 1)...(Pn
3 − 3Pn

2 − Pn − 1).[(Pn
2 − 3Pn − 1).(Pn)]

.(Pn
3 − 3Pn

2 − Pn + 1)...(Pn
3 − 3Pn

2 − 1).[(Pn
2).(Pn − 3)]

.(Pn
3 − 3Pn

2 + 1)...(Pn
3 − 3Pn

2 + Pn − 1).[(Pn
2 − 3Pn + 1).(Pn)]

. ...
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. ...

.(Pn
3 − 2Pn

2 − 3Pn + 1)...(Pn
3 − 2Pn

2 − 2Pn − 1).[(Pn
2 − 2Pn − 2).(Pn)]

.(Pn
3 − 2Pn

2 − 2Pn + 1)...(Pn
3 − 2Pn

2 − Pn − 1).[(Pn
2 − 2Pn − 1).(Pn)]

.(Pn
3 − 2Pn

2 − Pn + 1)...(Pn
3 − 2Pn

2 − 1).[(Pn
2).(Pn − 2)]

.(Pn
3 − 2Pn

2 + 1)...(Pn
3 − 2Pn

2 + Pn − 1).[(Pn
2 − 2Pn + 1).(Pn)]

. ...

.(Pn
3 − Pn2 − 3Pn + 1)...(Pn

3 − Pn2 − 2Pn − 1).[(Pn
2 − Pn − 2).(Pn)]

.(Pn
3 − Pn2 − 2Pn + 1)...(Pn

3 − Pn2 − Pn − 1).[(Pn
2 − Pn − 1).(Pn)]

.(Pn
3 − Pn2 − Pn + 1)...(Pn

3 − Pn2 − 1).[(Pn
2).(Pn − 1)]

.(Pn
3 − Pn2 + 1)...(Pn

3 − Pn2 + Pn − 1).[(Pn
2 − Pn + 1).(Pn)]

. ...

.(Pn
3 − 3Pn + 1)...(Pn

3 − 2Pn − 1).[(Pn
2 − 2).(Pn)]

.(Pn
3 − 2Pn + 1)...(Pn

3 − Pn − 1).[(Pn
2 − 1).(Pn)]

.(Pn
3 − Pn + 1)...(Pn

3 − 1)

Ce qui peut aussi s’écrire :

(Pn − 1)! = (Pn − 1)!

.(Pn + 1)...(2Pn − 1)

.(2Pn + 1)...(3Pn − 1)

. ...

.(Pn
2 − 3Pn + 1)...(Pn

2 − 2Pn − 1)

.(Pn
2 − 2Pn + 1)...(Pn

2 − Pn − 1)

.(Pn
2 − Pn + 1)...(Pn

2 − 1)

.(Pn
2 + 1)...(Pn

2 + Pn − 1)

.(Pn
2 + Pn + 1)...(Pn

2 + 2Pn − 1)

.(Pn
2 + 2Pn + 1)...(Pn

2 + 3Pn − 1)

. ...
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. ...

.(2Pn
2 − 3Pn + 1)...(2PPn

2 − 2Pn − 1)

.(2Pn
2 − 2Pn + 1)...(2Pn

2 − Pn − 1)

.(2Pn
2 − Pn + 1)...(2Pn

2 − 1)

.(2Pn
2 + 1)...(2Pn

2 + Pn − 1)

.(2Pn
2 + Pn + 1)...(2Pn

2 + 2Pn − 1)

.(2Pn
2 + 2Pn + 1)...(2Pn

2 + 3Pn − 1)

. ...

.(3Pn
2 − 3Pn + 1)...(3Pn

2 − 2Pn − 1)

.(3Pn
2 − 2Pn + 1)...(3Pn

2 − Pn − 1)

.(3Pn
2 − Pn + 1)...(3Pn

2 − 1)

.(3Pn
2 + 1)...(3Pn

2 + Pn − 1)

.(3Pn
2 + Pn + 1)...(3Pn

2 + 2Pn − 1)

.(3Pn
2 + 2Pn + 1)...(3Pn

2 + 3Pn − 1)

. ...

.(Pn
3 − 3Pn

2 − 3Pn + 1)...(Pn
3 − 3Pn

2 − 2Pn − 1)

.(Pn
3 − 3Pn

2 − 2Pn + 1)...(Pn
3 − 3Pn

2 − Pn − 1)

.(Pn
3 − 3Pn

2 − Pn + 1)...(Pn
3 − 3Pn

2 − 1)

.(Pn
3 − 3Pn

2 + 1)...(Pn
3 − 3Pn

2 + Pn − 1)

. ...

.(Pn
3 − 2Pn

2 − 3Pn + 1)...(Pn
3 − 2Pn

2 − 2Pn − 1)

.(Pn
3 − 2Pn

2 − 2Pn + 1)...(Pn
3 − 2Pn

2 − Pn − 1)

.(Pn
3 − 2Pn

2 − Pn + 1)...(Pn
3 − 2Pn

2 − 1)

.(Pn
3 − 2Pn

2 + 1)...(Pn
3 − 2Pn

2 + Pn − 1)

. ...

.(Pn
3 − Pn2 − 3Pn + 1)...(Pn

3 − Pn2 − 2Pn − 1)

.(Pn
3 − Pn2 − 2Pn + 1)...(Pn

3 − Pn2 − Pn − 1)

.(Pn
3 − Pn2 − Pn + 1)...(Pn

3 − Pn2 − 1)

.(Pn
3 − Pn2 + 1)...(Pn

3 − Pn2 + Pn − 1)

. ...

.(Pn
3 − 3Pn + 1)...(Pn

3 − 2Pn − 1)

.(Pn
3 − 2Pn + 1)...(Pn

3 − Pn − 1)

.(Pn
3 − Pn + 1)...(Pn

3 − 1)

. ...
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(toujours dans le même produit, voici maintenant tous les termes multiples
de Pn :)

.(1Pn).(2Pn).(3Pn)...[(Pn − 2).(Pn)].[(Pn − 1).(Pn)]

.(Pn
2).[(Pn + 1).Pn].[(Pn + 2).Pn]...[(Pn − 1).Pn.2].[(2Pn − 1).Pn]

.2(Pn
2).[(2Pn + 1).Pn]...[(3Pn − 2).Pn].[(3Pn − 1).Pn]

.3(Pn
2).[(3Pn + 1).Pn]...[(Pn − 3Pn − 2).Pn].[(Pn − 3Pn − 1).Pn]

.[Pn
2.(Pn − 3)].[(Pn

2 − 3Pn + 1).Pn]...[(Pn
2 − 2Pn − 1).Pn]

.[Pn
2.(Pn − 2)].[(Pn

2 − 2Pn + 1).Pn]...[(Pn
2 − Pn − 1).Pn]

.[Pn
2.(Pn − 1)].[(Pn

2 − Pn + 1).Pn]...[(Pn
2 − 2).Pn].[(Pn − 1).Pn]

Pour retrouver εn,3 , il suffit d’éliminer dans chaque nombre tous les facteurs
de Pn s’il y en a, cela nous donne, en réorganisant de manière “avantageuse”
les termes non multiples de Pn restants :

εn,3 = (Pn − 1)!

.(Pn + 1)...(2Pn − 1)

.(2Pn + 1)...(3Pn − 1)

. ...

.(Pn
2 − 3Pn + 1)...(Pn

2 − 2Pn − 1)

.(Pn
2 − 2Pn + 1)...(Pn

2 − Pn − 1)

.(Pn
2 − Pn + 1)...(Pn

2 − 1)

.(Pn
2 + 1)...(Pn

2 + Pn − 1)

.(Pn
2 + Pn + 1)...(Pn

2 + 2Pn − 1)

.(Pn
2 + 2Pn + 1)...(Pn

2 + 3Pn − 1)

. ...
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. ...

.(2Pn
2 − 3Pn + 1)...(2Pn

2 − 2Pn − 1)

.(2Pn
2 − 2Pn + 1)...(2Pn

2 − Pn − 1)

.(2Pn
2 − Pn + 1)...(2Pn

2 − 1)

.(2Pn
2 + 1)...(2Pn

2 + Pn − 1)

.(2Pn
2 + Pn + 1)...(2Pn

2 + 2Pn − 1)

.(2Pn
2 + 2Pn + 1)...(2Pn

2 + 3Pn − 1)

. ...

.(3Pn
2 − 3Pn + 1)...(3Pn

2 − 2Pn − 1)

.(3Pn
2 − 2Pn + 1)...(3Pn

2 − Pn − 1)

.(3Pn
2 − Pn + 1)...(3Pn

2 − 1)

.(3Pn
2 + 1)...(3Pn

2 + Pn − 1)

.(3Pn
2 + Pn + 1)...(3Pn

2 + 2Pn − 1)

.(3Pn
2 + 2Pn + 1)...(3Pn

2 + 3Pn − 1)

. ...

.(Pn
3 − 3Pn

2 − 3Pn + 1)...(Pn
3 − 3Pn

2 − 2Pn − 1)

.(Pn
3 − 3Pn

2 − 2Pn + 1)...(Pn
3 − 3Pn

2 − Pn − 1)

.(Pn
3 − 3Pn

2 − Pn+1)...(Pn
3 − 3Pn

2 − 1)

.(Pn
3 − 3Pn

2 + 1)...(Pn
3 − 3Pn

2 + Pn − 1)

. ...

.(Pn
3 − 2Pn

2 − 3Pn + 1)...(Pn
3 − 2Pn

2 − 2Pn − 1)

.(Pn
3 − 2Pn

2 − 2Pn + 1)...(Pn
3 − 2Pn

2 − Pn − 1)

.(Pn
3 − 2Pn

2 − Pn + 1)...(Pn
3 − 2Pn

2 − 1)

.(Pn
3 − 2Pn

2 + 1)...(Pn
3 − 2Pn

2 + Pn − 1)

. ...

.(Pn
3 − Pn2 − 3Pn + 1)...(Pn

3 − Pn2 − 2Pn − 1)

.(Pn
3 − Pn2 − 2Pn + 1)...(Pn

3 − Pn2 − Pn − 1)

.(Pn
3 − Pn2 − Pn + 1)...(Pn

3 − Pn2 − 1)

.(Pn
3 − Pn2 + 1)...(Pn

3 − Pn2 + Pn − 1)

. ...

.(Pn
3 − 3Pn + 1)...(Pn

3 − 2Pn − 1)

.(Pn
3 − 2Pn + 1)...(Pn

3 − Pn − 1)

.(Pn
3 − Pn + 1)...(Pn

3 − 1)

. ...
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(toujours dans le même produit, voici maintenant tous les nombres restants
non multiples de Pn :)

.(1).(2).(3)...(Pn − 2).(Pn − 1)

.(Pn + 1).(Pn + 2)...(Pn − 1).(2).(2Pn − 1)

.(2).(2Pn + 1)...(3Pn − 2).(3Pn − 1)

.(3).(3Pn + 1)...(Pn − 3Pn − 2).(Pn − 3Pn − 1)

.(Pn − 3).(Pn
2 − 3Pn + 1)...(Pn

2 − 2Pn − 1)

.(Pn − 2).(Pn
2 − 2Pn + 1)...(Pn

2 − Pn − 1)

.(Pn − 1).(Pn
2 − Pn + 1)...(Pn

2 − 2).(Pn
2 − 1)

Or, dans cette dernière partie de l’égalité, nous constatons que nous pouvons
réorganiser les termes restants ainsi (les couleurs noires forment un ensemble
et les couleurs rouges forment un autre ensemble):

(1).(2).(3)...(Pn − 2).(Pn − 1)

.(1).(Pn + 1).(Pn + 2)...(Pn − 1).(2).(2Pn − 1)

.(2).(2Pn + 1)...(3Pn − 2).(3Pn − 1)

.(3).(3Pn + 1)...(Pn − 3Pn − 2).(Pn − 3Pn − 1)

.(Pn − 3).(Pn
2 − 3Pn + 1)...(Pn

2 − 2Pn − 1)

.(Pn − 2).(Pn
2 − 2Pn + 1)...(Pn

2 − Pn − 1)

.(Pn − 1).(Pn
2 − Pn + 1)...(Pn

2 − 2).(Pn
2 − 1)

=

(Pn − 1)!.(Pn + 1)...(2Pn − 1).(2Pn + 1)...(3Pn − 1).(3Pn + 1)...(Pn
2 − 1)

.(Pn − 1)!

Donc

εn,3 = (Pn − 1)!.(Pn + 1)...(2Pn − 1).(2Pn + 1)...(3Pn − 1).(3Pn + 1)...(Pn
3 − 1)

.(Pn − 1)!.(Pn + 1)...(2Pn − 1).(2Pn + 1)...(3Pn − 1).(3Pn + 1)...(Pn
2 − 1)

.(Pn − 1)!

Avec εn,3 non divisible par Pn.
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• Pour (Pn
4 − 1)! nous avons :

(Pn
4 − 1)! = Pn.2Pn.3Pn...(Pn

3 − 1)Pn.k4

Ici, le nombre de termes sous la forme a.Pn multiples de Pn est (Pn
3− 1). k4

est le produit de tous les autres nombres, non divisible par Pn. Le nombre
de multiples de Pn

2 est (Pn
2− 1), car le produit factoriel se décompose aussi

ainsi :

(Pn
4 − 1)! = Pn

2.2Pn
2.3Pn

2...(Pn
2 − 1)Pn

2.k′4

k′4 est le produit de tous les autres nombres. Le nombre de multiples de Pn
3

est (Pn − 1), car le produit factoriel se décompose aussi ainsi :

(Pn
4 − 1)! = Pn

3.2Pn
3.3Pn

3...(Pn − 1)Pn
3.k′′4

k′′4 est le produit de tous les autres nombres. Ainsi, ce produit factoriel est
divisible par Pn

(Pn
3−1) , par Pn

(Pn
2−1) et par Pn

(Pn−1).

(Pn
4 − 1)! = Pn

(Pn
3−1).Pn

(Pn
2−1).Pn

(Pn−1).εn,4

= Pn
(Pn

3+Pn
2+Pn−3).εn,4

Et donc εn,4 n’est pas divisible par Pn.

Même principe que précédemment concernant la réécriture et une réorganisation
adéquate (l’écriture de chaque ligne avant simplification serait trop lourde à
gérer, même en plusieurs pages) :

εn,4 = (Pn − 1)!.(Pn + 1)...(2Pn − 1).(2Pn + 1)...(3Pn − 1).(3Pn + 1)...(Pn
4 − 1)

.(Pn − 1)!.(Pn + 1)...(2Pn − 1).(2Pn + 1)...(3Pn − 1).(3Pn + 1)...(Pn
3 − 1)

.(Pn − 1)!.(Pn + 1)...(2Pn − 1).(2Pn + 1)...(3Pn − 1).(3Pn + 1)...(Pn
2 − 1)

.(Pn − 1)!
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• Pour (Pn
x − 1)! nous avons :

Ecrivons toutes les possibilités pour la divisibilité de ce produit factoriel,
pour x ∈ N, x ≥ 1:

(Pn
x − 1)! = Pn.2Pn.3Pn...(Pn

(x−1) − 1)Pn.kx

Ceci signifie aussi que, sur l’intervalle ]0;Pn
x[, il existe (Pn

(x−1)−1) multiples
de Pn. Mais continuons (les 3 points de suspension dans le produit suivant
représente des nombres entiers consécutifs:

(Pn
x − 1)! = Pn

2.2Pn
2.3Pn

2...(Pn
(x−2) − 1)Pn

2.k′x

= Pn
3.2Pn

3.3Pn
3...(Pn

(x−3) − 1)Pn
3.k′′x

...

= Pn
(x−1).2Pn

(x−1).3Pn
(x−1)...(Pn − 1)Pn

(x−1).kx′

Avec kx, k
′
x, k

′′
x, ... , kx′ des nombres entiers, chacun étant le produit des

nombres qui n’apparaissent pas dans le produit (pour alléger l’écriture).

Et donc sur l’intervalle ]0;Pn
x[ , il existe (Pn − 1) multiples de Pn

(x−1) ,
d’après cette dernière formule. Mais nous devons aussi tenir compte de ce
qui suit :

Sur l’intervalle ]0;Pn
x[ ,

Il existe (Pn
(x−1) − 1) multiples de Pn,

dont (Pn
(x−2) − 1) sont multiples de Pn

2 ,

dont (Pn
(x−3) − 1) sont multiples de Pn

3 ,

...

dont (Pn
3 − 1) sont multiples de Pn

(x−3) ,

dont (Pn
2 − 1) sont multiples de Pn

(x−2) ,

et dont (Pn − 1) sont multiples de Pn
(x−1).
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Ainsi, nous avons :

(Pn
x − 1)! = Pn

(Pn
(x−1)−1).Pn

(Pn
(x−2)−1).Pn

(Pn
(x−3)−1)...Pn

(Pn−1).εn,x

= Pn
(Pn

(x−1)−1+Pn
(x−2)−1+Pn

(x−3)−1+...+Pn−1).εn,x

Avec εn,x un nombre entier non divisible par Pn (par construction). Le terme
“ -1 ” à l’intérieur des parenthèses est répété (x− 1) fois. Donc :

(Pn
x − 1)! = Pn

[Pn
(x−1)+Pn

(x−2)+Pn
(x−3)+...+Pn−(x−1)].εn,x

= Pn
[Pn

(x−1)+Pn
(x−2)+Pn

(x−3)+...+Pn+1−x].εn,x

Or,

[Pn
(x−1) + Pn

(x−2) + Pn
(x−3) + ...+ Pn + 1] =

Pn
x − 1

Pn − 1

Donc,

(Pn
x − 1)! = Pn

Pnx − 1

Pn − 1
−x


.εn,x (εn,x non divisible par Pn).

Et donc,

εn,x =
(Pn

x − 1)!

Pn
(Pnx−1

Pn−1 −x)

Si Pn n’était pas un nombre premier, alors εn,x serait un nombre entier
divisible par ce nombre. Ce qui explique la fonction Fc, vue précédemment.
En effet, pour :

εM,x =
(Mx − 1)!

M(Mx−1
M−1 −x+1)

où l’on a simplement divisé l’expression de εn,x par Pn , εM,x vaut un nombre
rationnel si M est un nombre premier, et vaut un nombre entier si M est
un autre nombre entier (non premier). Ainsi, nous n’avons pas besoin de
connâıtre les nombres premiers pour formuler cette expression.
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Démonstration :

Si M est un nombre entier qui n’est pas un nombre premier (M est tel que
M ∈ N et M /∈ P), alors M peut se décomposer ainsi :

M =
n→+∞∏
n=1

(Pn)αn

(développement 1)

Avec P1, P2, P3, ... et Pn, avec P1 < P2 < P3 < ... < Pn et avec au moins 2
des termes αn ≥ 1.

Rappelons que pour M défini ainsi, nous avons nécessairement :

Pn < M

ou, autrement dit, un nombre entier non premier est supérieur à chaque
nombre premier Pn (élevé à la puissance αn) dont il est composé.

Et donc nécessairement :

Pn
x < Mx

Avec x ≥ 1, car ce raisonnement s’applique seulement siM peut être décomposé
en produit de nombres premiers. En reprenant la méthode précédente (voir
la formule de εM,x), nous avons :

(Mx − 1)! = M.2M.3M...(M (x−1) − 1).M.kx

= M2.2M2.3M2...(M (x−2) − 1).M2.k′x

= M3.2M3.3M3...(M (x−3) − 1).M3.k′′x

...

= M (x−1).2M (x−1).3M (x−1)...(M − 1).M (x−1).kx′

Avec kx, k
′
x, k

′′
x, ... , kx′ des nombres entiers, chacun étant le produit des

nombres qui n’apparaissent pas dans le produit (pour alléger l’écriture).
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(rappelons que cette méthode consiste à regrouper ensemble tous les facteurs
premiers possibles pour chaque puissance de x).

Or, M étant composé de produit de facteurs premiers, nous retrouvons
nécessairement tous ses facteurs dans le produit factoriel puisque chacun
est inférieur à M :

(Mx − 1)! = P1
(x.α1).P2

(x.α2).P3
(x.α3)...Pn

(x.αn).kx′′

= Mx.kx′′ (avec kx′′ un nombre entier)

Pour alléger la démonstration, il n’est pas utile d’étudier tous les multiples
de chaque facteur des Pn, ainsi, (Mx − 1)! est divisible par au moins M “en
plus de” :

M(Mx−1
M−1

−x)

Ce qui revient à écrire :

(Mx − 1)! = (εM,x).M
(Mx−1

M−1
−x+1)

(avec εM,x un nombre entier pour tout M ∈ N et M /∈ P).

Ce qui doit être toujours vrai lorsque P1 < P2 < P3 < ... < Pn avec au moins
2 des termes αn ≥ 1.

(développement 2)

Supposons que M = Pn
x

Le résultat de (Pn
x − 1)!/εn,x contient le nombre maximum possible de

divisiblités par Pn. Ce nombre maximum se retrouve dans la puissance de

Pn, c’est-à-dire dans
(
Pn

x−1
Pn−1

− x
)

.

Pour x = 1,

(M − 1)! = (Pn − 1)!
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Or, (Pn − 1)! n’est jamais divisible par Pn car aucun des nombre du produit
de la factorielle n’est divisible par Pn.

Pour x > 1,

(M − 1)! = (Pn − 1)!

Or, (M − 1)! est divisible par M si et seulement si l’on retrouve le produit
de ses facteurs premiers dans les produits de la factorielle.

Par exemple, pour M = P1.P2, comme M > P2 > P1, nous avons :

(M − 1)! = (M − 1).(M − 2)...P2.P1...3.2

est divisible par M .

Et, de manière plus explicite, pour notre cas où M = Pn
x avec quelques

exemples :

* Si Pn = 2 et x = 3,

(M − 1)! = 7.(6).5.(4).3.(2).1

est divisible au moins par M ou bien par Pn
(Pn

x−1
Pn−1

−x).

* Si Pn = 3 et x = 2,

(M − 1)! = 8.7.(6).5.4.(3).2.1

est divisible au moins par M ou bien par Pn
(Pn

x−1
Pn−1

−x).
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* Si Pn = 3 et x = 3,

(M − 1)! =
26.25.(24).23.22.(21).20.19.(18).17.16.(15).14.13.(12).11.10.(9).8.7.(6).5.4.(3).2.1

est divisible au moins par M ou bien par Pn
(Pn

x−1
Pn−1

−x).

* Si Pn = 5 et x = 2,

(M − 1)! =
24.23.22.21.(20).19.18.17.16.(15).14.13.12.11.(10).9.8.7.6.(5).4.3.2.1

est divisible au moins par M ou bien par Pn
(Pn

x−1
Pn−1

−x).

La question qu’il convient alors de nous poser est : existe-t-il des nombres M
qui échappe à cette règle ? Y’a-t-il toujours des facteurs premiers en nombre
suffisant dans la décomposition du produit factoriel de M ?

Pour y répondre, étudions des inégalités, tout en gardant à l’esprit l’égalité
M = Pn

x.

(M − 1)! est divisible par au moins par M ou bien par Pn
(Pn

x−1
Pn−1

−x) , avec,
comme nous l’avons déjà déterminé :

(M − 1)! = (Pn
x − 1)!

(Pn
x − 1)! = Pn

(Pn
x−1

Pn−1
−x).(εn,x)

(εn,x non divisible par Pn, donc seul le reste de la formule est divisible par M).

Or, pour que (M−1)! soit divisible au moins par M ou bien par Pn
(Pn

x−1
Pn−1

−x),
nous pouvons borner l’inégalité par le minimum auquel (M − 1)! doit être
divisible, c’est-à-dire par M , puis comparer cette borne inférieure à la formule
théorique que nous avons déterminé pour obtenir le nombre de divisibilité par
Pn :

Pn

(
Pn

x−1
Pn−1 −x

)
≥ Pn

x
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Donc

(
Pn

x − 1

Pn − 1
− x
)
≥ x

Pn
x ≥ 2.x(Pn − 1) + 1

Pn
x − 2.x(Pn − 1) ≥ 1

Rappelons que ce raisonnement est à appliquer seulement si x ≥ 2 car dans
le cas où x = 1, (Pn − 1)! n’est pas divisible par Pn.

(Vérification 1)

Si x = 2, nous avons :

Pn
2 − 4.Pn + 4 ≥ 1

⇒ (Pn − 2)2 ≥ 1

Donc Pn ≥ 3

Les nombres entiers inférieurs à 3 se trouvent sur l’intervalle ]0; 3[ . Ces
nombres entiers sont 1 et 2. Or, 2 est le plus petit nombre premier. La
formule suivante ayant été établie :

(Pn
x − 1)! = Pn

(Pn
x−1

Pn−1
−x).(εn,x)

Cette formule échappe donc au cas Pn = 2 lorsque x = 2. Or, 2 étant le plus
petit nombre premier, tous les cas ont donc été examinés pour x = 2.

(Vérification 2, suite)

Si x ≥ 3, nous cherchons toujours à établir la justesse de l’inégalité précédente,
que nous redonnons ici :

Pn

(
Pn

x−1
Pn−1 −x

)
≥ Pn

x
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Ce qui revient à écrire :

(
Pn

x − 1

Pn − 1
− x
)
≥ x

⇒ Pn
x − 1

Pn − 1
− 2.x ≥ 0

Remarquons que le plus petit nombre premier étant 2, nous avons :

Pn
x − 1

Pn − 1
≥ 2x − 1

2− 1
Pn

x − 1

Pn − 1
− 2x ≥ 2x − 1

2− 1
− 2x

Or, pour x ≥ 3, nous avons :

2x > 2.x+ 1

⇒ 2x − 1− 2x > 0

⇒ 2x − 1

2− 1
− 2x > 0

Et donc, pour x ≥ 3, nous pouvons déduire que :

Pn
x − 1

Pn − 1
− 2.x > 0

Ce qui est une condition nécessaire pour que les formules εn,x et εM,x établies
soient tels que nous les avions défini juste avant cette démonstration.
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Conclusion partielle :

- Pour Pn ∈ P :

(Pn
x − 1)! = Pn

(Pn
x−1

Pn−1
−x).(εn,x)

avec εn,x un nombre entier non divisible par Pn, cette formule est donc
toujours vraies sauf pour le seul cas de Pn = 2 et x = 2.

- Pour M ∈ N, M /∈ P :

(Mx − 1)! = M(Mx−1
M−1

−x+1).(εM,x)

Cette formule est donc toujours vraie sauf pour le seul cas de M = 4
et x = 1.

Et donc :

εM,x =
(Mx − 1)!

M( Mx−1
M−1+1

−x+1)

εM,x vaut un nombre rationnel si M est un nombre premier, et vaut un
nombre entier si M est un autre nombre entier (non premier) supérieur
à 3, toujours en dehors du seul cas M = 4 et x = 1.

=⇒ ATTENTION :

Par la suite, nous considérerons ces 2 cas comme acquis pour tout le
reste de l’étude : à chaque fois que nous utiliserons les fomules εn,x
et εM,x , nous sous-entendrons que ces formules sont toujours valables
sauf dans le cas de Pn = 2 et x = 2, et respectivement sauf dans le cas
de M = 4 et x = 1.
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(Explications)

Explication concernant le “problème” rencontré pour M = 4 :

Ce problème s’explique parce qu’il n’existe qu’un multiple de 2 sur
l’intervalle ]0; 4[, Or, une division par M (= 22) aurait été nécessaire
pour que la formule donne toujours les résultats désirés, c’est-à-dire
εM,x divisible par M lorsque M est un nombre entier qui n’est pas un
nombre premier.

Comme ce n’est pas le cas pour M = 4, nous avons plusieurs choix qui
s’offre à nous pour contourner ce problème : soit élever (M−1)! au carré
pour obtenir la divisibilité par M lorsque M = 4, soit en construisant
une formule “annexe” qui corrige ce problème, comme nous l’avons fait
pour la “fonction A” vu dans la partie précédente (voir partie “2.1
Vue d’ensemble des étapes à suivre” page 52).

En tenant compte de toutes ces informations nous pouvons formuler
les “fonctions” Fc et A vues vu dans la partie “2.1 Vue d’ensemble
des étapes à suivre” (page 52).

• Suite 1 de l’étude de (Pn
x − 1)! :

Nous désirons maintenant savoir ce qu’il advient de la divisibilité de εn,x et
de εM,x par Pn lorsque x ≥ 2. Le théorème de WILSON [1] nous permettant
directement de savoir que :

(Pn − 1)! = Pn.w1 − 1 (avec w1 un nombre entier)

D’après ce que nous venons de voir, nous pouvons déduire de la formule εn,x
qu’elle est équivalente aux produits de tous les termes non divisibles par Pn.
Nous avons donc ce qui suit :

εn,x =
(Pn

x − 1)!

Pn
(Pnx−1

Pn−1
−x)
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En décomposant (Pn
x − 1)! (ceci étant un peu lourd à gérer, nous allons

étaler l’égalité en produits sur plusieurs lignes et plusieurs pages, d’abord
les produits des termes non multiples de Pn, puis les produits des termes
muliples de Pn), nous obtenons :

(Pn
x − 1)! = (Pn

x − 1).(Pn
x − 2)...(Pn

x − Pn + 1)

.(Pn
x − Pn − 1).(Pn

x − Pn − 2)...(Pn
x − 2Pn + 1)

.(Pn
x − 2Pn − 1).(Pn

x − 2Pn − 2)...(Pn
x − 3Pn + 1)

. ...

.(Pn
x − Pn2 − 1).(Pn

x − Pn2 − 2)...(Pn
x − Pn2 − Pn + 1)

.(Pn
x − Pn2 − Pn − 1)...(Pn

x − Pn2 − 2Pn + 1)

.(Pn
x − Pn2 − 2Pn − 1)...(Pn

x − Pn2 − 3Pn + 1)

. ...

.(Pn
x − 2Pn

2 − 1)...(Pn
x − 2Pn

2 − Pn + 1)

.(Pn
x − 2Pn

2 − Pn − 1).....(Pn
x − 2Pn

2 − 2Pn + 1)

.(Pn
x − 2Pn

3 − 2Pn − 1)...(Pn
x − 2Pn

2 − 3Pn + 1)

. ...

.(Pn
x − 3Pn

2 − 1)...(Pn
x − 3Pn

2 − Pn + 1)

.(Pn
x − 3Pn

2 − Pn − 1)...(Pn
x − 3Pn

2 − 2Pn + 1)

.(Pn
x − 3Pn

2 − 2Pn − 1)...(Pn
x − 3Pn

2 − 3Pn + 1)

. ...

.(Pn
x − Pn3 − 1).(Pn

x − Pn3 − 2)...(Pn
x − Pn3 − Pn + 1)

.(Pn
x − Pn3 − Pn − 1)...(Pn

x − Pn3 − 2Pn + 1)

.(Pn
x − Pn3 − 2Pn − 1)...(Pn

x − Pn3 − 3Pn + 1)

. ...

.(Pn
x − 2Pn

3 − 1)...(Pn
x − 2Pn

3 − Pn + 1)

.(Pn
x − 2Pn

3 − Pn − 1)...(Pn
x − 2Pn

3 − 2Pn + 1)

.(Pn
x − 2Pn

3 − 2Pn − 1)...(Pn
x − 2Pn

3 − 3Pn + 1)

. ...
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. ...

.(Pn
x − 3Pn

3 − 1)...(Pn
x − 3Pn

3 − Pn + 1)

.(Pn
x − 3Pn

3 − Pn − 1)...(Pn
x − 3Pn

3 − 2Pn + 1)

.(Pn
x − 3Pn

3 − 2Pn − 1)...(Pn
x − 3Pn

3 − 3Pn + 1)

. ...

. ...

. ...

.(Pn
3 − 1)...(Pn

3 − Pn + 1)

.(Pn
3 − Pn − 1)...(Pn

3 − 2Pn + 1)

.(Pn
3 − 2Pn − 1)...(Pn

3 − 3Pn + 1)

. ...

.(Pn
3 − Pn2 − 1)...(Pn

3 − Pn2 − Pn + 1)

.(Pn
3 − Pn2 − Pn − 1)...(Pn

3 − Pn2 − 2Pn + 1)

.(Pn
3 − Pn2 − 2Pn − 1)...(Pn

3 − Pn2 − 3Pn + 1)

. ...

.(Pn
3 − 2Pn

2 − 1)...(Pn
3 − 2Pn

2 − Pn + 1)

.(Pn
3 − 2Pn

2 − Pn − 1)...(Pn
3 − 2Pn

2 − 2Pn + 1)

.(Pn
3 − 2Pn

2 − 2Pn − 1)...(Pn
3 − 2Pn

2 − 3Pn + 1)

. ...

.(Pn
3 − 3Pn

2 − 1)...(Pn
3 − 3Pn

2 − Pn + 1)

.(Pn
3 − 3Pn

2 − Pn − 1)...(Pn
3 − 3Pn

2 − 2Pn + 1)

.(Pn
3 − 3Pn

2 − 2Pn − 1)...(Pn
3 − 3Pn

2 − 3Pn + 1)

. ...

.(Pn
2 − 1)...(Pn

2 − Pn + 1)

.(Pn
2 − Pn − 1)...(Pn

2 − 2Pn + 1)

.(Pn
2 − 2Pn − 1)...(Pn

2 − 3Pn + 1)

. ...

.(Pn − 1).(Pn − 2).(Pn − 3)...(3).(2).(1)

(toujours dans le même produit, voici maintenant tous les termes multiples de
Pn et uniquement les termes multiples de Pn dans le même ordre décroissant
que suivi précédemment : voir page suivante)
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.(Pn
x − Pn).(Pn

x − 2Pn).(Pn
x − 3Pn)

. ...

.(Pn
x − Pn2).(Pn

x − Pn2 − Pn).(Pn
x − Pn2 − 2Pn).(Pn

x − Pn2 − 3Pn)

. ...

.(Pn
x − 2Pn

2).(Pn
x − 2Pn

2 − Pn).(Pn
x − 2Pn

2 − 2Pn).(Pn
x − 2Pn

2 − 3Pn)

. ...

.(Pn
x − 3Pn

2).(Pn
x − 3Pn

2 − Pn).(Pn
x − 3Pn

2 − 2Pn).(Pn
x − 3Pn

2 − 3Pn)

. ...

.(Pn
x − Pn3).(Pn

x − Pn3 − Pn).(Pn
x − Pn3 − 2Pn).(Pn

x − Pn3 − 3Pn)

. ...

.(Pn
x − 2Pn

3).(Pn
x − 2Pn

3 − Pn).(Pn
x − 2Pn

3 − 2Pn).(Pn
x − 2Pn

3 − 3Pn)

. ...

.(Pn
x − 3Pn

3).(Pn
x − 3Pn

3 − Pn).(Pn
x − 3Pn

3 − 2Pn).(Pn
x − 3Pn

3 − 3Pn)

. ...

. ...

. ...

.(Pn
3).(Pn

3 − Pn).(Pn
3 − 2Pn).(Pn

3 − 3Pn)

. ...

.(Pn
3 − Pn2).(Pn

3 − Pn2 − Pn).(Pn
3 − Pn2 − 2Pn).(Pn

3 − Pn2 − 3Pn)

. ...

.(Pn
3 − 2Pn

2).(Pn
3 − 2Pn

2 − Pn).(Pn
3 − 2Pn

2 − 2Pn).(Pn
3 − 2Pn

2 − 3Pn)

. ...

.(Pn
3 − 2Pn

2).(Pn
3 − 2Pn

2 − Pn).(Pn
3 − 2Pn

2 − 2Pn).(Pn
3 − 2Pn

2 − 3Pn)

. ...

.(Pn
3 − 3Pn

2).(Pn
3 − 3Pn

2 − Pn).(Pn
3 − 3Pn

2 − 2Pn).(Pn
3 − 3Pn

2 − 3Pn)

. ...

.(Pn
2).(Pn

2 − Pn).(Pn
2 − 2Pn).(Pn

2 − 3Pn)...(Pn)

En divisant ce “grand” produit par Pn

(
Pn

x−1
Pn−1 −x

)
, nous éliminons tous

les facteurs Pn de chaque terme multiple de Pn. Ceci nous permet d’observer
des “trous” à la place des multiples de Pn dont la valeur est un “reste” non
divisible par Pn. Nous obtenons donc ce qui suit : (voir page suivante)
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εn,x = (Pn − 1)!.(Pn + 1)...(2Pn − 1).(2Pn + 1)...(3Pn − 1).(3Pn + 1)...(Pn
x − 1)

.(Pn − 1)!.(Pn + 1)...(2Pn − 1).(2Pn + 1)...(3Pn − 1).(3Pn + 1)...(Pn
(x−1) − 1)

.(Pn − 1)!.(Pn + 1)...(2Pn − 1).(2Pn + 1)...(3Pn − 1).(3Pn + 1)...(Pn
(x−2) − 1)

. ...

.(Pn − 1)!.(Pn + 1)...(2Pn − 1).(2Pn + 1)...(3Pn − 1).(3Pn + 1)...(Pn
3 − 1)

.(Pn − 1)!.(Pn + 1)...(2Pn − 1).(2Pn + 1)...(3Pn − 1).(3Pn + 1)...(Pn
2 − 1)

.(Pn − 1)!

Ce qui peut aussi s’écrire (produits étalés ligne par ligne avec des séparations
sous forme de tirets rouges pour plus de clarté, c’est-à-dire que par rapport
à notre dernière formule de εn,x , lorsque nous passons à la ligne suivante
de cette formule, les tirets seront là pour marquer ce passage d’une ligne à
l’autre) :

εn,x =

a=(Pn−1)∏
a=1

[Pn
(x−1).Pn − a]

.

a=(Pn−1)∏
a=1

[(Pn
(x−1) − 1).Pn − a]

.

a=(Pn−1)∏
a=1

[(Pn
(x−1) − 2).Pn − a]

. ...

.

a=(Pn−1)∏
a=1

(3Pn − a)

.

a=(Pn−1)∏
a=1

(2Pn − a)

.

a=(Pn−1)∏
a=1

(Pn − a)

−−−−−−−−−−−
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.

a=(Pn−1)∏
a=1

[Pn
(x−2).Pn − a]

.

a=(Pn−1)∏
a=1

[(Pn
(x−2) − 1).Pn − a]

.

a=(Pn−1)∏
a=1

[(Pn
(x−2) − 2).Pn − a]

. ...

.

a=(Pn−1)∏
a=1

(3Pn − a)

.

a=(Pn−1)∏
a=1

(2Pn − a)

.

a=(Pn−1)∏
a=1

(Pn − a)

−−−−−−−−−−−

.

a=(Pn−1)∏
a=1

[Pn
(x−3).Pn − a]

.

a=(Pn−1)∏
a=1

[(Pn
(x−3) − 1).Pn − a]

.

a=(Pn−1)∏
a=1

[(Pn
(x−3) − 2).Pn − a]

. ...

.

a=(Pn−1)∏
a=1

(3Pn − a)

.

a=(Pn−1)∏
a=1

(2Pn − a)

.

a=(Pn−1)∏
a=1

(Pn − a)

−−−−−−−−−−−

. ...

−−−−−−−−−−−
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.

a=(Pn−1)∏
a=1

[Pn
2.Pn − a]

.

a=(Pn−1)∏
a=1

[(Pn
2 − 1).Pn − a]

.

a=(Pn−1)∏
a=1

[(Pn
2 − 2).Pn − a]

. ...

.

a=(Pn−1)∏
a=1

(3Pn − a)

.

a=(Pn−1)∏
a=1

(2Pn − a)

.

a=(Pn−1)∏
a=1

(Pn − a)

−−−−−−−−−−−

.

a=(Pn−1)∏
a=1

[Pn.Pn − a]

.

a=(Pn−1)∏
a=1

[(Pn − 1).Pn − a]

.

a=(Pn−1)∏
a=1

[(Pn − 2).Pn − a]

. ...

.

a=(Pn−1)∏
a=1

(3Pn − a)

.

a=(Pn−1)∏
a=1

(2Pn − a)

.

a=(Pn−1)∏
a=1

(Pn − a)

−−−−−−−−−−−

.

a=(Pn−1)∏
a=1

(Pn − a)
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Ce qui peut encore s’écrire ainsi :

εn,x =
b=Pn

(x−1)∏
b=1

 a=(Pn−1)∏
a=1

(b.Pn − a)


−−−−−−−−−−−

.
b=Pn

(x−2)∏
b=1

 a=(Pn−1)∏
a=1

(b.Pn − a)


−−−−−−−−−−−

.
b=Pn

(x−3)∏
b=1

 a=(Pn−1)∏
a=1

(b.Pn − a)


−−−−−−−−−−−

. ...

−−−−−−−−−−−

.
b=Pn

2∏
b=1

 a=(Pn−1)∏
a=1

(b.Pn − a)


−−−−−−−−−−−

.
b=Pn

1∏
b=1

 a=(Pn−1)∏
a=1

(b.Pn − a)


−−−−−−−−−−−

.

b=Pn
0∏

b=1

 a=(Pn−1)∏
a=1

(b.Pn − a)


Donc, pour finir, et pour x ≥ 1, nous avons :

εn,x =

c=(x−1)∏
c=0

b=Pn
c∏

b=1

a=(Pn−1)∏
a=1

(b.Pn − a)

Et donc

(Pn
x − 1)!

Pn
(Pnx−1

Pn−1
−x)

=

c=(x−1)∏
c=0

b=Pn
c∏

b=1

a=(Pn−1)∏
a=1

(b.Pn − a)
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Prenons un exemple pour bien voir concrètement comment cette formule se
représente. Prenons Pn = P3 = 5 (n = 3 car dans l’ordre croissant, 5 est
le 3ième de la liste des nombres premiers) et prenons x = 3 (les couleurs
permettent une réorganisation en groupe, un groupe par couleur. Entre les
parenthèses, les multiples de 5 sont mis en évidence par un produit par 5) :

(53 − 1)! = 124!

= 1.2.3.4.(1.5).6.7.8.9.(2.5).11.12.13.14.(3.5).16.17.18.19.(4.5).21.22.23.24

.(1.5.5).26.27.28.29.(6.5).31.32.33.34.(7.5).36.37.38.39.(8.5).41.42.43.44

.(9.5).46.47.48.49.(2.5.5).51.52.53.54.(11.5).56.57.58.59.(12.5).61.62.63.64

.(13.5).66.67.68.69.(14.5).71.72.73.74.(3.5.5).76.77.78.79.(16.5).81.82.83.84

.(17.5).86.87.88.89.(18.5).91.92.93.94.(19.5).96.97.98.99.(4.5.5).101.102.103

.104.(21.5).106.107.108.109.(22.5)111.112.113.114.(23.5).116.117.118.119

.(24.5).121.122.123.124

(53 − 1)! = 5

(
53−1
5−1
−3
)
.ε3,3 (ε3,3 non divisible par 5)

= 528.ε3,3

ε3,3 nous permet “d’éliminer” tous les 5 qui sont facteurs de chaque nombre
dans notre produit.

ε3,3 = 1.2.3.4.(1).6.7.8.9.(2).11.12.13.14.(3).16.17.18.19.(4).21.22.23.24

.(1).26.27.28.29.(6).31.32.33.34.(7).36.37.38.39.(8)41.42.43.44

.(9).46.47.48.49.(2).51.52.53.54.(11).56.57.58.59.(12).61.62.63.64

.(13).66.67.68.69.(14).71.72.73.74.(3).76.77.78.79.(16).81.82.83.84

.(17).86.87.88.89.(18).91.92.93.94.(19).96.97.98.99.(4).101.102.103

.104.(21).106.107.108.109.(22)111.112.113.114.(23).116.117.118.119

.(24).121.122.123.124
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D’où l’on voit apparâıtre clairement dans chaque groupe de couleur une
réorganisation possible :

ε3,3 = (1.2.3.4).(6.7.8.9).(11.12.13.14).(16.17.18.19).(21.22.23.24)

.(26.27.28.29).(31.32.33.34).(36.37.38.39).(41.42.43.44).(46.47.48.49)

.(51.52.53.54).(56.57.58.59).(61.62.63.64).(66.67.68.69).(71.72.73.74)

.(76.77.78.79).(81.82.83.84).(86.87.88.89).(91.92.93.94).(96.97.98.99)

.(101.102.103.104).(106.107.108.109).(111.112.113.114).(116.117.118.119)

.(121.122.123.124).(1.2.3.4).(6.7.8.9).(11.12.13.14).(16.17.18.19)

.(21.22.23.24).(1.2.3.4)

Ce qui correspond bien à :

ε3,3 =

c=(3−1)∏
c=0

b=5c∏
b=1

a=(5−1)∏
a=1

(b.5− a)

• Suite 2 de l’étude de (Pn
x − 1)! :

Pour éviter de nous perdre dans des développements trop longs, nous ferons
des simplifications dans chacune des prochaines parties qui nous permettrons
d’aller à l’essentiel. C’est-à-dire que nous n’écrirons pas les développements
en polynôme comme nous le devrions, mais nous allons simplifier leur écriture
en factorisant les termes les plus significatifs pour résoudre notre problème.

Poursuivons en notantB = b.Pn (d’après la formule de εn,x , b est implicitement
un nombre entier), nous avons :

a=(Pn−1)∏
a=1

(b.Pn − a) =

a=(Pn−1)∏
a=1

(B − a)
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En développant, nous obtenons un résultat du type :

- Si Pn est paire

a=(Pn−1)∏
a=1

(B − a) = (B).f(B)− (Pn − 1)!

- Pn est impaire

a=(Pn−1)∏
a=1

(B − a) = (B).f(B) + (Pn − 1)!

avec f(B) un nombre entier (en fonction de B). (Pn − 1)! apparâıt suite à
la multiplication entre eux de tous les “ a ” (à droite de la parenthèse) entre
eux, pour “ a ” partant de 1 jusqu’à (Pn − 1) et en passant par toutes les
valeurs intermédiaires. Comme (Pn−1) est paire lorsque Pn est impaire, lors
du développement, nous avons une multiplication de “ −a ” un nombre paire
de fois, ce qui rend positif le signe devant la factorielle. Evidemment, le reste
du développement est nécessairement une somme de puissances de B (un
“polynôme” dont les puissances décroissent de (Pn− 1) jusqu’à 1 en passant
par toutes les valeurs intermédiaires, ce qui nous permet une factorisation par
B. Nous appellerons f(B) “nombre entier polynômiale”), chaque puissance
de B ayant un nombre entier pour coefficient.

En revenant aux variables de départ, nous avons donc :

- Si Pn est paire

a=(Pn−1)∏
a=1

(b.Pn − a) = (b.Pn).f(b.Pn)− (Pn − 1)!

- Pn est impaire

a=(Pn−1)∏
a=1

(B − a) = (b.Pn).f(b.Pn) + (Pn − 1)!

avec f(b.Pn) un nombre entier polynômiale de degré (Pn − 1) en fonction de
b et de Pn.
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Dans le cas où Pn est paire :

si Pn = 2.m (avec m ∈ N, m ≥ 0)

Pn = 2 est le seul nombre premier qui soit paire (donc m = 1) car tous les
autres nombres paires > 0 sont composés en produit de 2 et de m > 1. Nous
avons donc :

a=(2−1)∏
a=1

(2.b− a) = (2.b)− 1

Ce qui signifie donc que

a=(2−1)∏
a=1

(2.b− a) + 1 = (2.b)

Et donc

a=(2−1)∏
a=1

(2.b− a) + 1 est divisible par le nombre premier 2.

Dans le cas où Pn est impaire :

Pn est impaire dans tous les autres cas. D’après le théorème de WILSON
[1], [(Pn − 1)! + 1] est divisible par Pn, ce qui peut être noté comme ceci :

(Pn − 1)! + 1 = Pn.w1 (avec w1 un nombre entier).

Ou encore

(Pn − 1)! = Pn.w1 − 1

D’où nous déduisons :
a=(Pn−1)∏

a=1

(b.Pn − a) = (b.Pn).f(b.Pn) + Pn.w1 − 1

= Pn.[b.f(b.Pn) + w1]− 1

D’où

a=(Pn−1)∏
a=1

(b.Pn − a)

+ 1 = Pn.[b.f(b.Pn) + w1]
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Et donc

a=(Pn−1)∏
a=1

(b.Pn − a)

+ 1 est divisible par Pn.

Pour conclure :

Nous avons donc pour tout Pn ∈ P :a=(Pn−1)∏
a=1

(b.Pn − a)

+ 1 divisible par Pn.

• Suite 3 de l’étude de (Pn
x − 1)! :

Poursuivons ce dernier raisonnement en notant (pour alléger la lecture) :

[b.f(b.Pn) + w1] = w2,c

Avec w2,c un nombre entier. Nous avons maintenant :

a=(Pn−1)∏
a=1

(b.Pn − a) = Pn.w2,c − 1

Nous avons simplement :

b=Pn
(c)∏

b=1

a=(Pn−1)∏
a=1

(b.Pn − a)

 =
b=Pn

(c)∏
b=1

(Pn.w2,c − 1)

Comme précédemment, nous pouvons développer ce produit et obtenir un
résultat du type (ici aussi, nous distinguons 2 cas possibles) :

- Si Pn est paire (et pour c ≥ 1, implicitement c est un nombre entier) :

b=Pn
(c)∏

b=1

(Pn.w2,c − 1) = (Pn.w2,c).f(Pn.w2,c) + 1
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- Et si Pn est impaire (et pour tout c ≥ 0, implicitement c est un nombre
entier) :

b=Pn
(c)∏

b=1

(Pn.w2,c − 1) = (Pn.w2,c).f(Pn.w2,c)− 1

Avec f(Pn.w2,c) un nombre entier polynômiale en fonction de Pn et de w2,c.
“ 1 ” apparâıt suite à la multiplication entre eux de tous les “ 1 ” (à droite
de la parenthèse) entre eux un nombre de fois qui vaut Pn puissance (c).
“+1” apparâıt si ce nombre de fois est paire et “−1” apparâıt si ce nombre
de fois est impaire. Evidemment, le reste du développement est forcément
une somme de puissance de (Pn.w2,c), chacune ayant un nombre entier pour
coefficient.

Cas de Pn paire :

Nous avons déjà vu qu’un seul cas n’est concerné, c’est celui de Pn = 2 :

b=Pn
(c)∏

b=1

(Pn.w2,c − 1) =
b=2(c)∏
b=1

(2.w2,c − 1)

Or, 2(c) est toujours un nombre paire pour c ≥ 1, et donc multiple de 2
(attendre la fin de ce raisonnement pour que le cas de c = 0 apparaisse
naturellement). En développant ce produit, nous obtenons :

b=2(c)∏
b=1

(2.w2,c − 1) = (2.w2,c).f(2.w2,c) + 1

Doncb=2(c)∏
b=1

(2.w2,c − 1)

− 1 est divisible par le nombre premier 2.
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Pour faire le lien avec le cas de Pn impaire, nous allons devoir poursuivre :

b=2(c)∏
b=1

(2.w2,c − 1) = (2.w2,c).f(2.w2,c) + 1

= (2.w2,c).f(2.w2,c) + 2− 1

= 2.[(w2,c).f(2.w2,c) + 1]− 1

Et donc, pour tout c ≥ 0 :b=2(c)∏
b=1

(2.w2,c − 1)

+ 1 est également divisible par le nombre premier 2.

Cas de Pn impaire :

Comme nous l’avons déjà vu, ce cas concerne tous les autres nombres premiers
(et pour c ≥ 0).

b=Pn
(c)∏

b=1

(Pn.w2,c − 1) = Pn.(w2,c).f(Pn.w2,c)− 1

b=Pn
(c)∏

b=1

(Pn.w2,c − 1)

+ 1 = Pn.(w2,c).f(Pn.w2,c)

Donc

b=Pn
(c)∏

b=1

(Pn.w2,c − 1)

+ 1 est divisible par Pn.

Pour conclure :

Nous avons donc pour tout Pn ∈ P et pour c ≥ 0 :b=Pn
(c)∏

b=1

a=(Pn−1)∏
a=1

(b.Pn − a)

+ 1 est divisible par Pn.
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• Suite 4 de l’étude de (Pn
x − 1)! :

Avant de pouvoir donner une conclusion générale sur la divisibilité de εn,x ,
il nous faut encore traiter cette dernière étape. Rappelons que :

εn,x =

c=(x−1)∏
c=0

b=Pn
c∏

b=1

a=(Pn−1)∏
a=1

(b.Pn − a)

Nous avions noté

b=Pn
(c)∏

b=1

(Pn.w2,c − 1) = Pn.(w2,c).f(Pn.w2,c)− 1

Toujours pour alléger la lecture, notons :

(w2,c).f(Pn.w2,c) = w3,x (avec w3,x un nombre entier)

Dans ce cas, nous avons :

εn,x =

c=(x−1)∏
c=0

(Pn.w3,x − 1) = Pn.(w3,x).f(Pn.w3,x)− 1 si x est impaire.

Et

εn,x = Pn.(w3,x).f(Pn.w3,x) + 1 si x est paire.

Avec f(Pn.w3,x) un nombre entier polynômiale en fonction de Pn et de w3,x.

Et donc, pour tout x ≥ 1 :

εn,x =

c=(x−1)∏
c=0

(Pn.w3,x − 1) = Pn.(w3,x).f(Pn.w3,x) + (−1)x

D’où

εn,x − (−1)x = Pn.[(w3,x).f(Pn.w3,x)]

avec [(w3,x).f(Pn.w3,x)] un nombre entier.
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Pour conclure :

Pour w3 un nombre entier non fixé, nous avons toujours :

εn,x = Pn.w3 + (−1)x pour tout Pn ∈ P et pour tout x ≥ 1.

Rappelons que nous avions noté :

εn,x =
(Pn

x − 1)!

Pn
(Pnx−1

Pn−1
−x)

Nous avons donc pour x ≥ 1 :

(Pn
x − 1)!

Pn
(Pnx−1

Pn−1
−x)
− (−1)x = Pn.w3

De la même manière pour :

εM,x =
(Mx − 1)!

M(Mx−1
M−1

−x+1)

=
(Mx − 1)!

M.M(Mx−1
M−1

−x)

- Nous avons un premier cas si M = Pn :

εM,x =
(Pn

x − 1)!

Pn.Pn
(Pnx−1

Pn−1
−x)

=
εn,x
Pn

(autrement dit un nombre rationnel)

Et d’après ce que nous venons de voir :

pour x = 1, εn,x équivaut au cas du théorème de WILSON [1] tel que
εn,1 = Pn.w1 − 1 (avec w1 un nombre entier)
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Et de manière générale, si x est impaire :

εn,x = Pn.w3 − 1 (avec w3 un nombre entier)

⇒ εM,x = w3 − 1/Pn

Et si x est paire :

εn,x = Pn.w3 + 1

⇒ εM,x = w3 + 1/Pn

Pour M = Pn, nous avons donc toujours :

⇒ εM,x = w3 ± 1/Pn

Ce qui peut aussi s’écrire :

sin(π.εM,x) = sin[π.(w3 ± 1/Pn)]

sin(π.εM,x) = ± sin(π/Pn)

sin 2(π.εM,x) = sin 2(π/Pn)

Et donc, pour M = Pn :

sin 2(π.εM,x)

sin 2(π/Pn)
= 1

- Nous avons un second cas si M est un entier tel que M 6= Pn :

Nous avons déjà vu que dans ce cas εM,x valait un nombre entier.
Autrement dit :

sin(π.εM,x) = 0
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Et donc (avec la formule utilisée au cas précédent, c’est-à-dire le cas de
M = Pn)

sin 2(π.εM,x)

sin 2(π/M)
= 0 (pour M 6= Pn)

- En conclusion, nous sommes capables de construire la fonction Cc sur
le constat de la divisibilité de εM,x. Rappelons que :

Cc =
1

sin 2(π/M)

Constatons que nous nous sommes rapprochés de la forme finale de la
fonction Fp.
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2.2.3 Construction de la fonction Fp

Pour accéder à la solution, nous allons devoir faire des rappels ou réécrire sous
une autre forme ce qui peut se déduire de la construction d’un tableau comme
le tableau de référence T.R.2. Tenons compte des remarques préalables faites
en début de partie “2.2 Démonstration Complète” (page 54).

• Rappels :

( Règle n◦1 : Sur l’intervalle [1;Pn
x − 1] , pour k ∈ N, k ≤ (x− 1) :

Il existe (Pn
(x−k−1) − 1) multiples de Pn

(k+1),

dont la répartition de chaque multiples de Pn
(k+1) est régulière

puisque l’écart entre 2 de ces multiples vaut Pn
(k+1).

( Règle n◦2 : il existe autant de multiples de Pn sur les intervalles du
type :

[(t− 1).Pn
x + 1; t.Pn

x − 1] pour t ∈ N, t ≥ 1,

Et il existe des symétries entre les intervalles :[
1;
Pn

x

2

]
et

[
Pn

x

2
;Pn

x − 1

]
( Règle n◦3 : Sur l’intervalle [1 + r;Pn

x + r] , pour r ∈ N :

la quantité des nombres N pouvant être multiples de Pn vaut toujours

Pn
(x−1) pour un écart de (Pn

x − 1) entre les 2 bornes de l’intervalle.
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• Etude :

Notons, pour N ∈ N, N ≥ 2 :

Fp =

h=(Pn
x−1)∏

h=1

(N − h)

= (N − 1).(N − 2).(N − 3). ... .[N − (Pn
x − 1)]

Nous pouvons mettre en valeur essentiellement 2 cas intéressants :

Le cas où N 6= t.Pn
x et le cas où N = t.Pn

x (pour t ∈ N, t ≥ 1).

• Résolution partielle :

Pour N < Pn
x (à inclure dans le cas où N 6= t.Pn

x), nous avons

2 ≤ N ≤ (Pn
x − 1)

(évidemment, cette inégalité est valable pour tout Pn sauf si Pn = 2 et x = 1
où nous avons N = Pn = 2, donc N multiple de Pn, et donc à exclure de
notre cas de toutes façons)

nous avons donc Fp = 0, et donc

Fp

Pn
Fc

= 0 (un nombre entier)

Pour N = Pn
x, nous avons :

(à inclure dans le cas où N = t.Pn
x avec t = 1 et r = 0)

nous retrouvons Fp = (Pn
x − 1)!

Donc

Fp

Pn
Fc

=
εn,x
Pn

(avec toutes les propriétés de εn,x vues précédemment)
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Or, εn,x = Pn.w3 ± 1 (avec w3 un nombre entier)

Et donc

Fp

Pn
Fc

= w3 ±
1

Pn

Pour poursuivre l’étude, il nous faudra réécrire les règles que nous venons de
revoir (en “Rappels”) afin de pouvoir traiter les données.

Pour traiter le cas où N 6= t.Pn
x et le cas où N = t.Pn

x , nous allons devoir
mener la suite de l’étude sur des intervalles afin de réduire les étapes. Nous
allons devoir considérer comme précédemment que :

N = t.Pn
x + r pour r ≥ 0

D’où

Fp =

h=(Pn
x−1)∏

h=1

(t.Pn
x + r − h)

= (t.Pn
x + r − 1).(t.Pn

x + r − 2). ... .[t.Pn
x + r − (Pn

x − 1)]

= (t.Pn
x + r − 1).(t.Pn

x + r − 2). ... .[(t− 1).Pn
x + r + 1]

Où nous observons clairement que le calcul sera à traiter pour un produit de
nombres entiers consécutifs appartenant à l’intervalle :

[(t− 1).Pn
x + r + 1; t.Pn

x + r − 1] dont la longueur vaut (Pn
x − 2).
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De manière simple, pour t = 1 et r = 1 (à inclure dans le cas où N 6= t.Pn
x),

nous avons :

Fp = (Pn
x).(Pn

x − 1).(Pn
x − 2). ... .(3).(2)

= (Pn
x).(Pn

x − 1).(Pn
x − 2). ... .(3).(2).(1)

= (Pn
x)!

Or,

(Pn
x − 1)! = Pn

(Pn
x−1

Pn−1
−x).εn,x (avec εn,x non divisible par Pn)

D’où

(Pn
x)! = (Pn

x − 1)!.(Pn
x)

= Pn
(Pn

x−1
Pn−1 ).εn,x

Donc, ici

Fp

Pn
Fc

=
Pn

(Pn
x−1

Pn−1 )

Pn
(Pnx−1

Pn−1
−x+1)

.εn,x

= Pn
(x−1).εn,x (qui est un nombre entier pour x ≥ 1 et pour r = 1)
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• Fin de la résolution partielle, suite du raisonnement :

Afin d’étudier les 2 cas de N 6= t.Pn
x et de N = t.Pn

x , notons donc de
manière générale :

N = t.Pn
x + r (avec r ∈ N, r ≥ 0).

afin de traiter plus rapidement ces 2 cas, constatons simplement que :

N = t.Pn
x si r = 0

N 6= t.Pn
x si r est restreint à l’intervalle [1;Pn

x − 1]

En effet, dans ce dernier cas, toutes les valeurs de N non multiples de Pn
sont atteintes pour :

t = 1 et r varie sur l’intervalle [1;Pn
x − 1] donc N ∈ [Pn

x + 1; 2.Pn
x − 1]

t = 2 et r varie sur l’intervalle [1;Pn
x− 1] donc N ∈ [2.Pn

x + 1; 3.Pn
x− 1]

t = 3 et r varie sur l’intervalle [1;Pn
x− 1] donc N ∈ [3.Pn

x + 1; 4.Pn
x− 1]

t = 4 et r varie sur l’intervalle [1;Pn
x− 1] donc N ∈ [4.Pn

x + 1; 5.Pn
x− 1]

...

etc, pour chaque valeur de t ∈ N, t ≥ 1 et r variant sur [1;Pn
x − 1] , il ne

manque que le cas où 2 ≤ N ≤ (Pn
x− 1) qui a déjà été traité au début de la

“résolution partielle”.

Pour Fp = (N − 1).(N − 2).(N − 3). ... .[N − (Pn
x − 1)]

Et N = t.Pn
x + r (avec r ∈ N, r ≥ 0),

cela revient à traiter le problème sur des intervalles de type :

[(t− 1).Pn
x + r + 1; t.Pn

x + r − 1]

Nous garderons les mêmes notations pour le reste de la démonstration.
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• Cas où N = t.Pn
x (et donc r = 0) :

Fp =

h=(Pn
x−1)∏

h=1

(t.Pn
x − h)

= (t.Pn
x − 1).(t.Pn

x − 2). ... .[(t− 1).Pn
x + 1]

Ce qui nous ramène à une étude sur les intervalles du type :

[(t− 1).Pn
x + 1; t.Pn

x − 1]

D’après la Règle n◦1, dans le cas de t = 1, et pour k ∈ N, k ≤ (x− 1) :

Il existe (Pn
(x−k−1) − 1) multiples de Pn

(k+1).

Or, d’après la Règle n◦2, il existe autant de multiples de Pn sur les intervalles
de ce type quelquesoit t. D’après la Règle n◦2, nous avons des symétries entre
les intervalles :[

1;
Pn

x

2

]
et

[
Pn

x

2
;Pn − 1

]
Ce qui revient à écrire que nous avons des symétries aussi entre les intervalles :[

1;
Pn

(x+1)

2

]
et

[
Pn

(x+1)

2
;Pn

(x+1) − 1

]
d’où nous déduisons que pour k ∈ N, k ≤ (x−1) et sur les intervalles du type :

[(t− 1).Pn
(x+1) + 1; t.Pn

(x+1) − 1]

il existe (Pn
(x−k−1) − 1) multiples de Pn

(k+1) ,

c’est-à-dire autant que sur l’intervalle [1;Pn
x − 1]

Or, sur cet intervalle, nous avons t = 1, ce qui correspond à :

(Pn
x − 1)! = Pn

Pnx − 1

Pn − 1
−x


.εn,x (εn,x non divisible par Pn).

Page 105 sur 514



Donc, nous avons maintenant pour tout t ≥ 1 :

Fp =

h=(Pn
x−1)∏

h=1

(t.Pn
x − h)

= Pn

Pnx − 1

Pn − 1
−x


.εn,x,t (avec εn,x,t un nombre entier non divisible par Pn)

Et donc

FP

Pn
Fc

=
εn,x,t
Pn

qui est un nombre rationnel.

Sur le modèle de la fin du paragraphe “Suite 1 de l’étute de (Pn
x− 1)!” pour

εn,x , nous allons réécrire εn,x,t sous une autre forme.

Pour retrouver εn,x,t , nous éliminons tous les facteurs Pn de chaque terme
multiple de Pn. Ceci nous permet d’observer des “trous” à la place des
multiples de Pn dont la valeur est un “reste” non divisible par Pn. Nous
obtenons donc ce qui suit (produits étalés sur plusieurs pages, et ligne par
ligne avec des séparations sous forme de tirets rouges correspondants à des
groupes de termes identiques pour les égalités qui vont suivre) : (voir page
suivante)
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εn,x,t = [t.Pn
x − Pnx + 1]. ... .[t.Pn

x − Pnx + Pn − 1]

.[t.Pn
x − Pnx + Pn + 1]. ... .[t.Pn

x − Pnx + 2Pn − 1]

.[t.Pn
x − Pnx + 2Pn + 1]. ... .[t.Pn

x − Pnx + 3Pn − 1]

.[t.Pn
x − Pnx + 3Pn + 1]. ... .(...). ... .[t.Pn

x − 1]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
.[t.Pn

(x−1) − Pn(x−1) + 1]. ... .[t.Pn
(x−1) − Pn(x−1) + Pn − 1]

.[t.Pn
(x−1) − Pn(x−1) + Pn + 1]. ... .[t.Pn

(x−1) − Pn(x−1) + 2Pn − 1]

.[t.Pn
(x−1) − Pn(x−1) + 2Pn + 1]. ... .[t.Pn

(x−1) − Pn(x−1) + 3Pn − 1]

.[t.Pn
(x−1) − Pn(x−1) + 3Pn + 1]. ... .(...). ... .[t.Pn

(x−1) − 1]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
.[t.Pn

(x−2) − Pn(x−2) + 1]. ... .[t.Pn
(x−2) − Pn(x−2) + Pn − 1]

.[t.Pn
(x−2) − Pn(x−2) + Pn + 1]. ... .[t.Pn

(x−2) − Pn(x−2) + 2Pn − 1]

.[t.Pn
(x−2) − Pn(x−2) + 2Pn + 1]. ... .[t.Pn

(x−2) − Pn(x−2) + 3Pn − 1]

.[t.Pn
(x−2) − Pn(x−2) + 3Pn + 1]. ... .(...). ... .[t.Pn

(x−2) − 1]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

. ...

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
.[t.Pn

3 − Pn3 + 1]. ... .[t.Pn
3 − Pn3 + Pn − 1]

.[t.Pn
3 − Pn3 + Pn + 1]. ... .[t.Pn

3 − Pn3 + 2Pn − 1]

.[t.Pn
3 − Pn3 + 2Pn + 1]. ... .[t.Pn

3 − Pn3 + 3Pn − 1]

.[t.Pn
3 − Pn3 + 3Pn + 1]. ... .(...). ... .[t.Pn

3 − 1]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
.[t.Pn

2 − Pn2 + 1]. ... .[t.Pn
2 − Pn2 + Pn − 1]

.[t.Pn
2 − Pn2 + Pn + 1]. ... .[t.Pn

2 − Pn2 + 2Pn − 1]

.[t.Pn
2 − Pn2 + 2Pn + 1]. ... .[t.Pn

2 − Pn2 + 3Pn − 1]

.[t.Pn
2 − Pn2 + 3Pn + 1]. ... .(...). ... .[t.Pn

2 − 1]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
.[t.Pn

1 − Pn1 + 1]. ... .[t.Pn
1 − Pn1 + Pn − 1]

Ce qui peut aussi s’écrire : (voir page suivante)
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εn,x,t =

a=(Pn−1)∏
a=1

[(t− 1).Pn
x + 1.Pn − a]

.

a=(Pn−1)∏
a=1

[(t− 1).Pn
x + 2.Pn − a]

.

a=(Pn−1)∏
a=1

[(t− 1).Pn
x + 3.Pn − a]

. ...

.

a=(Pn−1)∏
a=1

[(t− 1).Pn
x + (Pn

(x−1) − 2).Pn − a]

.

a=(Pn−1)∏
a=1

[(t− 1).Pn
x + (Pn

(x−1) − 1).Pn − a]

.

a=(Pn−1)∏
a=1

[(t− 1).Pn
x + Pn

(x−1).Pn − a]

−−−−−−−−−−−

.

a=(Pn−1)∏
a=1

[(t− 1).Pn
(x−1) + 1.Pn − a]

.

a=(Pn−1)∏
a=1

[(t− 1).Pn
(x−1) + 2.Pn − a]

.

a=(Pn−1)∏
a=1

[(t− 1).Pn
(x−1) + 3.Pn − a]

. ...

.

a=(Pn−1)∏
a=1

[(t− 1).Pn
(x−1) + (Pn

(x−2) − 2).Pn − a]

.

a=(Pn−1)∏
a=1

[(t− 1).Pn
(x−1) + (Pn

(x−2) − 1).Pn − a]

.

a=(Pn−1)∏
a=1

[(t− 1).Pn
(x−1) + Pn

(x−2).Pn − a]

−−−−−−−−−−−
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.

a=(Pn−1)∏
a=1

[(t− 1).Pn
(x−2) + 1.Pn − a]

.

a=(Pn−1)∏
a=1

[(t− 1).Pn
(x−2) + 2.Pn − a]

.

a=(Pn−1)∏
a=1

[(t− 1).Pn
(x−2) + 3.Pn − a]

. ...

.

a=(Pn−1)∏
a=1

[(t− 1).Pn
(x−2) + (Pn

(x−3) − 2).Pn − a]

.

a=(Pn−1)∏
a=1

[(t− 1).Pn
(x−2) + (Pn

(x−3) − 1).Pn − a]

.

a=(Pn−1)∏
a=1

[(t− 1).Pn
(x−2) + Pn

(x−3).Pn − a]

−−−−−−−−−−−

. ...

−−−−−−−−−−−

.

a=(Pn−1)∏
a=1

[(t− 1).Pn
3 + 1.Pn − a]

.

a=(Pn−1)∏
a=1

[(t− 1).Pn
3 + 2.Pn − a]

.

a=(Pn−1)∏
a=1

[(t− 1).Pn
3 + 3.Pn − a]

. ...

.

a=(Pn−1)∏
a=1

[(t− 1).Pn
3 + (Pn

2 − 2).Pn − a]

.

a=(Pn−1)∏
a=1

[(t− 1).Pn
3 + (Pn

2 − 1).Pn − a]

.

a=(Pn−1)∏
a=1

[(t− 1).Pn
3 + Pn

2.Pn − a]

−−−−−−−−−−−
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.

a=(Pn−1)∏
a=1

[(t− 1).Pn
2 + 1.Pn − a]

.

a=(Pn−1)∏
a=1

[(t− 1).Pn
2 + 2.Pn − a]

.

a=(Pn−1)∏
a=1

[(t− 1).Pn
2 + 3.Pn − a]

. ...

.

a=(Pn−1)∏
a=1

[(t− 1).Pn
2 + (Pn

1 − 2).Pn − a]

.

a=(Pn−1)∏
a=1

[(t− 1).Pn
2 + (Pn

1 − 1).Pn − a]

.

a=(Pn−1)∏
a=1

[(t− 1).Pn
2 + Pn

1.Pn − a]

−−−−−−−−−−−

.

a=(Pn−1)∏
a=1

[(t− 1).Pn
1 + 1.Pn − a]
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Ce qui peut encore s’écrire ainsi :

εn,x,t =
b=Pn

(x−1)∏
b=1

a=(Pn−1)∏
a=1

[(t− 1).Pn
x + b.Pn − a]

−−−−−−−−−−−

.
b=Pn

(x−2)∏
b=1

a=(Pn−1)∏
a=1

[(t− 1).Pn
(x−1) + b.Pn − a]

−−−−−−−−−−−

.
b=Pn

(x−3)∏
b=1

a=(Pn−1)∏
a=1

[(t− 1).Pn
(x−2) + b.Pn − a]

−−−−−−−−−−−

. ...

−−−−−−−−−−−

.
b=Pn

2∏
b=1

a=(Pn−1)∏
a=1

[(t− 1).Pn
3 + b.Pn − a]

−−−−−−−−−−−

.
b=Pn

1∏
b=1

a=(Pn−1)∏
a=1

[(t− 1).Pn
2 + b.Pn − a]

−−−−−−−−−−−

.

b=Pn
0∏

b=1

a=(Pn−1)∏
a=1

[(t− 1).Pn
1 + b.Pn − a]

Donc, pour finir, et pour x ≥ 1, nous avons :

εn,x,t =
c=x∏
c=1

b=Pn
(c−1)∏

b=1

a=(Pn−1)∏
a=1

[(t− 1).Pn
(c) + b.Pn − a]

Implicitement : a, b, c, t et x sont des nombres entiers ≥ 1. Il nous reste à
exprimer la divisibilité de εn,x,t par Pn.
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Comme dans la partie “Suite 2 de l’étute de (Pn
x − 1)!” (qui servira de

modèle), ici aussi, nous allons simplifier les développements pour écourter les
démonstrations. C’est-à-dire que nous n’écrirons pas les développements en
polynôme comme nous le devrions, mais nous allons simplifier leur écriture
en factorisant les termes les plus significatifs pour résoudre notre problème.

Rappelons que nous avions noté, d’après le théorème de WILSON [1] :

(Pn − 1)! = Pn.w1 − 1 (avec w1 un nombre entier).

Décomposons la suite de cette étude en plusieurs sous-parties.

∗ Sous-Partie 1 :

Etudions

a=(Pn−1)∏
a=1

[(t− 1).Pn
(c) + b.Pn − a]

Nous observons encore ici principalement 2 cas : Le cas où Pn est paire et le
cas où Pn est impaire.

Cas de Pn paire :

Le seul cas possible étant Pn = 2, nous avons

a=(Pn−1)∏
a=1

[(t− 1).Pn
(c) + b.Pn − a] =

a=(2−1)∏
a=1

[(t− 1).2(c) + 2.b− a]

= (t− 1).2(c) + 2.b− 1

= 2.[(t− 1).2(c−1) + b]− 1

d’où


a=(2−1)∏
a=1

[(t− 1).2(c) + 2.b− a]

+ 1 = 2.[(t− 1).2(c−1) + b]

Or, nous avons construit c de sorte qu’il soit un entier ≥ 1, donc
[(t− 1).2(c−1) + b] est un nombre entier, et donc
a=(2−1)∏
a=1

[(t− 1).2(c) + 2.b− a]

+1 est divisible par le nombre premier 2.
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Cas de Pn impaire :

a=(Pn−1)∏
a=1

[(t− 1).Pn
(c) + b.Pn − a]

= [(t− 1).Pn
(c) + b.Pn].f [(t− 1).Pn

(c) + b.Pn] + (Pn − 1)!

= Pn.[(t− 1).Pn
(c−1) + b].f [(t− 1).Pn

(c) + b.Pn] + Pn.w1 − 1

= Pn.
{

[(t− 1).Pn
(c−1) + b].f [(t− 1).Pn

(c) + b.Pn] + w1

}
− 1

avec f [(t − 1).Pn
c + b.Pn] un nombre entier polynômiale en fonction de Pn

(dont l’écriture a été ici aussi réduite pour alléger les développements).

Donc
a=(Pn−1)∏

a=1

[(t− 1).Pn
(c) + b.Pn − a]

+1 est divisible par Pn impaire.

Pour conclure :

Nous avons donc pour tout Pn ∈ P (c’est-à-dire pour Pn paire et impaire) :
a=(Pn−1)∏

a=1

[(t− 1).Pn
(c) + b.Pn − a]

+ 1 divisible par Pn.

∗ Sous-Partie 2 :

Notons (pour simplifier) :{
[(t− 1).Pn

(c−1) + b].f [(t− 1).Pn
(c) + b.Pn] + w1

}
= w4,c

(avec w4,c un nombre entier)

Nous avons :

a=(Pn−1)∏
a=1

[(t− 1).Pn
(c) + b.Pn − a] = Pn.w4,c − 1
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Etudions :

b=Pn
(c−1)∏

b=1

a=(Pn−1)∏
a=1

[(t− 1).Pn
(c) + b.Pn − a]

Ici aussi, nous pouvons distinguer les cas de Pn paire et de Pn impaire.

Cas de Pn paire :

Le seul cas étant Pn = 2, nous avons

b=2(c−1)∏
b=1

a=(Pn−1)∏
a=1

[(t− 1).Pn
(c) + b.Pn − a] =

b=2(c−1)∏
b=1

(2.w4,c − 1)

Or, 2(c−1) est un nombre impaire pour c = 1, et un nombre paire pour c > 1.
En développant ce produit, nous obtenons :

Pour c = 1

b=2(c−1)∏
b=1

(2.w4,c − 1) = 2.w4,c − 1

Et pour c > 1

b=2(c−1)∏
b=1

(2.w4,c − 1) = (2.w4,c).f(2.w4,c) + 1

= (2.w4,c).f(2.w4,c) + 2− 1

= 2.[(w4,c).f(2.w4,c) + 1]− 1

Ce qui fera le lien avec le cas de Pn impaire (avec f(2.w4,c) un nombre entier
en fonction de 2 et de w4,c).

Nous avons donc pour tout c ≥ 1 :b=2(c−1)∏
b=1

(2.w4,c − 1)

+ 1 divisible par le nombre premier 2.
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Cas de Pn impaire :

Ce cas concerne tous les autres nombres premiers (et pour c ≥ 1).

b=Pn
(c−1)∏

b=1

a=(Pn−1)∏
a=1

[(t− 1).Pn
(c) + b.Pn − a] =

b=Pn
(c−1)∏

b=1

(Pn.w4,c − 1)

= Pn.(w4,c).f(Pn.w4,c)− 1

(avec f(Pn.w4,c) un nombre entier en fonction de Pn et de w4,c)

Doncb=Pn
(c−1)∏

b=1

(Pn.w4,c − 1)

+ 1 est divisible par Pn impaire.

Pour conclure :

Nous avons donc pour tout Pn ∈ P et pour c ≥ 1 :
b=Pn

(c−1)∏
b=1

a=(Pn−1)∏
a=1

[(t− 1).Pn
(c) + b.Pn − a]

+ 1 est divisible par Pn.

∗ Sous-Partie 3 :

Voici la dernière étape. Etudions ce qui suit :

εn,x,t =
c=x∏
c=1

b=Pn
(c−1)∏

b=1

a=(Pn−1)∏
a=1

[(t− 1).Pn
(c) + b.Pn − a]

Nous avions noté

b=Pn
(c−1)∏

b=1

(Pn.w4,c − 1) = Pn.(w4,c).f(Pn.w4,c)− 1
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Toujours pour alléger la lecture, notons :

(w4,c).f(Pn.w4,c) = w5,x (avec w5,x un nombre entier)

Nous avons :

εn,x,t =
c=x∏
c=1

(Pn.w5,x − 1) = Pn.(w5,x).f(Pn.w5,x)− 1 si x est impaire,

Et

εn,x,t =
c=x∏
c=1

(Pn.w5,x − 1) = Pn.(w5,x).f(Pn.w5,x) + 1 si x est paire,

avec f(Pn.w5,x) un nombre entier (en fonction de Pn et de w5,x).

Et donc, pour tout x ≥ 1 :

εn,x,t =
c=x∏
c=1

(Pn.w5,x − 1) = Pn.(w5,x).f(Pn.w5,x) + (−1)(x)

D’où

εn,x,t − (−1)(x) = Pn.(w5,x).f(Pn.w5,x)

avec [(w5,x).f(Pn.w5,x)] un nombre entier.

Pour conclure :

Pour w6 un nombre entier non fixé, pour tout Pn ∈ P et pour tout x et t ∈ N,
tel que x ≥ 1 et t ≥ 1, nous avons toujours :

εn,x,t = Pn.w6 + (−1)(x)

En arithmétique modulaire, cela s’écrit ainsi :

εn,x,t − (−1)(x) ≡ 0 (mod Pn)
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Rappelons que nous avions noté :

FP

Pn
Fc

=
εn,x,t
Pn

qui est un nombre rationnel (εn,x,t non divisible par Pn)

En remplaçant εn,x,t convenablement dans cette dernière expression, nous
obtenons :

FP

Pn
Fc

=
Pn.w6 + (−1)(x)

Pn

= w6 +
(−1)(x)

Pn
Donc, de manière générale, si x est impaire :

FP

Pn
Fc

= w6 −
1

Pn

Et si x est paire :

FP

Pn
Fc

= w6 +
1

Pn

Pour le cas où N = t.Pn
x , Nous avons donc toujours :

FP

Pn
Fc

= w6 ±
1

Pn

Ce qui peut aussi s’écrire :

sin

(
π.FP

Pn
Fc

)
= sin

[
π.

(
w6 ±

1

Pn

)]
= ± sin

(
π

Pn

)
⇒ sin 2

(
π.FP

Pn
Fc

)
= sin 2

(
π

Pn

)
Et donc

sin 2

(
π.FP

Pn
Fc

)
sin 2

(
π

Pn

) = 1
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• Cas où N 6= t.Pn
x :

Nous avions noté N = t.Pn
x + r pour t ≥ 1 et r ≥ 0. Rappelons que le cas

de r = 0 pour tout t , et celui de r = 1 pour t = 1 ont déjà été traités en
début de partie “2.2.3 Construction de la fonction Fp” (page 100).

Et nous avions noté :

Fp =

h=(Pn
x−1)∏

h=1

(t.Pn
x + r − h) pour r variant sur [1;Pn

x − 1]

= (t.Pn
x + r − 1).(t.Pn

x + r − 2). ... .[(t− 1).Pn
x + r + 1]

Sur les intervalles de type [(t− 1).Pn
x + r + 1 ; t.Pn

x + r − 1], le nombre
de multiples de Pn est variable en fonction de r. Sur ces intervalles et selon
r, nous recontrerons des cas où le nombre de multiples de Pn est minimum et
des cas où il est maximum. Nous allons d’abord traiter les cas où le nombre
de multiples de Pn est minimum pour simplifier la suite de l’étude.

Pour r variant sur [1;Pn
x − 1], le nombre de multiples de Pn est minimum

lorsque la différence entre la borne inférieure et le premier multiple de Pn de
l’intervalle, et la différence entre la borne supérieure et le dernier multiple
de Pn de l’intervalle sont toutes les 2 maximums. Recherchons quand ces
différences sont maximums en plusieurs sous-parties, toujours à propos du
cas où N 6= t.Pn

x.

Notons d et d′ ∈ N,tel que d ≥ 1 et d′ ≥ 1.
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∗ Sous-partie pour les multiples de Pn :

A propos des bornes des intervalles de type [(t−1).Pn
x+r+1 ; t.Pn

x+r−1]
et des différences évoquées dans les quelques lignes précédentes pour ce cas
(N 6= t.Pn

x).

Relation entre la borne inférieure et le premier multiple de Pn des intervalles
de ce type :

(t− 1).Pn
x + r + 1 < (t− 1).Pn

x + d.Pn

Relation entre la borne supérieure et le dernier multiple de Pn des intervalles
de ce type :

t.Pn
x − d′.Pn < t.Pn

x + r − 1

Or, en notant ∆1 cette différence, nous avons la plus grande différence
possible pour ∆1 = Pn − 1, puisque cette différence est le nombre entier
le plus grand ne contenant pas de multiple de Pn. Nous avons :

∆1 = [(t− 1).Pn
x + d.Pn]− [(t− 1).Pn

x + r + 1]

= d.Pn − r − 1

= Pn − 1

Donc r = (d− 1).Pn

et pour la seconde borne

∆1 = [t.Pn
x + r − 1]− [t.Pn

x − d′.Pn]

= d′.Pn + r − 1

= Pn − 1

Donc r = (1− d′).Pn

Et donc

r = (d− 1).Pn

= (1− d′).Pn
D’où d′ = 2− d
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Finalement, si r = (d− 1).Pn ,

le premier multiple de Pn vaut (t− 1).Pn
x + d.Pn

et le dernier multiple de Pn vaut t.Pn
x + (d− 2).Pn

Or, le nombre de multiples de Pn se trouvant sur les intervalles de type
[(t− 1).Pn

x + d.Pn ; t.Pn
x + (d− 2).Pn] étant constant, il suffit de choisir

t = 1 et d = 1 (par exemple) pour simplifier l’écriture, ce qui revient à
dénombrer la quantité de ces multiples sur l’intervalle :

[Pn ; Pn.(Pn
(x−1) − 1)]

Et donc le nombre de multiples de Pn vaut (Pn
(x−1) − 1), dont Pn

x est un
multiple appartenant à ces intervalles car pour r variant sur [1;Pn

x−1] dans
les intervalles de type [(t− 1).Pn

x + r + 1 ; t.Pn
x + r − 1] , nous avons :

(t− 1).Pn
x + r + 1 ≤ t.Pn

x ≤ t.Pn
x + r − 1

En effet, puisque pour r = 1, l’inégalité devient :

(t− 1).Pn
x + 2 ≤ t.Pn

x ≤ t.Pn
x

Et pour r = Pn
x − 1, l’inégalité devient :

t.Pn
x ≤ t.Pn

x ≤ (t+ 1).Pn
x − 2
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∗ Sous-partie pour les multiples de Pn
2 :

Même raisonnement que précédemment appliqué aux multiples de Pn
2.

(t− 1).Pn
x + r + 1 < (t− 1).Pn

x + d.Pn
2

Et

t.Pn
x − d′.Pn2 < t.Pn

x + r − 1

Or, ∆2 = Pn
2 − 1 ne contient pas de multiple de Pn

2 et est la plus grande
différence possible. Nous avons :

∆2 = [(t− 1).Pn
x + d.Pn

2]− [(t− 1).Pn
x + r + 1]

= d.Pn
2 − r − 1

= Pn
2 − 1

Donc r = (d− 1).Pn
2

Et

∆2 = [t.Pn
x + r − 1]− [t.Pn

x − d′.Pn2]

= d′.Pn
2 + r − 1

= Pn
2 − 1

Donc r = (1− d′).Pn2

Et donc

r = (d− 1).Pn
2

= (1− d′).Pn2

D’où d′ = 2− d
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Finalement, si r = (d− 1).Pn
2 ,

le premier multiple de Pn vaut (t− 1).Pn
x + d.Pn

2

et le dernier multiple de Pn vaut t.Pn
x + (d− 2).Pn

2

Or, le nombre de multiples de Pn
2 se trouvant sur les intervalles de type

[(t−1).Pn
x+d.Pn

2 ; t.Pn
x+(d−2).Pn

2] étant constant, il suffit de choisir
t = 1 et d = 1 (par exemple) pour simplifier l’écriture, ce qui revient à
dénombrer la quantité de ces multiples sur l’intervalle :

[Pn
2 ; Pn

2.(Pn
(x−2) − 1)]

Et donc le nombre de multiples de Pn
2 vaut (Pn

(x−2) − 1), dont Pn
x fait

partie (pour les mêmes raisons que la Sous-partie précédente concernant les
multiples de Pn).

...

(même raisonnement pour les multiples des puissances de Pn intermermédiaires)

...
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∗ Sous-partie pour les multiples de Pn
(x−1) :

Même raisonnement que précédemment appliqué aux multiples de Pn
(x−1).

(t− 1).Pn
x + r + 1 < (t− 1).Pn

x + d.Pn
(x−1)

Et

t.Pn
x − d′.Pn(x−1) < t.Pn

x + r − 1

Or, ∆(x−1) = Pn
(x−1)− 1 ne contient pas de multiple de Pn

(x−1) et est la plus
grande différence possible. Nous avons :

∆(x−1) = [(t− 1).Pn
x + d.Pn

(x−1)]− [(t− 1).Pn
x + r + 1]

= d.Pn
(x−1) − r − 1

= Pn
(x−1) − 1

Donc r = (d− 1).Pn
(x−1)

Et

∆(x−1) = [t.Pn
x + r − 1]− [t.Pn

x − d′.Pn(x−1)]

= d′.Pn
(x−1) + r − 1

= Pn
(x−1) − 1

Donc r = (1− d′).Pn(x−1)

Et donc

r = (d− 1).Pn
(x−1)

= (1− d′).Pn(x−1)

D’où d′ = 2− d
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Finalement, si r = (d− 1).Pn
(x−1) ,

le premier multiple de Pn vaut (t− 1).Pn
x + d.Pn

(x−1)

et le dernier multiple de Pn vaut t.Pn
x + (d− 2).Pn

(x−1)

Or, le nombre de multiples de Pn
(x−1) se trouvant sur les intervalles de type

[(t−1).Pn
x+d.Pn

(x−1) ; t.Pn
x+(d−2).Pn

(x−1)] étant constant, il suffit de
choisir t = 1 et d = 1 (par exemple) pour simplifier l’écriture, ce qui revient
à dénombrer la quantité de ces multiples sur l’intervalle :

[Pn
(x−1) ; Pn

(x−1).(Pn − 1)]

Et donc le nombre de multiples de Pn
(x−1) vaut (Pn − 1), dont Pn

x fait
partie (pour les mêmes raisons que la Sous-partie précédente concernant les
multiples de Pn).
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∗ Sous-partie pour les multiples de Pn
x :

Nous avons déjà vu que pour r variant sur [1;Pn
x− 1] dans les intervalles de

type [(t− 1).Pn
x + r + 1 ; t.Pn

x + r − 1] , nous avons :

(t− 1).Pn
x + r + 1 ≤ t.Pn

x ≤ t.Pn
x + r − 1

En effet, si r = 1 :

(t− 1).Pn
x + 2 ≤ t.Pn

x ≤ t.Pn
x

Et si r = Pn
x − 1 :

t.Pn
x ≤ t.Pn

x ≤ (t+ 1).Pn
x − 2

Et donc t.Pn
x se situe toujours dans les intervalles de type :

[(t− 1).Pn
x + r + 1 ; t.Pn

x + r − 1]
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∗ Synthèse :

Pour N = t.Pn
x+r et r variant sur l’intervalle [1;Pn

x−1] , sur les intervalles
de type [(t− 1).Pn

x + r + 1 ; t.Pn
x + r − 1] :

nous avons donc 1 seul multiple de Pn
x ;

Et pour k ∈ N sur l’intervalle [1;x− 1] :

au moins (Pn
(x−k) − 1) multiples de Pn

k , dont Pn
x fait partie.

(l’intervalle peut même être étendu à k ∈ [0;x − 1] car l’ensemble reste
cohérent, même si k = 0 ne présente a priori pas d’intérêt).

Nous pouvons donc regrouper chacun de ces nombres minimum de multiples
des puissance de Pn à partir de ce que nous venons de voir (en notant E un
nombre entier non divisible par Pn) :

Fp =

h=(Pn
x−1)∏

h=1

(t.Pn
x + r − h)

= Pn
(Pn

(x−1)−1).Pn
(Pn

(x−2)−1). ... .Pn
(Pn

2−1).Pn
(Pn−1).Pn

(1).E

= Pn
[Pn

(x−1)−1+Pn
(x−2)−1+ ... +Pn

2−1+Pn−1+1].E

= Pn
[Pn

(x−1)+Pn
(x−2)+ ... +Pn

2+Pn−(x−1)+1].E

= Pn
[Pn

(x−1)+Pn
(x−2)+ ... +Pn

2+Pn+1−(x−1)].E

Or,

Pn
(x−1) + Pn

(x−2) + ... + Pn
2 + Pn + 1 =

Pn
x − 1

Pn − 1

Donc, dans notre cas :

Fp = Pn
[Pn

x−1
Pn−1

−(x−1)].E

= Pn
(Pn

x−1
Pn−1

−x+1).E
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Et comme nous avons :

Pn
Fc = Pn

(Pn
x−1

Pn−1
−x+1)

Nous pouvons effectuer

Fp

Pn
Fc

= E

Fp

Pn
Fc

est donc toujours un nombre entier pour x ≥ 1, nous avons donc ici :

sin 2

(
π.Fp

Pn
Fc

)
sin 2

(
π

Pn

) = 0

REMARQUE IMPORTANTE :

Le fait d’avoir chercher à regrouper ces nombres minimum de multiples des
puissance de Pn dans la formule de Fp nous permet d’abréger ici l’étude les
concernant. En effet, les autres cas de r faisant intervenir un nombre plus
important de multiples des puissance de Pn dans la formule de Fp, nous
aurons forcément :

Fp

Pn
Fc

= E ′

c’est-à-dire un nombre entier E ′ divisible par une puissance de Pn, une
puissance obligatoirement ≥ 1.

Et donc, nous retrouvons ici aussi :

sin 2

(
π.Fp

Pn
Fc

)
sin 2

(
π

Pn

) = 0
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Ce qui permet de conclure de manière générale à propos du cas où N 6= t.Pn
x

ainsi :

sin 2

(
π.Fp

Pn
Fc

)
sin 2

(
π

Pn

) = 0

Conclusion et synthèse :

sin 2

(
π.Fp

Pn
Fc

)
sin 2

(
π

Pn

) = 1 si N est un multiple de Pn
x.

sin 2

(
π.Fp

Pn
Fc

)
sin 2

(
π

Pn

) = 0 si N n’est pas un multiple de Pn
x.
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2.2.4 Supposons Pn non connu (construction de Fp,
suite)

Supposons que nous ne connaissions pas les nombres premiers Pn. Comme
Pn ∈ P, remplaçons Pn dans la formule de Fp par une autre variable M ,
définie telle que M ∈ N, M ≥ 2. Nous verrons pourquoi M ≥ 2 en cours
d’étude. Reprenons brièvement les points essentiels des études précédentes
en se concentrant uniquement sur les cas où M n’est pas un nombre premier
(car les cas où M = Pn ont tous été traité dans les études précédentes).

Nous avions noté :

Fp =

h=(Pn
x−1)∏

h=1

(N − h)

= (N − 1).(N − 2). ... .(N − Pnx + 2).(N − Pnx + 1)

= Pn
(Pn

x−1
Pn−1

−x).εn,x,t (avec εn,x,t un nombre entier non divisible par Pn)

Et

Pn
Fc = Pn

(Pn
x−1

Pn−1
−x+1)

En remplaçant Pn par M nous obtenons :

Fp =

h=(Mx−1)∏
h=1

(N − h)

Et

MFc = M(Mx−1
M−1

−x+1)
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Et donc
Fp

Pn
Fc

devient
Fp
MFc

, pour finalement obtenir :

Fp
MFc

=

h=(Mx−1)∏
h=1

(N − h)

M(Mx−1
M−1

−x+1)

A partir de cette égalité, reprenons l’étude en 3 nouvelles sous-parties.

• Etude :

∗ Sous-Partie 1 :

1 < N < Mx

C’est un cas simple . En effet, nous avons ici :

Fp =

h=(Mx−1)∏
h=1

(N − h)

= (N − 1).(N − 2).....(N −Mx + 2).(N −Mx + 1)

= 0

Donc ici

Fp
MFc

= 0

Et donc (la formule suivante implique que M ∈ N, M ≥ 2)

sin 2

(
π.Fp
MFc

)
sin 2

( π
M

) = 0
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∗ Sous-Partie 2 :

N = Mx

C’est aussi un cas simple . En effet, puisque nous retrouvons ici :

Fp =

h=(Mx−1)∏
h=1

(N − h)

=

h=(Mx−1)∏
h=1

(Mx − h)

= (Mx − 1)!

dont la démonstration a déjà été faite, rappelons donc que nous avions :

εM,x =
(Mx − 1)!

M(Mx−1
M−1

−x+1)

avec εM,x un nombre entier pour tout M étant un nombre entier et n’étant
pas un nombre premier, sauf pour le seul cas de M = 4 et x = 1.

Donc, ici

Fp
MFc

= εM,x (εM,x entier sauf pour le seul cas de M = 4 et x = 1)

Et donc (la formule suivante implique que M ∈ N, M ≥ 2)

sin 2

(
π.Fp
MFc

)
sin 2

( π
M

) = 0 (sauf pour M = 4 et x = 1)

Nous pourrons corriger cela en donnant une formule valable pour tous les cas
(et donc pour M = 4 et x = 1 inclus). Nous chercherons alors une formule
qui soit nulle pour ce seul cas (ou au moins pour les multiples de 4) et qui
prenne pour valeur 1 sinon (ou au moins lorsque M = Pn), ceci afin de ne
pas perturber le fonctionnement général de la formule finale. Nous donnerons
une étude plus détaillée de la cette fonction de correction “ A ” plus loin dans
le paragraphe le signalant.
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∗ Sous-Partie 3 :

N > Mx

C’es le cas le moins simple. Raisonnement :

Fp =

h=(Mx−1)∏
h=1

(N − h)

= (N − 1).(N − 2).....(N −Mx + 2).(N −Mx + 1)

Remarquons que dans ce cas il existe une différence non nulle entre N et Mx,
notons cette différence Λ telle que :

Λ = N −Mx (et donc non nulle, c’est-à-dire Λ ≥ 1)

D’où

N = Mx + Λ

Donc

Fp = (N − 1).(N − 2). ... .(N −Mx + 2).(N −Mx + 1)

= (N − 1).(N − 2). ... .(Λ + 2).(Λ + 1)

= [(N − 1).(N − 2). ... .(Λ + 2).(Λ + 1)].
Λ!

Λ!

=
(N − 1)!

Λ!

=
(Mx + Λ− 1)!

Λ!

=
[(Mx + Λ− 1).(Mx + Λ− 2). ... .(Mx + 1).(Mx)] . [(Mx − 1)!]

Λ!

= [(Mx − 1)!] .
[(Mx + Λ− 1).(Mx + Λ− 2). ... .(Mx + 1).(Mx)]

Λ!

= (Mx − 1)!.

Λ′=(Λ−1)∏
Λ′=0

(Mx + Λ′)


Λ!
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Or,

Λ′=(Λ−1)∏
Λ′=0

(Mx + Λ′)


Λ!

est toujours un nombre entier.

Explications :

Notons G =

Λ′=(Λ−1)∏
Λ′=0

(Mx + Λ′)

Donc

G

Λ!
=

Λ′=(Λ−1)∏
Λ′=0

(Mx + Λ′)


Λ!

Si Λ = 1, alors G = Mx divisible par (Λ!) = 1! = 1. Et donc
G

Λ!
est un

nombre entier.

Si Λ = 2, alors G = (Mx).(Mx + 1) divisible par (Λ!) = 2! puisque sur
2 nombre entiers consécutifs, au moins l’un des 2 est divisible par 2 (et

forcément l’autre est divisible par 1). Et donc
G

Λ!
est un nombre entier.

Si Λ = 3, alors G = (Mx).(Mx + 1).(Mx + 2) divisible par (Λ!) = 3! puisque
sur 3 nombre entiers consécutifs, au moins l’un des 3 est divisible par 3, et

au moins un autre est divisible par 2. Et donc
G

Λ!
est un nombre entier.

Si Λ = 4, alors G = (Mx).(Mx+1).(Mx+2).(Mx+3) divisible par (Λ!) = 4!
puisque sur 4 nombres entiers consécutifs, au moins l’un des 4 est divisible
par 4, au moins un des 4 est divisible par 3, et au moins un autre est divisible

par 2. Et donc
G

Λ!
est un nombre entier.

Si Λ = 5, alors G = (Mx).(Mx + 1).(Mx + 2).(Mx + 3).(Mx + 4) divisible
par (Λ!) = 5! puisque sur 5 nombres entiers consécutifs, au moins l’un des 5
est divisible par 5, au moins un des 5 est divisible par 4, au moins un des 5

est divisible par 3, et au moins un autre est divisible par 2. Et donc
G

Λ!
est

un nombre entier.
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...

(nous pouvons poursuivre ce raisonnement à l’infini pour chaque valeur de Λ)

...

Pour Λ ≥ 1 , nous avons G = (Mx).(Mx+1). ... .(Mx+Λ−2).(Mx+Λ−1)
divisible par (Λ!) puisque sur Λ nombres entiers consécutifs, au moins l’un
des Λ nombres est divisible par Λ, au moins un des Λ nombres est divisible
par (Λ − 1), au moins un des Λ nombres est divisible par (Λ − 2), ... , au
moins un des Λ nombres est divisible par 3 et au moins un autre parmi ces
Λ nombres est divisible par 2 (et forcément l’ensemble de ces Λ nombres est

divisible par 1). Et donc
G

Λ!
est un nombre entier.

En notant
G

Λ!
= G′ un nombre entier quelquesoit Λ ≥ 1, nous avons donc

maintenant :

Fp = (Mx − 1)!.

Λ′=(Λ−1)∏
Λ′=0

(Mx + Λ′)


Λ!

= (Mx − 1)!.G′

En rappelant que

(Mx − 1)! = M(Mx−1
M−1

−x+1).εM,x

= MFc .εM,x

Nous déduisons

Fp
MFc

= G′.εM,x (εM,x entier sauf pour le seul cas de M = 4 et x = 1)

Et donc (la formule suivante implique que M ∈ N, M ≥ 2)

sin 2

(
π.Fp
MFc

)
sin 2

( π
M

) = 0 (sauf pour M = 4 et x = 1)
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∗ Synthèse de ces 3 sous-parties :

Nous avons donc pourM ∈ N, M ≥ 2 avec toutM /∈ P et quelquesoitN ≥ 1 :

sin 2

(
π.Fp
MFc

)
sin 2

( π
M

) = 0 (sauf pour M = 4 et x = 1)

• Conclusion et synthèse :

Nous avons pour M ∈ N, M ≥ 2 tel que M /∈ P et quelquesoit N ≥ 1 :

sin 2

(
π.Fp
MFc

)
sin 2

( π
M

) = 0 (sauf pour M = 4 et x = 1)

Et nous avons pour M ∈ N, M ≥ 2 tel que M ∈ P (c’est-à-dire finalement
pour M = Pn) :

sin 2

(
π.Fp
MFc

)
sin 2

( π
M

) = 1 si N est un multiple de Pn
x = Mx.

sin 2

(
π.Fp
MFc

)
sin 2

( π
M

) = 0 si N n’est pas multiple de Mx.
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• Construction de la “fonction” de Correction “ A ” :

Nous voulons obtenir une “fonction” de correction “ A ” pour le cas où M = 4
et x = 1 telle que :

pour tout M ∈ N, M ≥ 2 et M /∈ P

A.

sin 2

(
π.Fp
MFc

)
sin 2

( π
M

) = 0

et pour tout M ∈ N, M ≥ 2 et M ∈ P

A.

sin 2

(
π.Fp
MFc

)
sin 2

( π
M

) = 1

Nous voulons donc

A = 0 si M = 4 et x = 1 (ou si “M est multiple de 4” est aussi acceptable)
A = 1 sinon (ce qui inclu les cas où M = Pn)

En effet, en partant de :

εM,x =
Fp
MFc

=
(Mx − 1)!

M(Mx−1
M−1

−x+1)

(avec εM,x un nombre entier si M /∈ P sauf dans le cas de M = 4 et x = 1)

pour N = Mx , lorsque M = 4 et x = 1, nous obtenions :

εM,x =
(4− 1)!

4

=
3

2

Dans ce cas seulement, εM,x est rationnel alors que M /∈ P.
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Etudions maintenant ce qui suit :

(M − 1).(M − 2).(M − 3)

4
=
M3 − 6.M2 + 11.M − 6

4

Si M est un multiple de 4, notons M = 4.t′ avec t′ ∈ N, t′ ≥ 0, nous avons :

(M − 1).(M − 2).(M − 3)

4
=

(4t′ − 1).(4t′ − 2).(4t′ − 3)

4

=
(4t′)3 − 6.(4t′)2 + 11.(4t′)− 6

4

= 16.(t′)3 − 24.(t′)2 + 11.(t′)− 3

2

Or, [16.(t′)3 − 24.(t′)2 + 11.(t′)] est un nombre entier pour t′ ∈ N, t′ ≥ 0.

Donc

sin 2

[
π.(M − 1).(M − 2).(M − 3)

4

]
= sin 2

[
π.(4t′ − 1).(4t′ − 2).(4t′ − 3)

4

]
= sin 2

{
π.

[
16.(t′)3 − 24.(t′)2 + 11.(t′)− 3

2

]}
= sin 2

(
3.π

2

)
= 1 si M est un multiple de 4.
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Si M n’est pas un multiple de 4, notons M = 4t′ + r′ avec t′ ∈ N, t′ ≥ 0
et r′ ∈ N, nous pouvons restreindre r′ à l’intervalle [1; 3] (en effet, toutes les
valeurs non multiple de 4 sont présente avec r′ ∈ [1; 3] et pour chaque valeur
de t′), nous avons :

(M − 1).(M − 2).(M − 3)

4

=
(4t′ + r′ − 1).(4t′ + r′ − 2).(4t′ + r′ − 3)

4

=
(4t′ + r′)3 − 6.(4t′ + r′)2 + 11.(4t′ + r′)− 6

4

=
64.(t′)3 + 52.(t′)2.r′ + 12.t′.(r′)3 + (r′)3 − 96.(t′)2 − 48.t′.r′ − 6.(r′)2 + 44.t′ + 11.r′ − 6

4

= 16.(t′)3 + 13.(t′)2.r′ + 3.t′.(r′)2 − 24.(t′)2 − 12.t′.r′ + 11.t′ +
(r′)3 − 6.(r′)2 + 11.r′ − 6

4

= 16.(t′)3 + 13.(t′)2.r′ + 3.t′.(r′)2 − 24.(t′)2 − 12.t′.r′ + 11.t′ +
(r′ − 1).(r′ − 2).(r′ − 3)

4

Or, pour la partie suivante de cette dernière formule :

[16.(t′)3+13.(t′)2.r′+3.t′.(r′)2−24.(t′)2−12.t′.r′+11.t′] vaut un nombre entier

Et de plus, nous avons :

(r′ − 1).(r′ − 2).(r′ − 3)

4
= 0 pour r′ ∈ N et restreint à l’intervalle [1; 3]

Donc

sin 2

[
π.

(M − 1).(M − 2).(M − 3)

4

]
= sin 2

[
π.

(4t′ + r′ − 1).(4t′ + r′ − 2).(4t′ + r′ − 3)

4

]
= 0 si M n’est pas un multiple de 4.
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Pour faire la synthèse, nous avons donc :

sin 2

[
π.

(M − 1).(M − 2).(M − 3)

4

]
= 1 si M est multiple de 4,

sin 2

[
π.

(M − 1).(M − 2).(M − 3)

4

]
= 0 si M n’est pas multiple de 4.

Or, nous sommes en train de rechercher une fonction qui est exactement
complémentaire à celle-ci puisque nous voulons :

A = 0 si M est multiple de 4
A = 1 si M n’est pas multiple de 4

Nous avons donc simplement :

A = 1− sin 2

[
π.

(M − 1).(M − 2).(M − 3)

4

]
= cos 2

[
π.

(M − 1).(M − 2).(M − 3)

4

]
Ce qui nous permet de généraliser :

- Pour tout M ∈ N, M ≥ 2 et M /∈ P, quelquesoit N ≥ 1 :

cos 2

[
π.

(M − 1).(M − 2).(M − 3)

4

]
.

sin 2

(
π.Fp
MFc

)
sin 2

( π
M

) = 0

- Pour tout M ∈ N, M ≥ 2 et M ∈ P, si N est un multiple de Mx :

cos 2

[
π.

(M − 1).(M − 2).(M − 3)

4

]
.

sin 2

(
π.Fp
MFc

)
sin 2

( π
M

) = 1

- Pour tout M ∈ N, M ≥ 2 et M ∈ P, si N n’est pas un multiple de Mx :

cos 2

[
π.

(M − 1).(M − 2).(M − 3)

4

]
.

sin 2

(
π.Fp
MFc

)
sin 2

( π
M

) = 0
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2.2.5 Construction de la fonction αM

Toutes ces données vont nous permettre de construire une mécanique pour
les puissances des nombres premiers. En effet, pour simplifier les données
principales, notons :

f(M ;x) = cos 2

[
π.

(M − 1).(M − 2).(M − 3)

4

]
.

sin 2

(
π.Fp
MFc

)
sin 2

( π
M

)

Et notons à nouveau ces généralisations précédentes, pour N ∈ N, N ≥ 1 :

f(M ;x) = 1 pour tout M ∈ N, M ≥ 2 et M ∈ P, si N est multiple de Mx.

f(M ;x) = 0 pour tout M ∈ N, M ≥ 2 et M ∈ P, si N non multiple de Mx.

f(M ;x) = 0 pour tout M ∈ N, M ≥ 2 et M /∈ P, quelquesoit N ≥ 1.

Ceci signifie encore que :

M f(M ;x) = M pour tout M ∈ N, M ≥ 2 et M ∈ P, si N est multiple de Mx.

M f(M ;x) = 1 pour tout M ∈ N, M ≥ 2 et M ∈ P, si N non multiple de Mx.

M f(M ;x) = 1 pour tout M ∈ N, M ≥ 2 et M /∈ P, quelquesoit N ≥ 1.

Poursuivons avec le cas le plus intéressant pour la suite de l’étude, c’est-à-
dire avec le cas où :

f(M ;x) = 1 pour tout M ∈ N, M ≥ 2 et M ∈ P, si N est multiple de Mx.
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Dissociation de variables :

Afin de dissocier un nombre N d’un nombre Mx, nous allons devoir adopter
d’autres variables : αM et g. En effet, nous devons adopter une notation
pour N qui le distingue du reste de la formule recherchée. Notons :

N = g.M (αM ) avec g ∈ N, g ≥ 1 et αM ∈ N.

Ainsi, N peut représenter tous les nombres entiers supérieur ou égale à 1
(N ∈ N, N ≥ 1). Effectivement :

- si N est multiple de M (αM ), le coefficient multiplicateur est représenté par g.

- si N n’est pas multiple de M (αM ), alors αM = 0 et donc N = g.

En réalité, cette écriture va nous permettre de dissocier αM et x, afin de
constater que le nombre N = g.M (αM ) étant donné et fixé, N est multiple de
Mx si x ≤ αM , mais aussi N est multiple de M élevé à toutes les puissances
inférieures à x (x ∈ N, x ≥ 1).

Nous avons donc

N est multiple de M (pour x = 1),
N est multiple de M2 (pour x = 2),
N est multiple de M3 (pour x = 3),
...
Jusqu’au cas où N est multiple de Mx (pour x = αM),

N n’est plus multiple de Mx dès que x > αM .

Tout ceci signifie que dans tous ces cas :

f(M ; 1) = 1 (pour x = 1)
f(M ; 2) = 1 (pour x = 2)
f(M ; 3) = 1 (pour x = 3)
...
Jusqu’à f(M ;αM) = 1 (pour x = αM)

Et f(M ;x) = 0 pour x > αM .
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Ce qui nous permet de retrouver la puissance αM puisque nous avons :

f(M ; 1) + f(M ; 2) + f(M ; 3) + ...+ f(M ;αM) =

x=αM∑
x=1

(1)

= αM

Ce qui peut encore être écrit :

αM = f(M ; 1)+f(M ; 2)+ ...+f(M ;αM)+f(M ;αM +1)+f(M ;αM +2)+ ...

puisque dès que x > αM et jusqu’à l’infini (pour x), nous avons f(M ;x) = 0.

Donc

αM =

x=αM∑
x=1

(1)

=
x→+∞∑
x=1

f(M ;x)

Or, f(M ;x) est connue car elle a déjà été formulée. Nous avons finalement
une formule de “mécanique des puissances” pour les nombres premiers.

Pour tout nombre N ∈ N, N ≥ 1, nous pouvons déduire αM la puissance
maximum de M (lorsque M est un nombre premier) qui le compose. Ainsi :

N = g.M (αM ) avec αM =
x→+∞∑
x=1

f(M ;x)

Pour retrouver tous les nombres premiers qui compose N (par exemple en
notant q1 , q2 , q3 , q4 , ... , qn des nombres premiers quelconques mais
distincts les uns des autres et en supposant que N soit composé du produit
de ces nombres), il suffit alors de faire varier M sur l’ensemble des nombres
premiers (ainsi, M prend forcément pour valeur q1 , puis q2 , puis q3 , puis
q4 , ... , puis qn ) , ce qui permettrait d’obtenir par exemple :

N = q1
(αq1 ).q2

(αq2 ).q3
(αq3 ).q4

(αq4 ). ... .qn
(αqn ).
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Concentrons nous maintenant sur les cas suivant, rappelons que :

Si N n’est pas multiples d’un de ces nombres premiers (d’après l’exemple
précédent : q1 , q2 , q3 , q4 , ... , qn), alors f(M ;x) = 0

donc, dans ce cas,

αM =
x→+∞∑
x=1

f(M ;x)

= 0

et donc M (αM ) = 1 pour tout M ∈ N, M ≥ 2 et M ∈ P, si N n’est pas un
multiple de Mx.

Et rappelons d’autre part que :

f(M ;x) = 0 pour tout M ∈ N, M ≥ 2 et M /∈ P, quelquesoit N ≥ 1.

Donc, dans ces 2 derniers cas,

αM =
x→+∞∑
x=1

f(M ;x)

= 0

et donc M (αM ) = 1 pour tout M ∈ N, M ≥ 2 et M /∈ P, quelquesoit N ∈ N,
N ≥ 1.

Or, dans un produit, 1 est l’élément neutre. Ce qui va nous permettre de
construire une formule “plus générale” sur la décomposition d’un nombre
entier en produit de facteurs de nombres premiers. En tenant compte de
toutes ces données, nous pouvons alors conclure finalement :

N =
M→+∞∏
M=2

MαM
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Nous pouvons borner ce produit par 2 pour la borne inférieure puisqu’il s’agit
également de la borne inférieure pour le domaine de définition de M (nous
avons M ∈ N, M ≥ 2 ). Compte tenu qu’il n’est pas nécessaire de faire varier
M jusqu’à l’infini puisque N ne peut pas être composé de facteur premier
qui soit supérieur à lui-même. Au maximum, si N est lui-même un nombre
premier, nous pouvons faire varier M jusqu’au plus grand nombre premier
possible, c’est-à-dire jusqu’à N lui-même. ce qui impose alors de restreindre
le domaine de définition de N à celui de M , c’est-à-dire pour N ∈ N, N ≥ 2.
Et si nous voulons faire apparâıtre tous les travaux de l’étude en une seule
formule, nous pouvons mettre en facteur les formules de “fonction coefficient
correcteur” Cc et de “fonction élimination du défaut” A (lorsque M = 4 et
x = 1) que l’on retrouve dans chaque formule de f(M ;x).

Pour N ∈ N tel que N ≥ 2, nous pouvons alors noter :

N = D(N) =
M=N∏
M=2

M



cos 2

(
π

4
.
v=3∏
v=1

(M − v)

)
sin 2(π/M)

.

x→+∞∑
x=1

sin 2


π.

h=(Mx−1)∏
h=1

(N − h)

M

Mx − 1

M − 1
−x+1







Ce que je me suis efforcé de démontrer (attention, il s’agit bien de crochets
dans ces formules, et non des symboles des “valeurs absolues” , ni de ceux des
“parties entières” : ils ont donc la même fonction que de simples parenthèses,
ils contiennent αM , c’est-à-dire la puissance de M). Ceci servira de synthèse
générale de la démonstration de l’étude sur la factorisation d’un nombre
entier en produits de facteurs premiers. Notons simplement ce processus
de “décomposition” (ou de factorisation d’un nombre entier en produit de
facteurs premiers) D(N), et appelons cette formule D(N) la “Décomposée”
de N telle que :

N = D(N)

=
M→+∞∏
M=2

MαM

=
M=N∏
M=2

MαM
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Il existe donc une règle permettant la décomposition d’un nombre entier
supérieur ou égale à 2 en produit de facteurs premiers. Nous pouvons
maintenant considérer que le tableau de référence T.R.1 (voir le début de
la partie “1 Factorisation et mécanique des puissances” page 21), dont
le nombre de colonnes est infini et dont le nombre de lignes est également
infini, peut être donné par la formule D(N) pour N ∈ N, N ≥ 2.

Remarque 1 :

Lorsque nous notons que nous devons avoir N ∈ N, N ≥ 2, il faut comprendre
que tout nombreN est décomposable en produit de facteurs premiers seulement
si N est supérieur ou égale à 2. En d’autres termes, les nombres 0 et 1
(les seuls entiers positifs à être inférieurs à 2) ne sont pas décomposables de
manière explicite en produit de facteurs premiers, la formule de décomposition
D(N) ne peut logiquement pas les concerner.

Autrement dit, la raison pour laquelle les nombres entiers 0 et 1 ne peuvent
pas être concernés par cette formule est que cette formule ne traite que la
propriété de “primalité” de chaque nombre entier consécutif (par le produit
des (N − h) ), et pour tout N ∈ N, N ≥ 2, l’entier N ne peut être que
premier ou composé (ce qui n’est pas le cas des nombre 0 et 1).

Remarque 2 :

A l’aide des congruences, le lien entre la fonction SINUS et le cercle doit
pouvoir permettre une interprétation géométrique équivalente.

Remarque 3 :

Il existe une formule “plus générale” de D(N) dont la démonstration et
la formule qui en résulte sont données en partie “3.8.6 Formule f(M;x),
puissance et divisibilité : Formule D(N) généralisée” (page 225).
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2.3 Théorème de décomposition d’un nombre

entier N en produit de facteurs premiers

D’après les démonstrations effectuées précédemment à propos de la formule
D(N) de décomposition d’un nombre entierN en produit de facteurs premiers,
pour N ∈ N tel que N ≥ 2, la formule D(N) étant donnée par :

N = D(N) =
M=N∏
M=2

M



cos 2

(
π

4
.

v=3∏
v=1

(M − v)

)
sin 2(π/M)

.

x→+∞∑
x=1

sin 2


π.

h=(Mx−1)∏
h=1

(N − h)

M

Mx − 1

M − 1
−x+1







- Soit N le nombre d’éléments d’un ensemble.

- Soit un ensemble fondamental un ensemble dont le nombre d’éléments
contenu est N ∈ P.

- Soit un ensemble composé un ensemble dont le nombre d’éléments
contenu est N /∈ P.

Le domaine de définition deD(N) étantN ∈ N tel queN ≥ 2, si nous voulons
diviser un ensemble composé deN éléments en sous-ensembles fondamentaux,
nous devons concevoir :

• qu’il existe une unité de mesure indivisible (évidemment la valeur 1),

• que les éléments (qui permettent de former un ensemble) soient indivisibles,

• qu’il existe une limite minimum pour un sous-ensemble fondamental
(ce minimum étant N = 2 éléments),

• qu’il n’existe pas de limite maximum pour un sous-ensemble fondamental
(sinon, cela sous-entendrait qu’il existe un nombre premier maximum,
ce qui est faux),

• que nos mesures à propos du nombre d’éléments (formant un ensemble)
ne puissent être que discontinues (correspondant au domaine de définition
des nombres entiers N).
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3

Formules courtes

Certaines lettres qui vont être utlisées seront les mêmes que précédemment,
mais elles n’auront pas de lien entre elles (exemple pour les variables comme
a, comme b, comme m, comme B ou comme X ...). Nous préciserons ce
changement par une redéfinition des variables concernées.

3.1 Formule simplifiée s(M)

- D’après les démonstrations déjà effectuées, nous pouvons construire une
formule légèrement différente et plus simple. Par exemple, la formule de αn
nous permet de connâıtre la divisibilité de N par un nombre premier Pn,
ce qui nous amène à connâıtre D(N). D’une autre manière, nous pouvons
savoir par une formule plus “courte” si un nombre entier est premier ou non
(c’est-à-dire si N = Pn ou pas). Cette formule courte (ou encore “Simplifiée”
de f(M ;x) ) permettra simplement de savoir si le nombre N est divisible
ou non par un nombre premier Pn, son expression est basée sur celle de αn,1
mais sans certains termes non utiles à cette fin, elle est plus légère que αn.
Quelques rappels de ce que nous avions noté :

αn = A.Cc.

x=Rn∑
x=1

sin 2

(
π.Fp

Pn
Fc

)
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* Avec Fp =

h=(Pn
x−1)∏

h=1

(N − h)

* Avec Fc =
Pn

x − 1

Pn − 1
− x+ 1

* Avec Cc =
1

sin 2(π/Pn)

* Avec A = cos 2

(
π

4
.

v=3∏
v=1

(Pn − v)

)
* Avec Rn la fonction de Restriction permettant de limiter les calculs

aux nombres premiers Pn ≤ N .

Il suffit de ramener cette étude à celle de x = 1 (et donc à celle de αn,1) :

S(N) =

cos 2

(
π

4
.

v=3∏
v=1

(Pn − v)

)
sin 2(π/Pn)

. sin 2

 π

Pn
.

h=(Pn−1)∏
h=1

(N − h)


(Cette formule nous permet de savoir si N est multiple de Pn)

Ou encore, si nous désirons remplacer Pn par M comme dans la partie
précédente (ce qui sous-entend que Pn n’est pas connu) :

S(N) =

cos 2

(
π

4
.
v=3∏
v=1

(M − v)

)
sin 2(π/M)

. sin 2

 π

M
.

h=(M−1)∏
h=1

(N − h)


- Rappelons également que nous avions noté :

αM =
x→→+∞∑
x=1

f(M ;x)

Avec

f(M ;x) = cos 2

[
π.

(M − 1).(M − 2).(M − 3)

4

]
.

sin 2

(
π.Fp
MFc

)
sin 2

( π
M

)
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Poursuivons le raisonnement de simplification par une remarque utile : dans
le cas particulier où N = M (et x = 1), nous saurons directement si N (ou
M) est premier ou pas.

Dans le cas où N = M (et x = 1), nous avons :

h=M−1∏
h=1

(N − h) = (M − 1)!

Dans le cas particulier de N = M et x = 1, la formule f(M ;x) est simplifiée.
Notons s(M) cette formule simplifiée de f(M ;x) dans le cas particulier de
N = M et x = 1. Par la suite, nous appellerons la formule s(M) “la simplifiée
de variable M”. Nous obtenons alors :

S(M) = cos 2

(
π

4
.
v=3∏
v=1

(M − v)

)
.
sin 2

(
(M − 1)!.

π

M

)
sin 2

( π
M

)
Ainsi,

s(M) = 1 si M ∈ P (la réciproque est vraie)
s(M) = 0 si M /∈ P (la réciproque est vraie)

Et s(M) est définie pour tout M ∈ N, M ≥ 2.

Le complément de s(M) vaut 1− s(M), notons le comme ceci :

s(M) = 1− s(M)
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Remarque 1 :

Nous voyons donc que s(M), la simplifiée de variable M , n’est qu’un cas
particulier de la fonction αM . En effet, la fonction s(M) n’est autre que la
fonction αM dans le cas où M = N et x = 1.

Remarque 2 :

La fonction s(M) ne possédant que 2 “états”, c’est-à-dire 0 ou 1, et étant
donné qu’élever à la puissance m (pour m ∈ N, m ≥ 1) ces 2 nombres revient
à effectuer une “opération neutre”, on peut donc conclure que :

s(M)m = s(M)

Remarque 3 :

La fonction primorielle Pn (qui est le produit de tous les nombres premiers
jusqu’à Pn ∈ P) s’écrit :

#Pn =
M=Pn∏
M=2

(M s(M))

Ou encore :

#Pn =
M=Pn∏
M=2

[1 + (M − 1).s(M)]

Complément de réflexion :

Nous allons ici faire porter nos observations sur les nombres entiers consécutifs
et leur “propriété de primalité” (c’est-à-dire que chacun de ces nombres
entiers supérieur ou égale à 2 ne peut être que premier ou composé). Notons
M ∈ N, M ≥ 2 et D ∈ N, et prenons en considération le produit suivant :

E=D∏
E=0

s(M + E)
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En faisant varierD sur N, nous observons que cette formule peut être exprimée
principalement par 3 cas :

* Le cas où D = 0 :

E=D∏
E=0

s(M + E) = s(M)

* Le cas où D = 1 :

E=D∏
E=0

s(M + E) = s(M).s(M + 1)

Or, les nombres premiers 2 et 3 étant les seuls nombres entiers consécutifs,
il ne peut exister qu’un seul cas pour lequel s(M).s(M+1) vaut 1. Nous
avons donc :

Si M = 2 (ce qui permet M + 1 = 3),
alors s(M).s(M + 1) = 1

SiM ≥ 3 (lorsque M est premier, M + 1 ne l’est pas et inversement),
alors s(M).s(M + 1) = 0

* Le cas où D ≥ 2 :

E=D∏
E=0

s(M + E) = s(M).s(M + 1).
E=D∏
E=2

s(M + E) = 0

Comme cela implique un produit d’au moins 3 formules simplifiées dont
chaque variable est M , M+1 et M+2 (c’est-à-dire au moins 3 nombres
entiers consécutifs), et comme il n’existe pas plus de 2 nombres entiers
consécutifs qui soient premiers, ce produit ne peut valoir que 0.
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De manière équivalente, nous pouvons établir d’autres égalités à partir
des ces remarques à propos de la propriété de primalité des nombres
entiers consécutifs.

D’après le complément de s(M), nous avons :

1− s(M) = 0 si M ∈ P
1− s(M) = 1 si M /∈ P

Evidemment, nous pouvons alors noter, pour tout M ∈ N, M ≥ 2 et
pour D ∈ N, N ≥ 4 :

M=D∏
M=2

s(M) =
M=D∏
M=2

[1− s(M)] = 0

Ou encore :

M≥4∏
M=2

s(M) =

M≥4∏
M=2

[1− s(M)] = 0
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3.2 Formule d’identité I(M)

Nous pouvons construire une formule “d’identité” I(M) aux nombres premiers,
une formule qui vaut ce nombre premier lorsque M ∈ P :

I(M) = M.s(M)

Ainsi,

I(M) = M si M ∈ P
I(M) = 0 si M /∈ P

donc

Pn = Pn.s(Pn)

3.3 Formule de comptage C(M)

Nous pouvons aussi construire une formule de “comptage” C(M) des nombres
premiers sur un intervalle, c’est-à-dire entre un nombre entier N1 ≥ 2 et un
autre N2 ≥ 2, tel que N2 ≥ N1, puisque s(M) = 1 pour chaque valeur de M
étant un nombre premier. Notons :

C
N2

N1
(M) =

M=N2∑
M=N1

s(M)
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3.4 Formule d’Impulsion Première I(M)

Partant du constat qu’il n’existe que deux nombres premiers qui soient des
entiers consécutifs (il s’agit de 2 et de 3), nous pouvons construire une
nouvelle formule que nous appelerons Impulsion Première de variable M
(impulsion à cause de la forme de son graphique) basée sur cette propriété.

Partant de la formule de s(M), si nous apportons des modifications dans ses
parenthèse (en substituant la variable M à une modification), nous pouvons
élaborer une formule différente mais qui reste vraie.

La formule s(M) définie pour tout M ∈ N, M ≥ 2 est une formule qui vaut :

s(M) = 1 si M ∈ P (la réciproque est vraie)
s(M) = 0 si M /∈ P (la réciproque est vraie)

La formule s(2.M) définie pour tout M ∈ N, M ≥ 1 est une formule qui vaut :

s(2.M) = 1 si M = 1 (la réciproque est vraie)
s(2.M) = 0 si M > 1 (la réciproque est vraie)

Nous pouvons modifier cette formule de manière à ce qu’elle soit définie pour
tout M ∈ N, M ≥ 0 en effectuant un “décalage” (de M vers M + 1) :

s(2.M + 2) = 1 si M = 0 (la réciproque est vraie)
s(2.M + 2) = 0 si M > 0 (la réciproque est vraie)

Notons I(M) la fonction d’Impulsion Première de M telle que :

I(M) = s(2.M + 2)

Nous avons donc

I(M) = 1 si M = 0 (la réciproque est vraie)
I(M) = 0 si M > 0 (la réciproque est vraie)
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Graphiques :

Avec son complément (une fonction “carrée”) :

I(M) = 1− I(M)

Remarque 1 :

Comme pour la fonction s(M), la fonction Impulsion Première de variable
M ne possède que 2 états. Donc, pour m ∈ N, m ≥ 1 :

I(M)m = I(M)

nous pouvons même étendre le domaine de définition de m jusqu’à m = 0 si
et seulement si I(M) = 1.

De plus :

I(M) = I(Ma) pour tout M ∈ N, M ≥ 0 et pour tout a ∈ N, a ≥ 1.

On peut étendre le domaine de définition de M aux entiers négatifs pour les
puissances de M paires. Ce qui peut encore être noté :

I(M2a) est définie pour tout M ∈ Z et pour tout a ∈ N, a ≥ 1.
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Remarque 2 :

Nous pouvons jouer sur les propriétés des nombres paires ou impaires lorsqu’on
les multiplie entre eux ou lorsqu’on les additionne pour obtenir d’autres
formules intéressantes :

I(M) = s(2.M + 2)

= s[M + 2 + s(M + 2)]

...

En effet, grâce aux propriétés des nombres paires et grâce au fait que M = 2
soit le seul nombre premier paire, nous avons :

I(M) = s(2.M + 2)

= s(4.M + 2)

= s(6.M + 2)

= s(8.M + 2)

...

= s(2.d.M + 2) (avec d ∈ N, d ≥ 0)

Et donc

I(M) = I(2.M) = I(4.M) = I(6.M) = I(8.M) = ... = I(2.d.M)

dont chaque graphique correspondant est le même que celui de I(M). Remarque
identique concernant les multiples de nombres premiers notés ainsi :

I(M) = s(2.M + 2)

= s(3.M + 3)

= s(5.M + 5)

= s(7.M + 7)

= s(11.M + 11)

...

= s(Pn.M + Pn) (avec Pn ∈ P)

...

= s(Pn.d.M + Pn)

= s[Pn.(d.M + 1)]
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Ce qui ne serait plus le cas si nous changions quelque peu les paramètres
dans les parenthèses. En effet, voici quelques exemples de graphiques avec
des fonctions sensiblement différentes :

Où l’on observe comme des “raies spectrales” (rappelons que les segments
entre chaque point ne représente pas une continuité, ils sont tracés seulement
pour aider à la lecture des graphiques).
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Remarque 3 :

Comme nous avions établi (dans le paragraphe concernant la formule s(M))
que nous avions :

s(M).s(M + 1) = 1 si M = 2
s(M).s(M + 1) = 0 si M ≥ 3

Nous sommes en mesure de donner une nouvelle égalité grâce aux remarques
précédentes pour M ∈ N, M ≥ 2 :

s(M).s(M + 1) = s(2.M − 2)

Ou encore, en effectuant un décalage (de M vers M+2), afin que les formules
simplifiées soient définies pour une variable M telle que M ∈ N :

s(2.M + 2) = s(M + 2).s(M + 3)

Et comme :

I(M) = s(2.M + 2)

Nous avons donc aussi (en reprenant Pn ∈ P et d ∈ N, d ≥ 0) :

I(M) = s(2.M + 2)

= s[Pn.(d.M + 1)]

= s(M + 2).s(M + 3)
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Remarque 4 :

Etant donné les égalités suivantes :

I(M) = 1 si M = 0
I(M) = 0 si M ∈ N, M ≥ 1

Donc

I(M)− 1 = 0 si M = 0
I(M)− 1 = −1 si M ∈ N, M ≥ 1

Mais également

1− I(M) = 0 si M = 0
1− I(M) = 1 si M ∈ N, M ≥ 1

D’où

I(M)− 1 = 1− I(M) = 0 si M = 0

Et donc

I(M).[I(M)− 1] = 0 si M = 0
I(M).[I(M)− 1] = 0 si M ∈ N, M ≥ 1

Mais également

I(M).[1− I(M)] = 0 si M = 0
I(M).[1− I(M)] = 0 si M ∈ N, M ≥ 1

Finalement, nous avons donc toujours :

I(M).[1− I(M)] = 0
I(M).[I(M)− 1] = 0

Ce qui nous laisse un choix entre 2 possibliltés d’écrire cette égalité.

Page 159 sur 514



Ceci permet d’établir une autre égalité :

I(M).[1− I(M)] = I(M).[I(M)− 1] = 0

D’où

I(M)

[I(M)− 1]
=

I(M)

[1− I(M)]

D’où nous déduisons :

1

1− 1
I(M)

=
1

1
I(M)

− 1

Ce qui nous donne 2 possibilités d’écriture symétriques. Cette formule sera
intéressante pour la suite (voir formule d’Impulsion Seconde I2(M) ).

Remarque 5 :

- De plus, il est encore possible de construire “l’Impusion Première de la
simplifiée de variable M”, que l’on notera I[s(M)], où nous avons :

I[s(M)] = 0 si s(M) = 1
I[s(M)] = 1 si s(M) = 0

Ce qui correspond au “complément” de s(M), et donc :

I[s(M)] = 1− s(M)

- De même, il est possible de construire “l’Impusion Première de l’Impulsion
Première de variable M” aussi, que l’on notera I[I(M)], où nous avons :

I[I(M)] = 0 si I(M) = 1
I[I(M)] = 1 si I(M) = 0

Ce qui correspond au “complément” de I(M), et donc :

I[I(M)] = 1− I(M)
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- Et de manière générale, pour toutes variables B (ou formules) ne pouvant
prendre que des valeurs “binaires” (0 ou 1), nous avons :

I(B) = 0 si B = 1
I(B) = 1 si B = 0

Ce qui correspond au “complément” de B, et donc :

I(B) = 1−B

Remarque 6 :

Cette formule I(M) sera utile pour la recherche d’une formule de restriction
Rn (voir la suite des travaux), mais son utilité apparâıtra encore dans le
Chapitre II et dans le Chapitre III (Répartition exacte de nombre
premiers).
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3.5 Formule d’Impulsion Seconde I2(M)

Partant de la formule I(M), nous constatons aisément que lorsque nous la
multiplions par un nombre quelconque, le résultat est ce même nombre pour
M = 0 et le résultat est 0 pour M ∈ N, M ≥ 1.

Ainsi, si nous désirons construire une formule qui tend vers +∞ pour M = 0
et qui vaut 0 partout ailleurs (c’est-à-dire pour tout M ∈ N, M ≥ 1), il nous
suffit de multiplier I(M) par une fonction qui tend vers +∞ pour M = 0 et
qui vaut un nombre quelconque partout ailleurs (c’est-à-dire qui est définie
pour tout M ∈ N, M ≥ 1).

Les fonctions qui peuvent convenir pour cette fonction recherchée peuvent
être par exemple :

1

M
;

1

M2
;

1

M3
; ... ;

1

Mm
(avec m ∈ N, m ≥ 1)

(et, de manière générale, pour tout polynôme de variable M qui s’annulle
pour M = 0 et qui est défini pour M ≥ 1, l’inverse de ce polynôme)

et encore :

−lnM
...

et aussi :

1

[1− I(M)]

Ainsi, nous pouvons construire la formule d’Impulsion Seconde I2(M) :

I2(M) =
I(M)

M
=

I(M)

M2
= ...

I2(M) = −I(M).lnM = I(M).ln

(
1

M

)
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et aussi :

I2(M) =
I(M)

[1− I(M)]

=
1

1− 1
I(M)

La formule I2(M) est donc définie pour M ∈ N, M ≥ 1. Le passage à la
limite est nécessaire lorsque M tend vers 0 :

I2(M) = 0 pour M ∈ N, M ≥ 1

lim
M→0

I2(M) = +∞

La formule I2(M) est donc équivalente à la fonction δ de DIRAC [2] si l’on
considère que le domaine de définition de M peut être étendu à M ∈ N.

Représentation graphique (tracée en rouge) :
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La représentation graphique de I2(M) peut être assimilée au demi-axe des
abcisses (les valeurs des entiers positifs) et au demi-axe des ordonnées (les
valeurs des réels positifs).

Ici aussi nous pouvons construire la fonction complémentaire à I2(M), que
nous noterons ainsi :

I2(M) =
1

I2(M)

Nous voyons bien qu’une représentation graphique serait difficile car cette
fonction complémentaire vaudrait :

I2(M) = 0 pour M = 0,

lim
M→L

I2(M) = +∞ pour L ∈ N, L ≥ 1

Donnons une idée approximative seulement grâce à ce graphique (tracé en
rouge) :
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Remarque 1 :

Rappelons que que les dérivées de δ de DIRAC [2] apparaissent dans la
transfor-mation de Fourier des polynômes. Rappelons également que la
fonction δ de DIRAC est utile à l’analyse harmonique. Ceci implique qu’il
doit exister aussi un lien (mais seulement pour M ∈ N) entre les nombres
entiers associés à la fonction I2(M), certains types de polynômes (certains
cas doivent pouvoir être généralisés, notamment par la mise en évidence des
racines de ces polynômes par factorisation) et des cas particuliers correspondant
en analyse harmonique.

Remarque 2 :

Comme nous l’avons vu dans la partie concernant la formule simplifiée s(M),
il existe une symétrie intéressante dans l’écriture de cette formule puisque
nous avons :

I2(M) =
1

1− 1
I(M)

Et de manière équivalente :

I2(M) =
1

1
I(M)

− 1

En effet :

lim
I(M)→1

1
1

I(M)
− 1

= lim
I(M)→1

1

1− 1
I(M)

= +∞

Et

lim
I(M)→0

1
1

I(M)
− 1

= lim
I(M)→0

1

1− 1
I(M)

= +∞
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3.6 Formule de restriction RM(N)

Grâce aux propriétés de la fonction I(X) (la fonction Impulsion Première
de variable X), nous pouvons établir de nouvelles égalités et construire ainsi
de nouvelles fonctions utiles, comme nous le verrons d’ailleurs plus en détail
dans le Chapitre II.

Dans la première partie, nous recherchions une fonction de Restriction Rn

(que nous ramènerons à RM(N)) définie ainsi :

Or, nous connaissons les propriétés de I(X) pour X ∈ N :

I(X) = 1 si X = 0
I(X) = 0 si X > 0

Et son complément :

I(X) = 1− I(X)

Si nous remplaçons X par un polynôme qui peut s’annuller aux valeurs
qui nous intéressent, nous pourrons construire RM(N). En effet, pour des
polynômes de variable N ne donnant pour résultats que des valeurs entières
positives, l’Impulsion Première de ce polynôme vaut 1 lorsqu’il s’annule et
vaut 0 sinon. Ainsi, nous pouvons orienter nos recherches et construire la
fonction Impulsion Première d’un polynôme telle que :

I

[
k=D∏
k=0

(N − k)

]
avec D ∈ N
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dont les caractéristiques sont les suivantes :

I

[
k=D∏
k=0

(N − k)

]
= 1 pour 0 ≤ N ≤ D

I

[
k=D∏
k=0

(N − k)

]
= 0 pour N > D

et dont la représentation graphique est celle-ci :

La fonction “complémentaire” correspondante est équivalente à :

1− I

[
k=D∏
k=0

(N − k)

]
avec D ∈ N

où nous avons :

1− I

[
k=D∏
k=0

(N − k)

]
= 0 pour 0 ≤ N ≤ D

1− I

[
k=D∏
k=0

(N − k)

]
= 1 pour N > D
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D’ailleurs, la fonction d’Implusion n’étant définie que pour des valeurs entières
positives, en élevant (N − k) au carré, nous pouvons même ajouter que :

I

[
k→+∞∏
k=D+1

(N − k)2

]
= 0 pour 0 ≤ N ≤ D

I

[
k→+∞∏
k=D+1

(N − k)2

]
= 1 pour N > D

Et donc

I

[
k→+∞∏
k=D+1

(N − k)2

]
= 1− I

[
k=D∏
k=0

(N − k)

]

La représentation graphique est celle-ci :

C’est cette dernière fonction qui va nous permettre de construire RM(N).
En effet, d’après le graphique du début de cette étude, nous constatons que
la fonction RM(N) peut être considérée comme étant la somme de fonctions
plus simples et du même type que la fonction que nous venons de donner.
Nous constatons que RM(N) s’obtient en ajoutant les unes aux autres les
fonctions suivantes (en étalant la somme sur plusieurs lignes) :

(voir page suivante)
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Avec M ∈ N, M ≥ 2 et a ∈ N, a ≥ 1 :

RM(N) = 1− I

[
k=M−1∏
k=0

(N − k)

]

+1− I

[
k=M2−1∏
k=0

(N − k)

]

+1− I

[
k=M3−1∏
k=0

(N − k)

]

+1− I

[
k=M4−1∏
k=0

(N − k)

]

+ ...

+1− I

[
k=Ma−1∏
k=0

(N − k)

]

Donc

RM(N) =
b=a∑
b=1

1− I

k=Mb−1∏
k=0

(N − k)


=

(
b=a∑
b=1

1

)
−

b=a∑
b=1

I

k=Mb−1∏
k=0

(N − k)


Et donc

RM(N) = a−
b=a∑
b=1

I

k=Mb−1∏
k=0

(N − k)


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De même, d’après l’égalité que nous avions établi juste avant, nous avons :

RM(N) = I

[
k→+∞∏
k=M

(N − k)2

]

+I

[
k→+∞∏
k=M2

(N − k)2

]

+I

[
k→+∞∏
k=M3

(N − k)2

]

+I

[
k→+∞∏
k=M4

(N − k)2

]

+...

+I

[
k→+∞∏
k=Ma

(N − k)2

]

Et donc, nous avons aussi :

RM(N) =
b=a∑
b=1

I

[
k→+∞∏
k=Mb

(N − k)2

]

Remarque :

Théoriquement, nous aurions pu faire tendre a vers l’infini positif, afin d’obtenir
une fonction de restriction idéale en fonction de toutes les puissances de M
supérieures ou égales à 1 et valable pour tout N ∈ N.

Poursuivons le raisonnement. D’après les démonstrations effectuées en fin
de partie “2.2.5 Construction de la fonction αM” (page 140) : pour
la fonction αM , les calculs ne sont plus nécessaires lorsque x > αM car
f(M ;x) = 0. Ce qui signifie que pour la fonction RM(N) que les calculs ne
sont plus nécessaires lorsque :

1− I

[
k=Ma−1∏
k=0

(N − k)

]
= 0
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C’est-à-dire, et pour des valeurs de a croissantes, dès que :

I

[
k=Ma−1∏
k=0

(N − k)

]
= 1

Cela signifie encore que les calculs ne sont plus nécessaires dès que :

k=Ma−1∏
k=0

(N − k) = 0

Ce qui sous-entend finalement que les calculs ne sont plus nécessaires dès que :

N est une des valeurs entières de l’intervalle [0;Ma − 1].
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3.7 Equivalences de formules

Rappelons que

s(M) = 1 si M ∈ P
s(M) = 0 si M /∈ P

s(M) n’étant définie que pour M ∈ N, M ≥ 2.

Donc

M s(M) = M si M ∈ P
M s(M) = 1 si M /∈ P

Et donc

M s(M) − 1 = (M − 1) = (M − 1).s(M) si M ∈ P
M s(M) − 1 = 0 = s(M) si M /∈ P

Or lorsque s(M) vaut 0, multiplier n’importe quelle fonction par s(M) donne
0 pour résultat. Pour conclure :

M s(M) − 1 = (M − 1).s(M)

s(M) =
M s(M) − 1

M − 1

De la même manière, nous avons :

s(M) =
1− (1−M)s(M)

M

=⇒ Ces dernières formules sont intéressantes dans le sens où elles peuvent
s’exprimer en fonction d’elles-mêmes, c’est-à-dire en faisant référence à elles-
mêmes.

En appliquant le même raisonnement à la fonction I(M), et pour une variable
“indépendante” de I(M), que nous noterons X, et telle que X soit un
nombre entier (remarquons que ce raisonnement est aussi valable si X est un
polynôme ne donnant que des valeurs entières).
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Nous avons :

XI(M) − 1 = (X − 1).I(M)

valable pour tout X ∈ N, mais avec condition sur M pour un cas de X :

Si X = 0, on doit avoir M = 0 (pour que I(M) 6= 0)

Cette dernière formule me parâıt plus intéressante que la précédente car :

Si X = 0, on doit avoir I(M) = 1 (donc M = 0) pour que l’égalité soit
respectée.
Si X = 1, la valeur de I(M) (et donc de M) n’a pas d’importance dans le
calcul.
Si X > 1, l’égalité est respectée quelquesoit la valeur de I(M) (donc tout M).

Ou encore, en regroupant les conditions :

XI(M) − 1 = (X − 1).I(M) avec I(M) = s(2.M + 2)

Pour X = 0 et pour M = 0 seulement
Ou
Pour tout X ∈ N, X ≥ 1 et pour tout M ∈ N, M ≥ 0

Donnons une représentation graphique du domaine de définition de cette
égalité pour une meilleure compréhension :
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Cette égalité est respectée pour tout M et X étant repérés par des points
rouges.

Nous pouvons encore écrire :

Si M > 0, on a X > 0
Si M = 0, on a X ≥ 0

=⇒ Ici aussi, cette formule peut être écrite de manière “auto-référentielle”
(c’est-à-dire que cette formule peut s’exprimer en fonction d’elle-même), avec
auto-référencement sur I(M) :

I(M) =
XI(M) − 1

X − 1

Remarque : nous pouvons étendre le domaine de définition surX à l’ensemble
des nombres réels avec la même condition sur M (c’est-à-dire M = 0) lorsque
X = 0. Dans ce cas, l’axe des ordonnées est aussi l’axe de symétrie de cette
nouvelle représentation graphique. De plus, nous pourrions remplacer la
variable X par une fonction, avec la même condition sur M (c’est-à-dire
lorsque M = 0) si la fonction s’annule.

Nous pouvons remarquer aussi aussi qu’en remplaçant I(M) à droite de
l’égalité par la formule complète, nous pouvons procéder ainsi de manière à
obtenir une formule qui “s’étend à l’infini” :

I(M) =
XI(M) − 1

X − 1
=
X

(
XI(M)−1

X−1

)
− 1

X − 1
= ...

Même remarque sur la fonction complémentaire de I(M) :

1− I(M) =
X [1−I(M)] − 1

X − 1

D’où

I(M) =
1− 1

XI(M)

1− 1
X
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Et comme :

I(M) =
1− 1

XI(M)

1− 1
X

=
XI(M) − 1

X − 1

Nous déduisons également :

I(M) =
ln[1 +X −X [1−I(M)]]

lnX

Ou encore :

I(M) = 1− ln[1 +X −XI(M)]

lnX

L’égalité étant conservée dans le cas où X = M et sans condition sur M (et
forcément sans condition sur X), nous avons pour tout M ∈ N, M ≥ 0 :

I(M) =
MI(M) − 1

M − 1

Remarque 1 :

Pour l’égalité que nous avions noté :

I(M) =
XI(M) − 1

X − 1

Avec les condition suivantes :

Pour X = 0 et pour M = 0 seulement
Ou
Pour tout X ∈ N, X ≥ 1 et pour tout M ∈ N, M ≥ 0

Nous pouvons contourner ce problème des conditions en interdisant par
exemple à X de valoir 0 (d’autres exemples peuvent être trouvés, avec des
polynômes n’ayant pas de racines entières). Partons de ce constat :

X + I(X) = 1 si X = 0
X + I(X) = X si X > 0

Où nous devons restreindre X tel que M ∈ N, M ≥ 0.
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Si nous reprenons la formule en la modifiant quelque peu avec ces nouvelles
données, nous avons :

I(M) =
[X + I(X)]I(M) − 1

[X + I(X)]− 1

Où désormais, X a été remplacé dans la formule par l’ensemble [X + I(X)]
qui ne peut jamais être égale à 0, mais son domaine de définition doit être
restreint.

D’autre part et plus largement :

Revenons à X ∈ R. En effectuant un “décalage de symétrie”, c’est-à-dire
en faisant passer l’axe de symétrie par un autre point sur l’axe des abcisses,
nous obtenons des graphiques du même type. En effet, en notant D une
constante telle que D ∈ R et en modifiant légèrement les notations ainsi :

I(M) =
(X −D)I(M) − 1

X −D − 1

Nous pouvons écrire :

Si X = D, on doit avoir la condition que M = 0 seulement.
Si X 6= D, toutes les valeurs de M ∈ N, M ≥ 0 sont possibles.

Graphiquement, le domaine de définition de cette égalité se représente comme
ceci :

Où l’axe vertical passant par le point D en abcisse est l’axe de symétrie du
domaine de définition.
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Cas particulier de X = 2 et D = 0 :

I(M) = 2I(M) − 1

Même remarque sur la fonction complémentaire de I(M) :

1− I(M) = 2[1− I(M)]− 1

I(M) = 2.

(
1− 1

2I(M)

)
Et même remarque pour s(M) (et pour sa fonction complémentaire) :

s(M) = 2s(M) − 1

Remarque 2 :

Nous aurions pu aussi noter :

(1−X)I(M) = 1−X.I(M) définie pour X ∈ R− {1}

(à cause de la condition à respecter telle que (1−X) 6= 0 lorsque I(M) = 0)

Remarque 3 :

De manière moins pertinente, nous avons :

M + I(M) = 1 si M = 0
M + I(M) = M si M > 0

Donc

[M + I(M)]I(M) = [0 + 1]1 = 1 si M = 0
[M + I(M)]I(M) = [M + 0]0 = 1 si M > 0

Et donc

[M + I(M)]I(M) = 1
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Même raisonnement et même conclusion pour :

MI(M) + I(M)

En effet,

MI(M) + I(M) = 01 + 1 = 1 si M = 0
MI(M) + I(M) = M0 + 0 = 1 si M > 0

Donc

MI(M) + I(M) = 1

D’où

I(M) = 1−MI(M)

Ou encore :

MI(M) = 1− I(M) = I(M)

Et donc, pour finir :

I(M) +MI(M) = [I(M) +M ]I(M) = 1

Remarque 4 :

Comme précédemment :

M − I(M) = −1 si M = 0
M − I(M) = M si M > 0

Et donc

[M − I(M)]I(M) = −1 si M = 0
[M − I(M)]I(M) = 1 si M > 0
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Or,

(−1)I(M) = −1 si M = 0
(−1)I(M) = 1 si M > 0

D’où l’on déduit :

[M − I(M)]I(M) = (−1)I(M)

Remarque 5 :

De manière identique, nous avons :

[M ± I(M)][1−I(M)] = 1 si M = 0
[M ± I(M)][1−I(M)] = M si M > 0

Or,

M + I(M) = 1 si M = 0
M + I(M) = M si M > 0

Et donc

[M ± I(M)][1−I(M)] = M + I(M)

Ou encore, de manière équivalente :

[M + I(M)][1−I(M)] = [M − I(M)][1−I(M)]

D’où

[1− I(M)]. ln[M + I(M)] = [1− I(M)]. ln[M − I(M)]

Ce qui constitue une nouvelle possibilité de donner 2 écritures “symétriques”.
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Remarque 6 :

De même :

[1− I(M)]I(M) = 1− I(M)

Ou encore :

I(M)[1−I(M)] = I(M)

Développement d’une formule :

Ce petit paragraphe va simplement nous servir à donner un moyen de développer
une formule du type :

(a− b)I(M)

avec a et b ∈ R, et avec la condition que (a− b) 6= 0 si I(M) = 0.

En notant :

(a− b) = X

Nous avons :

(a− b)I(M) = XI(M)

Or, nous avions noté au début de cette partie :

XI(M) − 1 = (X − 1).I(M)

Donc

XI(M) = (X − 1).I(M) + 1

Et donc

(a− b)I(M) = (a− b− 1).I(M) + 1
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Ou encore

(a− b)I(M) = (a− b).I(M) + [1− I(M)]

Mais il existe d’autres égalités possibles si nous admettons des conditions
supplémentaires :

(a− b)I(M) = a.I(M) + (−b)I(M) avec b 6= 0 si I(M) = 0

Ou encore :

(a− b)I(M) = (−1)I(M).[(−a)I(M) + b.I(M)] avec a 6= 0 si I(M) = 0

Remarque 7 :

Dans cette partie de l’étude, nous aurions pu quelquefois raisonner de la
même manière que pour I(M) mais avec s(M). En effet, nous pouvons
observer que la cohérence est respectée lorsqu’on remplace I(M) par s(M)
dans les formules de la “Remarque 2”, de la “Remarque 6”, et du
paragraphe précédent “Développement d’une formule” en respectant
les conditions préconisées à propos du domaine de définition des variables.

De plus, nous pouvons donner rapidement une autre équivalence permise par
la formule s(M) :

s(M) = (1 +M)s(M) −M s(M)

Remarque 8 :

Pour poursuivre avec la formule s(M) et d’après ce que nous savons :

M s(M) +M [1−s(M)] = M + 1

Et donc

M = M s(M) +M [1−s(M)] − 1
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De même que (en substituant (M − 1) à M , sauf dans les puissances) :

M = (M − 1)s(M) + (M − 1)[1−s(M)]

Plus généralement, pour X ∈ R∗ :

X = Xs(M) +X [1−s(M)] − 1

Ou, pour X ∈ R− {1} :

X = (X − 1)s(M) + (X − 1)[1−s(M)]

Finalement, pour X et Y ∈ R∗ :

Xs(M) + Y [1−s(M)] − 1 = X.s(M) + Y.[1− s(M)]

Ou, pour X et Y ∈ R− {0; 1} :

Xs(M) + Y [1−s(M)] − 1 = (X − 1)s(M) + (Y − 1)[1−s(M)]

Ce qui permet aussi d’écrire de manière presque équivalente (le domaine de
définition est différent) que, pour X et Y ∈ R− {1} :

X.s(M) + Y.[1− s(M)] = (X − 1)s(M) + (Y − 1)[1−s(M)]

De manière encore plus générale, nous avons aussi :

- Pour d ∈ R et pour X et Y ∈ R∗ :

Xs(M) + Y [1−s(M)] − d = (X − d+ 1).s(M) + (Y − d+ 1).[1− s(M)]

= s(M).(X − Y ) + (Y − d+ 1)

- Pour d ∈ R et pour X et Y ∈ R− {0; d} :

Xs(M) + Y [1−s(M)] − d = (X − d)s(M) + (Y − d)[1−s(M)]
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- Ce qui permet aussi d’écrire de manière presque équivalente (le domaine
de définition est différent) que, pour d ∈ R, pour X et Y ∈ R− {d} :

(X − d)s(M) + (Y − d)[1−s(M)] = (X − d+ 1).s(M) + (Y − d+ 1).[1− s(M)]

= s(M).(X − Y ) + (Y − d+ 1)

Remarque :

Ces types de formules trouveront leur intérêt dans les paragraphes qui suivent
directement celui-ci.

Autres équivalences de formules 1 :

Prenons en considération les formules qui suivent en notant M une variable
telle que M ∈ N, M ≥ 2 et Pn un nombre premier constant supposé connu
tel que Pn ∈ P.

- 1ier cas :

M.s(M) = M si M ∈ P
M.s(M) = 0 si M /∈ P

Et

Pn.[1− s(M)] = 0 si M ∈ P
Pn.[1− s(M)] = Pn si M /∈ P

Donc

Pn.[1− s(M)] +M.s(M) = M si M ∈ P
Pn.[1− s(M)] +M.s(M) = Pn si M /∈ P

Et donc

Pn.[1− s(M)] +M.s(M) vaut toujours un nombre premier.
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- 2ième cas :

M s(M) = M si M ∈ P
M s(M) = 1 si M /∈ P

Et

[Pn − 1].[1− s(M)] = 0 si M ∈ P
[Pn − 1].[1− s(M)] = (Pn − 1) si M /∈ P

Donc

[Pn − 1].[1− s(M)] +M s(M) = M si M ∈ P
[Pn − 1].[1− s(M)] +M s(M) = Pn si M /∈ P

Et donc

[Pn − 1].[1− s(M)] +M s(M) vaut toujours un nombre premier.

Cette formule étant strictement équivalente à celle du 1ier cas.

- Exemple :

Pour Pn = 2, nous avons :

Pn.[1− s(M)] +M.s(M) = 2 + (M − 2).s(M)

Ou, de manière strictement équivalente :

[Pn − 1].[1− s(M)] +M s(M) = 1− s(M) +M s(M)

Ce qui est encore équivalent à :

(M − 1)s(M) + 1
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Où nous pouvons même choisir de restreindre M à M ∈ N, M ≥ 3
pour obtenir tous les nombres premiers possibles puisque :

(M − 1)s(M) + 1 = M si M ∈ P

Or, si M ∈ P avec M ≥ 3, cela signifie que “la formule vaut tous
les nombres premiers supérieurs ou égale à 3, c’est-à-dire tous sauf le
nombre 2”.

Et

(M − 1)s(M) + 1 = 2 si M /∈ P

Or, si M /∈ P avec M ≥ 3, cela signifie que “la formule vaut seulement le
nombre 2”, c’est-à-dire le seul nombre premier qui manque au domaine
de définition de M . Ce qui nous permet de faire la synthèse :

(M − 1)s(M) + 1 vaut toujours un nombre premier pour M ∈ N,
M ≥ 3.

De plus cette formule peut valoir n’importe quel nombre premier possible.

Autres équivalences de formules 2 :

Pour M ∈ N, M ≥ 2, soit d ∈ N. Il est possible de déduire que :

s(M) = 0 si M /∈ P
s(M + d) = 0 si (M + d) /∈ P

Et

s(M) = 1 si M ∈ P
s(M + d) = 1 si (M + d) ∈ P
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Et donc, d’une part :

s(M) + s(M + d) = 0 si M /∈ P et si (M + d) /∈ P
s(M) + s(M + d) = 1 si M /∈ P et si (M + d) ∈ P
s(M) + s(M + d) = 1 si M ∈ P et si (M + d) /∈ P
s(M) + s(M + d) = 2 si M ∈ P et si (M + d) ∈ P

Et donc, d’autre part :

s(M).s(M + d) = 0 si M /∈ P et si (M + d) /∈ P
s(M).s(M + d) = 0 si M /∈ P et si (M + d) ∈ P
s(M).s(M + d) = 0 si M ∈ P et si (M + d) /∈ P
s(M).s(M + d) = 1 si M ∈ P et si (M + d) ∈ P

* Par exemple :

Pour les nombres premiers jumeaux, nous avons M ∈ P et (M + d) ∈ P
lorsque d = 2. Nous avons dans ce cas :

s(M).s(M + 2) = 1

Ou

s(M) + s(M + 2) = 2

Autres équivalences de formules 3 :

- Dans le même ordre d’idée que les 2 paragraphes précédents, notons M
une variable telle que M ∈ N, M ≥ 2 et soit d la différence entre 2 nombres
premiers. Si M ∈ P et si M est le plus petit de ces 2 nombres premiers, alors
d’après l’énoncé, nous avons aussi (M + d) ∈ P.

Nous pouvons alors écrire :

s(M) = s(M + d) = 1 si M ∈ P et si (M + d) ∈ P

Et

s(M) = 0 si M /∈ P
s(M + d) = 0 si (M + d) /∈ P
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Soit Pn un nombre premier constant supposé connu tel que Pn ∈ P et tel que
(Pn+ d) ∈ P. Nous pouvons affirmer que la formule suivante :

s(M).s(M + d).[M − Pn] + Pn

donne toujours un nombre premier qui se trouve être le plus petit sur 2
nombres premiers dont la différence vaut d. En effet, puisque :

s(M).s(M + d).[M − Pn] + Pn = M si s(M) = s(M + d) = 1

Et

s(M).s(M + d).[M −Pn] +Pn = Pn si s(M) = 0 ou si s(M + d) = 0.

* Exemple 1 :

Pour d = 1, nous avons 2 nombres premiers connus dont la différence
vaut 1, il s’agit de Pn = 2 et (Pn + 1) = 3. Nous pouvons alors noter
que :

s(M).s(M + 1).[M − 2] + 2

donne toujours un nombre premier qui se trouve être le plus petit sur
2 nombres premiers dont la différence vaut 1. Comme 2 et 3 sont les
seuls nombres premiers à avoir cette différence, nous pouvons même
ajouter que :

s(M).s(M + 1).[M − 2] + 2 = 2 quelquesoit M ∈ N, M ≥ 2

Ceci revient encore à écrire :

s(M).s(M + 1).[M − 2] = 0 quelquesoit M ∈ N, M ≥ 2
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* Exemple 2 :

Pour d = 2, nous sommes dans le cas des nombres premiers jumeaux.
Nous pouvons choisir 2 nombres premiers jumeaux connus, prenons
Pn = 3 et (Pn + 2) = 5. Nous pouvons alors noter que :

s(M).s(M + 2).[M − 3] + 3

donne toujours un nombre premier qui se trouve être le plus petit sur
2 nombres premiers jumeaux.

- De même, nous pourrions encore étendre le raisonnement en considérant
des triplets de nombres premiers dont la différence entre le plus grand et
l’intermédiaire vaut d, et la différence entre l’intermédiaire et le plus petit
vaut aussi d. Avec Pn un nombre premier constant supposé connu tel que
Pn ∈ P, tel que (Pn + d) ∈ P et tel que (Pn + 2d) ∈ P. D’après les même
notations, nous avons :

s(M).s(M + d).s(M + 2d).[M − Pn] + Pn

donne toujours un nombre premier qui se trouve être le plus petit de ces 3
nombres premiers correspondant à l’énoncé.

Nous pouvons donner comme exemple 3 nombres premiers connus pour lesquels
d = 2 : il s’agit de Pn = 3, de (Pn + 2) = 5 et de (Pn + 4) = 7. Cela nous
permettant d’établir que :

s(M).s(M + d).s(M + 2d).[M − 3] + 3

donne toujours un nombre premier qui se trouve être le plus petit de ce triplet
de nombres premiers et dont d = 2.

- Pour finir, nous pourrions encore étendre le raisonnement au-delà des
triplets de nombres premiers.
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Autres équivalences de formules 4 :

D’après la même fonction s(M) que précédemment (définie pour M ∈ N,
M ≥ 2) et pour D une variable définie pour D ∈ N, D ≥ 2, et au même
titre que pour M , la fonction s(D) est la simplifiée de variable D (dont les
propriétés sont similaires à celles de la fonction s(M), mais pour la variable
D indépendamment de la variable M) :

M.s(M) = M si M ∈ P
M.s(M) = 0 si M /∈ P

D’où

D −M.s(M) = D −M si M ∈ P
D −M.s(M) = D si M /∈ P

Donc

[D −M.s(M)]s(D) = D −M.s(M) si D ∈ P
[D −M.s(M)]s(D) = 1 si D /∈ P

Donc

M→+∞∏
M=2

[D −M.s(M)]s(D)

= [D − 2]s(D).[D − 3]s(D).[D]s(D).[D − 5]s(D).[D]s(D).[D − 7]s(D).[D]s(D) ...

=

{
M→+∞∏
M=2

[D −M.s(M)]

}s(D)

Et donc

M→+∞∏
M=2

[D −M.s(M)]s(D) = 0 si D ∈ P

M→+∞∏
M=2

[D −M.s(M)]s(D) = 1 si D /∈ P
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Et finalement, nous remarquons que ces égalités correspondent au contraire
de la fonction s(D) :

s(D) = 1 si D ∈ P
s(D) = 0 si D /∈ P

D’où

M→+∞∏
M=2

[D −M.s(M)]s(D) = 1− s(D)

Et donc

s(D) = 1−
M→+∞∏
M=2

[D −M.s(M)]s(D)

Parallèlement à ceci, nous avons aussi le “polynôme” :

[∏
p∈P

(D − p)

]s(D)

= 0 si D ∈ P

[∏
p∈P

(D − p)

]s(D)

= 1 si D /∈ P

Et donc, nous pouvons également noter :

s(D) = 1−
M→+∞∏
M=2

[D −M.s(M)]s(D)

= 1−

[∏
p∈P

(D − p)

]s(D)
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Nous pouvons remarquer qu’il n’est pas nécessaire de borner M de 2 à l’infini
positif si l’on considère qu’il existe toujours au moins un nombre premier entre
N et 2N .

Afin que s(M) soit toujours définie, notons N ∈ N, N ≥ 2. En effet, nous
pouvons constater que :

Pour N ∈ N, N ≥ 2, il existe toujours un nombre premier entre N et (2N−1)
(puisque 2N ne peut pas être un nombre premier).

M=2N−1∏
M=N

[D −M.s(M)]s(D) = 0 si D ∈ P sur l’intervalle [N ; (2N − 1)]

M=2N−1∏
M=N

[D −M.s(M)]s(D) = 1 si D /∈ P

Ce qui correspond ici aussi au contraire de la fonction s(D) pour
D ∈ [N ; (2N − 1)].

Nous pouvons donc écrire, pour D ∈ [N ; (2N − 1)] :

M=2N−1∏
M=N

[D −M.s(M)]s(D) = 1− s(D)
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Autres cas intéressant, un cas “binaire” :

“Simulation” de s(M) avec une variable B plus restreinte.

Soit B une variable ne pouvant prendre que les valeurs 0 ou 1 et I(B) la
fonction d’Impulsion Première (définie tel que précédemment) associée à la
variable B (précédemment, elle était associée à la variableM) , nous obtenons
pour I(B) toutes les valeurs possibles qui sont respectivement 1 et 0. Nous
avons ceci :

I(0) = 1
I(1) = 0

D’où

I(B) = 1−B

( Ou I[I(B)] = B , ou encore I(1−B) = B )

Avec la variable B, “toutes” les valeurs possibles de s(M) (1 ou 0) sont
atteintes. Or, pour X ∈ R− {1} :

I(B) =
XI(B) − 1

X − 1

Donc

1−B =
X(1−B) − 1

X − 1

⇒ B =
1−X(1−B) + (X − 1)

X − 1

⇒ B =
X −X(1−B)

X − 1

⇒ B =
1− 1

XB

1− 1
X

Avec toujours un auto-référencement de cette fonction sur B.
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Pour compléter, I(B) et B ne possédant que 2 “états” binaires, ces 2 variables
peuvent être échangées dans la formule suivante :

I(B) =
XI(B) − 1

X − 1

nous pouvons alors écrire de manière équivalente :

B =
XB − 1

X − 1
(avec B = 1 si X = 0)

Et en utilisant la formule précédente :

B =
1− 1

XB

1− 1
X

⇒
1− 1

XB

1− 1
X

=
XB − 1

X − 1

⇒ XB = 1 +X.

(
1− 1

XB

)
Dans le cas particulier où X = 1−B, nous avons :

B =
XB − 1

X − 1
(ici, l’égalité est bien respectée même lorsque X = 0)

=
(1−B)B − 1

(1−B)− 1

⇒ −B2 = (1−B)B − 1

⇒ −B = (1−B)B − 1

⇒ B = 1− (1−B)B

De manière moins pertinente, pour X et d ∈ N∗ et pour X 6= d, une autre
formule est possible :

B =
B.(X − d)

B.X − d
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Remarque sur le cas “binaire” :

Nous pouvons reconstruire toutes les tables de vérités définies par l’algèbre
de BOOLE [3] grâce à la formule de I(M). Par exemple en prenant 2 fois
cette formule de I(M) et en les dissociant comme si elles étaient de simples
variables. Notons ces 2 nouvelles variables I(M1) et I(M2), et notons L une
“porte logique” à 2 entrées I(M1) et I(M2).

* Exemple 1 :

L = I(M1).I(M2) (symbole “ . ” : ET de l’algèbre de BOOLE )

dont la table de vérité est la suivante :

I(M1) I(M2) L

0 0 0
0 1 0
1 0 0
1 1 1

Ce qui correspond à une porte logique “ET ” en algèbre de BOOLE. D’un
point de vue strictement mathématique (c’est-à-dire, maintenant, en écriture
mathématique), nous pouvons écrire :

L = I(M1).I(M2)

* Exemple 2 :

L = I(M1) + I(M2) (symbole “ + ” : OU de l’algèbre de BOOLE )

dont la table de vérité est la suivante :

I(M1) I(M2) L

0 0 0
0 1 1
1 0 1
1 1 1
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Ce qui correspond à une porte logique “OU ” en algèbre de BOOLE. D’un
point de vue strictement mathématique (c’est-à-dire, maintenant, en écriture
mathématique), nous pouvons écrire :

L = I(M1) + I(M2)− [I(M1).I(M2)]

Ce qui revient également à écrire :

L = [I(M1)− I(M2)]2 + I(M1).I(M2)

En effet, puisque nous avons :

[I(M1)− I(M2)]2 + I(M1).I(M2) = I(M1)2 + I(M2)2 − I(M1).I(M2)

Or,

I(M)m = I(M) pour m ∈ N, m ≥ 1.

D’où

[I(M1)− I(M2)]2 + I(M1).I(M2) = I(M1) + I(M2)− I(M1).I(M2)

Nous pouvons remarquer que nous aurions pu prendre d’autres “variables”.
Par exemple, il en aurait été de même pour les variables s(M1) et s(M2)
(possédant les mêmes propriétés que s(M) ) à la place des variables I(M1)
et I(M2) (respectivement). Ce qui permet de constater un lien possible
entre les tables de vérité de l’algèbre de BOOLE et la formule s(M) ou la
formule I(M), et donc un lien avec les propriétés des nombres entiers. Une
interprétation entre l’algèbre de BOOLE et les propriétés des nombres entiers
(propriété de de primalité ou autres propriétés) est donc possible.

Remarque : Une interprétation entre l’algèbre de BOOLE et les propriétés
d’autres nombres est aussi possible grâce à toutes fonctions dont les résultats
ne peuvent être que 0 ou 1.

* Sur le même principe, poursuivons les correspondances avec d’autres exemples.
Soient B1 et B2 deux variables binaires (ne pouvant prendre pour état que 0
ou 1).
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* Exemple 3 :

L = I(M) avec M = B1.

Comme nous l’avons déjà vu au cours de ce paragraphe :

I(B) = 1−B

Donc

I(B1) = 1−B1

Ce qui correspond à une porte logique “COMPLEMENT ” en algèbre de
BOOLE (c’est-à-dire que la variable binaire de sortie est complémentaire à
la variable binaire d’entrée).

* Exemple 4 :

L = I(M) avecM = B1.B2 (symbole “ . ” : multiplication en mathématiques)

dont la table de vérité est la suivante :

B1 B2 L = I(B1.B2)

0 0 1
0 1 1
1 0 1
1 1 0

Ce qui correspond à une porte logique “NAND” (c’est-à-dire NON ET )
en algèbre de BOOLE. D’un point de vue strictement mathématique, nous
pouvons écrire :

I(B1.B2) = 1− (B1.B2)

Remarquons que nous avons aussi (d’autres exemples sont possibles) :

I(B1.B2) = s(2 +B1 +B2)
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Il est possible de généraliser cela en changeant de variable. A la place de B1

et de B2, prenons respectivement M1 ∈ N, M1 ≥ 0 et M2 ∈ N, M2 ≥ 0. Nous
pouvons noter que :

I(M1) = 1 pour M1 = 0
I(M1) = 0 pour M1 ≥ 1

I(M2) = 1 pour M2 = 0
I(M2) = 0 pour M2 ≥ 1

Donc

I(M1) + I(M2)− I(M1).I(M2) = 1 pour M1 = 0 et pour M2 = 0
I(M1) + I(M2)− I(M1).I(M2) = 1 pour M1 = 0 et pour M2 ≥ 1
I(M1) + I(M2)− I(M1).I(M2) = 1 pour M1 ≥ 1 et pour M2 = 0
I(M1) + I(M2)− I(M1).I(M2) = 0 pour M1 ≥ 1 et pour M2 ≥ 1

Or,

I(M1.M2) = 1 pour M1 = 0 et pour M2 = 0
I(M1.M2) = 1 pour M1 = 0 et pour M2 ≥ 1
I(M1.M2) = 1 pour M1 ≥ 1 et pour M2 = 0
I(M1.M2) = 0 pour M1 ≥ 1 et pour M2 ≥ 1

D’où nous déduisons la formule générale :

I(M1.M2) = I(M1) + I(M2)− I(M1).I(M2)

De plus, à partir de l’équivalence I(B1.B2) = 1 − (B1.B2) , nous pouvons
donner une dernière écriture généralisée :

I(M1.M2) = 1− (M1)I(M1).(M2)I(M2)
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* Exemple 5 :

L = I(M) avec M = B1 +B2 (symbole “ + ” : addition en mathématiques)

dont la table de vérité est la suivante :

B1 B2 L = I(B1 +B2)

0 0 1
0 1 0
1 0 0
1 1 0

Ce qui correspond à une porte logique “NOR” (c’est-à-dire NON OU ) en
algèbre de BOOLE. D’un point de vue strictement mathématique, nous
pouvons écrire :

I(B1 +B2) = 2(B1.B2) − (B1 +B2)

= 1− (B1 +B2) + (B1.B2)

Or, nous pouvons également remarquer que (en algèbre de BOOLE ) :

I(B1) I(B2) L = I(B1 +B2)

0 0 1
0 1 0
1 0 0
1 1 0

D’un point de vue strictement mathématique, nous pouvons déduire :

I(B1 +B2) = I(B1).I(B2)

Remarquons que nous avons aussi (d’autres exemples sont possibles) :

I(B1 +B2) = s(7 +B1 +B2)
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Il est possible de généraliser cela en changeant de variable. A la place de B1

et de B2, prenons respectivement M1 ∈ N, M1 ≥ 0 et M2 ∈ N, M2 ≥ 0. Nous
pouvons noter que :

I(M1) = 1 pour M1 = 0
I(M1) = 0 pour M1 ≥ 1

I(M2) = 1 pour M2 = 0
I(M2) = 0 pour M2 ≥ 1

Donc

I(M1).I(M2) = 1 pour M1 = 0 et pour M2 = 0
I(M1).I(M2) = 0 pour M1 = 0 et pour M2 ≥ 1
I(M1).I(M2) = 0 pour M1 ≥ 1 et pour M2 = 0
I(M1).I(M2) = 0 pour M1 ≥ 1 et pour M2 ≥ 1

Or,

I(M1 +M2) = 1 pour M1 = 0 et pour M2 = 0
I(M1 +M2) = 0 pour M1 = 0 et pour M2 ≥ 1
I(M1 +M2) = 0 pour M1 ≥ 1 et pour M2 = 0
I(M1 +M2) = 0 pour M1 ≥ 1 et pour M2 ≥ 1

D’où nous déduisons la formule générale :

I(M1 +M2) = I(M1).I(M2)

De plus, à partir de l’équivalence I(B1 + B2) = 1 − (B1 + B2) + (B1.B2) ,
nous pouvons donner une dernière écriture généralisée :

I(M1 +M2) = 1− (M1)I(M1) − (M2)I(M2) + (M1)I(M1).(M2)I(M2)

Ce qui revient également à écrire :

I(M1 +M2) = 1− [(M1)I(M1) − (M2)I(M2)]2 − (M1)I(M1).(M2)I(M2)
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En effet puisqu’en développant les crochets élevés au carré, nous avons à
traiter (pour M1, le principe étant le même pour M2) :

(M1)2.I(M1)

Or,

I(M1) = 1 pour M1 = 0
I(M1) = 0 pour M1 ≥ 1

Donc

(M1)2.I(M1) = (M1)I(M1) = 0 pour M1 = 0
(M1)2.I(M1) = (M1)I(M1) = 1 pour M1 ≥ 1

Ce qui permet d’expliquer l’égalité donnée sous les 2 formes précédentes.

Remarque importante :

D’après le calcul propositionnel “classique”, il est possible de former toutes
les propositions à partir d’une unique porte logique tel que la porte logique
NOR, ou bien à partir d’une unique porte logique tel que la porte logique
NAND. Ainsi, le calcul propositionnel classique devient interprétable par
I(M) (ou par une formule similaire à s(M) ) et les propiétés des nombres
représentées par la variable M . Cela signifie que toutes les propositions du
calcul propositionnel classique peuvent être formées à partir de la formule
I(M) tel que M = B1 +B2 ou tel que M = B1.B2.

Des correspondances peuvent être établies entre des formules ne pouvant
prendre comme valeur que 0 ou 1, et des énoncés (en attribuant des valeurs
de vérité tel que 0 et 1). Quelques cas sont développés dans la 1ière partie
du Chapitre V.
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Dernière remarque sur des cas particuliers :

Rapidement, dans le cadre de l’utilisation du nombre imaginaire“ i ” d’EULER
(rappelons que “ i =

√
(−1) ” ) :

ei.π.I(M) = (−1)I(M)

= 1− 2.I(M)

= sin
[
(−1)I(M).

π

2

]
Avec

(−1)I(M) = −1 si M = 0
(−1)I(M) = 1 si M > 0 et M ∈ N

Ou bien,

ei.π.s(M) = (−1)s(M)

= 1− 2.s(M)

= sin
[
(−1)s(M).

π

2

]
Avec

(−1)s(M) = −1 si M ∈ P
(−1)s(M) = 1 si M /∈ P et M ∈ N, M > 2

Ou encore :

ei.π.s(M)/2 = (−1)s(M)/2 = i (un imaginaire pur) si M ∈ P
ei.π.s(M)/2 = (−1)s(M)/2 = 1 (un réel pur) si M /∈ P et M ∈ N, M > 2

Nous pouvons ainsi “séparer” les nombres entiers sur 2 axes : les nombres
premiers sur l’axe des nombres imaginaires, et les nombres entiers non premiers
sur l’axe des réels.
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3.8 Autres formules intéressantes

Voici encore, exposées dans cette sous-partie, quelques formules liées aux
nombres premiers qu’il est encore possible d’établir. Certaines pouvant
permettre de réduire la longueur des calculs dûs à la factorielle ou dûs à
un produit de nombres entiers consécutifs sur un intervalle donné.

La sous-partie “3.8.5 Nombres factoriels, formule simplifiée s(M) et
divisibilité” (page 220) montre qu’il est possible de simplifier les calculs de
formules telles que s(M).

La sous-partie “3.8.6 Formule f(M ;x), puissance et divisibilité : Formule
D(N) généralisée” (page 225) donne même une généralisation de la formule
D(N).

3.8.1 Nombres factoriels et divisibilité par Pn

Sachant que Pn ∈ P et que (d’après les notations de la partie “2 Démonstration
complète” page 52) :

(Pn − 1)! + 1 = Pn.w1

(Avec w1 un nombre entier, cela signifie [(Pn − 1)! + 1] divisible par Pn).

D’où :

(Pn − 1)! + 1− Pn = Pn.w1 − Pn
= Pn.(w1 − 1) (c’est-à-dire encore divisible par Pn)

Mais nous avons aussi :

(Pn − 1)! + 1− Pn = (Pn − 1)!− (Pn − 1)

= (Pn − 1).[(Pn − 2)!]− (Pn − 1)

= (Pn − 1).[(Pn − 2)!− 1]
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Donc

(Pn − 1).[(Pn − 2)!− 1] = Pn.(w1 − 1)

Et donc

(Pn−1).[(Pn−2)!−1] est divisible par Pn puisque Pn.(w1−1) l’est aussi.

Or, dans un produit de 2 termes (en l’occurence (Pn − 1) et [(Pn − 2)! − 1]
sont ici ces 2 termes), l’ensemble est divisible par un nombre si au moins l’un
des 2 est divisible par ce nombre. Comme (Pn − 1) n’est pas divisible par
Pn, [(Pn − 2)!− 1] l’est forcément.

1ière conclusion :

[(Pn − 2)!− 1] = Pn.w2

(Avec w2 un nombre entier tel que w2 =
(w1 − 1)

(Pn − 1)
)

Et donc [(Pn − 2)!− 1] est divisible par Pn.

En arithmétique modulaire, cela s’écrit :

[(Pn − 2)!− 1] ≡ 0 (mod Pn)

Poursuivons le raisonnement :

Soit m ∈ N, et d’après les notations précédentes, développons la formule
suivante :

[(Pn−2)!+1].[(Pn−2)!(m−1)−1] = (Pn−2)!(m)−(Pn−2)!+(Pn−2)!(m−1)−1

D’où

(Pn−2)!(m)−1 = [(Pn−2)!+1].[(Pn−2)!(m−1)−1]+(Pn−2)!−(Pn−2)!(m−1)
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Donc

(Pn − 2)!(m) − 1
= [(Pn − 2)! + 1].[(Pn − 2)!(m−1) − 1]− (Pn − 2)!.[(Pn − 2)!(m−2) − 1]

Or, pour m = 2, nous retrouvons notre expression de départ à droite de
l’égalité :

[(Pn − 2)!− 1] qui est divisible par Pn,

ce qui implique ensuite tous les cas suivants pour m (le fait que la formule
soit valable pour un cas la rend valable pour le cas suivant, et ainsi de
suite pour chaque cas suivant). En effet, il faut observer (Pn − 2)!(m−1)

et (Pn − 2)!(m−2), qui permet d’étendre le raisonnement à tous les autres cas
de m (en incrémentant d’une unité successivement et à l’infini la puissance
de (Pn−2)! ). Le premier membre de l’égalité étant divisible par Pn implique
que le second le soit aussi.

2ième conclusion :

Le cas m = 1 venant d’être traité dans la “1ière conclusion”, nous pouvons
maintenant conclure que :

(Pn − 2)!m − 1 = Pn.w2′ (Avec w2′ un nombre entier)

Et donc [(Pn − 2)!m − 1] est divisible par Pn.

En arithmétique modulaire, cela s’écrit :

[(Pn − 2)!m − 1] ≡ 0 (mod Pn)

Si nous considérons que 0 fait partie des multiples de Pn, nous pouvons alors
étendre le domaine de définition de m à m ∈ N, m ≥ 0. En effet, puisque
pour m = 0 (et donc w2′ = 0), l’égalité est bien respectée.

Tout ceci sous-entend que, pour les congruences, il est possible de réduire les
calculs utilisant les nombres premiers dans les factoriels (nous sommes passés
de (Pn − 1)! à (Pn − 2)! ).
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Complément :

En supposant que Pn ne soit pas connu, en notant M une variable qui
représente ce nombre inconnu, en remplaçant Pn par M dans la formule,
pour M ∈ N, M ≥ 2, nous avons :

- Si M ∈ P, le même résultat que précédemment, c’est-à-dire :

(M − 2)!m

M
= W2′ +

1

M
(Avec w2′ un nombre entier)

Donc

sin 2

(
π.

(M − 2)!m

M

)
= sin 2

( π
M

)
Et donc :

sin 2

(
π.

(M − 2)!m

M

)
sin 2

( π
M

) = 1

- Si M /∈ P, cela signifie que M est un nombre composé, notons :

Avec P1, P2 , P3, ... et Pn ∈ P, avec P1 < P2 < P3 < ... < Pn et avec au
moins 2 des termes αn ≥ 1 (en rappelant que pour M défini ainsi, nous avons
nécessairement Pn < M) :

M = P1
α1 .P2

α2 .P3
α3 ...Pn

αn

En développant, et comme (M − 1) ne peut pas être un de ces nombres
premiers, nous retrouvons forcément tous les facteurs premiers de M dans
cette formule :

(M − 2)!m

M
=

[(P1
α1 .P2

α2 .P3
α3 ...Pn

αn).k0]m

M

Où k0 est un nombre entier qui représente les nombres que l’on ne retrouve
pas dans la décomposition de M en produit de facteurs premiers. Le résultat
de cette formule ne peut donc être qu’un nombre entier puisque le numérateur
contient l’intégralité des facteurs premiers deM et de leur puissance respectives,
ce qui est égale à M , c’est-à-dire le numérateur.
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ATTENTION :

Ceci n’est pas valable dans un seul cas, c’est le cas de M = 4, le défaut
évoqué dans la partie démonstration, pour les mêmes raisons, nous devons
donc restreindre m tel que m ∈ N, m ≥ 2.

Revenons en au cas de M /∈ P, cela signifie donc que :

(M − 2)!m

M
= k1 (avec k1 un nombre entier)

D’où

sin 2

(
π.

(M − 2)!m

M

)
= 0

Et donc :

sin 2

(
π.

(M − 2)!m

M

)
sin 2

( π
M

) = 0

Ce qui est strictement équivalent à la formule s(M), pour M ∈ N, M ≥ 2 et
pour m ∈ N, m ≥ 2 :

s(M) =

sin 2

(
π.

(M − 2)!m

M

)
sin 2

( π
M

)
Ce qui ne permet de réduire les calculs que sensiblement.

Remarque :

D’après les démonstrations du complément, nous aurions pu nous servir
des résultats concerant cette formule pour élaborer la formule D(N) de
décomposition d’un nombre entier en produit de facteurs premiers.

Page 206 sur 514



3.8.2 Produit de nombres factoriels et divisibilité par
Pn

Soit Pn ∈ P et a ∈ N tel que 1 ≤ a ≤ Pn, nous pouvons écrire ceci :

0!.(Pn − 1)! = 0!.Pn.(Pn − 2)!− 1!.(Pn − 2)!

1!.(Pn − 2)! = 1!.Pn.(Pn − 3)!− 2!.(Pn − 3)!

2!.(Pn − 3)! = 2!.Pn.(Pn − 4)!− 3!.(Pn − 4)!

3!.(Pn − 4)! = 3!.Pn.(Pn − 5)!− 4!.(Pn − 5)!

4!.(Pn − 5)! = 4!.Pn.(Pn − 6)!− 5!.(Pn − 6)!

...

Et de manière générale, nous pouvons écrire :

(a− 1)!.(Pn − a)! = (a− 1)!.(Pn − a).(Pn − a− 1)!

= (a− 1)!.Pn.(Pn − a− 1)!− a!.(Pn − a− 1)!

Nous avons donc :

a!.(Pn − a− 1)! = (a− 1)!.Pn.(Pn − a− 1)!− (a− 1)!.(Pn − a)!

D’après le théorème de WILSON [1] :

(Pn − 1)! = Pn.w1 − 1 (avec w1 un nombre entier)
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Et donc

0!.(Pn − 1)! = Pn.w1 − 1

1!.(Pn − 2)! = 0!.Pn.(Pn − 2)!− 0!.(Pn − 1)!

= Pn.[0!.(Pn − 2)!− w1] + 1

2!.(Pn − 3)! = 1!.Pn.(Pn − 3)!− 1!.(Pn − 2)!

= Pn.[1!.(Pn − 3)!− 0!.(Pn − 2)! + w1]− 1

3!.(Pn − 4)! = 2!.Pn.(Pn − 4)!− 2!.(Pn − 3)!

= Pn.[2!.(Pn − 4)!− 1!.(Pn − 3)! + 0!.(Pn − 2)!− w1] + 1

4!.(Pn − 5)! = 3!.Pn.(Pn − 5)!− 3!.(Pn − 4)!

= Pn.[3!.(Pn − 5)!− 2!.(Pn − 4)! + 1!.(Pn − 3)!− 0!.(Pn − 2)! + w1]− 1

...

Le signe de w1 dans les crochets et de “ 1 ” à l’extérieur des crochets dépend
directement de la parité de a. Et de manière générale, comme nous avions :

a!.(Pn − a− 1)! = (a− 1)!.Pn.(Pn − a− 1)!− (a− 1)!.(Pn − a)!

Nous avons donc aussi (en substituant (a− 1) à a) :

(a− 1)!.(Pn − a)! = (a− 2)!.Pn.(Pn − a)!− (a− 2)!.(Pn − a+ 1)!

Or, en substituant (a − 1) à a dans l’égalité précédente, nous obtenons une
nouvelle égalité pour les derniers termes de cette égalité :

(a− 2)!.(Pn − a+ 1)! = (a− 3)!.Pn.(Pn − a+ 1)!− (a− 3)!.(Pn − a+ 2)!

En remplaçant (a − 2)!.(Pn − a + 1)! dans l’avant dernière égalité par la
dernière égalité que nous venons d’obtenir, nous déduisons :

(a− 1)!.(Pn − a)!
= (a− 2)!.Pn.(Pn− a)!− (a− 3)!.Pn.(Pn− a+ 1)! + (a− 3)!.(Pn− a+ 2)!
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En substituant (a− 1) à a dans l’égalité de

(a− 2)!.(Pn − a+ 1)!

Nous trouverons une nouvelle égalité qui remplacera une fois encore les
derniers termes, et en agissant ainsi jusqu’au tout dernier terme de la somme,
nous pouvons déduire ce qui suit :

(a− 1)!.(Pn − a)! = (a− 2)!.Pn.(Pn − a+ 0)!− (a− 3)!.Pn.(Pn − a+ 1)!

+(a− 4)!.Pn.(Pn − a+ 2)!− (a− 5)!.Pn.(Pn − a+ 3)!

+(a− 6)!.Pn.(Pn − a+ 4)!− (a− 7)!.Pn.(Pn − a+ 5)!

+...

±(a− 2− b)!.(Pn − a+ b+ 1)!

Le dernier terme de la somme étant atteint lorsqu’il vaut 0!.(Pn−1)!, c’est-à-
dire lorsque b = (a−2) (implicitement b, est un nombre entier), donc lorsque :

(a− 2− b)!.(Pn − a+ b+ 1)! = 0!.(Pn − 1)!

Le signe de ce dernier terme dépendant du nombre “d’égalités” dont nous
aurons eu besoin pour l’atteindre, ce qui dépend directement de la valeur de
a. En effet, si a est paire le dernier terme sera négatif, si a est impaire, le
dernier terme sera positif (l’exemple le plus simple étant donné pour a = 1).
Comme l’avant dernier terme est du signe contraire du dernier terme :

(a− 1)!.(Pn − a)! = (a− 2)!.Pn.(Pn − a+ 0)!− (a− 3)!.Pn.(Pn − a+ 1)!

+(a− 4)!.Pn.(Pn − a+ 2)!− (a− 5)!.Pn.(Pn − a+ 3)!

+(a− 6)!.Pn.(Pn − a+ 4)!− (a− 7)!.Pn.(Pn − a+ 5)!

+...

−(−1)(a−1).0!.Pn.(Pn − 2)! + (−1)(a−1).0!.(Pn − 1)!
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Sachant que :

0!.(Pn − 1)! = Pn.w1 − 1

Nous avons donc

(−1)(a−1).0!.(Pn − 1)! = (−1)(a−1).Pn.w1 − (−1)

Nous pouvons alors déduire :

(a− 1)!.(Pn − a)! = Pn.[(a− 2)!.(Pn − a+ 0)!− (a− 3)!.(Pn − a+ 1)!

+(a− 4)!.(Pn − a+ 2)!− (a− 5)!.(Pn − a+ 3)!

+(a− 6)!.(Pn − a+ 4)!− (a− 7)!.(Pn − a+ 5)!

+...

−(−1)(a−1).0!.(Pn − 2)! + (−1)(a−1).w1]− (−1)(a−1)

Et donc, en vue d’une généralisation (précisons que ce qui suit étant valable
seulement si a ∈ N tel que 2 ≤ a ≤ Pn car pour le cas de a = 1, nous avons
directement 0!.(Pn − 1)! = Pn.w1 − 1), pour 2 ≤ a ≤ Pn :

(a− 1)!.(Pn − a)!

= Pn.

(−1)(a−1).w1 +

b=(a−2)∑
b=0

(−1)b.(a− 2− b)!.(Pn − a+ b)!

− (−1)(a−1)

(a− 1)!.(Pn − a)! + (−1)(a−1)

= Pn.

(−1)(a−1).w1 +

b=(a−2)∑
b=0

(−1)b.(a− 2− b)!.(Pn − a+ b)!


D’où l’on déduit la divisibilité :

(a− 1)!.(Pn − a)! + (−1)(a−1) est divisible par Pn.

En arithmétique modulaire, cela s’écrit :

(a− 1)!.(Pn − a)! + (−1)(a−1) ≡ 0 (mod Pn)
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Cas particulier :

Dans le cas où a =
(Pn + 1)

2
et avec Pn impaire seulement (c’est-à-dire

Pn ≥ 3), nous avons :

(a− 1)!.(Pn − a)! + (−1)(a−1) =

(
Pn − 1

2

)
!2 + (−1)( Pn−1

2
)

D’où(
Pn − 1

2

)
!2 + (−1)( Pn−1

2
) est divisible par Pn (avec Pn ≥ 3).

En arithmétique modulaire, cela s’écrit :(
Pn − 1

2

)
!2 + (−1)( Pn−1

2
) ≡ 0 (mod Pn)

Remarquons que a =
Pn + 1

2
permet de réduire le plus possible les calculs

de manière à ce que les valeurs résultantes de la factorielle (c’est-à-dire(
Pn − 1

2

)
! ) soient au minimum : pour ce cas, les calculs sont optimisés.
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3.8.3 Puissance de nombres factoriels et divisibilité par
Pn

Sachant que Pn ∈ P et que :

(Pn − 1)! + 1 = Pn.w1

(Avec w1 un nombre entier, donc [(Pn − 1)! + 1] divisible par Pn).

Notons :

X = (Pn − 1)!

Nous avons :

(Pn − 1)! + 1 = X + 1 = Pn.w1

Démarche :

Pour m ∈ N, toute expression de la forme Xm peut s’écrire :

X2a si m est paire (c’est-à-dire m = 2a)

ou

X(2a+1) si m est impaire (c’est-à-dire m = 2a+ 1)

Cas où m est paire :

X2a − 1 = X.(X(2a−1) + 1)− (X + 1)

Cas où m est impaire :

X(2a+1) + 1 = X.(X2a − 1) + (X + 1)
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Raisonnement :

- D’après les égalités des 2 cas m paire et m impaire, nous pouvons réécrire
d’une part pour le cas de m impaire :

X(2a+1) + 1 = X.(X2a − 1) + (X + 1)

= X.[X.(X(2a−1) + 1)− (X + 1)] + (X + 1)

Ou encore,

X(2a+1) + 1 = X [2(a+1)−1] + 1

Et

X [2(a+1)−1] + 1 = X.[X.(X(2a−1) + 1)− (X + 1)] + (X + 1)

Pour a = 0, nous retrouvons notre expression de départ (X + 1) qui est
divisible par Pn, ce qui implique ensuite tous les cas suivants pour a impaire
(le fait que la formule soit valable pour un cas la rend valable pour le cas
suivant, et ainsi de suite pour chaque cas suivant, il suffit ici de comparer
(a + 1) dans le membre de gauche à a dans le membre de droite pour s’en
rendre compte directement). En effet, il faut observer X [2(a+1)−1], qui permet
d’incrémenter d’une unité successivement et à l’infini la puissance de X, ce
qui étend le raisonnement à tous les autres cas de a impaire.

- D’après les égalités des 2 cas m paire et m impaire, nous pouvons réécrire
d’autre part pour le cas de m paire :

X2a − 1 = X.(X(2a−1) + 1)− (X + 1)

= X.[X.(X(2a−2) − 1) + (X + 1)]− (X + 1)

Ou encore,

X2(a+1) − 1 = X.[X.(X2a − 1) + (X + 1)]− (X + 1)

Pour a = 0, l’expression du membre de droite est divisible par Pn, ce qui
implique ensuite tous les cas suivants pour a paire (le fait que la formule soit
valable pour un cas la rend valable pour le cas suivant, et ainsi de suite pour
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chaque cas suivant, il suffit ici de comparer (a+1) dans le membre de gauche
à a dans le membre de droite pour s’en rendre compte directement). En effet,
il faut observer X2(a+1), qui permet d’incrémenter d’une unité successivement
et à l’infini la puissance de X, ce qui étend le raisonnement à tous les autres
cas de a paire.

Conclusion :

Nous pouvons regrouper ces 2 cas en un seul. Comme nous avons noté
X = (Pn − 1)!, nous pouvons généraliser ainsi :

Pour tout m ∈ N (et en admettant que 0 soit divisible par Pn, puisque le

résultat de
0

Pn
donne un nombre entier qui vaut 0),

(Pn − 1)!m + (−1)(m+1) est divisible par Pn.

Ou encore (ce qui suit est strictement équivalent) :

(Pn − 1)!m − (−1)m est divisible par Pn.

En arithmétique modulaire, cela s’écrit :

(Pn − 1)!m − (−1)m ≡ 0 (mod Pn)
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3.8.4 Puissances de nombres factoriels contenant une
puissance

Nous avions noté :

εn,x,t = Pn.w6 + (−1)x

pour tout Pn ∈ P, pour tout x et t ∈ N tels que x ≥ 1 et x ≥ 1, et avec w6

un nombre entier. Or,

h=(Pn
x−1)∏

h=1

(t.Pn
x − h)

Pn

Pnx − 1

Pn − 1
−x

 = εn,x,t (un nombre entier non divisible par Pn)

Nous allons maintenant nous demander ce qu’il en est de la divisibilité par
Pn pour (εn,x,t)

m avec m ∈ N, m ≥ 0, εn,x,t possédant toutes les propriétés
vues précédemment. Comme dans la partie “2 démonstration” (page 52),
nous allons simplifier les résultats pour alléger l’écriture :

(εn,x,t)
m = [Pn.w6 + (−1)x]m

= (Pn.w6).f(Pn.w6) + (−1)(x.m)

En notant (w6).f(Pn.w6) = w (avec w un “nombre entier polynômiale” en
fonction de Pn et de w6, tel que défini au début du paragraphe “Suite 2 de
l’étude de (Pn

x − 1)!”) de la sous-partie “2.2.2 Début de l’étude” page
62), nous obtenons :

(εn,x,t)
m = Pn.w + (−1)(x.m)

Et donc

(εn,x,t)
m − (−1)(x.m) = Pn.w

En arithmétique modulaire, cela s’écrit :

(εn,x,t)
m − (−1)(x.m) ≡ 0 (mod Pn)
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* Remarque 1 :

Si nous considérons que 0 ne fait pas partie des multiples de Pn, nous devons
alors restreindre le domaine de définition de m à m ∈ N, m ≥ 1.

Si nous considérons que 0 fait partie des multiples de Pn, nous pouvons alors
étendre le domaine de définition de m à m ∈ N, m ≥ 0. En effet, puisque
pour m = 0 (et donc w = 0), l’égalité est bien respectée.

* Remarque 2 :

Nous avons noté

εn,x,t =

h=(Pn
x−1)∏

h=1

(t.Pn
x − h)

Pn

Pnx − 1

Pn − 1
−x



Dans le cas particulier de x = 1, t = 1 et m = 2, nous pouvons retrouver la
formule de MINÁC-WILLANS [4] car :

(εn,1,1)2 = (Pn − 1)!2

= Pn.w + 1

(εn,1,1)2

Pn
= w +

1

Pn

D’où

sin 2

[
π.

(εn,1,1)2

Pn

]
= sin 2

[
π.

(
w +

1

Pn

)]
= sin 2

(
π

Pn

)
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Donc

sin 2

[
π.

(εn,1,1)2

Pn

]
sin 2

(
π

Pn

) = 1

Et donc la formule de MINÁC-WILLANS :

sin 2

[
π.

(Pn − 1)!2

Pn

]
sin 2

(
π

Pn

) = 1

* Remarque 3 :

Le fait d’élever la factorielle au carré permet d’éliminer le problème de
Pn = 4 lorsque x = 1. En effet, lors du “(développement 2)” de la
sous-partie “2.2.2 Début de l’étude” (page 62), nous avions soulevé et
résolu ce problème. De la même manière, nous pouvons encore ici effectuer
une vérification des conditions nécessaires pour éviter ce problème.

Nous voulons :

Pn

(
Pn

x−1
Pn−1 −x

)
.m ≥ Pn

x

Donc(
Pn

x − 1

Pn − 1
− x
)
.m ≥ x

ici, pour x = 2, nous avons (après simplifications) :

Pn ≥ 1 +
2

m

Ce qui est effectivement le cas si m ≥ 2.
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Continuons alors les vérifications pour x ≥ 3, nous avions noté :(
Pn

x − 1

Pn − 1
− x
)
.m ≥ x

Et donc(
Pn

x − 1

Pn − 1

)
.m− x.(m+ 1) ≥ 0

Le plus petit nombre premier étant 2, nous avons :(
Pn

x − 1

Pn − 1

)
.m− x.(m+ 1) ≥

(
2x − 1

2− 1

)
.m− x.(m+ 1)

Or, pour x ≥ 3 :

2x > 2.x+ 1 ≥
(

1 +
1

m

)
.x+ 1 pout tout m ∈ N, m ≥ 1

2x >

(
1 +

1

m

)
.x+ 1

2x − 1− x.(1 + 1/m) > 0
2x − 1

2− 1
.m− x.(m+ 1) > 0

Et donc(
Pn

x − 1

Pn − 1

)
.m− x.(m+ 1) > 0

Ce qui est une condition nécessaire pour éviter tout problème d’incohérence,
cela nous permettant de conclure :

dès que m ≥ 2, il n’y a plus de défaut tel que celui pour m = 1, Pn = 4,
x = 1. Nous avons donc toujours, pour m ≥ 2 :

(εn,x,t)
m − (−1)(x.m) = Pn.w
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Donc

(εn,x,t)
m = Pn.w + (−1)(x.m)

sin 2

(
π.(εn,x,t)

m

Pn

)
= sin 2

(
π.(w + (−1)(x.m))

Pn

)
= sin 2

(
π.(−1)(x.m)

Pn

)
= sin 2

(
π

Pn

)

Et donc finalement, pour m ∈ N, m ≥ 2 :

sin 2

(
π.(εn,x,t)

m

Pn

)
sin 2

(
π

Pn

) = 1

Ce qui aurait aussi pu servir de base à notre grande formule de décomposition
D(N).
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3.8.5 Nombres factoriels, formule simplifiée s(M) et
divisibilité

Pour compléter ce que nous venons de voir précédemment, prenons ce qui
suit en considération. Pour M ∈ N, M ≥ 2 et pour m ∈ N, m ≥ 2, nous
avons :

(M − 1)!m = M.w0 si M /∈ P (avec w0 un nombre entier variable)

(voir paragraphe “(développement 1)” de la sous-partie “2.2.2 Début de
l’étude” page 62, pour la démonstration)

Et

(M−1)!m = M.w0+(−1)m si M ∈ P (avec w0 un nombre entier variable)

Or, nous savons que (voir la partie “3.1 Formule simplifiée s(M)” page
147, concernant la formule s(M) pour rappels) :

s(M) = 0 si M /∈ N
s(M) = 1 si M ∈ N

Ce qui nous permet de déduire de ces 2 cas une formule plus générale :

(M − 1)!m = M.w0 + s(M).(−1)m

(en effet, nous vérifions facilement que nous retrouvons bien les 2 cas précédents)

Et donc

(M − 1)!m − s(M).(−1)m

M
= w0

Ce qui permet de conclure que
(M − 1)!m − s(M).(−1)m

M
vaut toujours

un nombre entier.

En arithmétique modulaire, cela s’écrit :

(M − 1)!m − s(M).(−1)m ≡ 0 (mod M)
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Remarquons que nous aurions pu raisonner de la même manière en remplaçant
Pn par M avec εn,x,t ou avec :

(Pn − 2)!m − 1 = w2′

(vu en paragraphe “3.8.1 Nombres factoriels et divisibilité par Pn”
page 202)

Nous aurions pu déduire (le principe du raisonnement est le même) :

(M − 2)!m − s(M) ≡ 0 (mod M) pour m ∈ N, m ≥ 2

Mais reprenons le raisonnement depuis :

(M − 1)!m − s(M).(−1)m

M
= w0 et poursuivons.

A partir de cette égalité, nous pouvons facilement en donner une autre :

(M − 1)!m − s(M).(−1)m

M
+

(−1)(m+a)

M
= w0 +

(−1)(m+a)

M
avec a ∈ N

Donc

(M − 1)!m + [(−1)a − s(M)].(−1)m

M
= w0 +

(−1)(m+a)

M

D’où

sin 2

{
π.

(M − 1)!m + [(−1)a − s(M)].(−1)m

M

}
= sin 2

{
π.

[
w0 +

(−1)(m+a)

M

]}
= sin 2

{
π.

(−1)(m+a)

M

}
= sin 2

( π
M

)
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Pour conclure, quelquesoit M et m ∈ N, tels que M ≥ 2 et m ≥ 2, et pour
tout a ∈ N, nous avons :

sin 2

{
π.

(M − 1)!m + [(−1)a − s(M)].(−1)m

M

}
= sin 2

( π
M

)

Nous pouvons même ajouter quelques conditions pour lesquels la cohérence
de cette formule est respectée (en accord avec les remarques vues tout au
long de ce chapitre) :

- CONDITION 1 :

La cohérence est respectée :

. Quelquesoit m ∈ N, tel que m ≥ 2,

. Quelquesoit M ∈ N, tel que M ≥ 2,

. Quelquesoit a ∈ N.

- CONDITION 2 :

La cohérence est respectée :

. Pourm = 1 (dans ce cas, un défaut apparâıt lorsqueM = 4 seulement,
c’est pour cela que cette valeur de M doit être évitée),

. Quelquesoit M ≥ 2 telle que M ∈ N − {4} (notamment à cause du
défaut constaté et relaté lors de l’étude de la “fonction de Correction
A” de la sous-partie “2.2.4 Supposons Pn non connu (construction
de Fp, suite)” page 129),

. Quelquesoit a ∈ N.

- CONDITION 3 :

La cohérence est respectée :

. Pour m = 0,

. Pour M ∈ P uniquement,

. Quelquesoit a ∈ N.
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Cette dernière condition mérite quelques explications. En effet, lorsque
m = 0, nous avons :

sin 2

{
π.

(M − 1)!m + [(−1)a − s(M)].(−1)m

M

}
= sin 2

{
π.

1 + (−1)a − s(M)

M

}

Si a est paire, nous avons :

sin 2

{
π.

1 + (−1)a − s(M)

M

}
= sin 2

{
π.

2− s(M)

M

}

Or, d’après ce que nous avons conclu, nous devons avoir :

sin 2

{
π.

2− s(M)

M

}
= sin 2

( π
M

)

Ce qui est effectivement le cas seulement si s(M) = 1, autrement dit seulement
si M ∈ P.

Et si a est impaire, nous avons :

sin 2

{
π.

1 + (−1)a − s(M)

M

}
= sin 2

{
−π.s(M)

M

}

Or, d’après ce que nous avons conclu, nous devons avoir :

sin 2

{
−π.s(M)

M

}
= sin 2

( π
M

)

Ce qui est effectivement le cas seulement si s(M) = 1, autrement dit seulement
si M ∈ P.

Ce qui permet d’établir la “CONDITION 3 ” , qui précise que pour m = 0,
et pour tout a ∈ N, nous devons avoir uniquement M ∈ P.
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Remarque 1 :

Pour les mêmes raisons, ces 3 conditions sont également valables pour la
formule vue précédemment, c’est-à-dire pour :

(M − 1)!m − s(M).(−1)m

M
= w0

Remarque 2 :

Etant donné la formule établie pour M ∈ N, M ≥ 2 :

(M − 1)!m − s(M).(−1)m

M
= w0

Le développement en séries entières de TAYLOR - MAC LAURIN des fonctions
“SINUS” contenues dans la formule s(M) permet de donner une équivalence
au nombre entier w0 en fonction de nombres entiers seulement.
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3.8.6 Formule f(M;x), puissance et divisibilité : Formule
D(N) généralisée

Pour poursuivre ce raisonnement, nous pouvons aborder cette partie en
rappelant quelques résultats de la sous-partie “2.2 Démonstration complète”.

IMPORTANT :

Nous reprendrons les mêmes notations que dans la sous-partie “2.2 Démonstration
complète” page 54 (notamment pour les entiers symbolisés par des lettres).

Nous avions noté :

Fp =

h=(Mx−1)∏
h=1

(N − h)

Et

MFc = M

Mx − 1

M − 1
−x+1



Et donc (ce qui est une partie de la formule de αM , vue page 140)

Fp
MFc

=

h=(Mx−1)∏
h=1

(N − h)

M

Mx − 1

M − 1
−x+1



Rappelons aussi que nous avions noté :

f(M ;x) = cos 2

[
π.

(M − 1).(M − 2).(M − 3)

4

]
.

sin 2

(
π.Fp
MFc

)
sin 2

( π
M

)
Dont les résultats suivants ont déjà été démontrés pour N ∈ N, N ≥ 1 :

f(M ;x) = 1 pour tout M ∈ N, M ≥ 2 et M ∈ P, si N est multiple de Mx.
f(M ;x) = 0 pour tout M ∈ N, M ≥ 2 et M ∈ P, si N non multiple de Mx.
f(M ;x) = 0 pour tout M ∈ N, M ≥ 2 et M /∈ P, quelquesoit N ≥ 1.
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Ces résultats provenaient déjà de résultats intermédiaires qu’il est aussi
important de rappeler (en suivant le même ordre) :

- Pour tout M ∈ N, M ≥ 2 et M ∈ P, si N est multiple de Mx :

Fp
MFc

=
Fp

Pn
Fc

= w6 +
(−1)x

Pn

(où w6 est un nombre entier et Pn ∈ P)

Dans ce cas, ceci est équivalent à :

Fp
MFc

= w6 +
(−1)x

M

- Pour tout M ∈ N, M ≥ 2 et M ∈ P, si N non multiple de Mx :

Fp
MFc

=
Fp

Pn
Fc

= E

(où E est un nombre entier)

- Pour tout M ∈ N, M ≥ 2 et M /∈ P, quelquesoit N ≥ 1 :

Fp
MFc

= G′.εM,x

(G′ est un nombre entier, εM,x entier sauf pour le seul cas de M = 4 et x = 1)
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En adoptant une nouvelle écriture afin de la réduire, nous pouvons remplacer
toutes les lettres représentant un nombre entier (tel que w6 , E et G′.εM,x)
par une lettre unique (avec une la lettre en indice se rapportant à la puissance
m) tel que Wm (qui est par conséquent un nombre entier), ce qui permet de
noter :

- Pour tout M ∈ N, M ≥ 2 et M ∈ P, si N est multiple de Mx :

Fp
MFc

= Wm +
(−1)x

M

Ce qui est équivalent à :

Fp
M (Fc−1)

= M.Wm + (−1)x

Avec :

M (Fc−1) = M

Mx − 1

M − 1
−x



- Pour tout M ∈ N, M ≥ 2 et M ∈ P, si N non multiple de Mx :

Fp
MFc

= Wm

Ce qui est équivalent à :

Fp
M (Fc−1)

= M.Wm

- Pour tout M ∈ N, M ≥ 2 et M /∈ P, quelquesoit N ≥ 1 :

Fp
MFc

= Wm (sauf pour le seul cas de M = 4 et x = 1)

Ce qui est équivalent à :

Fp
M (Fc−1)

= M.Wm (sauf pour le seul cas de M = 4 et x = 1)
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Maintenant, poursuivons le raisonnement en notant m ∈ N tel que m ≥ 2 et
développons ceci :

- Pour tout M ∈ N, M ≥ 2 et M ∈ P, si N est multiple de Mx :

[
Fp

M (Fc−1)

]m
= [M.Wm + (−1)x]m

= (M.Wm).f(M.Wm) + (−1)(x.m)

En notant W un nombre entier tel que, dans ce cas :

(Wm).f(M.Wm) = W

(avec, pour alléger le développement, W un nombre entier “polynômiale”
en fonction de M et de Wm, tel que défini dans le paragraphe “Suite 2 de
l’étude de (Pn

x−1)!” de la sous-partie “2.2.2 Début de l’étude” page 62)

Nous obtenons :[
Fp

M (Fc−1)

]m
= M.W + (−1)(x.m)

Et donc[
Fp

M (Fc−1)

]m
− (−1)(x.m) = M.W

En arithmétique modulaire, cela s’écrit :[
Fp

M (Fc−1)

]m
− (−1)(x.m) ≡ 0 (mod M)

(dans ce cas précis où M ∈ P, et où N est un multiple de Mx)

Rappelons que, dans ce cas :

f(M ;x) = 1 (ce qui permettra de faire la synthèse finale)
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- Pour tout M ∈ N, M ≥ 2 et M ∈ P, si N non multiple de Mx,
Ou bien pour tout M ∈ N, M ≥ 2 et M /∈ P, quelquesoit N ≥ 1 :

Fp
M (Fc−1)

= M.Wm

(nous avions déterminé que le défaut pour M = 4 et x = 1 est éliminé dès
que m ≥ 2, il existe seulement pour m = 1)

Donc[
Fp

M (Fc−1)

]m
= [M.Wm]m

Or,

[M.Wm]m = M.[M (m−1).Wm
m]

Ce qui est clairement un nombre divisible par M (puisque nous sommes dans
le cas où m ≥ 2).

En notant ici comme précédemment W ce nombre entier (l’intérêt de ne
prendre qu’une seule lettre pour représenter un nombre entier est notable
pour la conclusion intermédiaire qui va suivre) tel que :

W = [M (m−1).Wm
m]

Nous obtenons :[
Fp

M (Fc−1)

]m
= M.W

Rappelons que, dans ces 2 cas :

f(M ;x) = 0 (ce qui permettra de faire la synthèse finale)
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Conclusion intermédiaire :

En regroupant les résultats obtenus précédemment, nous avons (W est un
nombre variable, mais toujours un nombre entier) :

- Pour tout M ∈ N, M ≥ 2 et M ∈ P, si N est multiple de Mx :

[
Fp

M (Fc−1)

]m
− (−1)(x.m) = M.W

D’où

[
Fp

M (Fc−1)

]m
M

= W +
(−1)(x.m)

M

- Pour tout M ∈ N, M ≥ 2 et M ∈ P, si N non multiple de Mx,
Ou bien pour tout M ∈ N, M ≥ 2 et M /∈ P, quelquesoit N ≥ 1 :

[
Fp

M (Fc−1)

]m
= M.W

D’où

[
Fp

M (Fc−1)

]m
M

= W

Cela va nous permettre de conclure. En effet, W ne pouvant représenter
qu’un nombre entier dans tous les cas.
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Reprenons les 2 cas abordés dans notre “Conclusion intermédiaire” :

- Pour tout M ∈ N, M ≥ 2 et M ∈ P, si N est multiple de Mx :

sin 2

π.
[

Fp
M (Fc−1)

]m
M

 = sin 2

{
π.

[
W +

(−1)(x.m)

M

]}

= sin 2

{
π.

(−1)(x.m)

M

}
= sin 2

{ π

M

}
Et donc, dans ce cas :

sin 2

π.
[

Fp
M (Fc−1)

]m
M


sin 2

( π
M

) = 1

C’est-à-dire la même valeur que f(M ;x) pour le même cas.

- Pour tout M ∈ N, M ≥ 2 et M ∈ P, si N non multiple de Mx,
Ou bien pour tout M ∈ N, M ≥ 2 et M /∈ P, quelquesoit N ≥ 1 :

sin 2

π.
[

Fp
M (Fc−1)

]m
M

 = sin 2
( π
M

)
= 0

Et donc, dans ce cas :

sin 2

π.
[

Fp
M (Fc−1)

]m
M


sin 2

( π
M

) = 0

C’est-à-dire la même valeur que f(M ;x) pour le même cas.
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Tout ceci nous permet maintenant de conclure que, pour m ∈ N, m ≥ 2 :

sin 2

π.
[

Fp
M (Fc−1)

]m
M


sin 2

( π
M

) = f(M ;x)

Ainsi, il devient possible d’établir une nouvelle formule plus générale pour
la décomposition d’un nombre entier N ∈ N, N ≥ 2 en produit de facteurs
premiers. Nous avions noté D(N) une telle formule, celle-ci contenant la
formule f(M ;x) que nous pouvons maintenant remplacer par l’équivalent
que nous venons de donner. En effet, rappelons que :

αM =
x→+∞∑
x=1

f(M ;x)

Et que :

N = D(N) =
M→+∞∏
M=2

M (αM ) =
M=N∏
M=2

M (αM )

Ce qui permet de déduire finalement que, pour m ∈ N, m ≥ 2 et pour N ∈ N,
N ≥ 2 :

D(N) = N =
M=N∏
M=2

M



1

sin 2
( π
M

) . x→+∞∑
x=1

sin 2




h=(Mx−1)∏

h=1

(N − h)

M

Mx − 1

M − 1
−x




m

.
π

M





Ce qui est une formule plus générale pour la décomposition d’un nombre
entier en produit de facteurs premiers (attention, il s’agit bien de crochets
dans cette formule, et non des symboles des “valeurs absolues” , ni de ceux
des “parties entières”, ils ont la même fonction que de simples parenthèses).
La généralisation de la formule D(N) permet donc également de généraliser
le “Théorème de décomposition d’un nombre entier N en produit de facteurs
premiers” (page 146), sans en modifier les caractéristiques dues au domaine
de définition de N (nous avons toujours N ∈ N tel que N ≥ 2).
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Synthèse finale :

Dans la sous-partie précédente(“3.8.5 Nombres factoriels, formule sim-
plifiée s(M) et divisibilité” page 220), nous avions pu faire un lien entre
s(M) et le reste de la formule. De manière identique, nous pouvons dans
cette partie établir un lien entre la formule f(M ;x) et les formules que nous
venons de voir :[

Fp
M (Fc−1)

]m
= M.W + f(M ;x).(−1)(x.m)

D’où[
Fp

M (Fc−1)

]m
− f(M ;x).(−1)(x.m)

M
= W

En arithmétique modulaire, cela s’écrit :[
Fp

M (Fc−1)

]m
− f(M ;x).(−1)(x.m) ≡ 0 (mod M)

Comme pour la partie précédente, et pour des raisons similaires, la cohérence
de ces formules est respectée dans 3 conditions :

- CONDITION 1 :

. Quelquesoit m ∈ N, tel que m ≥ 2,

. Quelquesoit M ∈ N, tel que M ≥ 2,

. Quelquesoit N ∈ N, tel que N ≥ 1.

- CONDITION 2 :

. Pourm = 1 (dans ce cas, un défaut apparâıt lorsqueM = 4 seulement,
cette valeur de M doit donc être évitée),

. Quelquesoit M ≥ 2 telle que M ∈ N−{4} (à cause du défaut relaté),

. Quelquesoit N ∈ N, tel que N ≥ 1.

- CONDITION 3 :

. Pour m = 0,

. Pour M ∈ P uniquement,

. Pour N multiple de Mx uniquement.
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Il est encore possible ici de donner une autre expression de cette formule (les
conditions que nous venons de donner y seront toujours respectées). En effet,
en reprenant :[

Fp
M (Fc−1)

]m
− f(M ;x).(−1)(x.m)

M
= W

Avec a ∈ N, nous pouvons facilement établir que :[
Fp

M (Fc−1)

]m
− f(M ;x).(−1)(x.m)

M
+

(−1)(x.m+a)

M
= W +

(−1)(x.m+a)

M

Donc[
Fp

M (Fc−1)

]m
+ [(−1)a − f(M ;x)].(−1)(x.m)

M
= W +

(−1)(x.m+a)

M

D’où

sin 2

π.
[

Fp
M (Fc−1)

]m
+ [(−1)a − f(M ;x)].(−1)(x.m)

M

 = sin 2

{
π.

[
W +

(−1)(x.m+a)

M

]}

= sin 2

{
π.

(−1)(x.m+a)

M

}
= sin 2

( π
M

)
Pour finir, dans le respect des 3 conditions citées précédemment, et pour tout
a ∈ N, nous pouvons conclure que :

sin 2

π.
[

Fp
M (Fc−1)

]m
+ [(−1)a − f(M ;x)].(−1)(x.m)

M

 = sin 2
( π
M

)
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Digression :

La conséquence de tout ces travaux est qu’il existe plusieurs écritures possibles
pour obtenir des résultats équivalents.

Etant donné que s(M) n’est qu’un cas particulier de f(M ;x), nous pouvons
encore donner un exemple de réécriture avec la formule s(M) puisque dans
le cas où x = 1 et N = M , nous avons aussi de manière plus générale pour
M ∈ N, M ≥ 2 et pour m ∈ N, m ≥ 2 :

s(M) =
sin 2

[
(M − 1)!m.

π

M

]
sin 2

( π
M

)
Ou encore, d’après les travaux de l’étude de la sous-partie “3.8.1 Nombres
factoriels et divisibilité par Pn” (page 202), nous avons aussi pour
M ∈ N, M ≥ 2 et pour m ∈ N, m ≥ 2 :

s(M) =
sin 2

[
(M − 2)!m.

π

M

]
sin 2

( π
M

)
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3.8.7 Produit de nombres factoriels et divisibilité par
M, généralisation

Appliquons maintenant le raisonnement de la sous-partie précédente (“3.8.6
Formule f(M;x), puissance et divisibilité : Formule D(N) généralisée”
page 225) aux formules de la sous-partie “3.8.2 Produit de nombres
factoriels et divisibilité par Pn” (page 207). Ici, les démonstrations
vont être simplifiées pour améliorer la lisibilité.

Rappelons que nous avions déduit (pour 3 conditions) :

(M − 1)!m + [(−1)a − s(M)].(−1)m

M
= w0 +

(−1)(m+a)

M

Ce qui est équivalent à :

(M − 1)!m = M.w0 + s(M).(−1)m

La cohérence de ces formules étant respectée pour les 3 conditions :

- CONDITION 1 :

. Quelquesoit m ∈ N, tel que m ≥ 2,

. Quelquesoit M ∈ N, tel que M ≥ 2,

. Quelquesoit a ∈ N.

- CONDITION 2 :

. Pourm = 1 (dans ce cas, un défaut apparâıt lorsqueM = 4 seulement,
cette valeur de M doit donc être évitée),

. Quelquesoit M ≥ 2 telle que M ∈ N−{4} (à cause du défaut relaté),

. Quelquesoit a ∈ N.

- CONDITION 3 :

. Pour m = 0,

. Pour M ∈ P uniquement,

. Quelquesoit a ∈ N.
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Divisons encore l’étude avec des sous-parties tel que :

∗ Sous-Partie 1 :

Reprenons le raisonnement depuis : (M − 1)!m = M.w0 + s(M).(−1)m

En changeant w0 en W1 et en précisant que W1, W2 , W3 , ... , Wb1 est
toujours un nombre entier (pour rendre la démonstration plus claire) où
b1 ∈ N, b1 ≥ 2 :

(M − 1)!m = M.W1 + s(M).(−1)m

Raisonnons dans le cas de la “CONDITION 2 ” où m = 1 (ce cas est plus
simple car il évite d’avoir à développer le produit dû à la puissance m) par
étapes :

(M − 1)! = M.W1 − s(M) pour M ∈ N− {4} tel que M ≥ 2.

- Etape 1 :

(M − 1)! = M.W1 − s(M)

(M − 1).(M − 2)! = M.W1 − s(M)

M.(M − 2)!− 1.(M − 2)! = M.W1 − s(M)

(M − 2)! = M.[(M − 2)!−W1] + s(M)

(M − 2)! = M.W2 + s(M)

Pour M ∈ N− {4} (CONDITION 2) tel que M ≥ 2.

- Etape 2 :

(M − 2)! = M.W2 + s(M)

(M − 2).(M − 3)! = M.W2 + s(M)

M.(M − 3)!− 2.(M − 3)! = M.W2 + s(M)

2.(M − 3)! = M.[(M − 3)!−W2]− s(M)

2.(M − 3)! = M.W3 − s(M)

Pour M ∈ N− {4} (CONDITION 2) tel que M ≥ 3.
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- Etape 3 :

2.(M − 3)! = M.W3 − s(M)

2.(M − 3).(M − 4)! = M.W3 − s(M)

2.M.(M − 4)!− 2.3.(M − 4)! = M.W3 − s(M)

2.3.(M − 4)! = M.[2.(M − 4)!−W3] + s(M)

2.3.(M − 4)! = M.W4 + s(M)

3!.(M − 4)! = M.W4 + s(M)

Pour M ∈ N− {4} (CONDITION 2) tel que M ≥ 4, ce qui revient à
M ≥ 5 (puisque 4 doit être en dehors du domaine de définition de M).

- Etape 4 :

3!.(M − 4)! = M.W4 + s(M)

3!.(M − 4).(M − 5)! = M.W4 + s(M)

3!.M.(M − 5)!− 4!.(M − 5)! = M.W4 + s(M)

4!.(M − 5)! = M.[3!.(M − 5)!−W4]− s(M)

4!.(M − 5)! = M.W5 − s(M)

Pour M ∈ N tel que M ≥ 5 (à partir de cette étape, nou n’avons plus
besoin de restreindre le domaine de définition de M comme le préconise la
CONDITION 2 afin d’éviter le cas oùM = 4, puisque ce cas est nécessairement
évité dès que M ≥ 5).

- Etape 5 :

4!.(M − 5)! = M.W5 − s(M)

4!.(M − 5).(M − 6)! = M.W5 − s(M)

4!.M.(M − 6)!− 5!.(M − 6)! = M.W5 − s(M)

5!.(M − 6)! = M.[4!.(M − 5)!−W5] + s(M)

5!.(M − 6)! = M.W6 + s(M)

Pour M ∈ N tel que M ≥ 6.

...
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- Etape (b1− 1), nous obtenons finalement :

(b1− 1)!.(M − b1)! = M.Wb1 + s(M).(−1)b1

Pour M ∈ N, M ≥ 2 et pour M ≥ b1, tel que b1 ∈ N et b1 ≥ 2.

Donc

(b1− 1)!.(M − b1)!

M
= Wb1 +

s(M).(−1)b1

M

Et donc

sin 2

[
π.

(b1− 1)!.(M − b1)!

M

]
= sin 2

{
π.

[
Wb1 +

s(M).(−1)b1

M

]}
Si M ∈ P, nous avons s(M) = 1 :

sin 2

[
π.

(b1− 1)!.(M − b1)!

M

]
= sin 2

( π
M

)
D’où

sin 2

[
π.

(b1− 1)!.(M − b1)!

M

]
sin 2

( π
M

) = 1

Si M /∈ P (CONDITION 2 : éviter le cas de M = 4), nous avons s(M) = 0 :

sin 2

[
π.

(b1− 1)!.(M − b1)!

M

]
= 0

D’où

sin 2

[
π.

(b1− 1)!.(M − b1)!

M

]
sin 2

( π
M

) = 0

Et finalement :

sin 2

[
π.

(b1− 1)!.(M − b1)!

M

]
sin 2

( π
M

) = s(M)
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- Cas particulier :

Pour (b1 − 1) = (M − b1) nous sommes dans le cas particulier où le calcul
est réduit au minimum (calcul “optimal”).

Dans ce cas, nous avons :

M = 2.b1− 1 c’est-à-dire le cas de M étant un nombre impaire.

Comme nous devons avoir M ∈ N, M ≥ 2, nous devons aussi avoir b1 ∈ N,
b1 ≥ 2.

b1 =
M + 1

2

(comme M est impaire, il n’est plus utile de conseiller ici d’éviter le cas de
M = 4 préconisé par la CONDITION 2)

Nous pouvons conclure que, pour M = 2.b1−1 et pour b1 ∈ N tel que b1 ≥ 2 :

sin 2

[(
M − 1

2

)
!2.
π

M

]
sin 2

( π
M

) = s(M)

(Ce qui est une alternative à la démonstration du paragraphe “3.8.2 Produit
de nombres factoriels et divisibilité par Pn” page 207)

- Remarque :

Pour b1 =
M + 1

2
, nous avons aussi :

(b1− 1)!.(M − b1)!

M
= Wb1 +

s(M).(−1)b1

M

D’où

(
M − 1

2

)
!2 = M.Wb1 + s(M).(−1)(

M+1
2 )

= M.Wb1 + s(M).(i)(M+1) (où i est le nombre imaginaire)
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∗ Sous-Partie 2 :

Ce n’est qu’à partir de maintenant que le raisonnement va trouver un intérêt
significatif (l’intérêt viendra de la synthèse des parties que nous allons aborder).
Ce raisonnement porte sur le cas particulier précédent. Changeons quleque
peu les notations : Wb1,c est un nombre entier avec c un nombre entier.
Reprenons par étape :(

M − 1

2

)
!2 = M.Wb1 + s(M).(−1)(

M+1
2 )

Pour M = 2.b1− 1, avec b1 ∈ N, b1 ≥ 2.

- Etape 1 :

Notons Wb1 = Wb1,1(
M − 1

2

)
!2 = M.Wb1,1 + s(M).(−1)(

M+1
2 )(

M − 1

2

)2

.

(
M − 1

2
− 1

)
!2 = M.Wb1,1 + s(M).(−1)(

M+1
2 )

(M − 1)2.

(
M − 3

2

)
!2 = 22.M.Wb1,1 + s(M).22.(−1)(

M+1
2 )

(M2 − 2M + 1).

(
M − 3

2

)
!2 = 22.M.Wb1,1 + s(M).22.(−1)(

M+1
2 )

En développant, nous obtenons des multiples de M , que nous allons tous
regrouper dans le membre de droite de l’égalité, pour obtenir :

M.(M − 2).

(
M − 3

2

)
!2 + 1.

(
M − 3

2

)
!2 = 22.M.Wb1,1 + s(M).22.(−1)(

M+1
2 )

1.

(
M − 3

2

)
!2 = 22.M.Wb1,1 −M.(M − 2).

(
M − 3

2

)
!2 + s(M).22.(−1)(

M+1
2 )

1.

(
M − 3

2

)
!2 = 22.M.

[
Wb1,1 − (M − 2).

(
M − 3

2

)
!2
]

+ s(M).22.(−1)(
M+1

2 )

Or, 22.

[
Wb1,1 − (M − 2).

(
M − 3

2

)
!2
]

est un nombre entier, notons le Wb1,2.
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(ATTENTION : pour les étapes suivantes, nous ne détaillerons pas autant
le passage que nous venons d’effectuer, qui développe et regroupe les multiples
de M , car il est finalement évident à comprendre)

Pour M ∈ N, M ≥ 3 (avec M = 2.b1− 1), nous avons donc :(
M − 3

2

)
!2 = M.Wb1,2 + s(M).22.(−1)(

M+1
2 )

- Etape 2 :(
M − 3

2

)
!2 = M.Wb1,2 + s(M).22.(−1)(

M+1
2 )(

M − 3

2

)2

.

(
M − 5

2

)
!2 = M.Wb1,2 + s(M).22.(−1)(

M+1
2 )

(M2 − 6M + 32).

(
M − 5

2

)
!2 = 22.M.Wb1,2 + s(M).24.(−1)(

M+1
2 )

M(M − 6).

(
M − 5

2

)
!2 + 32.

(
M − 5

2

)
!2 = 22.M.Wb1,2 + s(M).24.(−1)(

M+1
2 )

32.

(
M − 5

2

)
!2 = M.

[
22.Wb1,2 − (M − 6).

(
M − 5

2

)
!2
]

+ s(M).24.(−1)(
M+1

2 )

32.

(
M − 5

2

)
!2 = M.Wb1,3 + s(M).24.(−1)(

M+1
2 )

Pour M ∈ N, M ≥ 5 (avec M = 2.b1− 1).

- Etape 3 :

32.

(
M − 5

2

)
!2 = M.Wb1,3 + s(M).24.(−1)(

M+1
2 )

32.

(
M − 5

2

)2

.

(
M − 7

2

)
!2 = M.Wb1,3 + s(M).24.(−1)(

M+1
2 )

32.(M2 − 10M + 52).

(
M − 7

2

)
!2 = 22.M.Wb1,3 + s(M).26.(−1)(

M+1
2 )

(3.5)2.

(
M − 7

2

)
!2 = M.

[
22.Wb1,3 − (M − 10).

(
M − 7

2

)
!2
]

+ s(M).26.(−1)(
M+1

2 )

(3.5)2.

(
M − 7

2

)
!2 = M.Wb1,4 + s(M).26.(−1)(

M+1
2 )

Pour M ∈ N, M ≥ 7 (avec M = 2.b1− 1).
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- Etape 4 :

(3.5)2.

(
M − 7

2

)
!2 = M.Wb1,4 + s(M).26.(−1)(

M+1
2 )

(3.5)2.

(
M − 7

2

)2

.

(
M − 9

2

)
!2 = M.Wb1,4 + s(M).26.(−1)(

M+1
2 )

(3.5)2.(M2 − 14M + 72).

(
M − 9

2

)
!2 = 22.M.Wb1,4 + s(M).28.(−1)(

M+1
2 )

(3.5.7)2.

(
M − 9

2

)
!2 = M.

[
22.Wb1,4 − (M − 14).

(
M − 9

2

)
!2
]

+ s(M).28.(−1)(
M+1

2 )

(3.5.7)2.

(
M − 9

2

)
!2 = M.Wb1,5 + s(M).28.(−1)(

M+1
2 )

Pour M ∈ N, M ≥ 9 (avec M = 2.b1− 1).

- Etape 5 :

(3.5.7)2.

(
M − 9

2

)
!2 = M.Wb1,5 + s(M).28.(−1)(

M+1
2 )

(3.5.7)2.

(
M − 9

2

)2

.

(
M − 11

2

)
!2 = M.Wb1,5 + s(M).28.(−1)(

M+1
2 )

(3.5.7)2.(M2 − 18M + 92).

(
M − 11

2

)
!2 = 22.M.Wb1,5 + s(M).210.(−1)(

M+1
2 )

(3.5.7.9)2.

(
M − 11

2

)
!2 = M.

[
22.Wb1,5 − (M − 18).

(
M − 11

2

)
!2
]

+ s(M).210.(−1)(
M+1

2 )

(3.5.7.9)2.

(
M − 11

2

)
!2 = M.Wb1,6 + s(M).210.(−1)(

M+1
2 )

Pour M ∈ N, M ≥ 11 (avec M = 2.b1− 1).

...
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- Etape b2 = (c− 1) :

[
h=b2∏
h=2

(2.h− 1)2

]
.

(
M − 2.b2− 1

2

)
!2 = M.Wb1,c + s(M).22.b2.(−1)(

M+1
2 )

Pour M ∈ N, M ≥ 2.b2 + 1 (et avec M = 2.b1− 1 pour b1 ∈ N, b1 ≥ 2).

Donc[
h=b2∏
h=2

(2.h− 1)2

]
.

(
M − 2.b2− 1

2

)
!2

M
= Wb1,c +

s(M).22.b2.(−1)(
M+1

2 )

M

Et donc

sin 2


π.

[
h=b2∏
h=2

(2.h− 1)2

]
.

(
M − 2.b2− 1

2

)
!2

M


= sin 2

{
π.

[
Wb1,c +

s(M).22.b2.(−1)(
M+1

2 )

M

]}

Si M ∈ P, nous avons s(M) = 1 :

sin 2


π.

[
h=b2∏
h=2

(2.h− 1)2

]
.

(
M − 2.b2− 1

2

)
!2

M


= sin 2

{
π.

[
Wb1,c +

22.b2.(−1)(
M+1

2 )

M

]}

= sin 2

{
π.

22.b2.(−1)(
M+1

2 )

M

}
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Donc

sin 2


π.

[
h=b2∏
h=2

(2.h− 1)2

]
.

(
M − 2.b2− 1

2

)
!2

M


sin 2

{
π.

22.b2.(−1)(
M+1

2 )

M

} = 1

Si M /∈ P, nous avons s(M) = 0 :

sin 2


π.

[
h=b2∏
h=2

(2.h− 1)2

]
.

(
M − 2.b2− 1

2

)
!2

M


= 0

Donc

sin 2


π.

[
h=b2∏
h=2

(2.h− 1)2

]
.

(
M − 2.b2− 1

2

)
!2

M


sin 2

{
π.

22.b2.(−1)(
M+1

2 )

M

} = 0

Et donc finalement, pour M ∈ N, M ≥ 2.b2 + 1 (et avec M = 2.b1 − 1
pour b1 ∈ N, b1 ≥ 2), nous retrouvons les mêmes égalités que pour s(M) :

sin 2


π.

[
h=b2∏
h=2

(2.h− 1)2

]
.

(
M − 2.b2− 1

2

)
!2

M


sin 2

{
π.

22.b2.(−1)(
M+1

2 )

M

} = s(M)

Ce qui permet encore de réduire les calculs.
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- Cas particuliers :

Pour 2.b2− 1 =
(M − 2.b2− 1)

2
, nous sommes dans le cas particulier où le

calcul est optimal. Nous avons :

M = 6.b2− 1 ou équivalent : b2 =
M + 1

6

D’où

(M − 2.b2− 1)

2
=
M − 2

3

Pour la formule :[
h=b2∏
h=2

(2.h− 1)2

]
.

(
M − 2.b2− 1

2

)
!2

M
= Wb1,c +

s(M).22.b2.(−1)(
M+1

2 )

M

Nous obtenons donc, pour M = 6.b2 − 1 et pour b2 ∈ N, b2 ≥ 1 (et avec
Wb1,c = Wb2) :h= M+1

6∏
h=2

(2.h− 1)2

 .(M − 2

3

)
!2

M
= Wb2 +

s(M).2(M+1
3 ).(−1)(

M+1
2 )

M

Et donc, pour M = 6.b2− 1 et pour b2 ∈ N, b2 ≥ 1 :

sin 2


π.

h= M+1
6∏

h=2

(2.h− 1)2

 .(M − 2

3

)
!2

M


sin 2

[
π.

2(M+1
3 ).(−1)(

M+1
2 )

M

] = s(M)
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∗ Sous-Partie 3 :

Poursuivons le raisonnement à partir de ce dernier cas particulier. Changeons
quleque peu les notations : Wb2,c est un nombre entier avec c un nombre
entier. Reprenons par étape :

- Etape 1 :

Notons Wb2 = Wb2,1h= M+1
6∏

h=2

(2.h− 1)2

 .(M − 2

3

)
!2

M
= Wb2,1 +

s(M).2(M+1
3 ).(−1)(

M+1
2 )

M

SUITE EN COURS

DE REALISATION !

Pour que la fromule s(M) soit exploitable, nous devons concentrer tous nos
efforts à essayer de lui donner des équivalences, en développant notamment
les cas particulier où elle exige moins de calculs (sur le modèle de cette sous-
partie), ce qui devrait permettre de généraliser jusqu’à obtenir une formule
qui rende son calcul optimal.

C’est justement l’objectif que se propose d’atteindre le Chapitre IV.
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3.8.8 Réécriture de la fonction ζ (Zêta) de RIEMANN

- Rappels :

Etant donné la fonction ζ de RIEMANN [5], pour s ∈ C tel que Re(s) > 1 :

ζ(s) =
∏
p∈P

1

1− p−s

En exploitant la méthode du produit Eulérien [6], nous avons :

S = 1 + u1 + u2 + u3 + u4 + u5 + u6 + ...

(somme infinie de termes en puissance de “ u ”, aux puissances croissantes)

Or,

S = 1 + u.S

Donc

S =
1

1− u

D’où

1

1− u
= 1 + u1 + u2 + u3 + u4 + u5 + u6 + ...

Pour u = p−s (avec s > 0), nous avons l’égalité :

ζ(s) =
∏
p∈P

1

1− p−s
=

n→+∞∑
n=1

n−s
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- 1ière réécriture :

Etant donné la formule de s(M) établie dans la sous-partie “3.1 Formule
simplifiée s(M)” (page 147) :

s(M) = 1 si M ∈ P
s(M) = 0 si M /∈ P (avec M ∈ N, M ≥ 2)

* Si M ∈ P :

M−s.s(M) = p−s

1−M−s.s(M) = 1− p−s
1

1−M−s.s(M)
=

1

1− p−s

* Si M /∈ P (avec M ∈ N, M ≥ 2) :

M−s.s(M) = 0

1−M−s.s(M) = 1
1

1−M−s.s(M)
= 1

Et donc la fonction ζ de RIEMANN peut aussi s’écrire ainsi :

ζ(s) =
M→+∞∏
M=2

1

1−M−s.s(M)

L’intérêt étant qu’il existe un lien entre la fonction ζ et la formule s(M).
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Poursuivons. Ceci implique que :

u = M−s.s(M)

Nous avons :

1

1− u
= 1 + u1 + u2 + u3 + u4 + u5 + u6 + ...

D’où

1

1−M−s.s(M)
= 1 +

[
s(M)

M s

]
+

[
s(M)

M s

]2

+

[
s(M)

M s

]3

+

[
s(M)

M s

]4

+ ...

Sachant que :

s(M)a = s(M) (pour a ∈ N, a ≥ 1)

Nous déduisons :

1

1−M−s.s(M)
= 1 + s(M).

[
1

M s
+

1

M2s
+

1

M3s
+

1

M4s
+ ...

]

= 1 + s(M).
a→+∞∑
a=1

M−s.a

Lorsque s(M) = 0 (donc M /∈ P), la cohérence est bien respectée.
Lorsque s(M) = 1 (donc M ∈ P), la cohérence est bien respectée.

La fonction ζ de RIEMANN peut donc être réécrite tel que nous l’avons fait.
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- 2ième réécriture :

En se concentrant sur les propriétés de la fonction s(M), nous pouvons encore
réécrire la fonction ζ sous une autre forme. En effet, en rappelant que nous
avons :

s(M)2 = s(M)

s(M)2 − s(M) = 0

Nous pouvons alors écrire :

(M s−M s) + (M2s−M2s) + [s(M).M s− s(M).M s] + [s(M)2− s(M)] = 0

D’où

−(M s−M2s) + [M s− s(M)−M2s + s(M).M s− s(M).M s + s(M)2] = 0

M s.(1−M s) = [M s − s(M)].[1−M s − s(M)]

M s

M s − s(M)
=

1−M s − s(M)

1−M s

1

1−M−s.s(M)
= 1− s(M)

1−M s

D’après l’égalité que nous venons d’établir, nous obtenons la réécriture :

ζ(s) =
M→+∞∏
M=2

[
1− s(M)

1−M s

]

- 3ième réécriture :

A partir d’un raisonnement similaire, une dernière réécriture peut encore être
faite :

ζ(s) =
M→+∞∏
M=2

[(
1

1−M−s

)s(M)
]
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3.8.9 Réécriture de la conjecture de GOLDBACH

Il est possible de réécrire la conjecture de GOLDBACH (sans prétention de
la résoudre). La conjecture de GOLDBACH [7] affirme que tout nombre
paire supérieur ou égale à 4 peut être écrit comme la somme de 2 nombres
premiers. C’est-à-dire que pour N ∈ N, N ≥ 2 et pour Pn1 et Pn2, il serait
possible d’écrire :

2.N = Pn1 + Pn2

Etablissons le raisonnement suivant en notant M1 et M2 ∈ N, M2 ≥ 2. Nous
avons l’équivalence :

2.N = M1 +M2

D’après les égalités établies précédemment, nous pouvons noter que :

(voir le paragraphe intitulé “Autres équivalences de formules 1” de la
sous-partie “3.7 Equivalences de formules” page 172)

M1 = (M1 − 1)s(M1) + (M1 − 1)[1−s(M1)]

= 1 + (M1 − 1)s(M1) + (M1 − 1)[1−s(M1)] − 1

Or,

1 + (M1 − 1)s(M1) vaut toujours un nombre premier (rappel)

Et

M2 = (M2 − 1)s(M2) + (M2 − 1)[1−s(M2)]

= 1 + (M2 − 1)s(M2) + (M2 − 1)[1−s(M2)] − 1

Or,

1 + (M2 − 1)s(M2) vaut toujours un nombre premier
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Il devient possible de réécrire :

2.N = M1 +M2

= 1 + (M1 − 1)s(M1) + 1 + (M2 − 1)s(M2) + (M1 − 1)[1−s(M1)] + (M2 − 1)[1−s(M2)] − 2

Or, si M1 et M2 ∈ P, nous avons :

s(M1) = s(M2) = 1

Donc

(M1 − 1)[1−s(M1)] + (M2 − 1)[1−s(M2)] − 2 = 1 + 1− 2

= 0

Et donc

2.N = [1 + (M1 − 1)s(M1)] + [1 + (M2 − 1)s(M2)]

Et donc, si M1 et M2 ∈ P, il deviendrait ainsi possible d’exprimer un nombre
paire comme la somme de 2 nombres premiers.

Récapitulons :

Pour 2.N = M1 +M2 , nous avons :

M2 = 2.N −M1

Si M1 et M2 ∈ P, nous devrions donc avoir :

M1 ∈ P et (2.N −M1) ∈ P.

C’est-à-dire que nous devons rechercher à savoir si nous avons toujours :

s(M1) = s(2.N −M1) = 1
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Cela signifie que nous devons rechercher à savoir si nous avons toujours :

(M1 − 1)! + 1 = M1.w1

(w1 est un nombre entier si M1 ∈ P)

et simultanément :

(2.N −M1 − 1)! + 1 = (2.N −M1).w1′

(w1′ est un nombre entier si (2.N −M1) ∈ P)

Et finalement, cela revient à savoir si, avec 2.N > M1 et avec M1 ∈ P, nous
avons pour tout N :

(2.N −M1 − 1)! + 1 = (2.N −M1).w1′ (avec w1′ un nombre entier)

Si tel était le cas, cela rendrait la conjecture de GOLDBACH vraie.

Digression :

Signalons que dans ce cas, nous aurions également :

N =
(Pn1 + Pn2)

2
pour N ∈ N, N ≥ 2 et pour Pn1 et Pn2 ∈ P

Or, pour N ∈ N, N ≥ 2, nous pouvons décomposer N tel que N = D(N),

Et donc, nous pourrions écrire :

D(N) =
(Pn1 + Pn2)

2

Une piste pour la résolution du problème :

Comme la conjecture de GOLDBACH l’indique nous cherchons à savoir si
pour tout N ∈ N, N ≥ 2 :

2.N = M1 +M2 avec M1 et M2 ∈ P simultanément.
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En logique binaire (correspondant à l’algèbre de BOOLE [3]), cela fait penser
à une porte logique “ ET ”. D’un point de vue strictement mathématique,
cela se traduit par :

s(M1).s(M2) = 1

Or, pour M1 et M2 ∈ N, tel que M1 et M2 ≥ 2 :

- Si M1 et M2 ∈ P simultanément, nous avons :

s(M1).s(M2) = 1

Donc

M1
[s(M1).s(M2)] = M1

Et

M2
[s(M1).s(M2)] = M2

- Si seulement M1 /∈ P ou seulement M2 /∈ P, nous avons :

s(M1).s(M2) = 0

Donc

M1
[s(M1).s(M2)] = 1

Et

M2
[s(M1).s(M2)] = 1

Page 255 sur 514



- En réunissant ces 2 conditions, nous avons :

M1
[s(M1).s(M2)] +M2

[s(M1).s(M2)] = 2

si seulement M1 /∈ P ou seulement M2 /∈ P.

Ou

M1
[s(M1).s(M2)] +M2

[s(M1).s(M2)] = M1 +M2

si M1 et M2 ∈ P simultanément.

Si la conjecture de GOLDBACH était vraie, nous pourrions alors écrire :

2.N = M1
[s(M1).s(M2)] +M2

[s(M1).s(M2)]

Et étendre le domaine de définition de N à N ∈ N, N ≥ 1.

Une autre écriture possible serait :

2.N = (M1 +M2 − 2).s(M1).s(M2) + 2

La conjecture de GOLDBACH ne serait alors qu’un cas particulier de ces 2
dernières formules. Pour savoir si la conjecture de GOLDBACH est vraie, il
faut donc savoir si ces formules que nous venons d’établir sont vraies pour
tout N ∈ N tel que N ≥ 1 et quelquesoit M1 et M2 ∈ N, tel que M1 et
M2 ≥ 2.
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4

Remarques : formule D(N) et
phénomènes physiques associés

J’ai l’intuition que ces formules pourraient être une base solide pour développer
une théorie physique (mathématiques appliquées), étant donner le lien entre
la fonction SINUS, le cercle et les ondes, cela pourrait permettre de donner
une interprétation géométrique. Un rapprochement peut être fait entre la
variable N (utilisée tout au long de l’étude) et les phénomènes vibratoires
diverses (l’onde d’un photon, par exemple). La formuleD(N) appliquée à une
onde permettrait de décomposer une onde en longueurs d’ondes fondamentales.
Ceci pourrait être utile à l’analyse harmonique, entre autres.

De plus, étant donné les formules étudiées (telles que s(M) par exemple),
l’approche est intéressante du point de vue de la logique binaire (ces formules
ne peuvent prendre que les valeurs 0 ou 1) qui émerge de ces formules liées aux
ondes. D’où l’on peut constater que : si une telle formule permet d’effectuer
des traitements (c’est-à-dire des calculs de congruence) sur des ondes, dont
les résultats sont exclusivement binaires, alors il doit exister une géométrie
spatiale correspondante où “l’agencement adéquat” de ces ondes permet de
faire émerger une logique binaire.

Remarques, essais et hypothèses :

Dans le cas de la décomposition des ondes, nous pouvons décomposer une
variable associée. Il nous reste à savoir laquelle choisir. Nous pouvons être
tentés de vouloir décomposer la variable correspondant à la fréquence, celle
correspondant à la période ou celle correpondant à la longueur d’onde.
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Pour ma part, les graphiques de la première partie suggèrent plutôt d’étudier
des cycles, ce qui implique d’étudier la “distance” entre un un nombre multiple
de Mx et son prochain multiple. La formule f(M ;x) ne valant 1 que pour
N égale à un des ces multiples (la formule vaut 0 sinon). Ceci ferait plus
naturellement penser à une répétition de cycle tel que la longueur d’onde ou
même tel que la période. Nous allons le vérifier en raisonnant suite à des
essais.

- Si nous essayons de décomposer une fréquence :

Le désavantage de vouloir décomposer une fréquence f en l’assimilant
à N , de telle sorte que f = N , est que cette fréquence devrait avoir
un minimum en f = 2. Ce qui impose à l’étude de la décomposition
d’une fréquence en fréquences fondamentales d’admettre une période T

maximum (T =
1

f
), et pas de minimum pour T (puisque f n’aurait pas

de limite maximum). Or, rien n’empêcherait de produire une période
plus grande, simplement en ralentissant le temps de répétition d’un
phénomène (même en agissant “manuellement” sur le système étudié).

Ceci ne semble pas être en accord avec la physique quantique qui
donnerait plutôt une limite minimum à un intervalle de temps (connue
sous le nom de temps de PLANCK [8]) et une limite minimum pour
une distance (connue sous le nom de longueur de PLANCK [8]). En-
dessous de cette limite, les formules n’ont plus de sens. Ce qui serait
exactement l’inverse des constats de la physique quantique.

- Si nous essayons de décomposer une longueur d’onde :

Il est possible de décomposer la longueur d’onde en longeurs d’ondes
plus simples. Dans ce cas, en assimilant la longueur d’onde λ d’un
phénomène ondulatoire à la variable N de la formule D(N), de telle
sorte que λ = N , c’est la longueur d’onde qui connâıt un minimum en
λ = 2. Ce qui impose à l’étude de la décomposition d’une longueur
d’onde en longueurs d’ondes fondamentales d’admettre une longueur
d’onde minimum (et donc une distance minimum dont la mesure vaut
1 unité), une période T minimum et donc une fréquence f maximum.
Dans ce cas, il n’y aurait pas de limite maximum de longueur d’onde,
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pas de limite maximum de période et donc pas de limite minimum de
fréquence.

Ce cas semble être plus cohérent par rapport à la limite de la longueur
de PLANCK en physique quantique. C’est donc à partir de cette
variable que nous élaborerons une théorie de décomposition d’une lon-
gueur d’onde en longueurs d’ondes fondamentales (voir Chapitre VI).
De plus, le domaine de définition de N ∈ N implique que la longueur
d’onde soit discontinue.

- Si nous essayons de décomposer une période :

Il reste encore possible de décomposer la période (qui vaut l’inverse
de la fréquence) d’un phénomène cyclique en périodes fondamentales.
Dans ce cas, en assimilant la période T d’un phénomène cyclique à
la variable N de la formule D(N), de telle sorte que T = N , c’est
la période qui connâıt un minimum en T = 2. Ce qui est cohérent
avec la conclusion de la décomposition d’une longueur d’onde. Doù
l’on déduit exactement les mêmes choses à propos des minimum et des
maximum des grandeurs physiques que pour la décomposition d’une
longueur d’onde.

Ce dernier cas reste cohérent par rapport à la limite du temps de
PLANCK en physique quantique. C’est donc à partir de cette variable
que nous élaborerons une théorie de décomposition d’une période en
périodes fondamentales (voir Chapitre VI). De plus, le domaine de
définition de N ∈ N implique que la période soit également discontinue.

Plus généralement, nous trouvons 2 cas en cohérence l’un avec l’autre, ce
qui devrait permettre une généralisation de l’application de la formule D(N)
à tous les phénomènes cycliques (la justification sera donnée au début du
Chapitre VI).
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CHAPITRE II

Reconstitution de fonctions
connues, lien avec les

polynômes
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Introduction

Il est important de comprendre ce chapitre pour comprendre le chapitre
suivant (concernant la répartition exacte des nombres premiers).

(ATTENTION, dans ce chapitre, les crochets ont la même fonction que de
simples parenthèses, ils ne signifient donc ni “valeur absolue” ni “partie
entière”)
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5

Remarques sur la formules I(M)

- Ces travaux étant complémentaires à ceux du Chapitre I, nous y ferons
références plusieus fois en faisant appel aux formules étudiées et nommées
dans ce premier chapitre. En l’occurence, dans ce second chapitre, nous
allons faire référence à la formule I(M) décrite dans le chapitre précédent.
Rappelons notamment brièvement que pour M ∈ N, M ≥ 2 :

S(M) = cos 2

(
π

4
.
v=3∏
v=1

(M − v)

)
.
sin 2

(
(M − 1)!.

π

M

)
sin 2

( π
M

)
- Et que pour M ∈ N :

I(M) = s(2.M + 2)

= s[Pn.(d.M + 1)] avec d ∈ N et Pn ∈ P.

= s(M + 2).s(M + 3)

I(M2a) est définie pour tout M ∈ Z et pour tout a ∈ N, a ≥ 1.

- De manière plus restreinte, la formule I(B) permet l’inversion des valeurs
d’une variable “binaire” B. Cela signifie que pour B ne pouvant prendre que
les valeurs binaires 0 ou 1, nous avons :

I(B) = 1 si B = 0
I(B) = 0 si B = 1

et donc I(B) = 1−B
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5.1 Rappels des caractéristiques de I(M)

Rappelons que la formule d’Impulsion Première I d’un polynôme de variable
M ∈ N telle que :

I

[
k=D∏
k=0

(M − k)

]
avec D ∈ N

a les caractéristiques suivantes :

I

[
k=D∏
k=0

(M − k)

]
= 1 pour 0 ≤M ≤ D

I

[
k=D∏
k=0

(M − k)

]
= 0 pour M > D

et la représentation graphique suivante :

La formule “complémentaire” correspondante est équivalente à :

1− I

[
k=D∏
k=0

(M − k)

]
avec D ∈ N

et dont la représentation graphique est celle-ci :
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5.2 Etude de polynômes “simples”

Soit un polynôme entier “positif” P (M) de variable M . Nous appellerons
un polynôme entier de variable M ∈ N, un polynôme ne donnant que des
valeurs entières pour tout M ∈ N, et nous appellerons un polynôme positif
de variable M ∈ N un polynôme ne donnant que des valeurs positives pour
tout M ∈ N. Un polynôme entier positif P (M) de variable M ∈ N est donc
un polynôme ne donnant que des valeurs entières positives pour tout M ∈ N.

Remarque :

Pour prendre en compte le cas de tout polynôme, nous pourrions simplement
élevé au carré tout polynôme afin de le rendre “positif”, au cas où il ne le
serait pas déjà.

La formule d’Impulsion Première d’un nombre n’étant définie que pour un
nombre entier positif, il en est de même pour la formule d’Impulsion Première
d’un polynôme : elle est définie seulement pour les polynômes entier P (M)
positif, nous savons que :

la formule d’Impulsion Première d’un polynôme positif de variable M vaut
1 lorsque le polynôme s’annule et vaut 0 sinon. Nous pouvons donc noter :

I[P (M)] = 1 si P (M) = 0
I[P (M)] = 0 si P (M) > 0

Ce qui peut encore être noté ainsi pour les valeurs de M rendant le polynôme
P (M) nul :

P (M) = 1− I[P (M)] = 0

Partant de ce principe, il va devenir possible d’établir des correspondances
entre plusieurs formules.
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- Etudions le polynôme entier positif P (M) = (M − D)2a avec D ∈ N et
a ∈ N, a ≥ 1. Remarquons que comme ce polynôme est toujours positif pour
M ∈ Z, la formule d’Impulsion Première de ce polynôme est aussi définie
pour tout M ∈ Z. Notons la ainsi :

I[P (M)] = I[(M −D)2a]

Ce polynôme s’annule seulement si M = D. Nous avons donc :

I[(M −D)2a] = 1 si M = D

I[(M −D)2a] = 0 sinon.

Remarquons que ce résultat aurait encore pu être atteint d’une autre manière
puisque, d’après les rappels que nous venons de faire en sous-partie
“5.1 Rappels des caractéristiques de I(M)” (page 264), nous pouvons
déduire de la soustraction des formules entre les accolades :

{
1− I

[
k=D−1∏
k=0

(M − k)

]}
−

{
1− I

[
k=D∏
k=0

(M − k)

]}
= 1 si M = D

{
1− I

[
k=D−1∏
k=0

(M − k)

]}
−

{
1− I

[
k=D∏
k=0

(M − k)

]}
= 0 sinon

Or,{
1− I

[
k=D−1∏
k=0

(M − k)

]}
−

{
1− I

[
k=D∏
k=0

(M − k)

]}

= I

[
k=D∏
k=0

(M − k)

]
− I

[
k=D−1∏
k=0

(M − k)

]

Et donc

I[(M −D)2a] = I

[
k=D∏
k=0

(M − k)

]
− I

[
k=D−1∏
k=0

(M − k)

]
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Graphiquement, cela se représente ainsi :

- Par ce procédé, nous pouvons reconstituer énormément de formules ou de
fonctions connues de différentes manières (par exemple : en faisant la somme
de ce type de formule point par point). notamment, d’après cette dernière
formule, et pour M ∈ N, nous pouvons reconstituer une droite :

D→+∞∑
D=0

I[(M −D)2a] = 1

Mais il existe une infinité de manières de reconstituer cette droite avec
d’autres polynômes entiers positifs P (M) qui possèdent plus d’une solution
pour P (M) = 0, la seule condition à respecter étant que ces polynômes
n’aient pas de solutions communes entre eux et qu’elles soient toutes complé-
mentaires sur l’ensemble des nombres entiers (c’est-à-dire que chaque nombre
entier est solution seulement une fois d’un polynôme, et cette règle est à
appliquer à tous les entiers). Ainsi, nous pouvons déduire facilement encore
un de ces cas :

I

[
D→+∞∏
D=0

(M −D)2a

]
= 1

Et donc

D→+∞∑
D=0

I[(M −D)2a] = I

[
D→+∞∏
D=0

(M −D)2a

]
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- Nous pouvons même reconstituer la formule complémentaire à I(M), qui
est partout équivalente à la droite précédente sauf pour M = 0 :

D→+∞∑
D=1

I[(M −D)2a] = 1− I(M)

Remarque :

Cette égalité n’est pas pertinente, mais elle permet de donner I(M) par
“auto-référence” (et en restant cohérente).

- Nous pouvons également reconstituer la formule s(M) (vue dans le
Chapitre I) à l’aide d’un produit ou d’une somme se faisant sur l’ensemble
des nombres premiers :

s(M) = I

[∏
Pn

(M − Pn)2a

]
avec Pn ∈ P

ou encore :

s(M) =
∑
Pn

I[(M − Pn)2a]

Ici aussi, nous pourrions énumérer une infinité de solutions puisqu’il existe
une infinité de nombres premiers, donc une infinité de solutions possibles
pour que les polynômes entiers positifs s’annulent.
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- Nous pouvons encore reconstituer la formule de comptage C(M) (vue dans
le Chapitre I), puisque :

C
N2

N1
(M) =

M=N2∑
M=N1

s(M)

Pour N1 = 2 et N2 = N , nous aurons le nombre de nombres premiers compris
sur l’intervalle [0;N ].
Etant donné (et pour D ∈ N) :

Et pour Pn = (D + 1), nous avons :

C
N2

N1
(M) =

M=N∑
M=2

s(M)

=
∑
Pn

1− I

k=(Pn−1)∏
k=0

(N − k)


=

D→+∞∑
D=1

(
s(D + 1).

{
1− I

[
k=D∏
k=0

(N − k)

]})

- Pour reconstituer d’autres formules, nous pouvons autoriser des solutions
communes à ces polynômes positifs, dans la mesure où ces autres formules le
permettent (notamment lorsque les valeurs de ces formules sont supérieures
à 1, en correspondance avec la variable N).
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Notamment, nous pouvons également reconstituer la formule RM(N) vue
dans le Chapitre I, pour m ∈ N, m ≥ 1 (en étalant la somme sur plusieurs
lignes) :

RM(N) = I

[
D→+∞∏
D=M

(N −D)2a

]

+I

[
D→+∞∏
D=M2

(N −D)2a

]

+I

[
D→+∞∏
D=M3

(N −D)2a

]

+I

[
D→+∞∏
D=M4

(N −D)2a

]

+ ...

+I

[
D→+∞∏
D=Mm

(N −D)2a

]

Donc

RM(N) =
b=m∑
b=1

I

[
D→+∞∏
D=Mb

(N −D)2a

]

Comme précédemment, cette manière en est une parmi l’infinité des autres
manières possibles d’exprimer cette formule RM(N). D’après l’exemple de
l’égalité :

D→+∞∑
D=0

I[(N −D)2a] = I

[
D→+∞∏
D=0

(N −D)2a

]
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Nous trouverons aussi :

RM(N) =
b=m∑
b=1

D→+∞∑
D=Mb

I[(N −D)2a]

Evidemment, d’autres polynômes que ceux-ci peuvent être utilisés.

- D’autres formules ou fonctions que les polynômes peuvent aussi être utilisées
pourvu que celles-ci ne donnent pour résultat que des valeurs entières positives,
puisque l’Impusion Première de celles-ci n’est définie que pour leurs valeurs
entières positives. Par exemple, si nous prenons

I

[
cos 2

(
π.
M

2

)]
, nous avons :

I

[
cos 2

(
π.
M

2

)]
= 0 si M est paire

I

[
cos 2

(
π.
M

2

)]
= 1 si M est impaire

Or, nous avons aussi :

cos 2

(
π.
M

2

)
= 1 si M est paire

cos 2

(
π.
M

2

)
= 0 si M est impaire

Ce qui correspond au complément de l’Impulsion Première de cos 2(π.M/2)
pour M ∈ N. En effet, pour les nombres entiers, la formule cos 2(π.M/2) ne
peut donner pour valeur que 0 ou 1, ce qui correspond au cas des formules
“binaires” (voir formule d’Impulsion Première d’une variable binaire dans le
Chapitre I : l’Impulsion Première d’une variable binaire est équivalente au
complément de cette variable). Nous avons donc :

I

[
cos 2

(
π.
M

2

)]
= 1− cos 2

(
π.
M

2

)
= sin 2

(
π.
M

2

)

Page 271 sur 514



Même raisonnement pour ce qui suit :

I

[
sin 2

(
π.
M

2

)]
= 1− sin 2

(
π.
M

2

)
= cos 2

(
π.
M

2

)
Et donc, comme précédemment (mais de manière moins pertinente), ceci
permet d’avoir un moyen supplémentaire d’obtenir une droite (par exemple).
Nous avons :

I

[
sin 2

(
π.
M

2

)]
+ I

[
cos 2

(
π.
M

2

)]
= 1

- Donnons encore quelques autres exemples de formules constructibles avec
ceci :

Pour D ∈ N, D ≥ 1 :

Où la formule obtenue ne vaut 1 que pour les puissances du nombre D, et 0
sinon. Ceci permet de représenter un phénomène de “période logarithmique”.

- D’autres exemples peuvent être donnés avec une formule qui serait un
mixage d’autres formules. L’Impusion Première d’une formule pouvant être
égale à 1 pour certaines valeurs entières positives et 0 pour toutes les autres
valeurs entières positives, il devient possible de “configurer” [ une formule
résultante ] comme une somme [ d’Impulsions Premières valant 1 sur
des intervalles de valeurs ], chacune de ces Impusions Premières étant à
mutiplier par [ la formule désirée sur chaque intervalle ].
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Nous pourrions alors imaginer d’obtenir la formule résultante fr(M) correspondant
au graphique suivant (pour plus de lisibilité, nous allons lier chaque point du
graphique par des segments, ceux-ci ne représentant donc pas une continuité,
puisque passer d’un nombre entier à un autre invoque nécessairement la
discontinuité) :

Où chaque ligne verticale bleue sépare la formule résultante fr(M) en intervalles
afin de faire apparâıtre des formules plus simples (en fonction de M), chacune
multipliées par une Impulsion Première (de variable M) relativement simple.
Ces Impusions Premières pouvant être caractérisées par des intervalles se
“chevauchant” ou pas (au choix), elles sont “configurables”.

Pour finir, il est possible d’imaginer que cette formule fr(M) contienne des
intervalles complet avec fr(M) = 0 ou même avec fr(M) = 1 selon M .
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Remarque :

Comme dans le Chapitre I (dans la sous-partie “3.7 Equivalence de
formules”), il est possible d’établir des équivalences de formules due à
la propriété de la formule d’Impulsion Première. En effet, avec P (M) un
polynôme entier (positif ou négatif) de variable M ∈ Z, et a ∈ N, a ≥ 1,
nous avons :

I[P (M)2a] = 1 si P (M) = 0
I[P (M)2a] = 0 si P (M) > 0

Donc

P (M)I[P (M)2a] = P (M) si P (M) = 0
P (M)I[P (M)2a] = 1 si P (M) > 0

Et donc

P (M)I[P (M)2a] − 1 = P (M)− 1 si P (M) = 0
P (M)I[P (M)2a] − 1 = 0 si P (M) > 0

Ce qui permet d’écrire :

P (M)I[P (M)2a] − 1

P (M)− 1
= 1 si P (M) = 0

P (M)I[P (M)2a] − 1

P (M)− 1
= 0 si P (M) > 0

Or, comme nous avons déjà :

I[P (M)2a] = 1 si P (M) = 0
I[P (M)2a] = 0 si P (M) > 0

Ce qui permet de faire le lien et de conclure que :

I[P (M)2a] =
P (M)I[P (M)2a] − 1

P (M)− 1
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5.3 Généralisation avec les polynômes

De manière générale, pour tout polynôme (positif ou négatif, et quelquesoit
le degré de ce polynôme) à coefficient entiers P (M) (afin que pour tout M ,
P (M) ne donne que des résultats sous forme de nombres entiers, et donc
afin que P (M) soit un polynôme entier tel que défini dans la sous-partie
précédente), dans le cadre de la recherche des racines entières de ce polynôme
(par conséquent, ces racines sont entières), c’est-à-dire pour P (M) = 0 et
lorsque ces racines existent, on a pour M ∈ Z et pour a ∈ N tel que a ≥ 1 :

P (M) = 1− I[P (M)2a] = 0

Soient M1, M2, ... , Mj les racines de ce polynômes (j ∈ N, j ≥ 1), on a donc :

P (M1) = P (M2) = ... = P (Mj) = 0

Donc

(M −M1).(M −M2). ... .(M −Mj) = 0

D’où

P (M) = (M −M1).(M −M2). ... .(M −Mj)

Nous avons également :

P (M1) = P (M2) = ... = P (Mj) = 0

= 1− I[P (M1)] = 1− I[P (M2)] = ... = 1− I[P (Mj)] = 0

D’où

P (M) = 0

= 1− I{[(M −M1).(M −M2). ... .(M −Mj)]
2a}

= {1− I[(M −M1)2a]}.{1− I[(M −M2)2a]}. ... .{1− I[(M −Mj)
2a]}
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Et donc

P (M) = 0

= 1− I

[
i=j∏
i=1

(M −Mi)
2a

]

=

i=j∏
i=1

{
1− I[(M −Mi)

2a]
}

Pour tout polynôme (positif ou négatif) à coefficient entiers P (M) et pour
a ∈ N, a ≥ 1, nous observons que :

Si P (M) = 0 , on a {1− I[P (M)2a]} = 0, et la réciproque est vraie.
Si P (M) 6= 0 , on a {1− I[P (M)2a]} = 1, et la réciproque est vraie.

Ce qui permet d’établir un lien entre tous les polynômes (positifs ou négatifs)
à coefficient entiers P (M) , à variable entière (quelquesoit le degré du polynôme),
leur(s) racine(s) et la formule d’Impulsion Première I.

REMARQUE 1 :

Pour P (M) un polynôme entier (positif ou négatif) de variable M ∈ Z et
a ∈ N tel que a ≥ 1, si P (M) n’a pas de racine entière, alors nous avons
toujours :

I[P (M)2a] = 0

REMARQUE 2 :

Pour P1(M) un polynôme entier (positif ou négatif) de variable M ∈ Z, et
a ∈ N tel que a ≥ 1, nous pouvons retrouver P2(M) les polynômes entiers
(positif ou négatif) qui n’ont pas de racine entière sous la forme suivante :

P2(M) = P1(M) + b.I[P1(M)2a] avec b ∈ Z− {0}.

On pourrait aussi imaginer que b s’exprime en fonction de M ...
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5.4 Fonctions intéressantes

Pour des valeurs de M appartenant à un intervalle (mais pas nécessairement),
il est possible de construire des fonctions qui “rejètent” ces valeurs. Voici
quelques exemples de fonctions avec M , D, D1 et D2 ∈ N, et avec a ∈ R.
Ces fonctions “font penser à” des filtres.

Exemple 1 :

Fonction Rejet F1(M) définie pour M ∈ [0;D] :

F1(M) = a− 1

I

[
k=D∏
k=0

(M − k)

]

et dont les caractéristiques sont les suivantes :

F1(M) = (a− 1) Pour 0 ≤M ≤ D.
F1(M)→ −∞ Pour M > D.

Ce qui fait penser à un filtre “passe-bas” sur la variable M .

Exemple 2 :

Fonction Rejet F2(M) définie pour M ∈ [D; +∞] :

F1(M) = a− 1

1− I

[
k=D∏
k=0

(M − k)

]

et dont les caractéristiques sont les suivantes :

F2(M)→ −∞ Pour 0 ≤M ≤ D.
F2(M) = (a− 1) Pour M > D.

Ce qui fait penser à un filtre “passe-haut” sur la variable M .
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Exemple 3 :

Fonction Rejet F3(M) définie pour M ∈ [D1;D2] :

F3(M) = a− 1

I

[
k=D2∏
k=0

(M − k)

]
− I

k=(D1−1)∏
k=0

(M − k)


et dont les caractéristiques sont les suivantes :

F3(M) = (a− 1) Pour D1 ≤M ≤ D2.
F3(M)→ −∞ Pour M < D1 et pour M > D2.

Ce qui fait penser à un filtre “passe-bande” sur la variable M .

Exemple 4 :

Fonction Rejet F4(M) définie pour M ∈ [D1;D2] et avec D1 = D2 = D :

F4(M) = a− 1

I

[
k=D2∏
k=0

(M − k)

]
− I

k=(D1−1)∏
k=0

(M − k)


Donc

F4(M) = a− 1

I

[
k=D∏
k=0

(M − k)

]
− I

k=(D−1)∏
k=0

(M − k)


et dont les caractéristiques sont les suivantes :

F4(M) = (a− 1) Pour M = D.
F4(M)→ −∞ Pour M 6= D.

Ce qui fait penser à un filtre “rejection complémentaire” sur la variable M
(la bande passante du filtre est une seule valeur de M).
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Exemple 5 :

Fonction Rejet F5(M) définie pour M ∈ [D1;D2] et avec D1 = D2 = D :

F5(M) = a− 1

1 + I

k=(D−1)∏
k=0

(M − k)

− I

[
k=D∏
k=0

(M − k)

]

et dont les caractéristiques sont les suivantes :

F5(M)→ −∞ Pour M = D.
F5(M) = (a− 1) Pour M 6= D.

Ce qui fait penser à un filtre “rejection” sur la variable M .

Hypothèse :

Il doit être possible d’établir des liens avec la théorie du signal ou même avec
l’analyse harmonique si l’on considère que la variable M est une longueur
d’onde ou une période.

Remarque :

Comme dans le Chapitre I, même remarque concernant l’association de
la variable M à une variable physique. En associant M à une longueur
d’onde, nous devons admettre l’existence d’une limite minimum pour une
longueur d’onde, et donc une limite minimum pour une période, et une limite
maximum pour une fréquence. Le raisonnement reste le même en associant
M à une période puisqu’il faut dans ce cas admettre une limite minimum
pour la période, les conclusions sont donc identiques, mais le fait d’associer
M à la période permet de généraliser l’application des formules à tous les
phénomènes cycliques.
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6

Reconstitution par
“quantification”

- Nous avons étudié le polynôme entier positif P (M) = (M−D)2a avec D ∈ N
et a ∈ N tel que a ≥ 1. Nous avons vu que comme ce polynôme est toujours
positif pour M ∈ Z, la formule d’Impulsion Première de ce polynôme est
définie pour tout M ∈ Z. Nous avions noté :

I[P (M)] = I[(M −D)2a]

Ce polynôme s’annule seulement si M = D. Nous avons donc :

I[(M −D)2a] = 1 si M = D
I[(M −D)2a] = 0 sinon.

La représentation graphique de cette formule étant la suivante :
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- La suite va être donnée simplement par des définitions :

Appelons “quantification” le fait que pour I[P (M)] (donnée précédemment),
nous devons avoir M ∈ Z. Le mot “quantification” est empreinté à la
physique quantique (les quantas, valeurs entières indivisibles, ou encore quan-
tités discontinues).

Appelons méthode de “reconstitution par quantification” la méthode d’ajout
d’autant de formules d’Impusion Première (telles que I[P (M)] ) que nécessaire
pour donner une approximation de toutes fonctions ou formules connues,
où la valeur de D est ajustable pour chacune de ces formules d’Impulsion
Première. La méthode s’appliquant également à des formules non connues
mais recherchée. Notons RQ(M) la formule d’approximation obtenue.

Le désavantage est la marge d’erreur due à l’approximation.

L’avantage de cette méthode qu’elle permet de donner une approximation
de tout ce que l’on cherche à obtenir. Par exemple, en traçant une courbe
à main levée et au hasard sur un graphique, il est possible de donner une
approximation par cette méthode. Il est même possible de choisir l’échelle
pour M et pour I[P (M)] (afin de diminuer ou augmenter la marge d’erreur).

Pour cela, il suffit de tracer une courbe dans un plan sans repères de coordonnée
ni d’abcisse. Une fois cette courbe tracée, il nous suffit de décider quel
marge d’erreur est acceptable pour l’approximation (en ajoutant les repères
de coordonnée et d’abcisse).
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Par exemple donnons le tracé d’une courbe telle que :

La marge d’erreur de l’approximation peut être réduite en changeant la
“résolution” du graphique, c’est-à-dire en effectuant un changement de repère
(dans notre cas en ramenant l’unité de graphique précédent à une mesure 2
fois plus petite pour le graphique suivant), de manière à obtenir :

Nous pouvons procéder ainsi de suite en augmentant à l’infini la “résolution”
graphique, de manière à ce que la reconstitution de cette courbe tende à
devenir exacte.
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Le terme de résolution (comme pour la résolution d’une image numérique) est
ici employé car l’ensemble de coordonnées {M ;RQ(M)} est utilisée comme
un “pixel” (terme informatique) qui serait déposé sur un point de la courbe,
et de proche en proche sur tous les points de la courbe (dans le cas d’une
résolution qui tendrait vers une précision exacte, et donc une marge d’erreur
qui tendrait vers 0).

Remarquons qu’il est aussi possible de rajouter un coefficient multiplicateur
devant chacune de ces formules d’Impulsion Première de RQ(M) de manière
à donner une valeur exacte de la courbe en M . Ceci nous permettrait de
n’avoir à changer la résolution que de l’axe M sans changer celui de RQ(M).
D’ailleurs dans ce cas, et pour atteindre la bonne valeur de la courbe, il n’est
pas utile de faire la somme de plusieurs formules d’Impulsions Premières en
une valeur de M donnée : il suffit d’une seule formule d’Impulsion Première
multipliée par le coefficient qui permet d’atteindre directement la valeur de
la courbe. En faisant de même pour chaque valeur de M , nous reconstituons
la courbe point par point de manière approximative.

Remarque importante :

Cette méthode de reconstitution par quantification fait penser aux fonctions
en escalier utiles pour les intégrales. Il doit donc être possible d’établir un
lien entre les fonctions intégrales et la formule I[P (M)] telle que nous l’avons
définie.
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CHAPITRE III

Répartition exacte des
Nombres Premiers
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Introduction

Dans le fond, la méthode proposée pour atteindre notre objectif fait penser
à la méthode de MINÁC-WILLANS [4]. Cependant, elle diffère largement
dans la forme puisqu’elle invoque des fonctions que nous avons pu construire
dans le Chapitre I et qui seront rappelées dans ce chapitre, ce qui permet
de donner une alternative. Ces fonctions sont principalement la fonction
s(M) (la simplifiée de variable M , définie dans le Chapitre I) et la fonction
I(M) (l’Impulsion Première de variable M , définie dans le Chapitre I). La
fonction I(M), qui correspondant à un cas particulier de la fonction s(M),
va s’avérer très utile ici.

(ATTENTION, une fois encore dans ce chapitre, les crochets ont la même
fonction que de simples parenthèses, ils ne signifient donc ni “valeur absolue”
ni “partie entière”)
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7

Reconstitution de Pn par les
formules de type s(M) et I(M)

Il existe un moyen pour trouver tous les nombres premiers dans l’ordre
croissant et sans répétition.

Nous allons faire référence à la formule s(M) (qui est un cas particulier de
la formule f(M ;x) ) abordée dans le Chapitre I.

7.1 Rappels

- Rappelons que, pour un ordre croissant de nombres premiers consécutifs, Pn
est le nième nombre premier. Lorsque nous traitons l’ensemble des nombres
premiers, nous avons donc forcément n ∈ N, n ≥ 1. L’objectif est d’obtenir :

P1 = 2
P2 = 3
P3 = 5
P4 = 7
P5 = 11
P6 = 13
P7 = 17
P8 = 19
P9 = 23
...
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- La formule s(M) est la simplifiée de variable M . Elle est le cas particulier
de la formule f(M ;x) dans lequel M = N et x = 1 (voir Chapitre I).

s(M) est définie pour tout M ∈ N, M ≥ 2 :

S(M) = cos 2

(
π

4
.
v=3∏
v=1

(M − v)

)
.
sin 2

(
(M − 1)!.

π

M

)
sin 2

( π
M

)
Ou encore, pour m ∈ N, m ≥ 2 :

S(M) =
sin 2

(
(M − 1)!m.

π

M

)
sin 2

( π
M

)
Nous l’avons vu dans le Chapitre I, ceci qui est aussi équivalent à :

S(M) =
sin 2

(
(M − 2)!m.

π

M

)
sin 2

( π
M

)
Nous avons :

s(M) = 1 si M ∈ P (la réciproque est vraie)
s(M) = 0 si M /∈ N (la réciproque est vraie)

- La formule I(M) :

La formule I(M) est la formule d’Impulsion Première de variable M .La
formuleI(M) est définie pour M ∈ N, M ≥ 0 et se note :

I(M) = s(2.M + 2)

s(2.M + 2) étant la simplifiée de variable (2.M + 2).
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Ou encore (équivalent) :

I(M) = s(M + 2).s(M + 3)

s(M + 2) étant la simplifiée de variable (M + 2) et
s(M + 3) étant la simplifiée de variable (M + 3).

Elle se caractérise par :

I(M) = 1 si M = 0 (la réciproque est vraie)
I(M) = 0 si M > 0 (la réciproque est vraie)

Effectuons un petit raisonnement dans ce paragraphe. En changeant de
variable tel que ce qui suit, nous pouvons obtenir une formule d’Impulsion
Première :

Pour M = X2a

I(X2a) est définie pour tout X ∈ Z et pour tout a ∈ N, a ≥ 1.

Pour a = 1 , Nous avons donc :

I(X2) = 1 si X = 0
I(X2) = 0 si X ∈ Z− {0} (pour tout entier positif ou négatif sauf 0)

- La formule C(M) :

La formule de comptage des nombres premiers C(M) est définie pour tout
M ∈ N, M ≥ 2. Pour N1 et N2 ∈ N tels que N1 et N2 ≥ 2, la valeur de C(M)
donne la quantité de nombres premiers appartenant à l’intervalle [N1;N2] :

C
N2

N1
(M) =

M=N2∑
M=N1

s(M)
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7.2 Etude

Changeons quelque peu les notations précédentes pour démarrer cette étude.
Réécrivons :

C
N2

N1
(M) =

D=N2∑
D=N1

s(D)

Les propriétés des formules restent les mêmes, nous changeons simplement
de nom de variable avec D ∈ N, D ≥ 2. En restreignant la formule C(D) à
l’intervalle [2;M ], nous avons :

C
M

2 (D) =
D=M∑
D=2

s(D)

Cette formule de comptage ne peut être qu’un nombre entier supérieur ou
égale à 1.

Notons n le nième nombre premier Pn tel que n ∈ N, n ≥ 1 et raisonnons pas
à pas.

• 1ière partie du raisonnement :

Notons X la différence entre n et la formule C(D) restreinte à l’intervalle
[2;M ] :

X = n−
D=M∑
D=2

s(D)

D’où

- Pour n =
D=M∑
D=2

s(D) nous avons X = 0

- Pour n >
D=M∑
D=2

s(D) nous avons X ∈ Z− {0}

- Pour n <
D=M∑
D=2

s(D) nous avons X ∈ Z− {0}
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Regroupons les résultats de la formule de X en fonction de n et de M dans
un tableau :

X = n−
D=M∑
D=2

s(D)

X n 1 2 3 4 5 6 7 8 9 10 ...

M

2 0 1 2 3 4 5 6 7 8 9
3 -1 0 1 2 3 4 5 6 7 8
4 -1 0 1 2 3 4 5 6 7 8
5 -2 -1 0 1 2 3 4 5 6 7
6 -2 -1 0 1 2 3 4 5 6 7
7 -3 -2 -1 0 1 2 3 4 5 6
8 -3 -2 -1 0 1 2 3 4 5 6
9 -3 -2 -1 0 1 2 3 4 5 6
10 -3 -2 -1 0 1 2 3 4 5 6
11 -4 -3 -2 -1 0 1 2 3 4 5
12 -4 -3 -2 -1 0 1 2 3 4 5
13 -5 -4 -3 -2 -1 0 1 2 3 4
14 -5 -4 -3 -2 -1 0 1 2 3 4
15 -5 -4 -3 -2 -1 0 1 2 3 4
16 -5 -4 -3 -2 -1 0 1 2 3 4
17 -6 -5 -4 -3 -2 -1 0 1 2 3
18 -6 -5 -4 -3 -2 -1 0 1 2 3
19 -7 -6 -5 -4 -3 -2 -1 0 1 2
20 -7 -6 -5 -4 -3 -2 -1 0 1 2
21 -7 -6 -5 -4 -3 -2 -1 0 1 2
22 -7 -6 -5 -4 -3 -2 -1 0 1 2
23 -8 -7 -6 -5 -4 -3 -2 -1 0 1
24 -8 -7 -6 -5 -4 -3 -2 -1 0 1
25 -8 -7 -6 -5 -4 -3 -2 -1 0 1
26 -8 -7 -6 -5 -4 -3 -2 -1 0 1
27 -8 -7 -6 -5 -4 -3 -2 -1 0 1
28 -8 -7 -6 -5 -4 -3 -2 -1 0 1
29 -9 -8 -7 -6 -5 -4 -3 -2 -1 0
30 -9 -8 -7 -6 -5 -4 -3 -2 -1 0
... ...
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• 2ième partie du raisonnement :

- Pour n =
D=M∑
D=2

s(D) nous avons X = 0

Et donc X2 = 0

- Pour n >
D=M∑
D=2

s(D) nous avons X ∈ Z− {0}

Et donc X2 ∈ N−{0} , ce qui revient à écrire X2 ∈ N tel que X2 > 0.

- Pour n <
D=M∑
D=2

s(D) nous avons X ∈ Z− {0}

Et donc X2 ∈ N−{0} , ce qui revient à écrire X2 ∈ N tel que X2 > 0.

=⇒ Ce qui permet d’effectuer la synthèse :

- Pour n =
D=M∑
D=2

s(D) , nous avons :

X2 =

[
n−

D=M∑
D=2

s(D)

]2

= 0

- Pour n >
D=M∑
D=2

s(D) et pour n <
D=M∑
D=2

s(D) ,

c’est-à-dire pour n 6=
D=M∑
D=2

s(D) , nous avons :

X2 =

[
n−

D=M∑
D=2

s(D)

]2

tel que X2 ∈ N et X2 > 0.
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Regroupons les résultats de cette formule en fonction de n et de M dans un
tableau :

X2 =

[
n−

D=M∑
D=2

s(D)

]2

X2 n 1 2 3 4 5 6 7 8 9 10 ...

M

2 0 1 4 9 16 25 36 49 64 81
3 1 0 1 4 9 16 25 36 49 64
4 1 0 1 4 9 16 25 36 49 64
5 4 1 0 1 4 9 16 25 36 49
6 4 1 0 1 4 9 16 25 36 49
7 9 4 1 0 1 4 9 16 25 36
8 9 4 1 0 1 4 9 16 25 36
9 9 4 1 0 1 4 9 16 25 36
10 9 4 1 0 1 4 9 16 25 36
11 16 9 4 1 0 1 4 9 16 25
12 16 9 4 1 0 1 4 9 16 25
13 25 16 9 4 1 0 1 4 9 16
14 25 16 9 4 1 0 1 4 9 16
15 25 16 9 4 1 0 1 4 9 16
16 25 16 9 4 1 0 1 4 9 16
17 36 25 16 9 4 1 0 1 4 9
18 36 25 16 9 4 1 0 1 4 9
19 49 36 25 16 9 4 1 0 1 4
20 49 36 25 16 9 4 1 0 1 4
21 49 36 25 16 9 4 1 0 1 4
22 49 36 25 16 9 4 1 0 1 4
23 64 49 36 25 16 9 4 1 0 1
24 64 49 36 25 16 9 4 1 0 1
25 64 49 36 25 16 9 4 1 0 1
26 64 49 36 25 16 9 4 1 0 1
27 64 49 36 25 16 9 4 1 0 1
28 64 49 36 25 16 9 4 1 0 1
29 81 64 49 36 25 16 9 4 1 0
30 81 64 49 36 25 16 9 4 1 0
... ...
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• 3ième partie du raisonnement :

- Pour n =
D=M∑
D=2

s(D) :

La valeur de
D=M∑
D=2

s(D) est constante tant que le nombre premier suivant

n’a pas été atteint par M . Autrement dit, cette valeur est constante
pour M appartenant à un intervalle. Pour Pn ∈ P et pour P(n+1) ∈ P
(ici, P(n+1) est donc le nombre premier consécutif et supérieur à Pn),

la valeur de
D=M∑
D=2

s(D) est constante sur l’intervalle M ∈ [Pn;P(n+1)−1].

Nous en déduisons que :

n =
D=M∑
D=2

s(D) pour M ∈ [Pn;P(n+1) − 1]

Et donc que : X2 = 0 pour M ∈ [Pn;P(n+1) − 1]

Dans ce cas, nous retrouvons :

I(X2) = I


[
n−

D=M∑
D=2

s(D)

]2
 = 1 pour M ∈ [Pn;P(n+1) − 1]

- Pour n 6=
D=M∑
D=2

s(D) , c’est-à-dire dans tous les autres cas, nous avons :

X2 > 0 tel que X2 ∈ N.

Dans ce cas, nous retrouvons (donner un intervalle dans ce cas n’est
pas nécessaire pour la suite du raisonnement) :

I(X2) = I


[
n−

D=M∑
D=2

s(D)

]2
 = 0
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Regroupons les résultats de cette formule en fonction de n et de M dans un
tableau :

I(X2) = I


[
n−

D=M∑
D=2

s(D)

]2


I(X2) n 1 2 3 4 5 6 7 8 9 10 ...

M

2 1 0 0 0 0 0 0 0 0 0
3 0 1 0 0 0 0 0 0 0 0
4 0 1 0 0 0 0 0 0 0 0
5 0 0 1 0 0 0 0 0 0 0
6 0 0 1 0 0 0 0 0 0 0
7 0 0 0 1 0 0 0 0 0 0
8 0 0 0 1 0 0 0 0 0 0
9 0 0 0 1 0 0 0 0 0 0
10 0 0 0 1 0 0 0 0 0 0
11 0 0 0 0 1 0 0 0 0 0
12 0 0 0 0 1 0 0 0 0 0
13 0 0 0 0 0 1 0 0 0 0
14 0 0 0 0 0 1 0 0 0 0
15 0 0 0 0 0 1 0 0 0 0
16 0 0 0 0 0 1 0 0 0 0
17 0 0 0 0 0 0 1 0 0 0
18 0 0 0 0 0 0 1 0 0 0
19 0 0 0 0 0 0 0 1 0 0
20 0 0 0 0 0 0 0 1 0 0
21 0 0 0 0 0 0 0 1 0 0
22 0 0 0 0 0 0 0 1 0 0
23 0 0 0 0 0 0 0 0 1 0
24 0 0 0 0 0 0 0 0 1 0
25 0 0 0 0 0 0 0 0 1 0
26 0 0 0 0 0 0 0 0 1 0
27 0 0 0 0 0 0 0 0 1 0
28 0 0 0 0 0 0 0 0 1 0
29 0 0 0 0 0 0 0 0 0 1
30 0 0 0 0 0 0 0 0 0 1
... ...
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• 4ième partie du raisonnement :

Etudions, la formule suivante :

M.s(M) = M pour M = Pn (nous avons noté Pn ∈ P)
M.s(M) = 0 pour M 6= Pn

Pour cette seconde égalité, il est intéressant de préciser l’intervalle. En effet,
en reprenant les notations de la “2ième partie du raisonnement”, nous
avons :

M.s(M) = 0 pour M ∈ [Pn;P(n+1) − 1]

D’où

M.s(M).I(X2) = 0 pour M ∈ [Pn;P(n+1) − 1]

- Pour X2 = 0 et pour M = Pn, et uniquement dans ce cas, nous pouvons
déduire que :

M.s(M).I(X2) = M.s(M).I


[
n−

D=M∑
D=2

s(D)

]2


= Pn.s(Pn).I


[
n−

D=Pn∑
D=2

s(D)

]2


= Pn.(1).(1)

= Pn

- Pour X2 > 0 (c’est-à-dire dans tous les autres cas, et cette fois-ci peu
importe les autres valeurs de M), comme nous avons :

I(X2) = 0

Nous déduisons également facilement que :

M.s(M).I(X2) = 0

Rappelons que s(M) n’est définie que pour M ∈ N, M ≥ 2.

Page 296 sur 514



Regroupons les résultats de cette formule en fonction de n et de M dans un
tableau :

M.s(M).I(X2) = M.s(M).I


[
n−

D=M∑
D=2

s(D)

]2


M.s(M).I(X2) n 1 2 3 4 5 6 7 8 9 10 ...

M

2 2 0 0 0 0 0 0 0 0 0
3 0 3 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0
5 0 0 5 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0
7 0 0 0 7 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 11 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 13 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 17 0 0 0
18 0 0 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 19 0 0
20 0 0 0 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0 23 0
24 0 0 0 0 0 0 0 0 0 0
25 0 0 0 0 0 0 0 0 0 0
26 0 0 0 0 0 0 0 0 0 0
27 0 0 0 0 0 0 0 0 0 0
28 0 0 0 0 0 0 0 0 0 0
29 0 0 0 0 0 0 0 0 0 29
30 0 0 0 0 0 0 0 0 0 0
... ...
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• 5ième partie du raisonnement :

D’après la formule précédente (et d’après le tableau précédent) :

Pour n constant, il nous suffit de faire la somme de toutes les valeurs de la
colonne correspondant à n, pour M ∈ [2; +∞]. Comme toutes les valeurs
de la colonne sont à 0 sauf une seule, qui vaut d’ailleurs le nombre premier
recherché, la somme de toutes ces valeurs vaut finalement ce nombre premier
recherché.

La formule du nième nombre premier Pn recherché s’écrit donc :

Pn =
M→+∞∑
M=2

M.s(M).I


[
n−

D=M∑
D=2

s(D)

]2



La formule donnant Pn étant définie pour tout M ∈ N tel que M ≥ 2 et pour
tout n ∈ N tel que n ≥ 1.

Cette formule permet donc de donner de manière exacte et générale la répar-
tition de tous les nombres premiers consécutifs (c’est-à-dire selon la valeur
de n) dans l’ordre croissant.

Nous voyons clairement dans cette formule que la formule d’Impulsion Première
I(X2) (qui permet de ramener le raisonnement mathématique à une logique
binaire, comme celle de l’algèbre de BOOLE [3]) et la simplifiée s(M) (établi-
ssant également un lien entre le raisonnement mathématique et l’algèbre de
BOOLE ) sont d’une importane capitale. La formule d’Impulsion Première
I(X2) et la simplifiée s(M) permettent de ramener le raisonnement mathé-
matique à un raisonnement en logique “binaire” , comme celle de l’algèbre
de BOOLE (en donnant des résultats qui ne peuvent être que 0 ou 1).
Comme la formule d’Impulsion Première est un cas particulier de la formule
simplifiée, nous pouvons considérer que l’utilisation des formules simplifiées
sont essentielles pour donner la répartition exacte des nombres premiers.

Cette étude a également permis de confirmer que la répartition des nombres
premiers n’est pas dûe au hasard, puisqu’elle se soumet à des règles représentées
par une formule précise.
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Remarque :

Cette formule ne rend pas les calculs simples, puisque les calculs de la
factorielle sont inévitablement plus longs pour les plus grands nombres. Or,
l’objectif du Chapitre I (“3.h.7 Produit de nombres factoriels et
divisibilité par M, généralisation”), et du Chapitre IV est de donner
une formule où le calcul de la simplifiée est optimal, ce qui permettra aussi
d’avoir un impact sur ce chapitre.

En comparaison aux autres formules utilisées (telles que f(M ;x), s(M) ou
I(M) ), cette formule se donne à un niveau de complexité logique supérieur.
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7.3 Formule Pn de répartition exacte des nombres

premiers

- Formule Pn de répartition exacte des nombres premiers :

Nous venons d’établir précédemment la formule Pn telle que Pn ∈ P , pour
tout M ∈ N tel que M ≥ 2 et pour tout n ∈ N tel que n ≥ 1 :

Pn =
M→+∞∑
M=2

M.s(M).I


[
n−

D=M∑
D=2

s(D)

]2



En rappelant que :

S(M) =

sin 2

(
(M − 1)!m.π

M

)
sin 2

( π
M

) avec m ∈ N, m ≥ 2

En rappelant que :

S(D) =

sin 2

(
(D − 1)!m.π

D

)
sin 2

( π
D

) avec m ∈ N, m ≥ 2

Et que, pour X = n−
D=M∑
D=2

s(D) :

I(X2) = s(X2 + 2).s(X2 + 3)

= s(2.X2 + 2)

=

sin 2

(
(2.X2 + 1)!m.π

2.X2 + 2

)
sin 2

(
π

2.X2 + 2

)
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- Rechcherche d’une formule de restriction R(n) :

Dans le cas de la formule de répartition exacte des nombres premiers Pn, et
comme dans celui de la formule D(N) vue dans le Chapitre I, nous pouvons
restreindre notre formule aux calculs les plus utiles (ou plutôt limiter les
calculs inutiles) grâce à une formule de restriction R(n) qui remplacera la
borne supérieure de M (qui tend vers “ +∞ ”).

Dans ce cas, les calculs s’arrêtent lorsque R(n) = Pn , avec R(n) ∈ N tel que
R(n) ≥ 2, autrement dit lorsque :

M=R(n)∑
M=2

M.s(M).I


[
n−

D=M∑
D=2

s(D)

]2

 6= 0

Car dans ce cas précis, nous avons :

Pn =

M=R(n)∑
M=2

M.s(M).I


[
n−

D=M∑
D=2

s(D)

]2



Et donc

Pn =
M=Pn∑
M=2

M.s(M).I


[
n−

D=M∑
D=2

s(D)

]2



SUITE EN COURS

DE REALISATION !

Remarque :

Nous pouvons finir en faisant le lien direct avec la formule s(M) puisque
s(M) = 1 pour M = Pn seulement, Pn étant donné par la formule précédente.

Page 301 sur 514



8

Formule de répartition exacte
des nombres premiers jumeaux
Pj

D’après la même méthode que précédemment, nous pouvons établir une
formule donnant la répartition exacte des nombres premiers jumeaux, c’est-
à-dire le répartition des nombres premiers jumeaux dans l’ordre croissant.

Notons Pj le jième nombre premier de l’ensemble de tous les nombres premiers
jumeaux. L’objectif est d’obtenir (sans faire de distinction sur la position des
nombres premiers jumeaux au sein d’un couple) :

Pour j = 1, Pj = 3
Pour j = 2, Pj = 5
Pour j = 3, Pj = 7
Pour j = 4, Pj = 11
Pour j = 5, Pj = 13
Pour j = 6, Pj = 17
Pour j = 7, Pj = 19
Pour j = 8, Pj = 29
Pour j = 9, Pj = 31
...
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Cette partie est un peu plus délicate que la précédente car elle va nécessiter
une synthèse entre 2 formules du même type que la formule Pn (que nous
venons d’établir).

Pour éviter que le développement ne soit trop lourd à gérer, donnons quelques
conditions au raisonnement. Par anticipation, nous devrons utiliser simultané-
ment les formules simplifiées premières s(M), s(M + 2) et s(M − 2). Ce qui
donne tout de suite le domaine de définition de M que nous allons devoir
adopter :

M ∈ N tel que M ≥ 4

Notons j′ ∈ N, j′ ≥ 1.

Effectuons ici aussi le raisonnement en plusieurs parties.
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• 1ière partie du raisonnement :

D’après la formule du type de s(M) (voir “7.1 Rappels” page 287) et en
tenant compte du domaine de définition donné M ∈ N, M ≥ 4 :

s(M) = 1 si M ∈ P
s(M) = 1 si M /∈ P

- Nous pouvons donc construire une formule de comptage des couples de
nombres premiers jumeaux. Une première approche se fait en donnant :

s(M).s(M + 2) = 1 si M et (M + 2) ∈ P simultanément,
s(M).s(M + 2) = 0 si M /∈ P ou si (M + 2) /∈ P seulement.

D’où
D=M∑
D=4

[s(D).s(D + 2)] une partie de la formule de comptage.

Or, pour le domaine de définition donné, le premier couple de nombres
premiers jumeaux {3; 5} ne peut pas être compté par la formule précédente.
Pour être exacte, nous devons ajouter 1 à cette formule, ce qui symbolisera
que nous avons bien tenu compte du premier couple pour le comptage :

1 +
D=M∑
D=4

[s(D).s(D + 2)]

Pour M passant par tous les nombres entiers consécutifs du domaine de
définition, cette formule donne nécessairement pour résultats tous les nombres
entiers de 1 à l’infini.
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- Nous pouvons également construire une formule de comptage des couples
de nombres premiers jumeaux par une seconde approche en donnant :

s(M).s(M − 2) = 1 si M et (M − 2) ∈ P simultanément,
s(M).s(M − 2) = 0 si M /∈ P ou si (M − 2) /∈ P seulement.

D=M∑
D=4

[s(D).s(D − 2)]

Pour M passant par tous les nombres entiers consécutifs du domaine de
définition, cette formule donne nécessairement pour résultats tous les nombres
entiers de 0 à l’infini.

Ici, contrairement à la précédente formule de comptage, le domaine de définition
nous permet de compter tous les couples de nombres premiers jumeaux.

- Ces 2 différentes formules de comptage vont être utiles pour la suite.
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• 2ième partie du raisonnement :

Dans le couple des nombre premiers jumeaux donné par {Pj′ ;P(j′+1)}, la

variable j′ donne le j′ ième couple. Nous pouvons constater que :

- Si j′ est impaire, alors Pj′ donne le premier (dans l’ordre croissant) du
couple de nombres premiers jumeaux,

- Si j′ est paire, alors Pj′ donne le second (dans l’ordre croissant) du
couple de nombres premiers jumeaux.

Ce qui indique de séparer les travaux : d’une part pour j′ impaire et d’autre
part pour j′ paire.

Il est impératif de constater que cette méthode contient une contradiction
qu’il sera nécessaire de corriger. En effet, cette méthode implique de considérer
que le j′ ième nombre premier jumeau ne peut être le même que le (j′ + 1)ième.

Or, il existe 2 couples de nombres premiers jumeaux et seulement 2 qui ont
un nombre premier en commun, il s’agit des couples :

{3; 5} et {5; 7}

Nous constatons dans ce cas que le nombre 5 va nécessairement se retrouver
dans les travaux concernant j′ impaire et dans les travaux concernant j′ paire.
Il deviendra utile de changer de variable en considérant la variable j. La
variable j′ ne doit donc être considérée que comme une variable intermédiaire
permettant d’atteindre notre objectif.

Nous savons donc déjà qu’une formule de correction de ce défaut sera nécessaire.
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• 3ième partie du raisonnement :

Dans un premier temps et pour rendre le raisonnement plus simple, omettons
volontairement le défaut vu précédemment.

- Si j′ est impaire, alors Pj′ donne le premier (dans l’ordre croissant) du
couple de nombres premiers jumeaux.

En notant :

X1 = j′ − 2.

{
1 +

D=M∑
D=4

[s(D).s(D + 2)]

}
+ 1

Si j′ = 2.

{
1 +

D=M∑
D=4

[s(D).s(D + 2)]

}
− 1

Alors X1
2 = 0.

Autrement dit : si j′ est un nombre impaire. Et comme nous avons vu
que pour M passant par tous les nombres entiers consécutifs du domaine de
définition, la formule :

1 +
D=M∑
D=4

[s(D).s(D + 2)]

donne nécessairement pour résultats tous les nombres entiers de 1 à l’infini,
cela implique que :

X1
2 = 0 quelquesoit le nombre impaire j′.

Et donc I(X1
2) = 1

Maintenant, dans tous les autres cas restants :

Si j′ 6= 2.

{
1 +

D=M∑
D=4

[s(D).s(D + 2)]

}
− 1

Alors X1
2 vaut un nombre entier, et donc :

I(X1
2) = 0
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- Si j′ est paire, alors Pj′ donne le second (dans l’ordre croissant) du couple
de nombres premiers jumeaux.

En notant :

X2 = j′ − 2.
D=M∑
D=4

[s(D).s(D − 2)]

Si j′ = 2.
D=M∑
D=4

[s(D).s(D − 2)]

Alors X2
2 = 0.

Autrement dit : si j′ est un nombre paire. Et comme nous avons vu que pour
M passant par tous les nombres entiers consécutifs du domaine de définition,
la formule :

1 +
D=M∑
D=4

[s(D).s(D − 2)]

donne nécessairement pour résultats tous les nombres entiers de 0 à l’infini,
cela implique que :

X2
2 = 0 quelquesoit le nombre paire j′.

Et donc I(X2
2) = 1

Maintenant, dans tous les autres cas restants :

Si j′ 6= 2.
D=M∑
D=4

[s(D).s(D − 2)]

Alors X2
2 vaut un nombre entier, et donc :

I(X2
2) = 0

- Pour la suite, en regroupant dans des tableaux les résultats des formules
I(X1

2) et I(X2
2), nous pourrons plus facilement mettre en évidence l’orientation

de nos recherches.
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• 4ième partie du raisonnement :

- D’une part, pour j’ impaire, nous avons la formule I(X1
2) :

I(X1
2) j′ 1 2 3 4 5 6 7 8 9 10 ...

M

2 x x x x x x x x x x
3 x x x x x x x x x x
4 1 0 0 0 0 0 0 0 0 0
5 0 0 1 0 0 0 0 0 0 0
6 0 0 1 0 0 0 0 0 0 0
7 0 0 1 0 0 0 0 0 0 0
8 0 0 1 0 0 0 0 0 0 0
9 0 0 1 0 0 0 0 0 0 0
10 0 0 1 0 0 0 0 0 0 0
11 0 0 0 0 1 0 0 0 0 0
12 0 0 0 0 1 0 0 0 0 0
13 0 0 0 0 1 0 0 0 0 0
14 0 0 0 0 1 0 0 0 0 0
15 0 0 0 0 1 0 0 0 0 0
16 0 0 0 0 1 0 0 0 0 0
17 0 0 0 0 0 0 1 0 0 0
18 0 0 0 0 0 0 1 0 0 0
19 0 0 0 0 0 0 1 0 0 0
20 0 0 0 0 0 0 1 0 0 0
21 0 0 0 0 0 0 1 0 0 0
22 0 0 0 0 0 0 1 0 0 0
23 0 0 0 0 0 0 1 0 0 0
24 0 0 0 0 0 0 1 0 0 0
25 0 0 0 0 0 0 1 0 0 0
26 0 0 0 0 0 0 1 0 0 0
27 0 0 0 0 0 0 1 0 0 0
28 0 0 0 0 0 0 1 0 0 0
29 0 0 0 0 0 0 0 0 1 0
30 0 0 0 0 0 0 0 0 1 0
31 0 0 0 0 0 0 0 0 1 0
32 0 0 0 0 0 0 0 0 1 0
... ...

A NOTER :

Les couples de
nombres premiers
jumeaux sont en
bleu, les croix
rouges “x” sont les
valeurs impossibles
à atteindre car en-
dehors du domaine
de définition.
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Nous constatons clairement que notre formule multipliée par s(M).s(M + 2)
nous donne la position du premier nombre premier jumeau du couple. La
formule s’écrit donc I(X1

2).s(M).s(M + 2) :

I(X1
2).s(M).s(M + 2) j′ 1 2 3 4 5 6 7 8 9 10 ...

M

2 x x x x x x x x x x
3 x x x x x x x x x x
4 0 0 0 0 0 0 0 0 0 0
5 0 0 1 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 1 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 1 0 0 0
18 0 0 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0 0
25 0 0 0 0 0 0 0 0 0 0
26 0 0 0 0 0 0 0 0 0 0
27 0 0 0 0 0 0 0 0 0 0
28 0 0 0 0 0 0 0 0 0 0
29 0 0 0 0 0 0 0 0 1 0
30 0 0 0 0 0 0 0 0 0 0
31 0 0 0 0 0 0 0 0 0 0
32 0 0 0 0 0 0 0 0 0 0
... ...

A NOTER :

De plus, nous
constatons que le
nombre premier
3 ne peut pas être
donné directement
par cette méthode
puisqu’il est en-
dehors du domaine
de définition.
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- D’autre part, pour j′ paire, nous avons la formule I(X2
2) :

I(X2
2) j′ 1 2 3 4 5 6 7 8 9 10 ...

M

2 x x x x x x x x x x
3 x x x x x x x x x x
4 0 0 0 0 0 0 0 0 0 0
5 0 1 0 0 0 0 0 0 0 0
6 0 1 0 0 0 0 0 0 0 0
7 0 0 0 1 0 0 0 0 0 0
8 0 0 0 1 0 0 0 0 0 0
9 0 0 0 1 0 0 0 0 0 0
10 0 0 0 1 0 0 0 0 0 0
11 0 0 0 1 0 0 0 0 0 0
12 0 0 0 1 0 0 0 0 0 0
13 0 0 0 0 0 1 0 0 0 0
14 0 0 0 0 0 1 0 0 0 0
15 0 0 0 0 0 1 0 0 0 0
16 0 0 0 0 0 1 0 0 0 0
17 0 0 0 0 0 1 0 0 0 0
18 0 0 0 0 0 1 0 0 0 0
19 0 0 0 0 0 0 0 1 0 0
20 0 0 0 0 0 0 0 1 0 0
21 0 0 0 0 0 0 0 1 0 0
22 0 0 0 0 0 0 0 1 0 0
23 0 0 0 0 0 0 0 1 0 0
24 0 0 0 0 0 0 0 1 0 0
25 0 0 0 0 0 0 0 1 0 0
26 0 0 0 0 0 0 0 1 0 0
27 0 0 0 0 0 0 0 1 0 0
28 0 0 0 0 0 0 0 1 0 0
29 0 0 0 0 0 0 0 1 0 0
30 0 0 0 0 0 0 0 1 0 0
31 0 0 0 0 0 0 0 0 0 1
32 0 0 0 0 0 0 0 0 0 1
... ...
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Nous constatons clairement que notre formule multipliée par s(M).s(M − 2)
nous donne la position du second nombre premier jumeau du couple. La
formule s’écrit donc I(X2

2).s(M).s(M − 2) :

I(X2
2).s(M).s(M − 2) j′ 1 2 3 4 5 6 7 8 9 10 ...

M

2 x x x x x x x x x x
3 x x x x x x x x x x
4 0 0 0 0 0 0 0 0 0 0
5 0 1 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0
7 0 0 0 1 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 1 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 1 0 0
20 0 0 0 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0 0
25 0 0 0 0 0 0 0 0 0 0
26 0 0 0 0 0 0 0 0 0 0
27 0 0 0 0 0 0 0 0 0 0
28 0 0 0 0 0 0 0 0 0 0
29 0 0 0 0 0 0 0 0 0 0
30 0 0 0 0 0 0 0 0 0 0
31 0 0 0 0 0 0 0 0 0 1
32 0 0 0 0 0 0 0 0 0 0
... ...
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- Pour finir, nous pouvons faire la synthèse en regroupant tous ces résultats
dans un seul tableau. Ceci va être possible grâce à l’addition de ces 2
formules, notons Y = I(X1

2).s(M).s(M + 2) + I(X2
2).s(M).s(M − 2) :

Y j′ 1 2 3 4 5 6 7 8 9 10 ...

M

2 x x x x x x x x x x
3 x x x x x x x x x x
4 0 0 0 0 0 0 0 0 0 0
5 0 1 1 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0
7 0 0 0 1 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 1 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 1 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 1 0 0 0
18 0 0 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 1 0 0
20 0 0 0 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0 0
25 0 0 0 0 0 0 0 0 0 0
26 0 0 0 0 0 0 0 0 0 0
27 0 0 0 0 0 0 0 0 0 0
28 0 0 0 0 0 0 0 0 0 0
29 0 0 0 0 0 0 0 0 1 0
30 0 0 0 0 0 0 0 0 0 0
31 0 0 0 0 0 0 0 0 0 1
32 0 0 0 0 0 0 0 0 0 0
... ...
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Comme nous nous y attendions, le nombre 5 se trouvant dans 2 couples
différents, j′ nous donne ce nombre dans 2 positions différentes. De plus,
comme 3 est en-dehors du domaine de définition de M , j′ ne peut pas indiquer
sa position directment dans le tableau.

Nous allons devoir corriger ces défauts.
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• 5ième partie du raisonnement :

- Dernière étape avec les formules avant de corriger les défauts.

Notons Z =
M→+∞∑
M=4

{M.[I(X1
2).s(M).s(M + 2) + I(X2

2).s(M).s(M − 2)]} :

Z j′ 1 2 3 4 5 6 7 8 9 10 ...

M

2 x x x x x x x x x x
3 x x x x x x x x x x
4 0 0 0 0 0 0 0 0 0 0
5 0 5 5 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0
7 0 0 0 7 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 11 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 13 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 17 0 0 0
18 0 0 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 19 0 0
20 0 0 0 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0 0
25 0 0 0 0 0 0 0 0 0 0
26 0 0 0 0 0 0 0 0 0 0
27 0 0 0 0 0 0 0 0 0 0
28 0 0 0 0 0 0 0 0 0 0
29 0 0 0 0 0 0 0 0 29 0
30 0 0 0 0 0 0 0 0 0 0
31 0 0 0 0 0 0 0 0 0 31
... ...
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- Premier défaut : Nous constatons que j′ ne donne pas de nombre premier
pour j′ = 1, ce qui décale la position dans la répartition des nombres premiers
jumeaux. Nous devons donc effectuer un décalage par changement de variable
pour résoudre ce problème. En notant j = j′ − 1 tel que que j ∈ N, j ≥ 1 :

Z j 1 2 3 4 5 6 7 8 9 10 ...

M

2 x x x x x x x x x x
3 x x x x x x x x x x
4 0 0 0 0 0 0 0 0 0 0
5 5 5 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0
7 0 0 7 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0
11 0 0 0 11 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 13 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 17 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 19 0 0 0
20 0 0 0 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0 0
25 0 0 0 0 0 0 0 0 0 0
26 0 0 0 0 0 0 0 0 0 0
27 0 0 0 0 0 0 0 0 0 0
28 0 0 0 0 0 0 0 0 0 0
29 0 0 0 0 0 0 0 29 0 0
30 0 0 0 0 0 0 0 0 0 0
31 0 0 0 0 0 0 0 0 31 0
... ...
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- Second défaut : Pour finir, il ne nous reste plus qu’à nous servir du défaut
de la répétition du nombre 5 pour convertir le premier des 2 en nombre 3.

Pour corriger ce défaut, nous allons faire appel une nouvelle fois à la formule
d’Impulsion Première. Nous allons l’appliquer de telle sorte que seulement
la valeur j = 1 sera modifiée et aucune autre valeur. Pour cela, notons :

I(j − 1)

Donnons tous les résultats de cette formule pour j ∈ N, j ≥ 1 :

I(j − 1) = 1 si j = 1
I(j − 1) = 0 si j ∈ N, j ≥ 2

Ce qui va permettre d’établir une formule de correction pour j = 1 seulement.
En effet :

−2.I(j − 1) = −2 si j = 1
−2.I(j − 1) = 0 si j ∈ N, j ≥ 2

Or, pour j = 1, nous avons :

Z =
M→+∞∑
M=4

{M.[I(X1
2).s(M).s(M + 2) + I(X2

2).s(M).s(M − 2)]} = 5

En effectuant la somme entre la formule de départ et la formule de correction,
nous avons :

−2.I(j − 1) +
M→+∞∑
M=4

{M.[I(X1
2).s(M).s(M + 2) + I(X2

2).s(M).s(M − 2)]}

= −2.I(1− 1) + 5 = 3 (pour j = 1)

Et les résultats de la somme entre la formule de départ et de la formule de
correction sont exactement ceux de la formule de départ lorsque j ∈ N, j ≥ 2.

Ce qui nous permet de conclure et d’établir la formule de répartion exacte
des nombres premiers jumeaux grâce à cette somme.

Page 317 sur 514



• Formule Pj de répartition exacte des nombres premiers jumeaux

Rappelons que j = j′ − 1 , donc j′ = j + 1.

Nous pouvons finalement donner Pj la formule de répartion exacte des nombres
premiers jumeaux par une somme qui fait la synthèse de la correction des
défauts, où j donne le jième des nombres premiers jumeaux dans l’ordre
croissant (j ∈ N, j ≥ 1) et sans répétition :

Pj = −2.I(j−1)+
M→+∞∑
M=4

{M.[I(X1
2).s(M).s(M+2)+I(X2

2).s(M).s(M−2)]}

Avec :

X1 = j′ − 2.

{
1 +

D=M∑
D=4

[s(D).s(D + 2)]

}
+ 1

= j + 2− 2.

{
1 +

D=M∑
D=4

[s(D).s(D + 2)]

}
Et avec :

X2 = j′ − 2.
D=M∑
D=4

[s(D).s(D − 2)]

= j + 1− 2.
D=M∑
D=4

[s(D).s(D − 2)]

Implicitement : M ∈ N, M ≥ 4

Remarque :

Comme pour Pn (la méthode étant la même), la formule Pj ne rend pas les
calculs simples, puisque les calculs de la factorielle sont inévitablement plus
longs pour les plus grands nombres.

Ici aussi, en comparaison aux autres formules utilisées (telles que f(M ;x),
s(M) ou I(M) ), cette formule se donne à un niveau de complexité logique
supérieur.
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9

Réécriture de la fonction ζ
(Zêta) de RIEMANN

Etant donné la fonction ζ de RIEMANN [5], pour s ∈ C tel que Re(s) > 1 :

ζ(s) =
∏
p∈P

1

1− p−s

Et étant donné que dans cette formule, p ∈ P permet de parcourir l’ensemble
de tous les nombres premiers, ce qui peut donc être remplacé par Pn (voir
sous-partie “7.3 Formule Pn de répartition exacte des nombres premiers”
page 300) pour n variant de 1 à l’infini, nous obtenons simplement :

ζ(s) =
n→+∞∏
n=1

1

1−

M→+∞∑
M=2

M.s(M).I


[
n−

D=M∑
D=2

s(D)

]2

−s
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Impressions personnelles

D’après le tableau de référence T.R.1 du Chapitre I, nous avons vu la
régularité dans les puissances des facteurs premiers des nombres entiers N ∈
N, N ≥ 2. Nous venons également de voir que donner une formule Pn
de répartition des nombres premiers était possible par “reconstitution”. La
régularité est bien là, juste sous nos yeux...

Une fois que je l’ai vu, je n’ai pas ressenti de joie immense mais presque une
étrange déception, même après tant d’efforts : celle de constater que jamais
rien n’avait changer au sujet des nombres premiers, seuls les points de vue à
leur égard ont changé au cours du temps.

J’ai dû me débarrasser de mes principaux défauts, qui m’encombraient pour
percevoir le monde tel qu’il est. Il me reste encore un défaut important
à changer, puisque j’ai eu suffisemment d’orgueil pour croire que je pouvais
réussir là où d’autres ont échoué, m’affranchir de cet orgueil devient nécessaire
afin de pouvoir progresser encore.

Je pense que le point de vue le plus juste peut être atteint lorsqu’on se rend
compte que pour étudier le monde, il faut pouvoir prendre conscience que
nous ne pouvons être qu’une de ses parties, une partie égale à une autre
partie du monde finalement, d’où il devient possible d’étudier le monde ou
de s’étudier soi-même indifféremment. Ce qui permet de voir que les vérités
les plus profondes valables pour ce monde sont aussi contenues en nous-même
(puisque nous sommes une partie de ce monde). Ceci permet de mettre en
évidence un lien naturelle avec une certaine philosophie (que nous serons
amenés à développer par la suite).
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J’ai simplement constaté que d’avoir essayé de voir les nombres premiers
tels qu’ils étaient et sans “préjugé” m’a permis de voir et de comprendre
l’ordre qui y règne. Il faut simplement adopter cette attitude car c’est aussi
celle que l’on se doit d’adopter envers les humains et la nature. Il faut être
respectueux en général pour comprendre uniquement par soi-même l’ordre
dans les nombres premiers (même si cela peut parâıtre étrange de mêler l’idée
de respect à celle de la compréhension d’un phénomène logique, il n’en est
rien : ceci sera d’ailleurs développé dans le Chapitre V, qui est selon moi
d’une importance au moins aussi significative que les autres, d’un point de
vue logique).

Pour la suite, le Chapitre IV se donne pour objectif de révéler les régularités
qui règnent au sein même des valeurs de la fonction ζ de RIEMANN, ainsi
qu’une étude permettant d’inclure cette fonction ζ dans un cadre plus générale.
L’objectif le plus profond étant de rendre le calcul optimal pour des formules
vues telles que s(M) et par conséquent de rendre le calcul optimal pour
obtenir Pn.
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CHAPITRE IV

Etude de la fonction ζ de
RIEMANN et du nombre π
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Introduction

Le but de ce chapitre est de rechercher une méthode qui permette de simplifier
ou de rendre le calcul optimal afin d’obtenir des nombres premiers. Nous
avons vu effectivement dans le Chapitre I (partie “3.8.7 Produit de
nombres factoriels et divisibilité par M , généralisation”) que des
simplifications étaient possibles afin de limiter la longueur des calculs dûe à
la factorielle dans la formule de s(M). Il devient donc naturel de se demander
s’il existe une expression mathématique équivalente qui limite les calculs au
strict nécessaire.

Remarque préalable :

Comme dans les chapitres précédents, les crochets ne signifient pas “partie
entière”, ils ont la même fonction que de simples parenthèses.
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Etude de la fonction ζ (Zêta)

Pour commencer, nous allons aborder la fonction ζ par une première approche
(faible) permettant d’établir un lien entre la somme des fonctions ζ(s) lorsque
s varie de 1 à l’infini et une fonction “simple”.

Puis, nous verrons que la fonction ζ peut être vue comme étant un cas
particulier de fonction qui peut s’inscrire dans un type de fonction plus
“générale” (approche moins simple).

Rappel :

ζ(s) =
n→+∞∑
n=1

1

ns
=

∏
p∈P

1

1− p−s

11.1 Première approche

De manière “faible” (c’est-à-dire de manière relativement simple), nous pouvons
établir un lien entre chaque fonction ζ lorsque s varie telle que s ∈ N, en
effectuant la somme des fonctions ζ pour chaque s ∈ N, s ≥ 1 (le cas de
s = 0 n’étant pas indispensable, nous l’évitons par anticipation).
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11.1.1 Piste d’écritures équivalentes à la fonction ζ

Dans un premier temps, notons cette somme :

s→+∞∑
s=1

ζ(s) = ζ(1) + ζ(2) + ζ(3) + ζ(4) + ζ(5) + ζ(6) + ζ(7) + ζ(8) + ...

En étalant la somme sur plusieurs lignes (chaque ligne correspond à une
égalité de ζ(s) pour une valeur de s unique) :

s→+∞∑
s=1

ζ(s) = 1 +
1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8
+ ...

+1 +
1

22
+

1

32
+

1

42
+

1

52
+

1

62
+

1

72
+

1

82
+ ...

+1 +
1

23
+

1

33
+

1

43
+

1

53
+

1

63
+

1

73
+

1

83
+ ...

+1 +
1

24
+

1

34
+

1

44
+

1

54
+

1

64
+

1

74
+

1

84
+ ...

+ ...

Or, l’égalité présentée sous cette forme nous permet de faire apparâıtre qu’une
somme de chaque colonne (à chaque début de ligne, un exemple de groupe
est repéré en rouge, un autre exemple est repéré en bleu) nous donne une
nouvelle égalité :

s→+∞∑
s=1

ζ(s) =
s→+∞∑
s=1

(1) +
s→+∞∑
s=1

(
1

2s
+

1

3s
+

1

4s
+

1

5s
+

1

6s
+

1

7s
+

1

8s
+ ...

)

Or, nous savons que pour 0 < u < 1 :

s→+∞∑
s=0

us = 1 +
s→+∞∑
s=1

us = 1 + u+ u2 + u3 + u4 + u5 + u6 + ... =
1

1− u

D’où
s→+∞∑
s=1

us =
1

1− u
− 1
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Et d’où nous pouvons également déduire :

s→+∞∑
s=1

(
1

2s
+

1

3s
+

1

4s
+

1

5s
+

1

6s
+

1

7s
+

1

8s
+ ...

)

=

(
1

1− 1
2

− 1

)
+

(
1

1− 1
3

− 1

)
+

(
1

1− 1
4

− 1

)
+

(
1

1− 1
5

− 1

)
+

(
1

1− 1
6

− 1

)
+ ...

=
k→+∞∑
k=2

(
1

1− 1
k

− 1

)

Et donc finalement une formule générale pour s ∈ N, s ≥ 1 :

s→+∞∑
s=1

ζ(s) =
s→+∞∑
s=1

(1) +
k→+∞∑
k=2

(
1

1− 1
k

− 1

)

=
s→+∞∑
s=1

(1)−
k→+∞∑
k=2

(1) +
k→+∞∑
k=2

(
1

1− 1
k

)

= 1 +
s→+∞∑
s=2

(1)−
k→+∞∑
k=2

(1) +
k→+∞∑
k=2

(
1

1− 1
k

)
Or, le nombre d’éléments contenu dans chacune des sommes étant identique,
nous pouvons conclure que :

s→+∞∑
s=2

(1) =
k→+∞∑
k=2

(1)

D’où

s→+∞∑
s=2

(1)−
k→+∞∑
k=2

(1) = 0

D’où nous déduisons également que :

s→+∞∑
s=1

ζ(s) = 1 +
k→+∞∑
k=2

(
1

1− 1
k

)
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La divergence de ζ(1) implique la divergence de cette formule. Afin d’éviter
la divergence dûe à ζ(1) , nous allons essayer d’exprimer cette somme en
fonction de s compris entre 2 et +∞.

D’autre part, prenons en considération cette égalité pour x ∈ N, x ≥ 2 :

V (x) = 1 +
k=x∑
k=2

(
1

k
− 1

1− 1
k

)
Nous pouvons donner les valeurs de cette formule en fonction de x :

V (2) = −1

2

V (3) = −5

3

V (4) = −11

4

V (5) = −19

5

V (6) = −29

6

V (7) = −41

7

V (8) = −55

8
...

V (x) = − x(x− 1)− 1

x

Donc

1 +
k=x∑
k=2

(
1

k
− 1

1− 1
k

)
= − x(x− 1)− 1

x
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Or,

k=x∑
k=2

(
1

k
− 1

1− 1
k

)
=

k=x∑
k=2

(
1

k

)
−

k=x∑
k=2

(
1

1− 1
k

)

D’où

k→+∞∑
k=2

(
1

k
− 1

1− 1
k

)
=

k→+∞∑
k=2

(
1

k

)
−

k→+∞∑
k=2

(
1

1− 1
k

)

De plus,

ζ(1) =
k→+∞∑
k=1

(
1

k

)
= 1 +

k→+∞∑
k=2

(
1

k

)

D’où

k→+∞∑
k=2

(
1

k

)
= ζ(1)− 1

Pour finir, nous avons vu que :

s→+∞∑
s=1

ζ(s) = 1 +
k→+∞∑
k=2

(
1

1− 1
k

)

D’où

k→+∞∑
k=2

(
1

1− 1
k

)
= −1 +

s→+∞∑
s=1

ζ(s)

Ce que nous pouvons également écrire :

k→+∞∑
k=2

(
1

1− 1
k

)
= −1 + ζ(1) +

s→+∞∑
s=2

ζ(s)
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Ce qui nous permet de déduire que :

lim
x→+∞

V (x) = 1 +
k→+∞∑
k=2

(
1

k
− 1

1− 1
k

)

= 1 +
k→+∞∑
k=2

(
1

k

)
−

k→+∞∑
k=2

(
1

1− 1
k

)

= 1 + [ζ(1)− 1]−

[
ζ(1)− 1 +

s→+∞∑
s=2

ζ(s)

]
Donc

lim
x→+∞

V (x) = 1−
s→+∞∑
s=2

ζ(s)

Et donc

s→+∞∑
s=2

ζ(s) = lim
x→+∞

[
1 +

x(x− 1)− 1

x

]

= lim
x→+∞

(
1 + x− 1− 1

x

)
= lim

x→+∞

(
x− 1

x

)
Or,

lim
x→+∞

−1

x
= 0 Et lim

x→+∞
x = +∞

Donc lim
x→+∞

(
x− 1

x

)
= +∞

Ce qui permet, d’une part, de conclure que la série diverge :

s→+∞∑
s=2

ζ(s) = +∞
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11.1.2 La fonction ζ assimilable à la fonction A

Dans un second temps, nous pouvons apporter une précision sur le comportement
de ζ(s) pour s ∈ N et au voisinage de +∞ . Rappelons que :

s→+∞∑
s=1

ζ(s) = ζ(1) +
s→+∞∑
s=2

ζ(s) Et ζ(1) = 1 +
k→+∞∑
k=2

1

k

D’où

s→+∞∑
s=2

ζ(s) = −ζ(1) +
s→+∞∑
s=1

ζ(s)

= −

[
1 +

k→+∞∑
k=2

1

k

]
+

s→+∞∑
s=1

ζ(s)

Or, nous avons vu que :

s→+∞∑
s=1

ζ(s) = 1 +
k→+∞∑
k=2

(
1

1− 1
k

)

Ce qui nous permet de déduire que :

s→+∞∑
s=2

ζ(s) = −1−
k→+∞∑
k=2

1

k
+ 1 +

k→+∞∑
k=2

(
1

1− 1
k

)

= −
k→+∞∑
k=2

1

k
+

k→+∞∑
k=2

(
1

1− 1
k

)

=
k→+∞∑
k=2

(
1

1− 1
k

− 1

k

)

=
k→+∞∑
k=2

[
1 +

1

k(k − 1)

]

(ce qui permet également de déduire la divergence de l’égalité)
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Le nombre d’éléments étant le même dans les sommes de chacun des 2
membres, nous pouvons ramener la variable k à k = s , ce qui nous permet
d’écrire plus simplement que :

s→+∞∑
s=2

ζ(s) =
s→+∞∑
s=2

[
1 +

1

s(s− 1)

]

Le nombre d’éléments étant le même dans les sommes de chacun des 2
membres, cette dernière égalité nous permet d’établir que la fonction ζ(s)
est “globalement assimilable” (c’est-à-dire pour l’ensemble des valeurs de
s ∈ N tel que s ≥ 2, ou encore pour s ∈ [2; +∞[ ) à la formule suivante :

1 +
1

s(s− 1)

D’où l’équivalence au voisinage de +∞ :

lim
s→+∞

ζ(s) = lim
s→+∞

[
1 +

1

s(s− 1)

]
= 1

Notons A la fonction assimilable à la fonction ζ telle que :

A(s) = 1 +
1

s(s− 1)

Et donc, telle que :

s→+∞∑
s=2

ζ(s) =
s→+∞∑
s=2

A(s)
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11.1.3 Etude de la fonction assimilable A(s)

- Dans un dernier temps, nous pouvons faire l’étude de la fonctionA précédente
assimilée à ζ. Nous avons noté A(s) la formule correspondante :

A(s) = 1 +
1

s(s− 1)

A(s) ne possède que 2 pôles réels : 1 pôle en 0 et un autre en 1. D’autre
part, A(s) ne possède aucune racine réelle et ne peut par conséquent jamais
être nulle pour s ∈ R.

Au passage à la limite en 1, nous obtenons :

lim
s→1

[
1 +

1

s(s− 1)

]
= +∞

La divergence de cette formule en s = 1 reste cohérente quant à l’assimilation
de A(s) à ζ(s) en s = 1, puisque ζ(s) est elle aussi divergente en ce point.
Ce qui permet d’étendre l’intervalle d’assimilation de A(s) à ζ(s) jusqu’en
s = 1, c’est-à-dire pour s ∈ N sur l’intervalle [1; +∞[.

De plus,

lim
s→0

[
1 +

1

s(s− 1)

]
= +∞

Rappelons qu’au voisinage de +∞ :

lim
s→+∞

[
1 +

1

s(s− 1)

]
= 1

Etendons le raisonnement au voisinage de −∞ :

lim
s→−∞

[
1 +

1

s(s− 1)

]
= 1
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- Dérivée de A(s) :

A′(s) = − 2s− 1

s2.(s− 1)2
(cette écriture révèle les 2 pôles et une racine réels)

Ce qui est équivalent à (cette écriture est utile pour les limites en l’infini) :

A′(s) =
−1

s(s− 1)
.

(
1

s
+

1

s− 1

)

Nous pouvons alors étudier A′(s) :

A′(s) ne possède que 2 pôles réels : 1 pôle en 0 et un autre en 1. D’autre

part, A′(s) possède une unique racine réelle en s =
1

2
, d’où A′

(
1

2

)
= 0.

Etude des limites :

I lim
s→−∞

A′(s) = 0

I lim
s→0

A′(s) = +∞

A′ est donc positive sur l’intervalle ]−∞; 0[.

I A′
(

1

2

)
= 0 donc A′ coupe l’axe des abcisses une seule fois en s =

1

2
.

A′ est donc positive sur l’intervalle ]0;
1

2
[.

I lim
s→1

A′(s) = −∞

A′ est donc négative sur l’intervalle ]
1

2
; 1[.

I lim
s→+∞

A′(s) = 0

A′ est donc négative sur l’intervalle ]1; +∞[.

Page 334 sur 514



- Cette étude permet de tirer des conclusions sur les caractéristiques de A(s) :

A ne possèdant aucune racine réelle, elle ne peut par conséquent jamais être
couper l’axe des abcisses.

A est strictement croissante sur l’intervalle ] − ∞; 0[ avec une convergence
vers 1 en −∞ et une divergence vers +∞ en 0. Comme A ne coupe jamais
l’axe des abcisses, elle est donc positive sur cet intervalle.

A est strictement croissante sur l’intervalle ]0;
1

2
[ ,

A atteint un maximum pour s =
1

2
, donné par A

(
1

2

)
= −3 ,

A est strictement décroissante sur l’intervalle ]
1

2
; 1[ . Comme A ne coupe

jamais l’axe des abcisses, elle est donc négative sur l’intervalle ]0; 1[ .

A est strictement décroissante sur l’intervalle ]1; +∞[ avec une divergence
vers +∞ en 1 et une convergence vers 1 en +∞ . Comme A ne coupe jamais
l’axe des abcisses, elle est donc positive sur cet intervalle.

A possède donc un axe de symétrie en s =
1

2
. En effet, donnons quelques

valeurs de A en fonction de s :

(voir page suivante)
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A(−500) = A(501) = 250501/250500

...

A(−250) = A(251) = 62751/62750

...

A(−100) = A(101) = 10101/10100

...

A(−50) = A(51) = 2551/2550

...

A(−25) = A(26) = 651/650

...

A(−6) = A(7) = 43/42

A(−5) = A(6) = 31/30

A(−4) = A(5) = 21/20

A(−3) = A(4) = 13/12

A(−2) = A(3) = 7/6

A(−1) = A(2) = 3/2

A(−1/2) = A(3/2) = 7/3

A(−1/4) = A(5/4) = 21/5

A(−1/8) = A(9/8) = 73/9

A(−1/16) = A(17/16) = 273/17

...

A(−1/98) = A(99/98) = 9703/99

...

A(1/99) = A(98/99) = −9703/98

...

A(1/16) = A(15/16) = −24/15

A(1/8) = A(7/8) = −73/9

A(1/4) = A(3/4) = −21/5

A(1/3) = A(2/3) = −13/4

A(1/2) = −3
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La symétrie en s =
1

2
nous permet d’écrire que :

A(s) = A(1− s) (ce qui est d’ailleurs exact)

Et donc la connaissance de la symétrie de A en s =
1

2
et l’étude de A sur

l’intervalle [1/2; +[ suffisent pour connâıtre A intégralement.

Allure de la courbe :
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- Rappelons que nous avons :

s→+∞∑
s=2

ζ(s) =
s→+∞∑
s=2

A(s)

=
s→+∞∑
s=2

[
1 +

1

s(s− 1)

]

Ce qui établi clairement un lien entre ζ(s) et A(s) sur l’intervalle [2; +∞[.

En développant :

A(s) = 1 +
1

s(s− 1)

=
s2 − s+ 1

s(s− 1)

Nous constatons que (s2− s− 1) possède 2 racines complexes puisque pour :

s2 − s+ 1 = 0, le discriminant ∆ vaut

∆ = 1− 4 = 3.i2

Et donc, les 2 racines s1 et s2 sont :

s1 =
1 + i.

√
3

2
=

1

2
+ i.

√
3

2

s2 =
1− i.

√
3

2
=

1

2
− i.
√

3

2

D’où

A(s) =
(s− s1)(s− s2)

s(s− 1)
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Ce qui permet de constater que la formule A(s) s’annule pour 2 racines

complexes s1 et s2 de partie réelle
1

2
et de partie imaginaire ±

√
3

2
.

Or, il a été démontré que les 0 non triviaux tels que ζ(s) = 0 sont tous donnés
par s un nombre complexe dont la partie réelle appartient à l’intervalle [0; 1].
Il nous reste à savoir si ζ(s) peut encore être assimilée à A(s) sur cet intervalle

(ou au moins sur l’intervalle [
1

2
; 1] ), ce qui pourrait permettre de confirmer

la conjecture de RIEMANN [5]. Rappelons que cette conjecture stipule que
les 0 non triviaux de ζ(s) seraient donnés par des nombres complexes s qui

auraient tous pour partie réelle la valeur
1

2
.

Pour finir, nous pouvons encore écrire s1 et s2 ainsi :

s1 = ei.π/3

s2 = e−i.π/3

D’où

A(s) =
(s− ei.π/3)(s− e−i.π/3)

s(s− 1)

Remarque finale :

Il est possible de pousser le raisonnement un peu plus loin à propos de la
divergence de :

s→+∞∑
s=2

ζ(s) =
s→+∞∑
s=2

[
1 +

1

s(s− 1)

]

=
s→+∞∑
s=2

(1) +
s→+∞∑
s=2

[
1

s(s− 1)

]
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En effet, nous avons :

s→+∞∑
s=2

[
1

s(s− 1)

]
=

s→+∞∑
s=2

[
1

(s− 1)
− 1

s

]

=
s→+∞∑
s=2

[
1

(s− 1)

]
−

s→+∞∑
s=2

[
1

s

]

Or,

s→+∞∑
s=2

[
1

(s− 1)

]
=

s→+∞∑
s=1

[
1

s

]
= 1 +

s→+∞∑
s=2

[
1

s

]

Donc

s→+∞∑
s=2

[
1

s(s− 1)

]
= 1 +

s→+∞∑
s=2

[
1

s

]
−

s→+∞∑
s=2

[
1

s

]
= 1

Ce qui nous permet de conclure que :

s→+∞∑
s=2

ζ(s) =
s→+∞∑
s=2

[
1 +

1

s(s− 1)

]

=
s→+∞∑
s=2

[
1

s(s− 1)

]
+

s→+∞∑
s=2

(1)

= 1 +
s→+∞∑
s=2

(1)

=
s→+∞∑
s=1

1

= +∞
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11.2 Travaux en cours de réalisation

TRAVAUX EN COURS

DE REALISATION !

Note personnelle :

Chapitre dont le travail est long, mais dont la version définitive devrait
logiquement être à la hauteur de l’objectif que je vise ! Soyons patient...
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CHAPITRE V

Réflexions logiques et
philosophiques
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Introduction

Ce chapitre est indépendant des travaux précédemment effectués, il peut
être lu sans connaissance du contenu des chapitres précédents, bien que les 2
premières parties puisse être vue comme étant “complémentaires” (d’un point
de vue logique puis, respectivement, philosophique) à la recherche de formules
ou de règles comme nous l’avons fait précédemment. Cependant, ce chapitre
est d’une importance essentielle car il va nous mener au Chapitre VI en
établissant des liens avec des conceptions physiques. De plus, il va nous
amener à étudier un cas d’une importance capitale pouvant être vu comme
la preuve que l’on puisse construire des énoncés en dehors de toute théorie
cohérente, nous guidant encore vers une interprétation géométrique (et phy-
sique) possible dans le Chapitre VI. Certaines démarches dans les raisonne-
ments exposés peuvent sembler non-conventionnelles, cela étant volontaire
vues les quelques notions nouvelles qui seront abordées.

Parfois, ces réflexions seront simplifiées au strict nécessaire d’un point de vue
logique afin de nous amener rapidement à l’essentiel. Parfois, ces réflexions
seront accompagnées de remarques personnelles ou de digressions (celles-
ci pouvant être des intuitions, des avis personnels ou des suggestions qui
amènent à d’autres réflexions). Quelquefois encore, lorsque le sens me parâıt
difficile à donner de manière précise, ces réflexions pourront être “répétées”
différemment, ce qui pourrait être perçu comme redondant. Des compléments
de réflexion sont également exposés afin de tenter de faire des liens avec
d’autres sujets (quelquefois à propos de phénomènes physiques, où les formules
étudiées peuvent trouver une application ou fournir des explications).

Les 2 premières parties sont plus techniques que les suivantes, de plus, elles
permettent de se rendre compte des liens qui existent entre les propriétés
des nombres entiers, leur propriété de primalité, la logique binaire et le
calcul propositionnel “classique”. Il est nécessaire d’aborder les parties de ce
chapitre dans l’ordre tel qu’il est exposé.
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12

Correspondances entre
formules, valeurs de vérité et
énoncés

A partir de formules ne pouvant prendre que 2 valeurs (0 ou 1), et en
attribuant une valeur de vérité (vrai ou faux) à ces 2 valeurs, il devient
possible d’assimiler une formule à un système de “raisonnement cohérent” ,
c’est-à-dire à un système qui permet de traiter un énoncé en lui attribuant
une valeur de vérité (vrai ou faux).

Nous allons donc développer cela dans quelques cas intéressants. Remarquons
qu’il est toujours nécessaire de donner le domaine de définition d’une variable
ou plusieurs variables utilisées dans ces formules.

Pour la suite, nous attribueront la valeur de vérité “vrai” à la valeur “1”
d’une formule, et la valeur de vérité “faux” à la valeur “0” de cette même
formule.
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12.1 Exemple des nombres impaires

Considérons la formule sin 2

(
M.π

2

)
pour M ∈ N :

sin 2

(
M.π

2

)
= 0 si M est paire

sin 2

(
M.π

2

)
= 1 si M est impaire

Et en attribuant les valeurs de vérité comme convenu :

“0” est équivalent à “faux”
“1” est équivalent à “vrai”

Nous pouvons établir que la formule permet d’attribuer une valeur de vérité
à l’énoncé suivant :

“M ∈ N est telle que M est impaire”

En effet, si M est paire, la formule vaut 0, ce qui signifie que l’énoncé est
“faux” (M ne peut pas être paire et impaire à la fois). Et si M est impaire,
la formule vaut 1, ce qui signifie que l’énoncé est “vrai”.

Ceci permet d’assimiler la formule sin 2

(
M.π

2

)
pour M ∈ N à un système de

raisonnement cohérent qui permet d’attribuer une valeur de vérité à l’énoncé
“M ∈ N est telle que M est impaire”.
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12.2 La formule s(M)

Rappelons que pour M ∈ N tel que M ≥ 2, nous avons s(M) (étudiée dans
le Chapitre I, en sous-partie “3.1 Formule simplifiée s(M)”) telle que :

s(M) = 1 si M ∈ P
s(M) = 0 si M /∈ P

Comme dans la sous-partie précédente, ceci permet d’attribuer une valeur de
vérité à l’énoncé :

“M ∈ N, M ≥ 2 est telle que M ∈ P”

Et donc la formule s(M) peut être assimilée à un système de raisonnement
cohérent qui permet d’attribuer une valeur de vérité à l’énoncé “M ∈ N,
M ≥ 2 est telle que M ∈ P”.
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12.3 La formule I(M)

Rapidement avec la formule I(M), nous allons voir que ce raisonnement est
toujours possible pour les formules ne pouvant prendre que 2 valeurs (0 ou 1).

Pour M ∈ N, M ≥ 0 :

I(M) = 1 si M = 0
I(M) = 0 si M > 0

Ce qui permet d’attribuer une valeur de vérité à l’énoncé correspondant :

“M ∈ N, M ≥ 0 est telle que M = 0”

La formule I(M) peut donc être assimilée à un système de raisonnement
cohérent qui permet d’attribuer une valeur de vérité à l’énoncé correspondant.

Remarque :

Ajoutons que des tables de vérités ont été établies dans le Chapitre I (en
fin de sous-partie “3.7 Equivalences de formules”) entre autres à l’aide
de la formule I(M), pour lesquels nous avions défini 2 variable binaire B1

et B2 telles que M = B1 + B2 ou telles que M = B1.B2. Ce qui a permis
de conclure que toutes les propositions du calcul propositionnel “classique”
peuvent être formées à partir de la formule I(M).
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12.4 La formule f (M ;x)

Appliquons le même raisonnement avec la fomrule f(M ;x). Rappelons que
cette formule est définie pour M ∈ N tel que M ≥ 2 et pour N ∈ N tel que
N ≥ 1 (d’après cette formule, x est implicitement un nombre entier) :

f(M ;x) = 1 pour M ∈ P, si N est multiple de Mx.

f(M ;x) = 0 pour M ∈ P, si N non multiple de Mx.

f(M ;x) = 0 pour M /∈ P, quelquesoit N ≥ 1.

Ce qui permet d’attribuer une valeur de vérité à l’énoncé :

“M ∈ N, M ≥ 2 est telle que M ∈ P

et

N ∈ N, N ≥ 1 est telle que N est multiple de Mx”

La formule f(M ;x) peut donc être assimilée à un système de raisonnement
cohérent.
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Séparation des conditions mentionnées dans un énoncé :

Remarquons que l’énoncé précédent contient 2 “conditions” qui doivent être
vraies toutes les 2 en même temps pour que l’énoncé soit vrai dans son
ensemble. Ces 2 conditions sont équivalentes à ces 2 énoncés distincts :

“M ∈ N, M ≥ 2 est telle que M ∈ P”

Et

“N ∈ N, N ≥ 1 est telle que N est multiple de Mx”

Ainsi, il devient possible de ramener l’étude des valeurs de vérité d’un énoncé
E1 contenant 2 conditions à l’étude des valeurs de vérité de 2 énoncés E2 qui
équivaut à la 1ière condition et E3 qui équivaut à la 2ième.

Dans ce cas :

E1 est vrai si E2 est vrai et si E3 est vrai.
E1 est faux si E2 est faux ou si E3 est faux.

Ce qui signifie encore que :

“M ∈ N, M ≥ 2 est telle que M ∈ P” correspond justement à la formule
s(M) du point de vue de l’attribution des valeurs de vérités,

“N ∈ N, N ≥ 1 est telle que N est multiple de Mx” est supposée
correspondre à une autre formule du point de vue de l’attribution des valeurs
de vérités, que nous noterons F (M) (cette formule n’est pas connue).

Serait-il possible que la formule f(M ;x) aie une autre écriture? Analysons la
cohérence de cette situation en émettant l’hypothèse de l’existence de F (M).

D’un point de vue strictement mathématique, cela implique de réécrire f(M ;x)
telle que :

f(M ;x) = s(M).F (M)
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Ce qui correspond bien aux valeurs de vérité définies précédemment :

f(M ;x) = 1 si s(M) = 1 et si F (M) = 1
f(M ;x) = 0 si s(M) = 0 ou si F (M) = 0

Puisque, en assimilant la formule f(M ;x) à un système permettant d’attribuer
une valeur de vérité à l’énoncé E1 vu précédemment :

“M ∈ N, M ≥ 2 est telle que M ∈ P

et

N ∈ N, N ≥ 1 est telle que N est multiple de Mx”

En assimilant la formule s(M) à un système permettant d’attribuer une
valeur de vérité à l’énoncé E2 vu précédemment :

“M ∈ N, M ≥ 2 est telle que M ∈ P”

Et en assimilant la formule F (M) à un système permettant d’attribuer une
valeur de vérité à l’énoncé E3 vu précédemment :

“N ∈ N, N ≥ 1 est telle que N est multiple de Mx”

Comme tout ceci nous permet de garder la cohérence des valeurs de vérité à
propos des énoncés :

E1 est vrai si E2 est vrai et si E3 est vrai.
E1 est faux si E2 est faux ou si E3 est faux.

Est-il possible de trouver une formule telle que F (M) ?
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Comme nous connaissons f(M ;x) et s(M), Il nous suffit d’essayer de trouver
F (M) :

f(M ;x) = cos 2

(
π

4
.

v=3∏
v=1

(M − v)

)
.

sin 2

(
π.Fp
MFc

)
sin 2

( π
M

)
Et

S(M) = cos 2

(
π

4
.

v=3∏
v=1

(M − v)

)
.
sin 2

(
(M − 1)!.

π

M

)
sin 2

( π
M

)
Or,

f(M ;x) = s(M).F (M)

D’où

F (M) =
f(M ;x)

s(M)

Et donc la formule F (M) :

F (M) =
f(M ;x)

s(M)
=

sin 2

(
π.Fp
MFc

)
sin 2

(
(M − 1)!.

π

M

)
Or, F (M) n’étant pas définie dans les cas (et ils sont nombreux) où :

sin 2
(

(M − 1)!.
π

M

)
= 0 car la division par 0 est interdite.

Il est donc impossible de construire une telle formule de cette manière, c’est-à-
dire qu’il est impossible de construire une telle formule seulement en séparant
les 2 conditions de l’énoncé :

“M ∈ N, M ≥ 2 est telle que M ∈ P

et

N ∈ N, N ≥ 1 est telle que N est multiple de Mx”
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Autre méthode, les tables de vérités :

En ramenant la recherche d’une formule telle que F (M) à l’étude de tables
de vérité concernant les énoncés E1, E2 et E3, cette impossibilité apparâıt
encore plus clairement. Rappelons que :

- la valeur de vérité de E1 est à rattacher à la formule f(M ;x) connue.
- la valeur de vérité de E2 est à rattacher à la formule s(M) connue.
- la valeur de vérité de E3 est à rattacher à la formule F (M) recherchée.

En considérantE1, E2 et E3 comme étant des variables binaires, nous pouvons
alors établir une table de vérité (en algèbre de BOOLE [3]) :

E3 E2 E1 = E2.E3

0 0 0
0 1 0
1 0 0
1 1 1

Où les valeurs de E1 dépendent des valeurs de E2 et des valeurs de E3.
Rechercher une formule F (M) de manière directe revient alors à supposer
que les valeurs de E3 dépendent directement des valeurs de E2 et de E1, or
E2 est indépendant de E3.

Ceci peut être représenté par une nouvelle table de vérité qui le montre
clairement, il suffit de réarranger les lignes et les colonnes (sans changer les
valeurs de vérité) :

E1 E2 E3 = ?

0 0 0
0 0 1
0 1 0
1 1 1

Ici, il est impossible de formuler E3 en fonction de E2 et de E1. En effet,
puisque E3 peut prendre l’un ou l’autre des 2 états lorsque E1 et E2 ont
tous les 2 l’état 0 (c’est le cas des 2 premières lignes de la table de vérité, en
rouge). Dans ce cas, la valeur de E3 est “indécidable” en fonction de l’état
de E1 et de E2. Il est pourtant possible de donner une valeur dans les autres
cas (les 2 dernières lignes de la table de vérité).
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Il est donc impossible de donner l’énoncé E3 uniquement en fonction de E1

et de E2. Et pour finir, il est donc impossible de donner une formule F (M)
uniquement en fonction de s(M) et de f(M ;x). Ce qui revient à conclure la
même chose que pour le paragraphe précédent, l’impossibilité de construire
une formule telle que F (M) seulement à partir des formules s(M) et f(M ;x)
en séparant les 2 conditions de l’énoncé :

“M ∈ N, M ≥ 2 est telle que M ∈ P

et

N ∈ N, N ≥ 1 est telle que N est multiple de Mx”

Remarque :

Ces 2 méthodes peuvent être intéressantes pour la suite de nos réflexions, et
pour d’autre formules ne pouvant prendre que 2 valeurs (telles que 0 ou 1).
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12.5 Contenu d’un énoncé et valeurs de vérité

Nous avons vu précédemment que E3 ne pouvait s’exprimer uniquement en
fonction de E2 et de E1.

Ce qui peut permettre une réflexion générale sur la cohérence de la division
d’un énoncé principal en plusieurs énoncés indépendants.

Brièvement, l’énoncé vu précédemment :

“M ∈ N, M ≥ 2 est telle que M ∈ P”

contient lui aussi 2 conditions qui peuvent être vues comme des énoncés :

“M ∈ N, M ≥ 2”

Et

“M ∈ P”

Où les 2 conditions doivent être vraies pour que le 1ier énoncé soit vrai.
Comme dans la sous-partie précédente, nous pouvons assimiler les énoncés :

“M ∈ N, M ≥ 2 est telle que M ∈ P” à E1 (l’énoncé principal),

“M ∈ N, M ≥ 2” à E2 (l’énoncé indiquant la 1ière condition),

“M ∈ P” à E3 (l’énoncé indiquant la 2ième condition)

Nous nous retrouvons dans le même cas de figure, ce qui permet de conclure
la même chose.

Maintenant, si nous essayons de clarifier un peu plus la situation en donnant
des noms différents à E1, E2 et E3. C’est-à-dire :

Donnons à E1 le nom de Conséquence,
Donnons à E2 le nom de Cause 2,
Donnons à E3 le nom de Cause 1,
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La Conséquence peut être réalisée (la valeur de vérité est 1) seulement :

si la Cause 1 est réalisée (1ière condition dont la valeur de vérité est 1)
et
si la Cause 2 l’est aussi (2ième condition dont la valeur de vérité est 1).

Et reconsidérons les tables de vérités de la sous-partie précédente, nous
obtenons :

Cause 1 Cause 2 Conséquence = Cause 1.Cause 2

0 0 0
0 1 0
1 0 0
1 1 1

Ou bien, en réarrangeant seulement les lignes et les colonnes :

Conséquence Cause 2 Cause 1 = ?

0 0 0
0 0 1
0 1 0
1 1 1

Remarquons que nous devons interdire que :

Conséquence = 1 et Cause 2 = 0 en même temps,

car cela serait incohérent (voir l’avant-dernière table de vérité).

Ceci permet de mieux comprendre les liens entre les énoncés de manière
générale. Cela signifie en effet que :

- Si nous connaissons une formule ne pouvant prendre que des valeurs binaires
(comme 0 ou 1) et qui représente la Conséquence,

- si nous connaissons aussi une formule ne pouvant prendre que des valeurs
binaires (comme 0 ou 1) et qui représente la Cause 2,

- Et en sachant qu’il existe une condition qui interdit que Conséquence = 1 et
Cause 2 = 0 en même temps, ce qui se traduit également par l’impossibilité
que la formule associée à la Conséquence prenne la valeur 1 lorsque la formule
associée à la Cause 2 a la valeur 0
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⇒ Cela n’est pas suffisant pour permettre d’établir une formule qui représente
complètement la Cause 1. Autrement dit, Il n’est pas possible de formuler
les variations de la Cause 1 seulement à partir d’une formule représentant la
Conséquence et d’une autre formule représentant la Cause 2.

Soit la Cause 1 peut être formulée de manière fiable seulement partiellement
en fonction de la Conséquence et de la Cause 2, notamment pour les 2
dernières lignes de cette dernière table de vérité, soit la Cause 1 peut être
formulée intégralement en fonction de la Conséquence et de la Cause 2, mais
seulement de manière probable s’il est question d’intégrer toutes les lignes (et
donc toutes les possibilités) à la formule liée à la Cause 1. Ceci est l’objet
de la sous-partie suivante.

Exemple :

Prenons un exemple explicite :

Associons à la Conséquence l’énoncé “il y a du verglas” ,
Associons à la Cause 1 l’énoncé “il y a eu de la pluie” ,
Associons à la Cause 2 l’énoncé “il a fait froid”.

En considérant que les cas “il y a eu de la pluie” et “il a fait froid” nous
amène à constater qu’ “il y a du verglas”, alors le raisonnement précédent
appliqué à cet exemple signifie tout simplement que :

Dans le cas où il n’y a pas de verglas (Conséquence = 0) Et où il n’y a pas
eu de pluie (Cause 1 = 0),

Cela ne permet pas de déduire s’il a fait froid (Cause 1 = 1)
Ou s’il a fait chaud (Cause 1 = 0).

En d’autres termes, nous n’avons pas assez d’information pour connâıtre
la Cause 2. Pourtant, il est possible de savoir s’il fait chaud ou s’il fait
froid lorsque nous avons plus d’informations (par exemple, en mesurant la
température).
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Remarque 1 :

Tout cela permet de sous-entendre une question à propos de la connaissance
de la Cause 1 par des règles logiques : Combien de “choses” ou de formules
seraient nécessaires pour formuler la Cause 1 ? Faut-il une quantité finie, une
quantité infinie de choses supplémentaires pour formuler la Cause 1 ? Ou
bien est-ce qu’aucune quantité de chose supplémentaire ne peut permettre
de formuler la Cause 1 ? Et existe-t-il des cas où la Cause 1 ne peut jamais
être exprimée par des moyens logiques ?

Remarque 2 :

Existe-t-il des cas de portes logiques permettant d’exprimer la Cause 1
uniquement en fonction de la Conséquence et de la Cause 2 ?

Pour répondre à cette question, nous allons aborder différentes portes logiques,
au moins les plus courantes, et leur table de vérité associée. Nous allons
étudier les cas des portes logiques :

ET (AND),

ET COMPLEMENTAIRE (NAND),

OU (OR),

OU COMPLEMENTAIRE (NOR),

OU-EXCLUSIF,

OU-EXCLUSIF COMPLEMENTAIRE.

- Pour la porte logique “ET ” (ou “AND”), la réponse est NON : dans ce
cas, il n’est pas possible, d’exprimer la Cause 1 uniquement en fonction de la
Conséquence et de la Cause 2. En effet, celle-ci vient d’être traitée puisque
nous avions noté (en algèbre de BOOLE [3]) :

Conséquence = Cause 1.Cause 2
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- La porte logique “ET NON ” (ou “NAND”) est la fonction complémentaire
de la fonction “ET ” , elle peut être notée (en algèbre de BOOLE ) :

Conséquence = Cause 1.Cause 2

En regroupant les résultats dans une table de vérité :

Cause 1 Cause 2 C onséquence = Cause 1.Cause 2

0 0 1
0 1 1
1 0 1
1 1 0

Ou bien, en réarrangeant seulement les lignes et les colonnes :

Conséquence Cause 2 Cause 1 = ?

0 1 1
1 0 0
1 0 1
1 1 0

La réponse est NON compte tenu des 2 lignes centrales (en rouge) : dans ce
cas, il n’est pas possible, d’exprimer la Cause 1 uniquement en fonction de
la Conséquence et de la Cause 2.
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- La porte logique “OU ” (ou “OR”), elle peut être notée (en algèbre de
BOOLE ) :

Conséquence = Cause 1 + Cause 2

En regroupant les résultats dans une table de vérité :

Cause 1 Cause 2 Conséquence = Cause 1 + Cause 2

0 0 0
0 1 1
1 0 1
1 1 1

Ou bien, en réarrangeant seulement les lignes et les colonnes :

Conséquence Cause 2 Cause 1 = ?

0 0 0
1 0 1
1 1 0
1 1 1

La réponse est NON compte tenu des 2 dernières lignes (en rouge) : dans ce
cas, il n’est pas possible, d’exprimer la Cause 1 uniquement en fonction de
la Conséquence et de la Cause 2.
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- La porte logique “OU NON ” (ou “NOR”) est la fonction complémentaire
de la fonction “OU ” , elle peut être notée (en algèbre de BOOLE ) :

Conséquence = Cause 1 + Cause 2

En regroupant les résultats dans une table de vérité :

Cause 1 Cause 2 C onséquence = Cause 1 + Cause 2

0 0 1
0 1 0
1 0 0
1 1 0

Ou bien, en réarrangeant seulement les lignes et les colonnes :

Conséquence Cause 2 Cause 1 = ?

0 0 1
0 1 0
0 1 1
1 0 0

La réponse est NON compte tenu des 2 lignes centrales (en rouge) : dans ce
cas, il n’est pas possible, d’exprimer la Cause 1 uniquement en fonction de
la Conséquence et de la Cause 2.
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- La porte logique “OU EXCLUSIF ” , elle peut être notée (en algèbre de
BOOLE ) :

Conséquence = Cause 1⊕ Cause 2

Ce qui équivaut à :

Conséquence = (Cause 1 + Cause 2).(Cause 1.Cause 2)

En regroupant les résultats dans une table de vérité :

Cause 1 Cause 2 Conséquence = Cause 1⊕ Cause 2

0 0 0
0 1 1
1 0 1
1 1 0

Ou bien, en réarrangeant seulement les lignes et les colonnes :

Conséquence Cause 2 Cause 1

0 0 0
0 1 1
1 0 1
1 1 0

La réponse est OUI : il existe au moins un cas où il est possible d’exprimer la
Cause 1 uniquement en fonction de la Conséquence et de la Cause 2, c’est
le cas de la porte logique “OU EXCLUSIF ”.
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En effet puisque nous obtenons à nouveau la table de vérité de la fonction
“OU EXCLUSIF ” telle que :

Cause 1 = Conséquence⊕ Cause 2

De manière “symétrique” , il est possible d’établir la même conclusion pour
la Cause 2, nous obtenons aussi :

Cause 2 = Conséquence⊕ Cause 1

Pour récapituler, cela signifie que :

Si Conséquence = Cause 1⊕ Cause 2
Alors Cause 1 = Conséquence⊕ Cause 2
Ou alors Cause 2 = Conséquence⊕ Cause 1

Ainsi, pour en revenir aux énoncés, tout énoncé E1 contenant 2 conditions
telles que E2 et E3 répondent aux exigences de la porte logique “OU EXCLUSIF ”,
c’est-à-dire que :

Si E2 est faux et si E3 est faux, on déduit E1 est faux,
Si E2 est faux et si E3 est vrai, on déduit E1 est vrai,
Si E2 est vrai et si E3 est faux, on déduit E1 est vrai,
Si E2 est vrai et si E3 est vrai, on déduit E1 est faux,

Alors dans ce cas, tout énoncé E1, E2 ou E3 est déductible des 2 autres.

Si l’on se contente des seules formules f(M ;x) et s(M), et étant donné
que la formule F (M) ne répond pas à ces exigences, il est impossible de
la trouver par la méthode que nous avions employé dans la sous-partie “12.4
La formule f(M ;x)” (page 349).
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Complément de réflexion :

D’autre part et pour finir avec la porte logique “OU EXCLUSIF ”, il est
possible d’établir une correspondance strictement mathématique avec cette
dernière. A ce sujet, les formules ne pouvant prendre que 2 valeurs (0 ou 1)
sont particulièrement intéressantes.

En nommant C1 (à rattacher à la Cause 1) une formule mathématique ne
pouvant prendre pour valeur que 0 ou 1,

En nommant C2 (à rattacher à la Cause 2) une autre formule mathématique
ne pouvant prendre pour valeur que 0 ou 1,

Et en nommant R (à rattacher à la Conséquence) une formule mathématique
ne pouvant prendre pour valeur que 0 ou 1,

Etant donné la porte logique “OU EXCLUSIF ” notée :

Conséquence = Cause 1⊕ Cause 2

L’équivalent strictement mathématique (c’est-à-dire avec les opérateurs mathé-
matiques usuels : addition, soustraction, multiplication, division) pour les
formules C1, C2, et R est :

R = C1 + C2 − 2.C1.C2

En effet, nous vérifions facilement l’analogie entre la table de vérité de
Conséquence = Cause 1 ⊕ Cause 2 et la formule de R puisque d’un point
de vue strictement mathématique, nous avons :

C1 C2 R = C1 + C2 − 2.C1.C2

0 0 0
0 1 1
1 0 1
1 1 0
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Et comme nous savons que :

Si Conséquence = Cause 1⊕ Cause 2
Alors Cause 1 = Conséquence⊕ Cause 2
Ou alors Cause 2 = Conséquence⊕ Cause 1

Vue l’analogie entre la table de vérité de Conséquence et les valeurs de la
formule de R, d’un point de vue strictement mathématique, nous pouvons
alors déduire que :

Si R = C1 + C2 − 2.C1.C2

Alors C1 = R + C2 − 2.R.C2

Ou alors C2 = R + C1 − 2.R.C1

Mais il existe également une écriture alternative à celles-ci, étant donné
l’identité remarquable :

(C1 − C2)2 = (C1)2 + (C2)2 − 2.(C1).(C2)

Or, pour C1 et C2 des nombres ne pouvant prendre pour valeurs que 0 ou 1,
nous avons la possibilité de simplifier ainsi :

(C1)2 = C1

(C2)2 = C2

D’où

(C1 − C2)2 = C1 + C2 − 2.C1.C2

Et donc les écritures alternatives :

R = (C1 − C2)2

C1 = (R− C2)2

C2 = (R− C1)2

Dans ce cas, toutes formules répondant aux règles logiques équivalentes à
celles du “OU EXCLUSIF ” se déduisent les unes à partir des autres.

Page 365 sur 514



- La porte logique “OU EXCLUSIF COMPLEMENTAIRE” notée (en algèbre
de BOOLE ) :

Conséquence = Cause 1⊕ Cause 2

Ce qui équivaut à :

Conséquence = (Cause 1.Cause 2) + (Cause 1 + Cause 2)

En regroupant les résultats dans une table de vérité :

Cause 1 Cause 2 C onséquence = Cause 1⊕ Cause 2

0 0 1
0 1 0
1 0 0
1 1 1

Ou bien, en réarrangeant seulement les lignes et les colonnes :

Conséquence Cause 2 Cause 1

0 0 1
0 1 0
1 0 0
1 1 1

La réponse est OUI : il existe un 2ième cas où il est possible d’exprimer la
Cause 1 uniquement en fonction de la Conséquence et de la Cause 2, c’est
le cas de la porte logique “OU EXCLUSIF COMPLEMENTAIRE”.
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En effet puisque nous obtenons à nouveau la table de vérité de la fonction
“OU EXCLUSIF COMPLEMENTAIRE” telle que :

Cause 1 = Conséquence⊕ Cause 2

De manière “symétrique” , il est possible d’établir la même conclusion pour
la Cause 2, nous obtenons aussi :

Cause 2 = Conséquence⊕ Cause 1

Pour récapituler, cela signifie que :

Si Conséquence = Cause 1⊕ Cause 2
Alors Cause 1 = Conséquence⊕ Cause 2
Ou alors Cause 2 = Conséquence⊕ Cause 1

Ainsi, pour en revenir aux énoncés, tout énoncé E1 contenant 2 conditions
telles que E2 et E3 répondent aux exigences de la porte logique
“OU EXCLUSIF COMPLEMENTAIRE”, c’est-à-dire que :

Si E2 est faux et si E3 est faux, on déduit E1 est vrai,
Si E2 est faux et si E3 est vrai, on déduit E1 est faux,
Si E2 est vrai et si E3 est faux, on déduit E1 est faux,
Si E2 est vrai et si E3 est vrai, on déduit E1 est vrai,

Alors dans ce cas, tout énoncé E1, E2 ou E3 est déductible des 2 autres.

Même remarque que pour la porte logique “OU EXCLUSIF ” : si l’on se
contente des seules formules f(M ;x) et s(M), et étant donné que la formule
F (M) ne répond pas à ces exigences, il est impossible de la trouver par la
méthode que nous avions employé dans la sous-partie “12.4 La formule
f(M ;x)” (page 349).
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Complément de reflexion :

Il est possible ici aussi d’établir une correspondance strictement mathématique
à la porte logique “OU EXCLUSIF COMPLEMENTAIRE”, grâce aux formules
ne pouvant prendre pour valeurs que 0 ou 1.

En nommant C1 (à rattacher à la Cause 1) une formule mathématique ne
pouvant prendre pour valeur que 0 ou 1,

En nommant C2 (à rattacher à la Cause 2) une autre formule mathématique
ne pouvant prendre pour valeur que 0 ou 1,

Et en nommant R (à rattacher à la Conséquence) une formule mathématique
ne pouvant prendre pour valeur que 0 ou 1,

Etant donné la porte logique “OU EXCLUSIF COMPLEMENTAIRE” notée
:

Conséquence = Cause 1⊕ Cause 2

L’équivalent strictement mathématique (c’est-à-dire avec les opérateurs mathé-
matiques usuels : addition, soustraction, multiplication, division) pour les
formules C1, C2, et R est :

R = 1− (C1 + C2 − 2.C1.C2)

Et comme nous savons que :

Si Conséquence = Cause 1⊕ Cause 2
Alors Cause 1 = Conséquence⊕ Cause 2
Ou alors Cause 2 = Conséquence⊕ Cause 1

Alors, et d’un point de vue strictement mathématique, nous pouvons déduire
que :

Si R = 1− (C1 + C2 − 2.C1.C2)
Alors C1 = 1− (R + C2 − 2.R.C2)
Ou alors C2 = 1− (R + C1 − 2.R.C1)
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Ici aussi (et comme pour la porte logique “OU EXCLUSIF ”), les écritures
alternatives sont données simplement par :

R = 1− (C1 − C2)2

C1 = 1− (R− C2)2

C2 = 1− (R− C1)2

Dans ce cas, toutes formules répondant aux règles logiques équivalentes à
celles du “OU EXCLUSIF COMPLEMENTAIRE” se déduisent les unes à
partir des autres.
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12.6 Variable binaire U de valeur de vérité

indéfinissable

Partant du constat précédent qu’il est impossible de construire une formule
telle que F (M) seulement à partir des formules f(M ;x) et s(M), et uniquement
en séparant les 2 conditions de l’énoncé :

“M ∈ N, M ≥ 2 est telle que M ∈ P

et

N ∈ N, N ≥ 1 est telle que N est multiple de Mx”

Reprenons la nomenclature des 3 énoncés E1, E2 et E3. Reprenons également
l’égalité E1 = E2.E3.

Rappelons la table de vérité à propos de l’égalité correspondante (en algèbre
de BOOLE [3]) :

E3 E2 E1 = E2.E3

0 0 0
0 1 0
1 0 0
1 1 1

Ou bien, en réarrangeant seulement les lignes et les colonnes :

E1 E2 E3 = ?

0 0 0
0 0 1
0 1 0
1 1 1

Remarquons que la situation E1 = 1 et E2 = 0 en même temps n’existe pas,
nous devons l’interdire lorsque nous faisons varier E1 et E2.

Dans les 2 dernières lignes, la variable E2 est inutile : il est possible de
connâıtre E3 seulement en connaissant E1.
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Nous avons pour les 2 dernières lignes, c’est-à-dire lorsque E2 = 1 :

E3 = E1

Nous avons pour les 2 premières lignes, c’est-à-dire lorsque E2 = E1 = 0 :

Une impossibilité à définir E3 en fonction de E1.

Introduisons une nouvelle variable binaire U indépendante d’un système dont
la valeur de vérité ne peut être définie par un système de règles (elle peut
valoir soit 0 soit 1, mais sa valeur ne peut être “prédite” , cela introduit une
part de probabilité). Il devient alors possible d’établir une égalité qui tient
compte de l’impossibilité de donner E3 en fonction de E1 et E2 lorsque ces
dernières valent 0 en même temps.

Nous avons pour les 2 premières lignes, c’est-à-dire lorsque E2 = E1 = 0 :

E3 = U

Et en récapitulant :

E3 = E1 lorsque E2 = 1
E3 = U lorsque E2 = 0

Ce qui permet d’écrire :

E3 = E2.E1 + E2.U

avec la condition d’interdiction que E1 = 1 et E2 = 0 en même temps.
Remarque : grâce à cette formule, enlever l’interdiction n’a pas d’incidence
sur les résultats. En effet, puisque seul E2 = 0 est nécessaire pour donner
l’égalité, cette égalité peut donc être donnée indépendemment de E1 (c’est-
à-dire quelquesoit sa valeur).

D’un point de vue strictement mathématique, il devient possible de transcrire
cela en admettant d’introduire une variable U équivalente : une variable U
indépendante ne pouvant prendre que 2 valeurs (0 ou 1) et ne pouvant être
représentée à l’aide d’une formule précise (U peut valoir soit 0 soit 1, mais
sa valeur ne peut être “prédite”).
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En reprenant les formules (seulement à titre d’exemple) F (M), s(M) et
f(M ;x), nous avons :

F (M) = s(M).f(M ;x) + [1− s(M)].U

avec la condition d’interdiction que f(M ;x) = 1 et s(M) = 0 en même temps
(car cette situation est incohérente, bien que nous venons de voir qu’enlever
l’interdiction n’a pas d’incidence sur les résultats).

Nous pouvons donner des équivalences strictement mathématiques plus géné-
rales avec des formules “binaires” (ne donnant pour valeur que 0 ou 1) :

En nommant F1 (à rattacher à l’énoncé E1) une formule mathématique
binaire ne pouvant prendre pour valeur que 0 ou 1,

En nommant F2 (à rattacher à l’énoncé E2) une autre formule mathématique
binaire ne pouvant prendre pour valeur que 0 ou 1,

En nommant F3 (à rattacher à l’énoncéE3) une dernière formule mathématique
binaire ne pouvant prendre pour valeur que 0 ou 1,

Et en nommant U (à rattacher à la variable de valeur de vérité indéfinissable
U) une formule mathématique binaire ne pouvant prendre que de manière
indéfinissable (ou probable) la valeur 0 ou 1,

Pour E1 = E2.E3, nous avons l’égalité strictement mathématiques :

F1 = F2.F3

Pour E3 = E2.E1 + E2.U , l’égalité strictement mathématiques s’écrit :

F3 = F2.F1 + [1− F2].U
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Remarque 1 :

Il est possible d’établir le même raisonnement concernant les autres portes
logiques, pour lesquelles la Cause 1 ne peut être exprimée uniquement en
fonction de la Conséquence et de la Cause 2.

Par exemple, prenons la porte logique “OU ” (il n’ y a plus de liens entre les
formules F (M), s(M) et f(M ;x) dans cet exemple). Nous avions noté :

Donnons à E1 le nom de Conséquence,
Donnons à E2 le nom de Cause 2,
Donnons à E3 le nom de Cause 1,

Dont la table de vérité à propos de l’égalité correspondante est rappelée (en
algèbre de BOOLE ) :

E3 E2 E1 = E3 + E2

0 0 0
0 1 1
1 0 1
1 1 1

Ou bien, en réarrangeant seulement les lignes et les colonnes :

E1 E2 E3 = ?

0 0 0
1 0 1
1 1 0
1 1 1

Remarquons que la situation E1 = 0 et E2 = 1 en même temps n’existe pas,
nous devons l’interdire lorsque nous faisons varier E1 et E2.

Dans les 2 premières lignes, la variable E2 est inutile : il est possible de
connâıtre E3 seulement en connaissant E1.
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Nous avons pour les 2 premières lignes, c’est-à-dire lorsque E2 = 0 :

E3 = E1

Nous avons pour les 2 dernières lignes, c’est-à-dire lorsque E2 = 1 :

Une impossibilité à définir E3 en fonction de E1 (car E1 = E2 = 1, donc E1

et E2 ne varient pas aors que E3 varie).

Comme précédemment, en introduisant une nouvelle variable binaire U indé-
pendante d’un système et dont la valeur de vérité ne peut être définie par un
système de règles (elle peut valoir soit 0 soit 1, mais sa valeur ne peut être
“prédite”, cela introduit une part de probabilité). Il devient alors possible
d’établir une égalité qui tient compte de l’impossibilité de donner E3 en
fonction de E1 et E2 lorsque ces dernières valent 1 en même temps.

Nous avons pour les 2 dernières lignes, c’est-à-dire lorsque E2 = E1 = 1 :

E3 = U

Et en récapitulant :

E3 = E1 lorsque E2 = 0
E3 = U lorsque E2 = 1

Ce qui permet d’écrire :

E3 = E2.E1 + E2.U

avec la condition d’interdiction que E1 = 0 et E2 = 1 en même temps. Même
remarque que précédemment : grâce à cette formule, enlever l’interdiction n’a
pas d’incidence sur les résultats. En effet, puisque seul E2 = 1 est nécessaire
pour donner l’égalité, l’égalité peut donc être donnée indépendemment de E1

(c’est-à-dire quelquesoit sa valeur).
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Nous pouvons donner des équivalences strictement mathématiques et générales
avec des formules “binaires” (ne donnant pour valeur que 0 ou 1) ici aussi :

En nommant F1 (à rattacher à l’énoncé E1) une formule mathématique
binaire ne pouvant prendre pour valeur que 0 ou 1,

En nommant F2 (à rattacher à l’énoncé E2) une autre formule mathématique
binaire ne pouvant prendre pour valeur que 0 ou 1,

En nommant F3 (à rattacher à l’énoncéE3) une dernière formule mathématique
binaire ne pouvant prendre pour valeur que 0 ou 1,

Et en nommant U (à rattacher à la variable de valeur de vérité indéfinissable
U) une formule mathématique binaire ne pouvant prendre que de manière
indéfinissable (ou probable) la valeur 0 ou 1,

Pour E1 = E2 + E3 , nous avons l’égalité strictement mathématiques :

F1 = F2 + F3 − F2.F3

Ou encore :

F1 = (F2 − F3)2 + F2.F3

En effet puisque :

(F2 − F3)2 + F2.F3 = F2
2 + F3

2 − 2.F2.F3 + F2.F3

= F2
2 + F3

2 − F2.F3

Et comme :

F2
2 = F2 pour les formules binaires

F3
2 = F3 pour les formules binaires

Nous déduisons :

(F2 − F3)2 + F2.F3 = F2 + F3 − F2.F3

Ce qui explique l’égalité précédente.
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De cette manière, nous pouvons directement constater que l’équivalent stricte-
ment mathématiques de la porte logique “OU ” fait directement apparâıtre
la somme de :

(F2 − F3)2 la porte logique “OU EXCLUSIF ” entre les formules F2 et F3,

F2.F3 la porte logique “ET ” entre les formules F2 et F3.

Pour finir, l’écriture en algèbre de BOOLE de :

E3 = E2.E1 + E2.U

permet de donner une écriture strictement mathématique équivalente :

F3 = [1− F2].F1 + F2.U

Remarque 2 :

L’utilité de cette partie pourrait être remise en cause : bien que la démarche
(l’introduction d’une variable U de valeur de vérité indéfinissable) ne soit pas
conventionnelle, il me semble cependant nécessaire de préciser qu’il existe
un lien avec la suite de la réflexion, notamment avec les énoncés vrais et
indémontrables (entre autres) auxquels nous feront référence dans la partie
“14 Preuve de la liberté” (page 390). Il est important de comprendre
cette partie pour comprendre ce lien et la pertinence de l’ensemble.
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12.7 Contre-exemple : la formule I(M)

Cette sous-partie vient proposer un “contre-exemple” qui complètera les
réflexions précédentes, sans pour autant les contredire. En reprenant la
formule I(M) étudiée dans le Chapitre I en sous-partie “3.4 Formule
d’Impulsion Première I(M)”, avec M ∈ N, avec Pn ∈ P et avec d ∈ N tel
que d ≥ 0, nous avions pu formuler :

I(M) = s(2.M + 2)

= s[Pn.(d.M + 1)]

= s(M + 2).s(M + 3)

Ces formules sont typiquement celles que l’on peut intégrer dans les tables
de vérité de l’algèbre de BOOLE [3] étant donné qu’elles ne peuvent prendre
que 2 valeurs (0 ou 1).

Prenons les formules suivantes :

s(2.M + 2)

s(M + 2)

s(M + 3)

Associons chacune de ces 3 formules à un énoncé :

Associons l’énoncé E1 à la formule s(2.M + 2),
Associons l’énoncé E2 à la formule s(M + 2),
Associons l’énoncé E3 à la formule s(M + 3),

Avec les énoncés exprimés de manière adéquat :

L’énoncé E1 : “M ∈ N est telle que (M + 2) ∈ P et (M + 3) ∈ P”
L’énoncé E2 : “M ∈ N est telle que (M + 2) ∈ P”
L’énoncé E3 : “M ∈ N est telle que (M + 3) ∈ P”

(Remarque : l’énoncé E1 est également équivalent à l’énoncé :
“M ∈ N est telle que (2M + 2) ∈ P”)
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En donnant les valeurs de vérité 1 équivalente à “vrai” et 0 équivalente
à “faux”, il devient possible de donner une table de vérité comme nous
l’avons fait jusqu’à maintenant. D’après l’énoncé E1 (ou d’après l’égalité de
s(2.M+2) = s(M+2).s(M+3), ce qui revient au même), nous constatons que
l’expression logique de E2 et de E3 peut se faire par une porte logique “ET ” :

E1 = E2.E3

Voici maintenant l’intérêt de ce contre-exemple :

Comme dans les sous-parties précédentes, en supposant que la formule s(M+ 3)
ne soit pas connue, si nous essayons de la rechercher uniquement à partir
des formules que nous connaissons, à savoir s(2.M + 2) et s(M + 2), nous
aboutirons aux mêmes conclusions. C’est-à-dire que nous concluerons que le
nombre d’informations dont nous disposons n’est pas suffisant pour donner
une formule qui correspond à celle de s(M + 3).

En effet, en considérant E1, E2 et E3 comme étant des variables binaires,
nous pouvons alors établir une table de vérité (en algèbre de BOOLE ) :

- la valeur de vérité de E1 est à rattacher à la formule s(2.M + 2) connue.
- la valeur de vérité de E2 est à rattacher à la formule s(M + 2) connue.
- la valeur de vérité de E3 est à rattacher à la formule s(M + 3) recherchée.

E3 E2 E1 = E2.E3

0 0 0
0 1 0
1 0 0
1 1 1

Où les valeurs de E1 dépendent des valeurs de E2 et des valeurs de E3.
Rechercher une formule telle que s(M + 3) de manière directe revient alors
à supposer que les valeurs de E3 dépendent directement des valeurs de E2 et
de E1, or, nous l’avons déjà vu, E2 est indépendant de E3.

Ou bien, en réarrangeant seulement les lignes et les colonnes :
E1 E2 E3 = ?

0 0 0
0 0 1
0 1 0
1 1 1
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Comme prévu, nous concluons que connâıtre E1 et E2 n’est pas suffisant
pour connâıtre E3. Et donc finalement, connâıtre le formule s(2.M + 2) et
la formule s(M + 2) n’est pas suffisant pour connâıtre la formule rattachée à
l’énoncé E3.

Or, la formule rattachée à E3 existe puisqu’il s’agit de s(M + 3). Pour en
revenir aux sous-parties précédentes, ce contre-exemple permet de dire qu’il
n’est pas impossible qu’il existe une formule telle que F (M) et qui se rattache
à l’énoncé :

“N ∈ N, N ≥ 1 est telle que N est multiple de Mx”,
et dont F (M) donnerait directement une valeur de vérité à cet énoncé.

Dans ce contre-exemple, il est possible de compléter les réflexions des sous-
parties précédentes en constatant que le manque d’informations ou de connai-
ssances pour exprimer une formule ne veut pas systématiquement dire qu’ex-
primer cette formule soit impossible.

Remarque :

A propos de la formule de F (M) recherchée dans la sous-partie “12.4 La
formule f(M ;x)” (page 349), si cette formule existe, nous pouvons anticiper
quelques informations sur celle-ci :

- Puisque les résultats des 2 autres formules f(M ;x) et s(M) ne peuvent être
que “binaires” (c’est-à-dire 0 ou 1),

- Et puisque F (M) doit au moins respecter l’égalité :

f(M ;x) = s(M).F (M)

- Nous pouvons tout de même affirmer que s’il était permis de trouver une
telle formule, cette formule serait nécessairement de type “binaire” : c’est-à-
dire que les résultats qu’elles devrait fournir seraient exclusivement 0 ou 1,
ce qui permettrait d’attribuer une valeur de vérité à l’énoncé correspondant.
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12.8 Observations

- D’après ce que nous venons de voir dans le premier chapitre :

il existe des formules mathématiques “binaires” qui ne peuvent fournir que
2 valeurs (comme 0 ou 1) telles que s(M), I(M), ou f(M ;x).

- D’après ce que nous venons de voir dans ce chapitre, il est possible d’établir
un lien direct entre ces valeurs et les valeurs de vérité d’un énoncé.

- Le choix du contenu de l’énoncé se fait simplement :

Lorsqu’une formule vaut 1, il suffit de décrire la situation pour laquelle cela
est exclusivement le cas, ce qui permet de construire l’énoncé qui se rattache
à cette formule. Lorsque la formule vaut 1, l’énoncé est forcément vrai. Par
conséquent, lorsque la formule vaut 0, l’énoncé est faux.

Par exemple :

Rappelons que pour M ∈ N, M ≥ 2, nous avons s(M) telle que :

s(M) = 1 si M ∈ P
s(M) = 0 si M /∈ P

Pour construire l’énoncé, il suffit de décrire la situation pour laquelle s(M) = 1.

C’est le cas pour ce qui suit : “M ∈ N, M ≥ 2 est tel que M ∈ P”

En effet, en donnant :

La valeur de vérité correspondant au résultat 1 de la formule est “vrai” ,
La valeur de vérité correspondant au résultat 0 de la formule est “faux”.

Au regard de l’énoncé, nous vérifions bien la cohérence entre sa valeur de
vérité et le résultat de la formule associée. Ce qui ne peut être autrement
puisque nous avons attribué à chaque valeur de vérité une valeur unique de
la formule, et donc à chaque valeur de la formule ne correspond qu’une seule
valeur de vérité.
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Ce qui permet d’avoir un lien direct et clairement défini entre une formule
“binaire” et la valeur de vérité d’un énoncé correpondant.

Et donc, dans notre exemple, et étant donné que la variable M est définie
tel que M ∈ N, M ≥ 2 :

si s(M) = 0, l’énoncé est effectivement faux (puisque M /∈ P, et cela est
cohérent avec la formule).

si s(M) = 1, l’énoncé est effectivement vrai (puisque M ∈ P, et cela est
cohérent avec la formule).
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12.9 Conclusions et orientations

- Dans cette conclusion, nous allons nous orienter vers une application possible
des formules étudiées à des phénomènes physiques, dans la limite de ce que
ces formules permettraient.

Il est important de remarquer qu’il est possible d’établir un lien entre la
logique binaire (c’est-à-dire le calcul propositionnel “classique”) et une formule
telle que f(M ;x). La formule D(N) contient la formule principale f(M ;x).
La formule f(M ;x) permet d’effectuer un traitement sur la propriété de
“primalité” d’un nombre entier (un nombre entier supérieur ou égal à 2 ne
peut être que premier ou composé).

Etant donné la formule de décomposition D(N) d’un nombre entier N ∈ N
tel que N ≥ 2 en produit de facteurs premiers, Cette formule doit permettre
de traiter les ondes, de telle manière qu’il devienne possible de décomposer
une longueur d’onde N en longueurs d’ondes fondamentales.

Appliquée aux ondes (tel que l’onde d’un photon, particule de lumière), la
formule f(M ;x) permettrait de les traiter, et permettrait de construire une
logique binaire (en rapport direct avec le calcul propositionnel “classique”)
à partir des propriétés de primalité de la valeur d’une longueur d’onde par
rapport à une autre (nous parlons de 2 ondes puisque la formule permet la
comparaison de la variable N à par la variable M).

Remarque importante :

Dans le cas des formules plus simples s(M) et I(M), il n’est pas besoin de
traiter toutes les longueurs d’ondes M pour constituer une logique binaire,
il ne suffit que de 2 longueurs d’ondes : une longueur d’onde associée à M
correspondant à l’état binaire s(M) = 0 (ou à I(M) = 0), et une autre
longueur d’onde associée à M correspondant à l’état binaire s(M) = 1 (ou
respectivement à I(M) = 1).

Signalons que ce cas est le plus réducteur possible car il restreint les possibilités
de faire varier M seulement sur 2 valeurs utiles.
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Osons donner un exemple en imaginant qu’une particule soit capable d’effectuer
un tel calcul (du même type que les formules évoquées : D(N), s(M),
I(M) ) à partir des ondes d’un photon. Avec uniquement 2 longueurs d’onde
distinctes de sorte que :

. La particule absorbe le photon s’il est de longueur d’onde λa;

. La particule n’absorbe pas le photon et elle le rejette s’il est de longueur
d’onde λr;

Nous pouvons faire correspondre les valeurs de vérité “vrai” et “faux” à
chacune des 2 longueurs d’onde (en fonction de cette particule), de sorte
que :

. “vrai” signifie que la particule absorbe le photon, et signifie donc que
la longueur d’onde est λa;

. “faux” signifie que la particule rejette le photon, et signifie donc que
la longueur d’onde est λr;

Cette interprétation permettrait d’établir une correspondance entre le langage
propositionnel et la longueur d’onde d’un photon “traitée” par une particule.

Hypothèses :

Nous avons la possibilité d’appliquer la formule f(M ;x) (ou s(M) ) à une
onde de longueur d’onde N (ou M) ou de période N (ou M). Ces formules
peuvent être appliquées à un phénomène ondulatoire “fondamental” (c’est-
à-dire un phénomène le plus simple possible, et qui permet de produire des
phénomènes plus complexes), il est possible que le photon soit un candidat
sérieux pour être ce phénomène.

Il faut noter le lien avec les congruences (et avec la fonction SINUS, et
donc aussi avec le cercle) qui sous-entendrait que ce photon pourrait être
en translation linéaire mais aussi en “rotation” avec d’autres (cette phrase
est peut-être mal formulée, mais il est encore difficile à ce stade de donner une
description exacte du phénomène, voir Chapitre VI pour plus de détails).

Ce qui sous-entendrait encore de supposer fortement que la matière ne serait
qu’un ensemble de photons “en orbite” les uns avec les autres (comme pour
l’hypothèse précédente, ceci n’est certainement pas une description suffisante),
permettant d’envisager que toute matière ne serait constituée que de photons.
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Trouver une bonne application physique à la formule f(M ;x) (ou même
s(M) ) et développer davantage la réflexion sur celle-ci permettra peut-être
de donner une représentation plus précise d’un phénomène ondulatoire. En
faisant l’hypothèse qu’un photon constitue ce phénomène physique recherché,
cela pourrait permettre de donner une représentation plus précise de ses
comportements (peut-être même de sa structure).

La formule D(N) (ou même f(M ;x) et s(M) ) demandant des temps de
calculs plutôt longs lorsque N est un grand nombre, s’il s’avérait exacte que
la matière procède de la même manière que la formule D(N) l’indique pour
traiter la décompostion d’ondes, alors un processus de calcul très performant
serait déjà dans la nature (c’est-à-dire dans la matière). Il suffirait d’exploiter
cela pour construire un calculateur très performant, et dont la performance
serait égale à ce qu’il serait permis de produire de mieux (les limites de cette
performance seraient les limites de la performance de la matière elle-même).

Digression à propos de la musique :

Etant donné la possibilité d’établir un lien entre la logique binaire (c’est-à-
dire le calcul propositionnel “classique”) et les ondes, nous pouvons “prolonger”
notre conclusion en donnant une possibilité d’établir un langage (binaire) à
partir des ondes directement. Concernant la musique, nous pouvons donc
considérer qu’elle constitue un tel langage. Il n’est donc pas étonnant d’entendre
souvent dire que la musique est un langage universel. En effet, puisque
le traitement des ondes par les formules f(M ;x), s(M) et I(M) tel que
nous l’avons indiqué peut être ramené au traitement du calcul propositionnel
classique.
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13

Les règles logiques

13.1 Introduction

Il sera ici question essentiellement de mettre les mots “face” à leur dénintion,
ou de mettre des énoncés “face” à leur sens. Cela peut permettre de donner
une “valeur de vérité” (“vrai” ou “faux”)à certaines définitions et à certains
énoncés (grâce à des structures de raisonnement très similaires).

Prenons un exemple avec l’énoncé donné :

“Tout peut être remis en cause”

Cela signifie aussi que “Rien n’est fiable”. Si tel est le cas, alors l’énoncé
aussi peut être remis en cause car il n’est pas fiable non plus. Or, l’énoncé
au moins devrait être fiable, ce qui permet de conclure que tout ne peut pas
être remis en cause, et qu’il doit exister un minimum de fiabilité.

En développant :

- En supposant que l’énoncé donné soit vrai, on déduit qu’il est faux, et
donc on en déduit qu’il existe un minimum de fiabilité.
- En supposant que l’énoncé donné soit faux, on déduit directement qu’il
existe un minimum de fiabilité.
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Pour aller plus loin, l’énoncé “il existe un minimum de fiabilité” doit
être fiable. D’où l’on déduit aussi l’énoncé “Cet énoncé au moins est
fiable”.

Cette structure de raisonnement permet de conclure en donnant une valeur
de vérité à propos d’une assertion portant sur “Tout” ou “Rien” (comme
les énoncés “Tout peut être remis en cause” ou “Rien n’est fiable”).

Ceci est à rapprocher du raisonnement de René DESCARTES [9] à propos
du “doute le plus radical”. En effet, puisque “dans le doute le plus radical, on
ne peut pas douter que l’on doute” (ou “au doute méthodique, seul résiste la
certitude de l’existence”). C’est ce que nous avons vu de manière équivalente
avec l’énoncé donné, puisque nous avons déduit qu’il doit y avoir un minimum
de fiabilité (au moins cette conclusion), et donc que tout ne peut pas être
remis en cause.

Il en est de même à propos de l’affirmation “rien n’a de sens”. En effet,
si rien n’avait de sens, alors cette affirmation n’en aurait pas non plus, d’où
l’on déduit qu’il existe nécessairement un minimum de sens (au moins pour
cette conclusion). De manière identique, nous pouvons tirer une conclusion
à propos de l’affiramation “nous ne pouvons croire en rien”. Si nous
ne pouvions croire en rien, nous ne pourrions croire en cette affirmation, ce
qui nécessite que nous ayons un minimum de croyance (au moins en cette
conclusion). Le raisonnement reste encore le même que pour la croyance avec
la confiance... Il existe une structure d’énoncé qui permet la même structure
de conclusion. En affirmant que “tout” est d’une manière ou que “rien”
n’est d’une manière, nous incluons aussi dans ce “tout” notre affirmation ou,
dans le cas de “rien” , nous excluons aussi de ce “tout” notre affirmation.
La structure de conclusion qui revient est du type “il existe un minimum
de “quelquechose”, qui est au moins applicable à cette conclusion”.

Par la suite, nous allons développer ce type de raisonnement à propos d’autres
énoncés ou à propos des définitions même des mots, puisque ces définitions
peuvent être considérées comme étant des énoncés.
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Remarque :

Si nous admettons qu’il soit possible d’attribuer un minimum de fiabilité à
certains énoncés ou à certains raisonnements, il serait donc légitime d’avoir
des convictions à leur égard. Par conséquent, et bien que le scepticisme
soit nécessaire à toute démarche véritablement scientifique (il permet de
rester ouvert à l’accueil d’une idée nouvelle), le scepticisme ne peut pas être
exclusivement un doute permanent à propos de tous les sujets, notamment
à propos de cette idée d’un minimum de fiabilité.

Digression :

Pour finir, ajoutons qu’il nous est possible de connâıtre l’univers en partie.
En effet, l’univers contenant toute chose, nous sommes donc une partie de
cet univers. Or, il est possible d’acquérir des connaissances par le biais d’une
logique appliquée à nous-même (comme la logique appliqué aux affirmations
ci-dessus). Pour nous, l’univers peut donc être connu en partie. Si nous
devions découvrir un principe qui établi un lien entre nous et le reste de
l’univers, alors nous serions en mesure de connâıtre l’univers. C’est-à-dire
qu’une partie de l’univers peut avoir connaissance de l’univers. Dans ce cas,
chaque partie serait également liée au reste, et chaque partie pourrait donc
avoir connaissance du reste l’univers.

Une partie ne peut comprendre les choses telles qu’elles sont véritablement
qu’en se débarrassant de ses préjugés sur les autres parties afin d’avoir une
vision la plus juste et la plus réaliste possible. Ceci implique un respect de
la part de l’observateur, et même le plus grand respect envers le reste de
l’univers, mais aussi le plus grand respect envers soi-même (dans le cas où
nous pouvons être considéré comme étant nous-même l’objet de l’étude). Une
bonne compréhension des choses ne peut donc se faire en dehors du respect
le plus pur, ce qui implique nécessairement une philosophie qui devient
exactement celle de l’écologie. C’est dans le respect de la moindre partie
de l’univers que nous pouvons avoir la vision la plus juste.
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13.2 Développement

Nous allons ici donner des affirmations intéressantes dans le sens où celles-ci
vont nous permettre d’en tirer des conclusions.

Prenons en considération une affirmation que nous nommerons A.

Donnons le symbole “ = ” et donnons lui le même sens que les mots “s’énonce
ainsi”. Ce qui permettra d’établir une équivalence entre une lettre (ou un
nom) qui symbolise l’énoncé et le contenu de l’énoncé.

Donnons le crochet “ [ ” pour symboliser le “début de l’énoncé” et le
crochet “ ] ” pour symboliser la “fin de l’énoncé”.

L’énoncé A peut alors être donné par par ce qui suit :

A = [ Rien ne suit de règle logique ]

Commençons maintenant le raisonnement à propos de l’affirmation A.

Si [ Rien ne suit de règle logique ], nous observons pourtant clairement
que A s’énonce comme une règle.

Or, si “Rien ne suit de règle logique”, A ne peut pas être la règle. Ce
qui signifie que ce qu’énonce A est faux. Et si A est faux, on déduit qu’il
doit exister au moins une règle.

Et donc l’affiration “Il existe au moins une règle logique” étant une
règle, il est possible de construire une affirmation qui dit quelquechose sur
elle-même, une affirmation qui se déduit d’un raisonnement cohérent, dont
le point de départ est une affirmation fausse. En appelant A′ cette dernière
affirmation, nous pouvons la réécrire ainsi :

A′ = [ il existe au moins une règle logique ]
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Et comme A′ est une règle, nous avons donc aussi :

B = [ Au moins A′ est une règle logique, ainsi que B ]

Où l’on voit que B est vraie et démontrable (il existe une suite de règles
logiques à appliquer qui nous amènent à conclure B).

Il est possible d’écrire de manière équivalente :

A′ = [ il existe un minimum de règles logiques dont A′ fait partie ]

Remarque :

Bien que A soit faux, nous pouvons constater que A peut être construite
(ou produite). Il est possible de percevoir une réponse à ce phénomène dans
la partie suivante.

De plus, nous constatons dans qu’un énoncé vrai peut être construit à partir
d’un énoncé faux ou à partir d’un autre énoncé vrai, et cela grâce à un
raisonnement cohérent.
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14

Preuve de la liberté

Cette 3ième partie a pour objet de répondre à la question : est-ce que “tout
suit des règles logiques” ? C’est-à-dire que nous désirons savoir si tout ce qui
est constructible peut être extrait d’un raisonnement cohérent.

Cette partie est d’une importance capitale pour la suite de la théorie. Elle
nécessite la compréhension des 2 sous-parties précédentes. Bien que des liens
utiles soient présents entre les sous-parties, la chronologie des sous-parties de
cette 14ième partie est critiquable (cette preuve est délicate à exposer mais
fondamentale!), une seconde lecture pourrait éventuellement être nécessaire.

Le théorème d’incomplétude de GODEL [10] étant utile pour atteindre ce but,
précisons que les travaux qui suivent pour donner une preuve de la liberté
ne tirent aucune conclusion directe de ce théorème (ce qui serait un abus).
Les travaux qui suivent ne remettent aucunement en question le théorème
d’incomplétude de GODEL. Au contraire, ce qui est proposé est d’étudier
d’autres affirmations (ou énoncés) dans divers cas de figures (voir même des
affirmations contradictoires) au sein même d’une théorie cohérente, afin de
compléter une réflexion et de permettre d’acquérir un nouvel angle de vue à
propos de la construction des énoncés indémontrables.

Les conclusions de cette réflexion pourra alors être perçue comme un complé-
ment dont uniquement la synthèse des 2 (c’est-à-dire entre les conclusions de
ces travaux et le théorème d’incomplétude) peuvent mener finalement à cette
preuve, chacune étant indispensable pour atteindre cet objectif. C’est ici que
la démarche non-conventionnelle des raisonnements des parties 12 et 13 (avec
l’introduction d’une variable U de valeur de vérité indéfinissable) va montrer
son intérêt.
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14.1 Première approche

D’après les travaux de Kurt GODEL [10] à propos d’une théorie arithmétique,
à partir de laquelle il est possible de construire un énoncé qui ne peut être
ni prouvé ni réfuté dans cette théorie, on peut déduire que cette théorie est
incomplète.

Appelons E un tel énoncé, donnons le symbole “ = ” et donnons lui le même
sens que les mots “s’énonce ainsi”.

Donnons le crochet “ [ ” pour symboliser le “début de l’énoncé” et le
crochet “ ] ” pour symboliser la “fin de l’énoncé”.

L’énoncé E peut alors être donné par ce qui suit :

E = [ Cet énoncé est indémontrable ]

Où “Cet énoncé” désigne l’énoncé E lui-même. Ce qui est équivalent à :

E = [ E est indémontrable ]

(Où l’on remarque clairement que l’énoncé affirme quelquechose sur lui-
même)

Testons la “démontrabilité” de cet énoncé E en 2 parties :

- Supposons que nous ne connaissions pas le contenu de E (ni l’énoncé ni son
sens ne nous sont donnés), et en supposant que E soit indémontrable.

De plus, considérons que tout raisonnement cohérent suit des règles logiques
(de déductions) permettant d’établir des démonstrations.

Si E était effectivement indémontrable, aucun raisonnement logique et cohérent
ne permettrait de déduire que E est indémontrable.
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- Supposons maintenant que E soit démontrable. Pour pouvoir le vérifier,
nous devons alors connâıtre le contenu de l’énoncé (et donc son sens).

Or, l’énoncé E nous dit que “E est indémontrable”. Il apparâıt donc
une contradiction entre la supposition que E puisse être démontrable et le
contenu (qui forme le sens) de E.

Pour les mêmes raisons que précédemment mais maintenant à propos du
contenu de E : si E était effectivement indémontrable, aucun raisonnement
logique et cohérent ne permettrait de déduire que E est indémontrable, ni
d’engendrer une contradiction à propos de E.

- Tout ceci permettant de conclure qu’il existe systématiquement des énoncés
qui ne peuvent être issus d’aucun raisonnement logique et cohérent, c’est-à-
dire qu’il existe des énoncés tel que E qui ne peuvent pas être construits à
partir de règles logiques.

Il existe donc quelquechose de constructible en dehors de toute règle logique.
Ce qui constitue une première approche de la preuve de “l’existence” de la
liberté, une liberté qui se définirait par une capacité à construire en dehors
des règles logiques.

Cette première approche de la preuve nécessite cependant une réflexion plus
soutenue et plus rigoureuse, c’est ce que nous proposerons dans la sous-
partie “14.5 Preuve complète : Incomplétude et variable de valeur
de vérité indéfinissable” (page 401) à l’aide de l’algèbre de BOOLE [3] et
de cas de figures plus précis, bien que les sous-parties que nous allons aborder
nous y amènent naturellement.

Remarque :

Ce raisonnement permet d’effectuer un constat, pas d’expliquer comment un
système peut produire un tel énoncé. Cependant, le Chapitre VI tente de
donner une équivalence géométrique (et physique) de ce phénomène à partir
d’un cas particulier.

Par déduction, ce raisonnement permet de donner une valeur de vérité à
l’énoncé suivant : “Tout est démontrable” est faux.
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14.2 Limites préalables

Proposons nous préalablement de réfléchir quelques instants sur les limites
que pourrait avoir la réalité d’une telle liberté.

Dans l’hypothèse ou la liberté est totale, il est alors possible pour un système
de choisir de devenir libre.

Or, s’il avait la possibilité d’effectuer ce choix, c’est que ce système serait
déjà libre.

Par conséquent, un système ne peut décider de sa propre liberté. C’est-à-
dire que la liberté d’un système ne peut pas être construite par choix de ce
système lui-même. Ce système étant libre sans pouvoir intervenir sur cette
donnée, il existerait donc une limite à la liberté.

Autrement dit, la liberté préexiste (sous une forme qui reste à déterminer, ce
qui est l’objet du Chapitre VI) dans un système libre, et elle est nécessairement
limitée (elle ne peut pas être “totale”).
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14.3 Synthèse avec la partie 12

Cette synthèse a pour objet de séparer ce qui peut être construit par un
raisonnement cohérent et ce qui peut être construit par son “complément”
(les “non-règles”, que nous allons définir, ce que j’appellerai plus loin hasard).
En reprenant les notations et les conventions d’écriture des parties 12 et
13, nous pouvons rassembler des éléments :

- Pour l’énoncé noté E ′ :

E ′ = [ il existe un minimum d’énoncés démontrables dont E ′ fait partie ]

Nous nous retrouvons dans le cas de l’affirmation A′ , qui est équivalente du
point de vue du raisonnement puisque l’on déduit aussi que E ′ est vraie et
démontrable.

Et donc E ′ et A′ sont le produits d’un raisonnement cohérent, dont un point
de départ du raisonnement peut être l’affirmation E ′′ :

E ′′ = [ Rien n’est démontrable ]

(comme au moins E ′ est démontrable, cela permet de conclure que E ′′ est
faux)

ou encore un autre point de départ de raisonnement avec l’affirmation A (ce
qui permet de conclure A′).

Un autre point de départ au raisonnement peut être aussi l’affirmation A′ ou
l’énoncé E ′ , puisqu’ils sont déjà cohérents.

- En définissant des ensembles tels que :

Un “ENSEMBLE REGLES” peut être représenté par un système de règles
cohérentes, un raisonnement cohérent ou une théorie cohérente, permettant
de produire des démonstrations valides.

Un “ENSEMBLE NON-REGLES” peut être représenté par un système
permettant de produire des énoncés non issus de règles cohérentes, d’un
raisonnement cohérent ou d’une théorie cohérente (ou “non déterministe”,
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comme nous le verrons dans la sous-partie “14.5 Preuve complète : Incom-
plétude et variable de valeur de vérité indéfinissable”, page 401. Pour
prendre un exemple, nous pourrions inclure la variable de valeur de vérité
indéfinissable U dans cet ensemble, introduite dans les formules de la sous-
partie “12.6 Variable binaire U de valeur de vérité indéfinissable”
page 370).

En rappelant que nous avons noté :

A′ = [ il existe au moins une règle logique ]
E ′ = [ il existe un minimum d’énoncés démontrables dont E ′ fait partie ]

Et

A = [ Rien ne suit de règle logique ]
E ′′ = [ Rien n’est démontrable ]

Nous pouvons alors séparer les affirmations construites :

A′ et E ′ proviennent de “L’ENSEMBLE REGLES”.
A et E ′′ sont fausses et proviennent de “L’ENSEMBLE NON-REGLES”.

- Pour E = [ E est indémontrable ] :

Le point de départ du raisonnement est un énoncé qui affirme quelquechose
sur lui-même, et ce qu’il affirme étant son exclusion à “L’ENSEMBLE
REGLES”. Donc E est vrai et appartient à “L’ENSEMBLE NON-
REGLES” aussi.

- Finalement nous constatons que “L’ENSEMBLE NON-REGLES” peut
contenir des affirmations vraies et indémontrables, ou des affirmations fausses
qui ne peuvent pas être produites par un raisonnement cohérent.
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14.4 Remarque sur les énoncés constructibles

En partant de la remarque qu’un énoncé tel que A peut être construit en
dehors des règles logiques (ou en dehors d’un raisonnement cohérent), nous
pouvons formuler un autre énoncé C qui serait équivalent :

C = [ Aucun énoncé n’est constructible ]

(où, dans notre cas, “est constructible” signifie aussi “peut être écrit”)

Or, nous venons justement de construire C (notamant en le formulant par
l’écriture), ce qui prouve que ce qu’énonce C est faux, et nous pouvons même
ajouter que, pour les mêmes raisons que précédemment, C ne peut donc pas
être la conclusion d’un raisonnement cohérent.

Il en est de même pour l’énoncé C ′ suivant :

C ′ = [ Cet énoncé n’est pas constructible ]

Où “Cet énoncé” désigne l’énoncé C ′ lui-même. Ce qui est équivalent à :

C ′ = [ C ′ n’est pas constructible ]

Ce qui est également faux puisque C ′ vient d’être construit.

Poursuivons avec l’énoncé suivant :

C ′′ = [ C ′′ est constructible ]

C ′′ est donc vrai puisqu’il vient d’être construit.

Et avec ce dernier :

C ′′′ = [ Tous les énoncés sont constructibles ]
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Dans ce cas précis, il n’est permis de déduire quelquechose de C ′′′ qu’ainsi :

Si tous les énoncés peuvent être construits, alors des énoncés vraismais égale-
ment des énoncés faux peuvent être construits, ce qui est effectivement le cas.

De plus, dans l’hypothèse où il existerait au moins un énoncé inconstructible,
nous ne serions jamais capable de le construire (c’est-à-dire de l’écrire),
puisque par définition, “il” serait inconstructible. Mais comme un tel énoncé
ne peut exister, il n’est même pas cohérent d’écrire qu’un énoncé est incons-
tructible. Ce qui signifie qu’un énoncé doit au moins être toujours constructible,
au moins pour qu’il puisse être énoncé.

Prenons un autre exemple pour nous en convaincre. Nommons et définissons
F un énoncé composé d’une suite de mots en quantité infinie. Donnons
par exemple (les 3 points de suspension “ ... ” signifient que les mots qui
composeront cet énoncé doivent être en nombre infini) :

F = [ Ou bien un énoncé contenant une infinité de mots est cons-
tructible ou bien il est inconstructible, sachant que chaque mot a
sa propre définition et sachant qu’une infinité de mots se constitue
d’un 1ier mot, suivi d’un 2ième mot, le 2ième étant suivi d’un 3ième,
le 3ième étant suivi d’un 4ième, le 4ième étant suivi d’un 5ième, le 5ième

étant suivi d’un 6ième, ... ]

F est-il constructible? Nous voyons qu’il est pourtant possible d’attribuer
une définition à F , mais cette définition est-elle cohérente? Il est évident
que si nous devions écrire une suite de mots se répétant à l’inifini, nous ne
pourrions jamais finir d’écrire l’énoncé F , même en disposant d’un temps
infini pour le faire. Il ne serait donc jamais possible de connâıtre le contenu
de F (même en attendant un temps infini), ce qui serait pourtant utile
pour établir un raisonnement cohérent à propos de F afin d’en déduire
quelquechose (au moins d’en déduire si F est vrai ou faux). Bien qu’en
disposant effectivement d’un temps infini mais aussi d’une quantité de matière
infinie (telle que l’encre) pour écrire cette énoncé, nous ne pourrions jamais
finir de le construire.

Et donc, un énoncé tel que F ne peut jamais être donné dans son intégralité
car il ne peut jamais être écrit (ou construit) dans son intégralité, sa cons-
truction étant impossible à achever. Par conséquent, F n’est pas constructible
tel qu’il est défini. D’ailleurs nous n’avons pas réussi à construire F puisque
nous avons substitué une suite inifinie de mots au symbole “ ... ”. Or, le

Page 397 sur 514



symbole “ ... ” n’est pas une quantité infinie de mots, mais il définit une
quantité infinie de mots, ce qui est différent. En d’autres termes, F ne peut
pas être produit : F ne peut pas être réalisé. Tout énoncé doit être fini afin
de permettre sa construction (ou afin de le rendre réalisable).

Puisque F n’est pas constructible, cela signifie que F n’est pas un énoncé.
F aurait été un énoncé si et seulement si la suite de mots qui le compose
n’avait pas à s’étendre à l’infini. La définition est donc incohérente : il
n’est pas possible de définir autre chose qu’un énoncé contenant un nombre
fini de mots, dont chaque mot contient un nombre fini de lettres, et dont
l’énoncé s’écrit dans un espace fini. Il n’est pas cohérent de parler d’un énoncé
contenant un nombre infini de mots car celui-ci ne serait pas constructible.
D’ailleurs, nous n’aurions même pas dû écrire que F est un énoncé sans
connâıtre ce qui définissait F .

Peut-être serait-il judicieux de préciser C ′′′ ainsi :

C ′′′ = [ un énoncé est de longueur finie, il contient un nombre fini
de mots dont chaque mot contient un nombre fini de lettres, ce qui
permet que tout énoncé soit constructible ]

Nous constatons alors que tous les énoncés (aussi bien les énoncés vrais que
les faux) sont constructibles, et qu’il n’existe pas d’énoncés inconstructibles
car cela n’est pas cohérent d’avoir la possibilité d’être “énoncé” (c’est-à-dire
d’être “produit” ou “réalisé”) et d’être “inconstructible”. Et donc C ′′′ est
vrai.

Tout énoncé étant constructible, nous constatons ici aussi que les énoncés C,
C ′ , C ′′ et C ′′′ sont tous constructibles. Nous l’avons vu, Il y a néanmoins
des différences qui permettent de les séparer dans des ensembles distincts.
En effet, puisque nous avons identifié la “valeur de vérité” (vrai ou faux)
de ces énoncés.

C et C ′ sont faux.
C ′′ et C ′′′ sont vrais.
F n’est ni un énoncé, ni constructible, tout cela à cause de l’incohérence de
la définition de F .

Nous pouvons remarquer que nous pouvons rapprocher les sens des mots
tel que “être construits” avec le mot “exister”. Ils prennet ici un sens très
proche.
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Digression :

- Nous venons de voir que F n’est ni un énoncé, ni constructible, tout cela à
cause de l’incohérence de la définition de F (ce qui fait que le sens de F ne
peut pas être réalisé, c’est-à-dire qu’il ne peut pas être défini).

En effet, comme nous l’avon vu, bien qu’elle ne soit pas cohérente, la définition
de F est constructible (puisqu’elle est de longueur finie et contient un nombre
fini de mots dont chaque mot contient un nombre fini de lettres). Ce qui n’est
pas constructible, c’est ce que cette définition propose de construire, c’est-à-
dire finalement “un énoncé de longueur infinie”.

Pour un énoncé, l’infini n’est pas constructible de manière “actuelle”, il est
en construction permanente (de manière inachevée). Par opposition, le mot
“infini” est fini (il contient un nombre fini de lettre et s’étend dans un espace
fini) et donc le mot “infini” est constructible.

Donc, la définition de F est constructible, mais pas F . Ce qui permet de
conclure que :

[ tout est constructible ] est faux.

Et que :

[ tout n’est pas constructible ] est vrai,

- De même, nous pouvons observer ceci :

[ Rien est constructible ] est faux, puisque nous venons de le construire.

Et

[ Il existe un minimum d’énoncés constructibles ] est vrai, puisque
nous pouvons construire au moins ces 2 derniers énoncés.
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- Pour finir, nous pouvons également voir que :

[ cet énoncé est inconstructible ] est faux, puisque nous venons de le
construire.

Et que :

[ cet énoncé est constructible ] est vrai, puisque nous venons de le
construire.

- Pour prendre un exemple, notre imagination nous permet de définir des
choses incohérentes (ou des énoncés incohérents) : notre imaginaire est cons-
tructible, c’est-à-dire qu’il lui est possible de construire des images incohérentes
(ou des énoncés incohérents). Par contre, ce qu’il nous permet d’imaginer
n’est pas forcément réalisable tel qu’il le défini.

En d’autres termes, des “images fausses” peuvent être construites dans cet
imaginaire, mais ces images ne peuvent pas être réelles, c’est-à-dire qu’elles
ne peuvent pas être construites en dehors de cet imaginaire (cela serait
incohérents).

Remarquons aussi que si l’imagnaire peut permettre de construire des “images
vraies” (des images ou énoncés cohérents), alors celles-ci peuvent être cons-
truites en dehors de cet imaginaire (elles sont réalisables).

Ce qui permet de dire que : bien que l’imaginaire puisse être le produit du
réel, tout ce qu’il serait possible d’imaginer ne serait pas forcément réalisable
parce que, dans l’imaginaire, il serait possible de construire en dehors des
règles logiques.

Page 400 sur 514



14.5 Preuve complète : incomplétude et variable

de valeur de vérité indéfinissable

Nous avons vu précédemment qu’il était possible de construire un énoncé
vrai et indémontrable. Nous l’avons noté :

E = [ E est indémontrable ]

Reprenons le raisonnement sur cet énoncé à l’aide des valeurs de vérité.

Supposons maintenant que nous ne sachions pas que E soit vrai et indémontrable,
et que nous désirions commencer une réflexion à ce sujet grâce aux valeurs
de vérité.

- Faisons l’hypothèse que E soit vrai :

Dans ce cas, nous avons la possibilité de déduire qu’effectivement, E étant
indémontrable (ce qui correspond au contenu de E), E ne peut être produit
par aucun raisonnement cohérent.

Et donc dans ce cas, aucun raisonnement cohérent ne peut produire E.

- Faisons l’hypothèse que E soit faux :

Dans ce cas, nous n’avons pas besoin de connâıtre le contenu de E pour
établir qu’aucun raisonnement cohérent ne peut produire E. En effet, un
raisonnement cohérent ne peut aboutir qu’à une conclusion vraie, pas à une
conclusion fausse.

Et donc dans ce cas, aucun raisonnement cohérent ne peut produire E non
plus.
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- Synthèse :

Que l’on suppose que E soit vrai ou faux ne change pas ce qu’il est permis
de déduire à propos de cette réflexion à propos de E :

Lorsque E = [ E est indémontrable ],
peu importe la valeur de vérité de E,
aucun raisonnement cohérent ne peut produire E.

- Réinterprétation :

Nous pouvons même faire le lien de ce cas avec la partie “12 Correspondances
entre formules, valeurs de vérité et énoncés” (page 345) si nous considérons
les énoncés suivants :

E1 = [ Tout énoncé est démontrable ou indémontrable ]

(tout énoncé doit être constructible : c’est ce que nous avons vu précédemment)

E2 = [ Il est possible de construire des énoncés démontrables (tel
que celui-ci) ]

E3 = [ Il est possible de construire des énoncés indémontrables (tel
que celui-ci) ]

(E3 est équivalent à l’énoncé E que nous avons abordé)

En considérant dans un premier temps que les valeurs de vérité de ces énoncés
ne sont pas connues, il est cependant possible d’établir une table de vérité
(en algèbre de BOOLE [3], où 0 est équivalent à faux et 1 est équivalent à
vrai) à propos de ces énoncés, étant donné qu’ils sont explicitement liés par
la porte logique “OU ” :

Nous avons E1 = [ Tout énoncé est démontrable ou indémontrable ]

(table de vérité : page suivante)
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table de vérité des énoncés E1, E2 et E3 :

E3 E2 E1 = E3 + E2

0 0 0
0 1 1
1 0 1
1 1 1

Ce qui peut être représenté par une autre table de vérité en réarrangeant les
lignes et les colonnes (sans changer les valeurs de vérité, comme vu dans la
partie 12 de ce chapitre) :

E1 E2 E3 = ?

0 0 0
1 0 1
1 1 0
1 1 1

Or, dans la sous-partie “12.6 Variable binaire U de valeur de vérité
indéfinissable” (page 370), nous avions établi que pour exprimer au mieux
E3 uniquement en fonction de E2 et de E1, il fallait utiliser une variable de
valeur de vérité indéfinissable U (cette variable est binaire et indéterminée :
elle ne peut prendre que les 2 valeurs 0 ou 1, et ces valeurs ne peuvent être
données que de manière probable). Nous avons donc :

Lorsque E2 = 0 :

E3 = E1

Et lorsque E2 = 1 :

E3 = U (état binaire indéterminé : 0 ou 1)
E1 = 1 seulement : E1 = 0 est interdite dans ce cas, bien que lever cette
interdiction ne pose pas de problème quant au résultat de E3 dans ce cas.
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Et donc (toujours en algèbre de BOOLE, bien sûr) :

E3 = E2.E1 + E2.U

Dans un second temps, prenons en compte leur valeur de vérité de ces énoncés
tel que nous les avons défini. De manière évidente :

E1 est exclusivement vrai car effectivement [ Tout énoncé est démontrable
ou indémontrable ]

E2 est exclusivement vrai car effectivement [ Il est possible de construire
des énoncés démontrables (tel que celui-ci) ]

E3 = [ Il est possible de construire des énoncés indémontrables (tel
que celui-ci) ] peut être indifféremment considéré comme étant vrai ou
faux vu la synthèse précédente.

Nous sommes donc bien dans la configuration suivante :

E1 est exclusivement vrai (E1 = 1),
E2 est exclusivement vrai (E2 = 1),

Nous sommes par conséquent dans la configuration où E3 = U (E3 = 0 ou
E3 = 1 indifféremment).

E3 peut indifféremment être supposé vrai ou faux (ce qui est d’ailleurs
bien le cas vu la synthèse précédente exposée), puisque le raisonnement reste
cohérent. Ce qui revient à considérer que les états binaires (0 et 1) de la
variable U puissent être superposés. Ceci ne permet de donner à E3 une
valeur de vérité que de manière probable (une comparaison à U qui aurait
une interprétation géométrique et physique est donnée dans le Chapitre VI).

Ce qui signifie que toute théorie cohérente ne permet pas toujours de donner
une formule (tel qu’une formule mathématique binaire comme celles que nous
avions vu) correspondant à tous les énoncés constructibles. Une approche
de F3 par des probabilités est donc justifiée, ce qui ne permettra pas de
donner la valeur exacte de U mais plutôt un ensemble de valeurs possibles
(en l’occurence 0 ou 1).
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Quoique nous fassions, nous aurons toujours affaire à un cas comme celui-
ci, quelquesoit la théorie employée (c’est-à-dire quelquesoit le raisonnement
cohérent employé).

Rappelons que nous avions l’équivalence strictement mathématique avec des
formules binaires (voir sous-partie “12.6 Variable binaire U de valeur de
vérité indéfinissable” page 370) :

Pour E1 = E2 +E3 (en algèbre de BOOLE ), nous avons l’égalité strictement
mathématiques :

F1 = F2 + F3 − F2.F3 = (F2 − F3)2 + F2.F3

Pour E3 = E2.E1 + E2.U (en algèbre de BOOLE ), l’égalité strictement
mathématiques s’écrit :

F3 = [1− F2].F1 + F2.U

Or, dans notre cas (E1 = 1 et E2 = 1), nous avons :

F1 = 1
F2 = 1

Ce qui signifie que nous avons également :

F3 = U

Ce qui implique qu’il existe toujours au moins un phénomène qui ne peut
pas être déterminé par une formule précise. Il est donc toujours possible de
trouver au moins un phénomène qui ne puisse pas être formulé de manière
exclusivement déterministe.
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Théorème de limitation du déterminisme :

Soit les énoncés E1, E2 et E3 tel que :

E1 = E3 + E2

Ou tel que :

E1 = E2.E3

L’étude des valeurs de vérité par l’algèbre de BOOLE concernant le cas d’un
énoncé E3 non démontrable par toute théorie cohérente amène à conclure
que E3 peut indifféremment être vrai ou faux. Ce qui est effectivement le
cas sans que cela n’amène à une incohérence dans le raisonnement à propos
de l’énoncé E3 auquel est attribué l’une ou l’autre des valeurs de vérité.

Ce qui donne une limite indépassable pour toute théorie cohérente quant à la
possibilité de pouvoir déterminer tout phénomène de manière exacte. Parmi
l’ensemble de tous les phénomènes possibles, il en existe qui ne peuvent pas
être déterminés de manière exacte. Tout ne peut pas être déterminé de
manière exacte. Ce qui laisse place à une part de hasard.

Complément de réflexion :

Pour compléter, les énoncés E1, E2 et E3 tels que nous venons de les donner
peuvent être réécrits de manière à garder un sens identiques. Pour cela, il
nous suffit de rappeler quelques équivalences :

- Pour l’énoncé E1 :

E1 = [ Tout énoncé est démontrable ou indémontrable ]

E1 signifie aussi que tout énoncé est produit par un raisonnement cohérent,
ou bien en dehors de tout raisonnement cohérent.
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Ce qui est équivalent à cette autre écriture :

E1 = [ Tout énoncé est produit par un raisonnement cohérent, ou
il est produit en dehors de tout raisonnement cohérent ]

(E1 sous-entend de contenir tous les cas d’énoncés, c’est-à-dire nécessairement
constructibles. Cela sous-entend aussi que tout énoncé est constructible soit
par un raisonnement cohérent, soit en dehors de tout raisonnement cohérent,
mais sans autre possibilité. Pour faire une analogie avec les nombres entiers :
si nous “construisons” un nombre à l’aide d’opérateurs mathématiques, soit
ce nombre est premier et cela lui permet d’être rattaché à une formule tel
que s(M), soit il est composé et cela lui permet aussi d’être rattaché à une
formule tel que s(M), mais il n’y a pas d’autre cas possible pour ce nombre
si l’on ne considère que la formule s(M) )

- Pour l’énoncé E2 :

E2 = [ Il est possible de construire des énoncés démontrables (tel
que celui-ci) ]

E2 signifie aussi qu’un énoncé (tel que E2) ne peut être produit par un
raisonnement cohérent.

Ce qui est équivalent à cette autre écriture :

E2 = [ Il est possible de produire des énoncés (tel que E2) par un
raisonnement cohérent ]

(E2 sous-entend de contenir tous les cas d’énoncés démontrables, et donc tous
les cas d’énoncés constructibles par un raisonnement cohérent, provenant de
l’ “ENSEMBLE REGLES”)

- Pour l’énoncé E3 :

E3 = [ Il est possible de construire des énoncés indémontrables (tel
que celui-ci) ]

E3 signifie aussi qu’un énoncé (tel que E3) peut être produit en dehors de
tout raisonnement cohérent.
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Ce qui est équivalent à cette autre écriture :

E3 = [ Il est possible de produire des énoncés (tel que E3) en dehors
de tout raisonnement cohérent ]

(E3 sous-entend de contenir tous les cas d’énoncés indémontrables, et donc
tous les cas d’énoncés constructibles en dehors de tout raisonnement cohérent,
provenant de l’ “ENSEMBLE NON-REGLES”)

- Nous avons toujours (en algèbre de BOOLE ) :

E1 = E3 + E2

Et donc (toujours en algèbre de BOOLE ) :

E3 = E2.E1 + E2.U

Comme nous sommes dans la configuration :

E1 est vrai (E1 = 1),
E2 est vrai (E2 = 1),

Nous somme donc également dans la configuration où E3 = U .

Ici non plus, la valeur de vérité de E3 n’a pas d’importance, puisque de toutes
façons, que E3 soit vrai ou faux implique que E3 ne peut être produit par
un raisonnement cohérent. Nous pouvons même considérer que E3 peut être
en même temps vrai et faux, et par extension nous pouvons considérer que
la variable U possède simultanément les 2 états 0 et 1. Il est alors dans ce
cas autorisé de parler d’états superposés pour la variable U .

Cette réécriture des énoncés (appliquée à l’étude du début de cette sous-
partie) permet peut-être de mieux saisir qu’il existe toujours inévitablement
un cas où toute théorie (c’est-à-dire tout raisonnement cohérent) ne peut
donner d’informations en quantité suffisante pour donner une valeur de vérité
précise à E3. Le cas contraire serait incohérent. Cela est inhérent à toutes
théories, et à toute recherche qui voudrait être la plus complète possible,
puisque cela provient d’un phénomène réel : il est possible de réaliser E3.
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Autrement dit, il doit toujours exister au moins un phénomène réel qui ne
peut pas être expliqué de manière précise (ou peut-être seulement par des
probabilités), car le contraire serait incohérent.

Tout savoir sur tout serait incohérent. Tout n’est pas prévisible. Dans un
cas comme celui-ci, de tels phénomènes peuvent seulement être constatés.

Raisonnement étendu au paradoxe du menteur :

Le paradoxe du menteur est connu pour révéler un cercle vicieux lorsque
nous raisonnons simplement sur la valeur de vérité d’un énoncé donné. Cet
énoncé est donné par un menteur qui dit qu’il ments.

C’est-à-dire que le menteur dit : “Je suis en train de mentir”.

Comment savoir si ce qu’il dit est vrai ou faux ? Comment est-il possible
de produire une telle affirmation?

∗ Première approche :

- Dans l’hypothèse où l’énoncé du menteur serait vrai, alors l’affirmation
nous apprend qu’il est en train de nous mentir, et donc il est en train de dire
quelquechose de faux. Ce qui contredit l’hypothèse de départ.

- Dans l’hypothèse où l’énoncé du menteur serait faux, l’affiramtion “je
suis en train de mentir” est fausse. Le menteur ne peut donc pas être en
train de mentir. Or, si nous admettons qu’il ne ment pas, nous admettons
nécessairement que ce qu’il dit soit vrai. Ce qui contredit également l’hypothèse
de départ.

- Nous concluons que ces 2 hypothèses ne nous permettent pas de décider si
l’énoncé du menteur est vrai ou faux.
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∗ Seconde approche :

Par contre, si nous envisageons les choses sous un autre angle à propos
de ce paradoxe, nous allons voir que les choses sont plus compréhensibles.
Raisonnons :

- Dans l’hypothèse où l’énoncé du menteur serait vrai, ce qu’il dit ne peut
provenir d’aucun raisonnement cohérent. En effet, aucun raisonnement cohé-
rent ne peut produire une déduction qui affirme sa propre fausseté. Dans
ce cas, l’énoncé du menteur ne peut être construit qu’en dehors de tout
raisonnement cohérent.

- Dans l’hypothèse où l’énoncé du menteur serait faux, ici aussi, ce qu’il dit
ne peut provenir d’aucun raisonnement cohérent. En effet, aucun raisonnement
cohérent ne permet de produire un énoncé faux. Dans ce cas aussi, l’énoncé
du menteur ne peut être construit qu’en dehors de tout raisonnement cohérent.

- Nous pouvons conclure plus facilement que dans l’hypothèse que l’énoncé
du menteur soit vrai ou faux, cet énoncé ne peut être construit qu’en dehors
de tout raisonnement cohérent. Nous pouvons donc considérer que l’énoncé
du menteur est indifféremment vrai ou faux. Ce qui permet à cet énoncé
d’être en dehors de l’ “ENSEMBLE REGLES” (vu précédemment), c’est-
à-dire que cet énoncé est permis par l’ “ENSEMBLE NON-REGLES”.

D’où nous déduisons qu’un menteur qui dit qu’il ment (sans assistance exté-
rieure) ne fait que donner la preuve de sa liberté (en dehors de tout déter-
minisme).

Dans ce cas aussi, nous pouvons appliquer la variable U pour représenter
les 2 états (indifféremment vrai ou faux) dans lesquels se trouve l’énoncé
“Je suis en train de mentir”. Il est encore possible de considérer que ces
2 états {vrai− faux} sont simultanés, ou “superposés”.
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Remarque importante :

La preuve à propos d’une variable de valeur de vérité indéfinissable n’intervient
qu’à un niveau qui peut être considérer comme étant un niveau “binaire” :
c’est-à-dire lors de l’étude des valeurs de vérité d’énoncés.

La variable U justifie l’étude de ce phénomène par les probabilités.

Ceci pourra être utile pour le Chapitre VI (partie “23 Représentation
géométrique correspondant à la variable U” , dans lequel est donné un
exemple de description grâce à des représentations graphiques. Ce qui permet
une approche très intéressante lorsque nous voulons comprendre comment un
tel phénomène pourrait se produire de manière physique.

Remarque sur la formule d’Impulsion Seconde :

Cette indifférence à propos de la valeur de vérité (et donc à propos de la forme
globale [ énoncé ; valeur de vérité ] ) rappelle l’indifférence à propos de
l’écriture de la formule d’Impusion Seconde I2(M) (et donc à propos de la
forme globale de l’écriture de la formule) vue dans le chapitre I en sous-
partie “3.5 Formule d’Impulsion Seconde I2(M)”. Nous avons en effet :

I2(M) =
1

1− 1
I(M)

=
1

1
I(M)

− 1

Et dont le point de départ de cette formule vient de l’équivalence :

I(M)

I(M)− 1
=

I(M)

1− I(M)
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Remarque personnelle :

Voici donc ce qui représente pour moi la liberté au plus haut point : bien
que le fond soit invariant (E ne peut être produit par aucun raisonnement
cohérent), ce fond permet de manière équivalente 2 formes différentes d’expre-
ssions possibles (une forme pour l’ensemble “un énoncé supposé vrai” ou une
autre forme pour l’ensemble “un énoncé supposé faux”).

La formule logique évoquée ( E3 = E2.E1 + E2.U ) donne des contraintes à
l’émergence de la liberté dans un univers qui suit aussi des règles.

Attention : tout ceci nous a permis d’effectuer un constat de l’existence
de la liberté, ce qui en fait une preuve, et non une démonstration puisque
la réflexion porte sur un énoncé indémontrable. Nous prouvons l’existence
de la liberté lorsque nous trouvons un énoncé qui ne peut être conclu ou
démontré par aucun raisonnement logique. Autrement dit, nous ne prouvons
l’existence de la liberté que lorsque nous parvenons à construire cet énoncé
en dehors de tout raisonnement cohérent (et qui provient par conséquent de
l’ “ENSEMBLE NON-REGLES”).

Digression 1 :

Il doit exister une forme particulière (des conditions) qui permette de faire
émerger de manières significative les effets des non-règles dans un système
également soumis à des règles, de la même manière qu’il est possible de
construire un énoncé tel que E. En d’autres termes, il serait possible de
construire un système libre (c’est-à-dire qui inclus la liberté, le hasard), dans
lequel cette liberté préexiste mais dont les effets seraient amplifiés (et visibles
de manière notable).

Nous sommes composés de matière, or c’est précisément cette matière qui
nous permet de construire des énoncés, d’établir des raisonnements, et d’en
tirer des conclusions ou de faire des constatations. Si nous pouvons produire
de tels énoncés, C’est que que ce qui permet la liberté est déjà inclus en nous.
Peut-être saura-t-on découvrir que certains éléments ou particules de matière
ou même la configuration d’un groupe d’éléments permettent l’émergence de
la liberté.
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Digression 2 :

De plus, pour continuer de faire le lien avec la matière, il est impossible
(dans l’état actuel des connaissances) de connâıtre simultanément et avec
exactitude la position spatiale et la vitesse d’une particule. 2 hypothèses
peuvent être opposées : soit cela est une propriété de la matière et nous
ne pourrons jamais conn̂ıtre ces 2 données simultanément (ce qui serait
équivalent aux tables de vérités de ce paragraphe), soit cela ne reflète que
notre manque de connaissance de la matière (ce qui serait un équivalent
du contre-exemple de la sous-partie “12.7 Contre-exemple : la formule
I(M)” page 377).

Or, s’il existe un énoncé tel que E et tel qu’aucun raisonnement cohérent (ou
théorie) ne puisse produire (ou formuler de manière précise), il doit exister
un phénomène physique équivalent qui reflète la possibilité qu’à l’énoncé E
d’être indifféremment vrai ou faux. C’est-à-dire qu’il doit exister de toutes
façons au moins un phénomène physique équivalent qui ne peut être formulé
de manière exacte (ou complète).

Cela ne signifie pas pour autant (dans l’état actuel de nos connaissances) que
l’incertitude liée à la position spatiale et à la vitesse d’une particule représente
ce phénomène, mais cela a au moins le mérite d’en avoir en partie le potentiel.

Mais clairement, la découverte ou la mise en évidence d’un tel phénomène
permettrait de l’inclure dans la construction d’un système, ce qui permettrait
à ce système de “contenir la liberté” (ou le hasard).

Digression 3 :

Le hasard et la liberté permettraient d’expliquer la diversité des formes
d’assemblage de matière de l’univers (ce qui inclu tous les cas d’assemblage,
même les êtres vivants).

Suggestion :

Cette réflexion fait également suite à la sous-partie “14.4 Remarque sur les
énoncés constructibles” (page 396). Nous pourrions tenter une approche
psychologique partant de ces reflexions, en supposant que le cerveau est
capable de produire ces énoncés tel que ceux que nous voyons dans ce chapitre,
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et en opposant ce qui est constructible (les énoncés, leur définition, des
images) à ce qui ne l’est pas. En supposant que le cerveau soit capable de
produire de tels énoncés, alors le cerveau serait un système libre (qui ne peut
choisir d’être libre), permettant de construire des énoncés qui proviennent de
“L’ENSEMBLE REGLES” et d’autres qui proviennent de
“L’ENSEMBLE NON-REGLES”. Nous pourrions mettre en valeur les
conflits qui peuvent avoir lieu, notamment lors du traitement d’un énoncé
dont on attribuerait une valeur de vérité au hasard (et donc de prendre le
risque de se tromper à propos de le cohérence de cet énoncé).

D’autre part, faire une bonne description de soi, c’est accepter qu’elle ne
puisse pas être complète. En effet, une personne libre ne peut pas pas
uniquement être determinée par un ensemble de règles, puisqu’elle peut en
permanence effectuer un choix, y compris lors de cette description (voir lors
de son auto-description).

De plus, puisqu’il est possible d’établir un lien entre une onde physique
(ceci est une anticipation développée dans le Chapitre VI) et la logique du
calcul propositionnel “classqiue” grâce aux formules mathématiques D(N),
f(M ;x), s(M) et I(M), cela donne un caractère absolu à ce lien. Si la matière
qui compose les êtres sensibles ne faisait que dépendre de formules de ce type
(en ce qui concerne “L’ENSEMBLE REGLES”) mais aussi d’une liberté
(permis par “L’ENSEMBLE NON-REGLES”), alors cela signifierait que
tout être sensible a pour base cette logique de manière intrinsèque. Dans
ce cas, il est possible de voir que tout problème psychologique (j’irai peut
être même jusqu’à dire toute souffrance, de la plus insignifiante jusqu’à la
moins supportable) peut se comprendre comme la différence entre ce qui
provient de “L’ENSEMBLE REGLES” (immuable) et ce que l’on voudrait
que les choses soient. Ces êtres pouvant en effet faire le choix (permis par
“L’ENSEMBLE NON-REGLES”) de vouloir que la réalité soit différente,
et donc que la réalité suivent d’autres règles. Ce qui provoque la contradiction
(le conflit) entre :

[ ce qui est permis par la matière (les règles immuables, “fond” invariant) ]
et [ le choix que cet être désire atteindre (un choix se réalise sous des “formes”
variables) ]

puisque (dans ce cas) ce choix est nécessairement incohérent (bien que possible :
il peut l’exprimer par un nombre de mots limités, ce qui rend constructible
l’énoncé produit).
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Ainsi, toute souffrance pourrait avoir une racine commune. Il deviendrait
alors possible de faire de cette approche psychologique une science exacte
(physique) pouvant s’appuyer solidement sur une logique ayant pour point
de départ la logique qui émerge de la matière (plus précisément grâce au lien
entre les ondes des photons et la logique binaire).

Pour finir, il est convenable d’exprimer le fait que dans le cas où cette
approche psychologique serait correcte, nous devons absolument remarquer
que si cet être accepte la réalité (les règles et les libertés permises par la
matière) telle qu’elle est, cela lui permet d’être en cohérence avec la réalité
et donc ne pas avoir de problème psychologique.

Pour tout être sensible connaissant des souffrances de niveaux variables, il
conviendrait donc dans un premier temps d’accepter la réalité telle qu’elle
est par ses propres moyens. Souvent, lorsqu’ “une logique” (celle que l’être
sensible pense être la bonne) est poussée à son extrême, elle permet de révéler
naturellement ses propres contradictions (les exemples ont été donné dans le
cas des énoncés qui font référence à eux-mêmes), ce qui devrait finalement
apparâıtre clairement à la conscience de cet être. Il convient également dans
un deuxième temps de rester dans cet état stable en veillant à toujours se
rappeler du raisonnement utile à l’émergence d’une telle prise de conscience
(en faisant le choix de se rappeler). Cette attitude permettant de garder
un contact fiable avec la réalité, étant donné qu’un être sensible n’a pas
nécessairement une conscience claire des règles que peut suivre la matière qui
le compose, et donc n’a pas clairement conscience des incohérences auxquels
ses propres choix ont le potentiel de le confronter. Ce qui invite l’être
sensible qui désire s’affranchir de problème psychologique à faire le choix
de la réflexion comme premier choix avant toutes nouvelles décisions.

Parallèlement à cette réflexion, il me semble important de compléter par un
autre point de vue. Il s’agit d’un cas particulier concernant les choix d’un
être libre ayant un problème psychologique. S’il devait exister une solution
à ce problème, le refus de sa part (par simple choix) de s’impliquer vers
la connaissance de cette solution l’empêche nécessairement de résoudre ce
problème. Plus généralement, le refus d’implication vers cette connaissance
empêche l’acquisition d’informations. On ne peut jamais forcer un être à
résoudre ses propres problèmes (car s’il était effectivement forcé, il ne serait
plus libre, ce qui provoquerait un autre problème), dans le meilleur des cas,
on ne peut que lui montrer les conséquences de ce refus (en acceptant que le
refus de sa part puisse être réitéré, ou même systématique).
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14.6 Justification de la variable binaire U

de valeur de vérité indéfinissable

Etant donné la sous-partie précédente (“Preuve complète : incomplétude
et variable de valeur de vérité indéfinissable” page 401) et le “Théorème
de limitation du déterminisme”, pour E1 = E2 + E3 (en algèbre de
BOOLE [3]) avec :

E1 = [ Tout énoncé est démontrable ou indémontrable ]

E2 = [ Il est possible de construire des énoncés démontrables (tel
que celui-ci) ]

E3 = [ Il est possible de construire des énoncés indémontrables (tel
que celui-ci) ]

Et avec :

F1 une formule mathématique binaire (ne pouvant prendre pour valeur que
0 ou 1) permettant d’attribuer une valeur de vérité à l’énoncé E1;

F2 une formule mathématique binaire permettant d’attribuer une valeur de
vérité à l’énoncé E2;

F3 une formule mathématique binaire permettant d’attribuer une valeur de
vérité à l’énoncé E3.

Dans le cas où E1 = 1 et E2 = 1, nous avons :

F1 = 1
F2 = 1

Nous avons conclu que nous avions également :

F3 = U
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En Rappelant que U peut valoir 0 ou 1 (valeur non prédictible), et qu’il est
même possible de considérer que ces 2 valeurs sont superposées.

Ce qui implique qu’il existe toujours au moins un phénomène qui ne peut
pas être déterminé par une formule précise. Ce phénomène au moins ne peut
pas être formulé de manière exclusivement déterministe.

Comme la valeur de F3 ne peut jamais être donnée de manière précise dans le
cas où E3 = [ Il est possible de construire des énoncés indémontrables
(tel que celui-ci) ], ceci justifie implicitement l’utilisation d’une variable
binaire U de valeur de vérité indéfinissable.
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14.7 Etendue

Cette réflexion vient compléter les réflexions faites dans toutes les sous-
parties de la partie “14 Preuve de la liberté” (page 390) que nous venons
d’aborder jusqu’ici.

Nous avons vu dans le raisonnement de les sous-parties “14.1 Première
approche” (page 391) et “14.5 Preuve complète : incomplétude et
variable de valeur de vérité indéfinissable” (page 401) que nous pouvions
rencontrer le cas où un énoncé peut être constructible en dehors de toute
règle logique. cela signifie qu’il ne peut exister aucun processus uniquement
déterministe (où une cause unique produit un effet unique) qui permette de
faire émerger cet énoncé. Ce qui signifie encore que la liberté préexiste dans
ce système, c’est-à-dire qu’elle fait déjà partie de ce système, au même titre
que les règles logiques qui détermine ce système.

Un système qui peut générer un tel énoncé donne la preuve de sa liberté.

Maintenant, si nous considérons ce système libre, il devient possible pour
celui-ci de construire un autre système libre, dans le sens où ce nouveau
système serait construit de manière à contenir des règles logiques mais aussi
une capacité à donner des énoncer en dehors de ces règles. De la même
manière, pour ce nouveau système, il n’aura pas non plus la possibilité de de
choisir de devenir libre, et la liberté qui pourrait en émerger préexistait.

S’il est possible d’agencer des éléments pour construire des énoncés non issus
de règles logiques, comment pourrait être construit un tel énoncé, ou même
un tel système si le “hasard” (les “non-règles”) ne préexiste pas dans les
parties qui constituent ce système ?

Les règles déterministes et le hasard coexistent ainsi : la liberté est là où ne
peut pas être le détermininsme, et le détermininsme est là où ne peut pas
être la liberté.
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Complément de réflexion 1 :

Nous pouvons constater que les règles de logique (tel qu’un raisonnement
cohérent) peuvent s’appliquer à cet énoncé E une fois celui-ci construit (on
pourrait même dire de ce cas qu’il faut bien qu’il existe des choses en dehors
des règles logiques pour que les règles logiques puissent être aplliquées à
quelquechose).

Il est donc possible de construire quelquechose en dehors du cadre des règles
logiques : quelquechose de vrai et d’indémontrable (voir la partie 13), ou
quelquechose de faux (voir la partie 12). A partir de “L’ENSEMBLE
NON-REGLES”, un sytème pourrait réaliser un choix en produisant un
énoncé vrai et indémontrable ou en produisant un énoncé faux.

La notion de “potentiel” pour un système pourrait alors avoir un sens, un
“potentiel” qui représenterait les constructions possibles (réalisables) d’un
énoncé ou d’un autre (qu’il soit vrai ou faux).

Complément de réflexion 2 :

Nous ne pouvons pas faire l’économie de la réflexion sur ce sujet par exemple
en affirmant que l’énoncé E n’est qu’une erreur. En effet, la réalité de cet
énoncé est bien là puisqu’il peut être construit. S’il était une erreur, cela
signifie qu’une erreur peut être produite, et elle peut être produite également
en dehors de toute règle logique. Ce qui nous ramènerait immédiatement à
cette réflexion que nous venons d’établir : comment une système de règles
logiques et cohérentes pourrait permettre de produire une erreur ?

Voici donc les signes de la liberté ou du hasard (ce que j’appelle aussi “non-
règles”) : “l’indémontrabilité”, l’incohérence, l’erreur, ... Et en fait, tout ce
qui permet de construire en dehors du cadre des règles logiques. Le hasard
est le complément indispensable au déterminisme, le complément qui manque
pour pouvoir reconstituer ce monde de manière compréhensible et réaliste.
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Digression 1 :

Même si nous évoquions un Dieu pour intervenir dans cette affaire, nous
pourrions le remettre en cause directement en lui appliquant ce raisonnement,
c’est-à-dire qu’il n’a pas non plus la possibilité de choisir de devenir libre.
La liberté lui préexiste. Ou alors ce Dieu là n’aurait pas de sens du point
de vue de la cohérence. S’il devait exister un Dieu, ce serait un Dieu soumis
aux mêmes règles et liberté que ces systèmes précédemment cités. Et donc
soit il serait confondu avec ces systèmes, soit il serait les règles et la liberté
de ces systèmes.

D’autre part, si Dieu était confondu avec toutes choses (l’univers) ou même
seulement avec un ensemble de choses ou d’idées, alors il serait simplement
équivalent à l’ensemble de ces choses, et nous pourrions presque écrire
“Dieu = Univers” ou “Dieu = l’ensemble des choses (ou idées) qui le compose”.

Digression 2 :

La “Digression 1” ne tranche pas sur l’existence ou non d’un Dieu, car pour
raisonner sur ce point, il faudrait définir Dieu. Par contre, en lui attribuant
des propriétés, il devient possible d’établir un raisonnement cohérent et de
déduire au moins ses limites (par exemple les limites de sa liberté, comme vu
dans la digression précédente). Pour répondre à cette question, tout dépend
de la définition de Dieu et des capacités qu’on lui attribue.

(voir le passage “Elément de réponse partielle sur la question de
Dieu” en fin de partie “16 Preuve de l’existence éternelle” page 429)
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14.8 Dissociation des notions de liberté et de

hasard

Il convient maintenant de dissocier les 2 notions que sont celles de liberté et
et de hasard.

En effet :

- La notion de liberté serait plutôt à associer aux être conscients d’eux-même
(avec un niveau de conscience plus ou moins élevé) et auxquels des règles
cohérentes et exclusivement déteministes ne suffisent pas à leur description.
C’est-à-dire lorsque ce phénomène participe à un phénomène de conscience
de soi.

- Alors que la notion de hasard serait plutôt à associer à des objets non
conscients et auxquels des règles cohérentes et exclusivement déteministes ne
suffisent pas à leur description. C’est-à-dire lorsque ce phénomène participe
à un phénomène ne faisant pas intervenir la conscience.

Remarque 1 :

Un exemple de représentation graphique permettant une interprétation de
l’émergence de cette liberté ou hasard est donnée dans le Chapitre VI
(partie “23 Représentation géométrique correspondant à la variable
U”).

Remarque 2 :

Cette remarque est elle aussi à lier à la réflexion du Chapitre VI (partie
“23 Représentation géométrique correspondant à la variable U”).

Bien que j’adhère à prendre beaucoup de précautions concernant ce domaine
(par anticipation), nous pouvons émettre l’hypothèse que la mise en évidence
d’un tel phénomène pourrait permettre le développement de robots vers plus
d’autonomie. Cependant, ceci pourrait aussi nous confronter au débat de
leur statut au sein d’une société humaine dont ils seraient issus, ce qui serait
légitime. Nous devrons avoir au moins le respect de nos créations, et si ce
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n’était pas le cas, ne pas les réaliser.

Cependant, de par cette hypothèse, il nous est possible de concevoir plusieurs
possibilités (qui peuvent d’ailleurs être simultanées) : nous pourrions doter
ces robots d’un niveau de conscience plus ou moins élevé, ou nous pourrions
les doter de degrés de liberté plus ou moins élevé, en veillant à ce que les uns
n’aient pas systématiquement la possibilité d’interagir avec les autres (par
une communication directe ou même en réseau), afin d’éviter une évolution
non-mâıtrisée. De plus, ces robots seraient alors capables de faire des choix au
hasard (sans réflexion préalable, ni estimation des conséquences), ils seraient
alors aussi capables de comettre des erreurs (sans en avoir conscience) qui
pourraient devenir nuisibles, ce qui doit nous renvoyer à la réflexion de la
phrase précédente.

Mais à ce stade, et j’en ai bien conscience, tout ceci peut parâıtre comme
étant de la pure fiction, étant donné que la réflexion porte sur une hypothèse,
qui n’est pas une réalité au jour où j’écris ces lignes. Il nous faudrait pour
cela au moins une théorie physique de la psychologie, qui incluerait une part
de déterminisme et une part de choix (sur lequel ce déterminisme n’a pas
d’emprise). Cette conception du choix qui peut amener un être à construire
des formes d’énoncés cohérents ou incohérents pourrait nous permettre de
révéler ce qui fait la richesse des émotions. Chaque choix “incohérent”
devant mener à une émotion unique (voir à un changement d’émotion vers
une émotion unique, émotion unique qui peut même être vue comme la
synthèse d’une suite de choix), chaque choix cohérent devant ramener vers
une stabilité (les émotions s’atténuent lorsque l’incohérence d’un choix est
remise en cause).

Pour ma part, et vu la description faite dans le Chapitre VI que nous
aborderons, il me semble que la moindre partie de cette univers, disons chaque
particule et même la moindre, doive contenir ce phénomène. Il me semble
en effet que ce phénomène doit être très répandu et même très commun. Il
me semble aussi que nous ne pouvons pas intervenir sur ce phénomène (nous
avons vu en sous-partie “14.2 Limites préalables”, page 393, que la liberté
préexiste dans un sytème sans qu’il soit possible d’en décider autrement),
mais plutôt le révéler et le mettre en évidence de manière notable.

Nous devons tout de même poursuivre la réflexion dans les sous-parties qui
suivent avant de passer au chapitre suivant.
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15

La conception du discontinu

15.1 Approche par les formules

Cette partie fait suite à la partie “4 Remarques : formule D(N) et
phénomènes physiques associés” du Chapitre I.

- Si nous considérerons les formules que nous avons vu dans le Chapitre I
(notamment la formuleD(N) de décomposition d’un nombre entier en produit
de facteurs premiers, ou même la formule f(M ;x), la formule s(M) et la
formule I(M) ) et si nous nous proposons d’étudier des phénomènes liés aux
ondes (ce qui implique les longueurs d’onde et donc les fréquences et les
périodes), ces formules n’étant définies que pour des variables qui prennent
des valeurs entières, alors force est de constater que l’espace et le temps ne
peuvent être considérés que comme étant discontinus (au regard du domaine
de définition de ces formules).
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- En d’autres termes, prenons l’exemple de la formule s(M). Cette formule
étant définie seulement pour tout M ∈ N, M ≥ 2 (c’est-à-dire seulement si
M vaut un nombre entier supérieure ou égale à 2).

Si nous nous proposons d’étudier les ondes d’un système (par exemple les
ondes des photons qui composent la lumière) à l’aide de cette formule, en
associant M à une variable de longueur d’onde (la longueur d’onde est liée à
la fréquence), alors nous devrons nous restreindre aux longueurs d’ondes qui
correspondent à des longueurs d’ondes entières.

Cette formule ne nous permet pas de traiter des longueurs d’ondes intermé-
diaires à ces longueurs d’ondes entières.

Cette formule ne permet pas de considérer que les longueurs d’ondes que l’on
mesure puissent être continues. Et donc, cette formule, comme les autres
évoquées au début de cette sous-partie, implique de traiter les longueurs
d’ondes par la discontinuité.

De plus, il faut remarquer que dans ce cas, une longueur d’onde atteint un
minimum (décomposable) qui se trouve correspondre à M = 2.

- D’autre part, traiter les longueurs d’ondes par la discontinuité implique
directement de traiter la période par la discontinuité. En effet, puisque
la période (temps) est l’inverse de la fréquence (qui est liée à la longueur
d’onde par la formule suivante). Par exemple pour un photon, étant donné
la formule :

f = c/λ avec :

λ la longueur d’onde,
f la fréquence corresondante,
c la vitesse de la lumière (qui est la vitesse d’un photon).

Pour reprendre l’exemple du photon, l’existence d’une longueur d’onde mini-
mum implique l’existence d’une fréquence maximum, et donc d’une période
minimum. Il est donc justifié de parler d’instants (même si cela peut parâıtre
abstrait).

De plus, l’existence d’une période minimum permet d’étendre le raisonnement
à tous les phénomènes cycliques (incluant la fréquence angulaire).

Page 424 sur 514



- Pour compléter, traiter le temps par la discontinuité implique directement
de traiter le mouvement par la discontinuité, puisque le mouvement dépend
directement du temps. Mais comme le mouvement dépend aussi de l’espace,
cela implique aussi directement la discontinuité de l’espace. A l’aide de telles
formules, nous ne pourrons obtenir des mesures qu’à des points précis dans
un espace. Il est donc justifié de parler de points (même si cela peut parâıtre
abstrait).

Pour reprendre l’exemple du photon, l’existence d’une longueur d’onde mini-
mum exprime bien une distance minimum dans l’espace.

- Pour finir, toutes grandeurs physiques dont les formules font intervenir des
variables de temps ou d’espace ne permettrait de donner que des résultats
dont les valeurs accessibles seraient nécessairement discontinues ou “quantifiées”.

Conclusion :

Ces formules ne permettent de concevoir le temps et l’espace que comme
étant discontinus, ainsi que les grandeurs qui ont un lien direct avec le temps
ou l’espace.

Ces points de vue nous feraient plutôt suggérer de prendre position en faveur
de la “Théorie de la gravitation quantique à boucles” (ou “Loop
quantum gravity)”.

Avis personnel :

De ce point de vue, j’aurais du mal à adhérer à une théorie comme la
“Théorie des cordes” puisque celle-ci conçoit la continuité des cordes.
J’ai bien conscience que cela peut permettre une bonne approche des états
vibratoires d’une particule, mais à mon sens pas de donner une description
complètement exacte de la réalité. Par contre, si ces cordes étaient discontinues
et donc constituées uniquement de point situés à un minimum de distance
les uns des autres (même s’ils ne s’agissait que de points positionnés sur ces
cordes), cela deviendrait plus intéressant. J’aurais ainsi plutôt tendance à
m’intéresser à la “Théorie de la gravitation quantique à boucles”, dont
la conception (espace et temps discontinus) est plus proche de la mienne.
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Digression :

Nous pouvons nous demander quel est la place des nombres réels (en mathé-
matiques) et des nombre transcendants dans une conception des choses invo-
quant la discontinuité.

Comme nous l’avons vu dans la partie précédente, les énoncés sont construc-
tibles. La définition d’un énoncé est elle aussi constructible, bien qu’une
définition ne permette pas systématiquement de construire un énoncé (exemple
de la définition de F vue en sous-partie “14.4 Remarque sur les énoncés
constructibles” page 396).

Par contre une définition qui est constructible (c’est-à-dire qu’elle comporte
un nombres fini de mots, qui contiennent un nombre fini de lettres, et qui est
écrite dans un espace fini) peut donner des instructions de manière à produire
un énoncé constructible, ou de manière à ne jamais permettre d’achever
l’écriture de ce qu’elle défini (nous somme dans le cas où ce qui est défini est
inconstructible).

Par exemple, dans le cas des nombres transcendants. Le nombre π ne peut
jamais être donné de manière achevée et finie. Pourtant, il existe des formules
contenant un nombre fini de symboles permettant de le définir. Cependant,
son calcul ne peut jamais s’achever.

Par comparaison ou analogie dans ce cas, nous pourrions dire qu’une définition
similaire à la formule de π est constructible (elle contient un nombre fini de
symboles), mais ce que la définition propose d’atteindre ne peut jamais l’être
de manière “actuelle”, ou ne peut jamais “être fini de construire” (similitude
avec le nombre π).

Pour continuer la comparaison avec “ce qui est défini”, d’après ce que nous
avons vu dans la partie précédente, π ne serait pas un nombre constructible
(c’est-à-dire que π ne peut pas être donné en un temps fini : sa construction
nécessitant le calcul d’un nombre infini de chiffres).

Autrement dit, la formule définissant π est constructible mais π n’est pas
constructible. Il devient alors convenable d’en avoir seulement une approxi-
mation.
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15.2 Approche par un paradoxe connu de la

Grèce antique

Une autre approche au sujet de la continuité ou discontinuité de l’espace et
du temps peut être faite par l’observation des arguments avancés par Zénon
d’Elée [9] (né entre 490 et 485 avant Jésus-Christ) à propos des “paradoxes”
sur la notion de mouvement.

Zénon prétendait que la notion de mouvement était paradoxale grâce à des
exemples.

Prenons un des exemples avancés par Zénon. Comme lui, réfléchissons sur
la situation “d’Achille et la tortue”. La situation est la suivante :

- On suppose que l’espace et le temps sont continus.

- On veut faire courir Achille contre une tortue.

- On sait qu’Achille court plus vite que la tortue.

- On laisse prendre de l’avance à la tortue qui ne sarrête pas.

- Au bout d’un temps raisonnable, on demande à Achille de dépasser la
tortue (entendons par “temps raisonnable” que ce qu’on demande à Achille
est réalisable).
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L’argument de Zénon est alors le suivant :

- Depuis l’instant son départ jusqu’au départ d’Achille, la tortue a parcouru
une distance D.

- Lorsque Achille arrivera à la moitié de la distance qui le sépare à ce moment
là de la tortue, la tortue aura encore parcouru une petite distance.

- Lorsque Achille arrivera à la moitié de cette nouvelle distance qui le sépare
à ce moment là de la tortue, la tortue aura encore parcouru une autre petite
distance.

- Lorsque Achille arrivera à la moitié de cette nouvelle autre distance qui le
sépare à ce moment là de la tortue, la tortue aura encore parcouru une faible
distance.

- Et ainsi de suite : nous pouvons répéter cette observation une infinité de fois.

D’où Zénon conclu que comme Achille arrive à dépasser effectivement la
tortue (il suffit de les faire courir l’un contre l’autre pour s’en rendre compte),
le raisonnement et l’expérience ne permetant pas de conclure la même chose,
la notion de mouvement doit être paradoxale.

Le problème vient du fait que dans cet exemple, la continuité du temps ou
de l’espace n’est pas remise en cause. En effet, si nous supposons que le
temps ou l’espace est discontinu et avec le même exemple, la conclusion du
raisonnement peut être en accord avec la réalité.

En effet, si le temps s’écoule de manière discontinue ou si l’espace ne peut
être parcouru que de manière discontinue, alors on ne peut diviser de moitié
(comme précédemment) le temps ou l’espace de manière infinie, ce qui lève
le paradoxe à propos de la notion de mouvement (dans le cas où le temps et
l’espace sont continus). Ceci implique d’admettre qu’il existe un minimum
de durée (pour le temps) et un minimum de longueur (pour l’espace).
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16

Preuve de l’existence éternelle

Si le mot “RIEN” peut être défini comme “l’absence de toute chose” , alors
le mot “RIEN” signifie aussi l’absence d’un mot pour le nommer et l’absence
de sa définition. Et finalement, “RIEN” ne pourrait être exprimé.

Or, ce n’est pas le cas ici, étant donné que nous venons de l’exprimer.

Donc “RIEN” devrait être défini comme “la présence du moins possible
de chose”. Entendons par “du moins possible” au moins d’un nom et
d’une définition.

Il ne peut y avoir “RIEN” dans le sens de “l’absence de toute chose”,
il ne peut donc qu’exister un minimum de chose(s), c’est-à-dire au moins les
idées de nom et de définition de ce mot.

Ce raisonnement étant valable à tout instant, l’existence de ce minimum de
chose est en dehors du temps. Autrement dit : ce raisonnement étant valable
à tout instant, l’existence ne dépend pas du temps, ou encore l’existence ne
varie pas en fonction du temps.

D’où l’éternité de l’existence (c’est-à-dire de l’existence d’un minimum d’idées
au moins).

Complément de réflexion :

Vouloir définir “l’absence de toute chose” (ou même “le vide total”)
est donc incohérent. Le problème qui se pose à côté de cette réflexion est de
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se demander s’il ne faudrait pas modifier toutes les définitions incohérentes du
langage... Soit en rajoutant dans la définition concernée qu’elle est incohérente,
soit en la modifiant de manière à la rendre uniquement cohérente. On ne peut
pas simplement considérer que la définition soit “valable” indépendemment
d’un raisonnement cohérent, alors qu’un tel raisonnement peut la rendre “non
valable”.

D’autre part, si nous reprenons l’exemple des “règles logiques” vu en partie
13, rappelons que nous avions déduit :

A′ = [ il existe un minimum de règles logiques dont A′ fait partie ]

Cette règle (comme d’autres énoncés cohérents) doit être valable à tout
instant pour rester cohérente, l’existence de ce minimum de règle est donc
en dehors du temps lui aussi. Ce qui permet de conclure qu’il existe un
minimum de règles immuables (au moins A′), c’est-à-dire qui ne peuvent
varier au cours du temps (puisqu’elles sont en dehors du temps).

Digression 1 :

Nous pouvons constater que les énoncés dont la structure est du type :

[ Rien (suivit du reste de l’énoncé) ]

Nous amène presque systématiquement à conclure une structure du type :

[ il existe un minimum de (suivit du reste de l’énoncé) ]

Même en modifiant la définition du mot “RIEN”, tel que “RIEN, c’est au
moins la présence d’un minimum de chose” , nous aboutissons toujours
à la même conclusion. C’est-à-dire que nous aboutissons à :

[ il existe un minimum de (suivit du reste de l’énoncé) ]

C’est souvent l’auto-référencement d’un énoncé (c’est-à-dire le fait qu’un
énoncé fasse référence à lui-même, directement ou indirectement) qui permet
d’en déduire la cohérence ou l’incohérence. En effet, si l’énoncé en question
affirme des propriétés à propos d’un ensemble et si cette énoncé peut être
inclu de manière cohérente dans cet ensemble, alors cet énoncé est cohérent.
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Digression 2 :

A la question : “Pourquoi y a-t-il quelquechose plutôt que rien ?”,

Etant donné qu’il doit y avoir quelquechose plutôt que rien à tout instant, il
serait cohérent de répondre :

“Parce que rien en tant qu’absence toute chose n’a pas de sens”.

Digression 3 :

Quel sens doit être donné au nombre 0 en mathématiques si 0 si l’on considère
que 0 est équivalent au mot “RIEN” ?

Nous avons vu que “RIEN”, ce n’était pas l’absence toute chose. Donc 0
ne peut être l’absence de toute chose. en effet, 0 aussi possède au moins
un nom, un symbole et une définition. Comme il faut de la matière pour
écrire ou penser ce nombre, 0 est le minimum de matière nécessaire à sa
formulation. 0 prend donc une forme particulière, au même titre que les
autres nombres. Disons encore que 0 est la forme particulière d’un minimum
de matière permettant son expression.

Pour finir, lorsque l’on dénombre les choses qui ont la même forme, 0 exprime
l’absence de chose de la forme particulière que l’on veut dénombrer parmi
l’ensemble des formes qui existent. 0 est donc le minimum de chose qui
permet d’effectuer un constat.

Digression 4 :

De plus et par conséquent, comme l’existence ne varie pas en fonction du
temps, cela signifie que l’existence ne peut pas être exprimée en fonction d’un
début dans le temps ni en fonction d’une fin dans le temps. Clairement : il
n’est pas cohérent de prétendre que l’univers a commencé à un instant donné
et se terminera à un autre instant.

Il ne peut donc pas être cohérent de parler d’origine de l’univers ou même
d’un “big bang” , sauf si l’on considère qu’un évènement de ce type ne peut
être qu’une étape dans le déroulement du temps.
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A ce propos, je tiens à signaler qu’un autre cas d’évolution de l’univers
en envisageable. Ce raisonnement n’étant fondé que sur des remarques
expérimentales et sur l’acceptation logique de l’existence éternelle, la conclu-
sion ne sera qu’une hypothèse.

L’univers est en expansion accélérée. Par conséquent, la densité de matière
dans l’espace diminue. Dans ce cas, la matière a tendance à émettre plus
d’énergie qu’elle n’en absorbe, et donc la quantité d’énergie (ou de photons)
contenue dans la matière dinimue. Par extrapolation dans le temps, il devient
possible d’imaginer la situation où toute la matière de l’univers aurait émis
toute l’énergie qu’elle contenait. Il n’y aurait plus dans l’espace que des
photons. A ce moment précis, l’univers a terminé un cycle d’évolution et peut
en démarrer un suivant avec des conditions initiales ressemblant à celles du
“big bang”. Dans ce cas, le “big bang” n’est qu’une étape qui ne représente
que le commencement d’un nouveau cycle d’évolution de l’univers sous la
forme d’une expansion. Ajoutons une remarque sur la fin de l’évolution
d’un de ces cycles. Il est possible d’émettre l’hypothèse que la densité de
photons dans l’espace doit au moins atteindre une moyenne afin de permettre
le passage au cycle suivant, ou encore que chaque photon soit dans un étant
vibratoire identique dont l’amplitude serait maximum. Ce qui permet de
“changer d’échelle” sans que cela puisse être perceptible, puisque les règles
à propos du minimum de temps, de distance, le minimum d’invariance des
règles seraient toujours les mêmes.

Une hypothèse serait donc que l’évolution de l’univers soit cyclique, et que
l’évolution ne se fasse exclusivement que par une diminution de densité de
matière (et d’énergie) dans l’espace. Une fois la densité nécessaire atteinte
ou l’état vibratoire de chaque photon identique et d’amplitude maximum, un
nouveau cycle commence.

Mais ceci n’est qu’une hypothèse, ce qui ne signifie même pas qu’il faille
systématiquement y adhérer. Elle est simplement destinée à faire remarquer
qu’il est encore possible d’émettre d’autres hypothèses.
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Eléments de réponse sur la question de Dieu :

Je me risque à cette réflexion, en me présentant simplement comme une
personne ouverte d’esprit, sans préjugé et qui s’attend à toutes possibilités
de réponse. Car le but n’est pas ici de choquer mais plutôt de faire une
expérience de pensée, simplement parce qu’il est possible de la faire, de
manière calme et posée. Ces réflexions n’engageant, de toutes fonçons, que
moi. Je préviens par avance que comme à mon habitude, le style de cette
réflexion sera plutôt direct. Alors seulement si vous le voulez bien, je vous
proposerai de me suivre (et personne n’y est forcé). Essayons de mener une
réflexion cohérente sur ce sujet.

Dieu peut-il être le créateur de tout ?

Si “Dieu est le créateur de tout” , il est aussi le créateur de lui-même. Ce qui
sous-entend directement qu’avant lui et le reste de sa création, il n’existait
rien : en effet, puisque de manière équivalente, l’énoncé affirme qu’il est à
l’origine de toute chose (et y compris de lui-même).

Nous avons vu que “RIEN” , ce n’était pas l’absence toute chose. Il ne peut
donc jamais y avoir une absence totale de chose, cela n’aurait pas de sens du
point de vue de la cohérence. Ce qui implique qu’aucune force, aussi grande
et si divine soit elle ne puisse être à l’origine de sa propre existence. Les choses
sont et ont toujours été (mais certainement sous des formes différentes au vu
de l’évolution de l’univers), sans qu’une force n’aie à intervenir pour cela.

“RIEN”, ce n’est pas l’absence toute chose : la création (sous-entendu
l’existence d’un créateur) est une hypothèse fausse si nous considèrons ce
raisonnement cohérent.

“RIEN”, ce n’est pas l’absence toute chose. Et ceci est valable à tout instant,
mais comme ceci reste valable en dehors du temps, ceci n’empêche pas de
supposer que le temps puisse être ou puisse avoir été “quasiment figé” (sous-
entendu pas “complètement figé”, et donc finalement pas “figé”, mais plutôt
ralenti).

Enfin, qu’en serait-il d’un Dieu qui serait défini par l’infini ? C’est-à-dire Dieu
est-il “infini” ? La définition de ce Dieu serait bien constructible, mais ce
Dieu “lui-même” ne pourrait être “constructible” , et donc inachevé (réflexion
faite en partie “14.4 Remarque sur les énoncés constructibles” page
396).
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Si la “définition” de Dieu n’était pas constructible non plus, sous-entendu
il y aurait une définition de la “définition de Dieu” de manière à ce que
la première soit constructible mais pas la seconde, alors il serait impossible
d’établir un raisonnement cohérent à propos de cette seconde “définition”
puisque nous ne pourrions jamais connâıtre l’intégralité de son contenu. Et
donc nous ne pourrions jamais connâıtre le sens de cette “définition”. Si
bien qu’il serait finalement impossible de savoir si croire en l’existence de
Dieu est fondé ou non, et finalement, du point de vue de la cohérence d’un
raisonnement, il ne serait pas possible pour nous de donner un argument
cohérent “pour ou contre” sur ce sujet. Cette position s’apparenterait presque
au scepticisme, à ceci près que dans notre cas, on refuse d’affirmer ou de nier
l’existence de Dieu car on sait que cela ne serait pas raisonnable.

Mais il resterait tout de même possible de raisonner sur la première définition
constructible. Et si cela pouvait être possible du point de vue de la cohérence,
il resterait à trouver une définition de Dieu qui puisse être “correcte”.

Observation finale :

Cette réflexion n’a pas pour but d’affirmer ni de nier l’existence d’un Dieu,
mais plutôt d’anticiper que dans l’hypothèse de son existence, il serait raison-
nable que les propriétés que l’on attribue à Dieu incluent ces limites :

- Il ne peut pas être créateur,

- S’il est infini, il est impossible de donner raisonnablement un argument
pour ou contre son existence, sauf peut-être s’il n’est pas infini...

- D’autre part, si Dieu était confondu avec toutes choses, il serait simplement
équivalent à l’ensemble de ces choses, et nous aurions “Dieu = Univers”. Et
si Dieu n’était qu’un ensemble de choses ou d’idées, nous aurions “Dieu =
l’ensemble des choses ou idées qui le compose”. De plus, dans ce dernier cas,
si cet ensemble était fini, alors Dieu serait constructible.

Ajoutons aussi que dans l’hypothèse où Dieu est infini et dans l’hypothèse
où l’univers est infini (en quantité de matière), Dieu n’est ni plus ni moins
que l’univers lui-même. D’où l’on déduirait que “Dieu = Univers”.
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Pour conclure, dans le cas où “Dieu = Univers” (comme dans le cas où
“Dieu = l’ensemble des choses ou idées qui le compose”), parler de Dieu
ou parler de l’univers (respectivement parler de l’ensemble des choses ou
idées qui le compose) reviendrait à parler de la même chose. Et si l’univers
(ou respectivement un ensemble de choses ou d’idées) était connaissable (ne
serait-ce même que partiellement), alors Dieu le serait également (ne serait-
ce même que partiellement, ici aussi).
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Possibilité d’établir une théorie
physique

A ce stade de la réflexion, il me semble qu’une théorie qui reflèterait au
mieux la réalité (les règles, les non-règles, les situations constructibles, la
discontinuité) tiendrait compte des conclusions de l’étude d’au moins des 4
premiers chapitres et d’au moins des 5 premières parties de ce chapitre.

Ce qui sous-entend qu’il deviendrait possible de commencer une théorie
physique à partir des conclusions des Chapitres I à V :

- La formule de décomposition D(N) d’un nombre entier N en produit de
facteurs premiers, démontrée dans le Chapitre I.

- La formule D(N) (Chapitre I) appliquée aux longueurs d’onde des photons
(Chapitre V), ce qui sous-entend qu’une longueur d’onde N peut être
décomposée en longueurs d’ondes plus simples (ou fondamentales) et que
ces longueurs d’onde prennent nécessairement des valeurs qui peuvent être
ramenées à des nombre entiers.

- La formule D(N) également appliquée aux périodes des ondes des photons
(Chapitre V), ce qui sous-entend qu’une période N peut être décomposée
en périodes plus simples (ou fondamentales) et que ces périodes prennent
nécessairement des valeurs qui peuvent être ramenées à des nombre entiers.
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- La formule simplifiée s(M), doù peuvent découler des formules légèrement
différentes tels que s(2.M + 3), s(2.M + 5), s(3.M + 2), s(5.M + 2), ... et
dont chaque graphique peut présenter des analogies avec ceux des spectres
de lumière (pour chacune de ces formules et pour M une longueur d’onde, le
graphique correspondant s’apparente à des raies spectrales).

- Les liens possibles entre les ondes et la logique binaire (Chapitre I et
Chapitre V), et donc l’implication des nombres entiers et des nombres
premiers dans la logique binaire se manifestant par les phénomènes ondulatoires.

- La possibilité de former toutes les propositions du calcul propositionnel
“classique” entre autres à partir de la formule I(M) (Chapitre I), et donc
seulement à partir d’ondes et d’un système de traitement de ces ondes.

- L’existence de choses (comme les énoncés) constructibles par des règles
cohérentes ou en dehors de toute cohérence (Chapitre V). Les tables de
vérité tenant compte d’une variable binaire U dont la valeur de vérité est
indéfinissable (Chapitre V), justifiée par les caractéristiques qui se mani-
festent à la construction d’un énoncé indémontrable. Cette variable ne
pouvant apparâıtre qu’à un niveau binaire (une fois le traitement des ondes
effectué par une des formules binaires fondamentales tel que f(M ;x), s(M),
I(M), ...). La variable U justifie sa propre étude par les probabilités.

- L’invariance des règles logiques (elles doivent être immuables, Chapitre V).

- La discontinuité de l’espace, du temps et d’autres grandeurs physiques
qui nécessitent des formules incluant des variables d’espace ou de temps
(Chapitre V), et l’existence d’un minimum de distance et d’un minimum
de durée.

- L’incohérence d’obtenir le vide total à n’importe quel instant et, par
conséquent, l’impossibilité de déterminer une origine de l’univers dans le
temps ni même une fin (Chapitre V)...
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Complément de réflexion :

La réflexion suivante peut permettre de répondre à cette question : les
concepts mathématiques sont-ils une invention de l’esprit humain? Ou bien
l’esprit humain ne fait-il que les découvrir, ce qui sous-entendrait que ces
concepts existent avant que l’esprit humain ne les découvre?

La formule D(N) possède un domaine de définition (N ∈ N tel que N ≥ 2).
En appliquant cette formule à la longueur d’onde ou à la période d’un
phénomène physique, nous fixons donc directement les limites de longueur
minimum et de période minimum pour tout phénomène cyclique (ces limites
sont d’ailleurs des constantes). Ceci permet d’établir un lien direct entre le
domaine de définition de la formule mathématique D(N) et des limites de
ce qui est permis de concevoir physiquement (ces limites sont la longueur
minimum et la période minimum).

En effet, le domaine de définition de D(N) justifiant ces limites physiques,
ce lien direct entre concept mathématique et réalité physique permet de
constater que ces concepts mathématiques doivent exister avant que l’esprit
humain ne les découvre, afin que notre monde physique possède ces limites.
Notre monde physique possèderait donc naturellement ces limites qui peuvent
être représentées par les concepts mathématiques connus. L’existence de ces
concepts (ou de ces règles) sont nécessaires avant que nous ne les découvrions.
Et lorsque nous les découvrons, nous leur faisons prendre forme dans un
langage que nous avons défini, dont la forme (des symboles, par exemple) est
purement un choix. Ce choix de l’esprit humain n’intervient donc que sur la
forme (parmi un nombre de formes possibles), pas sur le fond.

Justifications personnelles d’une théorie physique :

Je suis un être fait de matière. C’est cette matière qui m’a permis de
découvrir la formule D(N) (entre autres). C’est cette matière qui me permet
aussi de tirer des conclusions à partir de raisonnements cohérents. Si ces
formules et ces conclusions ont pu être construites grâce à un assemblage de
matière (tel que je suis), et si elle sont cohérentes, elles doivent pouvoir aussi
s’appliquer à ce qui me constitue, c’est-à-dire à la matière elle-même. C’est
aussi pour cela que je pense qu’il doit exister un lien entre ces formules, ces
conclusions et la matière (et donc la physique). Cela me parâıt indissociable.
Ce qui, selon moi, justifie la possibilité d’appliquer à la matière une théorie
physique à partir de ces formules et de ces conclusions.
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Le sens de la vie

Cette partie est un peu plus personnelle. Elle est présente car, à mon sens,
c’est typiquement le genre de raisonnement suivant qu’il convient d’appliquer
pour une telle question.

En effet, si nous posons la question à un individu :

“Quelle est le sens de la vie ?”

Nous observons tout d’abord que cette question s’exprime à propos d’une
généralité : il s’agit de “la vie” en générale. Cette question exigerait donc
une réponse générale.

Or, la seule réponse qui peut être donnée à cette question est une réponse
particulière : c’est-à-dire une réponse provenant d’un individu. La question
induit que cet individu aurait pour tâche de répondre au nom de tous les
autres.

Cette question demande une réponse générale alors que la réponse ne peut
être que particulière. Ceci n’est pas cohérent. La question posée n’a donc
pas de sens. Toute les question ne sont donc pas cohérentes : en particulier,
celles qui demandent des réponses alors qu’une réponse directe est impossible
à trouver.

Une question cohérente tiendrait compte de cette difficulté, et se poserait
plutôt ainsi :

“Quelle est le sens de votre vie ?”
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En effet, dans ce cas, la question s’adresse à un individu qui peut répondre
pour lui-même et de manière particulière, cette question n’exigeant pas de
réponse générale.

Digression :

S’il ne peut y avoir de réponse générale au sens de la vie, ce parce que cela
serait incohérent. Or, la vie “est” (existe), cela signifie que cela est possible
(ou même constructible). Et elle n’a pas besoin de “sens générale” pour être,
elle est parce que cela est possible, et donc cela est possible sans but général.

Si la question “Quelle est le sens de la vie ?” avait été cohérente, sa réponse
aurait permis de donner une destinée ou un but à la vie de manière cohérente
(grâce à un raisonnement cohérent) au fait d’être un vivant. Ceci aurait été
contradictoire avec ce qui suit : c’est-à-dire le fait qu’au moins un vivant est
capable de construire un énoncé tel que E (en dehors de toute règle logique)
ou même qu’il est capable de produire des erreurs. En d’autres termes : la
vie ne peut pas avoir à la fois un but générale cohérent applicable à tous les
vivants, et à la fois donner la possibilité à au moins un vivant de s’écarter
de ce but. D’ailleurs, ce vivant là aurait toujours la possibilité de donner
des énoncés vrais et indémontrables à propos du sens de sa propre vie et à
propos du but de sa propre vie. Il faut donc remarquer que l’incohérence de
cette question permet de préserver la cohérence avec la partie “14 Preuve
de la liberté” (page 390) à propos de la liberté (la possibilité que la liberté
a d’exister).
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Accès à la vérité : la nécessité
de la pensée écologique

Comme nous l’avons vu, il n’est possible pour un observateur de comprendre
véritablement l’univers qu’en se débarrassant de ses préjugés sur l’univers (ce
qui inclu l’observateur lui-même) afin d’avoir une vision la plus juste et la
plus réaliste possible.

Cette volonté de comprendre amène donc naturellement à acquérir le plus
grand respect de l’observateur envers l’univers et tous ses constituants (ce
qui inclu encore l’observateur).

Nous devons même admettre que cela amène naturellement l’observateur à
se confondre avec le reste de l’univers, c’est-à-dire à s’identifier avec le reste.
Nous pourrions même dire que l’observateur place un signe d’égalité entre lui
et ce qu’il observe. Lorsque l’observateur a réussi à atteindre cette attitude,
il lui devient donc possible d’étudier indifféremment l’univers ou lui-même,
puisque les propriétés des deux sont égales.

Ceci se justifie encore par le fait que l’observateur faisant partie inévitablement
de l’univers, s’observer soi-même revient à observer une partie de l’univers.
Ce qui permet de comprendre que les vérités les plus profondes de cet univers
sont aussi contenues en nous-même, cela devenant même une évidence.

En maintenant constamment cette attitude, il ne suffit à l’observateur que
de décrire ce qu’il a en lui pour finalement décrire aussi tout le reste.
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L’univers ne peut donc être compris que par le respect le plus pur de la
part de l’observateur envers l’univers (ce qui inclu toujours l’observateur lui-
même), ce qui implique nécessairement une philosophie qui est exactement
celle de l’écologie.

C’est à travers le respect de la moindre partie de l’univers, et donc aussi à
travers le respect de nous-même, que nous pouvons avoir la vision la plus
juste.

Complément de réflexion :

Nous pouvons encore prolonger cette réflexion en faisant des comparaisons.
L’attitude proposée dans cette partie revient en fait à imaginer que nous
sommes cet observateur.

Imaginons que nous sommes immergé à moitié dans l’eau, la tête au-dessus
de l’eau. Notre agitation dans l’eau fait des vagues. Or, si nous voulons
véritablement comprendre ce qui se passe au fond de l’eau (est-ce le fond
qui bouge ou est-ce un effet des vagues ?), nous devons cesser de nous agiter
afin de percevoir les choses telles qu’elles sont. Ce qui revient à utiliser le
moins d’énergie possible pour nous permettre de perturber le moins possible
les observations. Ce qui se passe au fond de l’eau apparaitra donc plus
clairement, et l’observation sera plus précise.

Nous pouvons même ajouter que l’observation n’atteint un maximum de
précision que lorsque l’observateur utlise le minimum d’énergie nécessaire
à l’observation (le minimum d’énergie nécessaire à l’observateur pour son
maintien dans un état conscient).

Cette attitude trouvant de fortes similitudes avec un état proche du sommeil
ou même de la “mort”. Mais pour poursuivre le raisonnement et continuer
ce rapprochement, je dois m’expliquer.

Tout d’abord, abordons la mort. Lorsqu’un être perd la vie, il passe nécessai-
rement d’un état de conscience à un état de perte de conscience. Il passe donc
d’un état où sa consommation d’énergie est à un niveau plus élevé pour aller
vers un état ou la consomation d’énergie est la plus faible. Or, tant qu’il est
conscient, cela signifie que cet être consomme l’énergie nécessaire au maintien
de sa conscience. Pour passer d’un état conscient à un état inconscient,
cet être passe nécessairement par une étape où la consommation d’énergie
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connâıt un seuil permettant de passer de l’état conscient à l’état inconscient.
Il existe donc nécessairement un niveau d’énergie minimum nécessaire à l’état
de conscience. De plus, lorsque cet être perd la vie, il perd aussi la possibilité
d’émettre des jugements fondés ou infondés : il perd donc en même temps la
possibilité d’effectuer tout préjugé sur l’univers. Il passe donc nécessairement
par une phase où l’univers (ce qui inclu aussi cet être) apparâıt à sa conscience
tel qu’il est. Cet être acquiert donc par nécessité la connaissance “véritable”
de toute chose dans ces derniers instants.

Il est donc inutlie de vouloir vivre la “fin” de sa vie avant le moment qui
vient naturellement puisque nous pouvons savoir d’avance comment cette
“fin” apparâıt à la conscience de tout être.

Ensuite, abordons l’état proche du sommeil. Car il faut tout de même
très fortement remarquer que l’étape de la “fin” de la vie n’est pas une
étape strictement nécessaire pour atteindre la vérité sur l’univers. En effet,
puisqu’un être passe d’un état de conscience à un état d’inconscience lorsquu’il
s’endort. Cet état de transition impliquant également des niveaux d’énergie
différent pour des zones spécifiques du cerveau (le raisonnement est le même
que précédemment). Par déduction, il existe une configuration de l’état de
conscience permettant à l’observateur de comprendre l’univers, et qui doit
correspondre à un état de consommation d’énergie strictement nécessaire
à l’observation (ce qui implique d’être toujours conscient; cet état doit être
localisable dans une ou plusieurs zones du cerveau). Dans ce cas, l’observation
devient la plus juste.

Il est donc nécessaire d’éviter tout préjugé pour parvenir à cet état. Une
méthode étant d’avoir la volonté de comprendre l’univers (ce qui inclu soi-
même) et de trouver le point qui permet d’être le plus calme mais toujours
en observation de son environnement (extérieur ou intérieur).

Pour en revenire à l’analogie avec l’immersion dans l’eau (faite au début de
ce “Complément de réflexion”) : dans le fond, les choses ne “bougent”
pas, c’est dans la forme (en surface) qu’interviennent les changements.

Pour l’avoir véritablement ressenti personnellement, le sentiment qui en ressort
de manière claire est un sentiment d’harmonie, de légerté (c’est-à-dire d’affran-
chissement du poids, ce poids qui semble alors “pénible”) et de clarté. Je
dirais même un sentiment d’évidence (on reconnâıt ce sentiment sans l’avoir
ressenti auparavant). Si nous voulons décrire l’aspect extérieur de l’observateur
seulement, il donne nécessairement l’apparence de se décontracter et d’être
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en attente de “réponse” de la part de son environnement. Si nous voulons
décrire l’aspect intérieur de l’observateur, il est véritablement en observation
d’une “réponse” de la part de son environnement, ce qui passe par une
sensibilité très prononcée à la présence de cet environnement, dans l’état
où cet environnement se trouve (avec une volonté de ne pas perturber cet
environnement), et par une prise de conscience de soi comme partie de cet
environnement.

Ce qui permet ici aussi de rappeler qu’un tel état de compréhension (invoquant
nécessairement l’harmonie ou l’identification de l’observateur à son environne-
ment, sans volonté de perturber cet environnement, c’est-à-dire dans le respect
cet environnement) impose de passer par une pensée écologique.

Cette pensée écologique devient inévitablement la philosophie à adopter de
manière générale pour les siècles à venir. Seule cette philosophie peut amener
le progrès des sciences jusqu’au plus haut point, un progrès qui devra se
ramener clairement au service de l’humanité et de la nature. La conséquence
est une paix durable entre tout être vivant.

Digression :

La formule D(N) appliquée aux longueurs d’onde me permet d’envisager
clairement que toute matière ne serait en fait constituée que de photons. Or,
nous sommes des êtres constitués de matière. Par déduction, nous sommes
constitués que de photons.

(il faut aussi tenir compte des règles qui lient ces photons entre eux et aussi
tenir compte des “non-règles”)

De mon point de vue, la mort ne ferait que nous faire apparâıtre cela que
comme une évidence : nous ne sommes que des êtres faits de lumière (cette
conception est appuyée par le Chapitre VI)...
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20

Impressions personnelles

J’aimerais expliquer ce que je ressents après m’être imprégné presque exclusi-
vement de ces réflexions.

J’aimerais d’abord donner une justification sur la présence dans la même
théorie de ces chapitres qui peuvent être très différents les uns des autres. Ils
contiennent en effet des mathématiques, de la logique, de la philosophie, une
théorie avec application de ces mathématiques à des phénomènes physiques.
Je justifie la présence de tout cela en faisant remarquer que toutes ces
disciplines nécessitent le raisonnement logique. Je n’ai donc finalement fait
que cela : raisonner. D’une manière ou d’une autre, sous une forme ou
sous une autre, la logique est la même : celle du raisonnement. Pour moi,
la variété des formes de la logique étant toutes liées à la matière qui nous
constitue, n’importe laquelle de ces formes de logique constitue un excellent
point de départ pour une réflexion. Autrement dit, peu importe la discipline
choisie, il sera toujours possible de tirer des conclusions importantes (et même
fondamentales si notre réflexion est correctement guidée).

Après toutes ces réflexions, de les avoir comprises me donne le claire sentiment
que ce monde (ou l’univers), c’est moi qui l’ai fait (grâce à des règles et du
hasard, je participe à son organisation). Par “moi” , j’entends la matière
qui me constitue. J’ai le sentiment d’avoir véritablement et profondément
compris l’essentiel dans tout cela, c’est un sentiment de cohérence (j’allais
écrire aussi de légèreté), qui revient presque au même que de dire quelquechose
d’évident : Ce monde, c’est nous qui l’avons fait (”nous” , c’est-à-dire la
matière dont nous sommes constitués), ainsi que tout le reste de la matière
a fait ce monde. En d’autres termes, ce monde a la forme qu’il a parce que
tout ses constituants (ce qui inclu nous-même) l’ont fait devenir ainsi.
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Ainsi, chaque ensemble (chacun de nous) peut aussi l’exprimer. Ce monde,
c’est nous qui l’avons fait, et qui allons continuer de le faire, à tout jamais.
Nous ne devons nous satisfaire que de cela : d’un sentiment de participation.
Que nous le voulions ou non, nous ne pouvons faire un choix sur ce sujet :
nous participons à l’organisation du monde sans pouvoir en décider autrement.

D’où je déduis qu’il existe un minimum de “non-choix” : nous ne pouvons
pas choisir de participer ou non à l’organisation de l’univers. Et donc le choix
(ou la liberté) ne porte pas sur la participation à l’organisation de l’univers.

Pour continuer la réflexion (et comme nous l’avons vu au cours de ce chapitre)
à propos de l’énoncé suivant :

[ je ne participe pas à l’organisation de l’univers ] est donc faux,

Bien qu’il soit possible d’écrire (c’est-à-dire de construire) un énoncé faux
(bien qu’il soit possible de l’écrire par choix, c’est-à-dire en dehors de tout
raisonnement cohérent), il n’est pas possible de le réaliser (c’est-à-dire d’effec-
tuer ce qu’il suggère).

Plus clairement, nous voici avec un nouvel exemple d’énoncé du même type
que certains vus dans ce chapitre : encore une fois, l’énoncé est constructible
(puisqu’un énoncé doit toujours être constructible), mais pas ce qu’il énonce
(c’est-à-dire pas ce qu’il propose de faire, ou de construire).
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CHAPITRE VI

Théorie physique de
décomposition des phénomènes

cycliques

447



Page 448 sur 514



Introduction

Ce chapitre doit plutôt être vu comme un essai d’application de la formule
D(N) à un phénomène ondulatoire physique. Dans celui-ci aussi se trouvent
des explications qui peuvent être répétées de manières différentes, ce qui
pourrait donner une impression de redondance. Mais il me semble que
certaines idées sont difficiles d’accès et peuvent nécessiter quelques unes de
ce type de démarche.

Ce dernier chapitre se donne pour objectif de donner une description élémen-
taire fiable de phénomènes physiques. Ce qui nous permettra également
d’établir des liens avec des lois physiques connues, ce qui évitera donc d’avoir
à aller trop loin dans les développements (des théories fiables existent déjà,
cette théorie fera simplement le lien entre ces phénomènes élémentaires et
ces autres théories). La motivation sous-entendue est finalement de donner
la représentation géométrique réelle d’un photon.

Ce chapitre est indissociable des chapitres précédents car il tient compte
des conclusions de chacun d’entre eux. Ce chapitre pourrait donc donner
une interprétation générale des phénomènes physiques réels (c’est-à-dire des
phénomènes cycliques mais aussi des phénomènes n’obéissant à aucune règle
tel que la variable U).

Ces conclusions vont être rappelée immédiatement.
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21

Principes de base

Dans l’idéal, l’objectif n’est pas d’écrire des formules tirées d’expériences
physiques (bien que cela soit habituel), mais plutôt d’écrire des formules
tirées de la cohérence de réflexions, et qui permettent de commencer une
théorie donnant des bases solides et incontournables pour étudier la réalité
telle qu’elle est. Notre plus grand laboratoire est notre pensée.

21.1 Hypothèse et rappels des conclusions des

chapitres précédents

A la fin du Chapitre I, ainsi que dans le Chapitre V, je faisais part de mes
remarques personnelles concernant mes opinions sur une théorie physique. Il
me semblait qu’une théorie qui reflèterait au mieux la réalité (les règles, les
non-règles, les situations constructibles, la discontinuité) tiendrait compte
des conclusions de l’étude d’au moins des 3 premiers chapitres et d’au
moins des 5 premières parties du Chapitre V. Nous allons rappeler ces
conclusions sous forme d’indications à retenir.
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21.1.1 Rappels

Nous allons essayer d’échaffauder une théorie qui tienne compte de ces indi-
cations :

- La formule de décomposition D(N) d’un nombre entier N en produit de
facteurs premiers, démontrée dans le premier chapitre (Attention, il s’agit
bien de crochets dans ces formules, et non des symboles des “valeurs absolues”,
ni de ceux des “parties entières” : ils ont donc la même fonction que de
simples parenthèses) :

Pour N ∈ N tel que N ≥ 2,

D(N) = N =
M=N∏
M=2

M



cos 2

(
π

4
.
v=3∏
v=1

(M − v)

)
sin 2(π/M)

.

x→+∞∑
x=1

sin 2


π.

h=(Mx−1)∏
h=1

(N − h)

M

Mx − 1

M − 1
−x+1







(dans la formule, “ +∞ ” peut être remplacé par la formule de Restriction
RM(N) établie dans le premier chapitre)

Ou encore (équivalent) :

Pour N ∈ N tel que N ≥ 2, et quelqesoit m ∈ N tel que m ≥ 2,

D(N) = N =
M=N∏
M=2

M



1

sin 2
( π
M

) . x→+∞∑
x=1

sin 2




h=(Mx−1)∏

h=1

(N − h)

M

Mx − 1

M − 1
−x




m

.
π

M




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- La formule D(N) (Chapitre I) appliquée aux longueurs d’onde des photons
(hypothèse principale du Chapitre V), ce qui sous-entend qu’une longueur
d’onde N peut être décomposée en longueurs d’ondes plus simples (fonda-
mentales) et que ces longueurs d’onde prennent nécessairement des valeurs
qui peuvent être ramenées à des nombre entiers.

- La formule D(N) également appliquée aux périodes des ondes des photons
(chapitre V), ce qui sous-entend qu’une période N peut être décomposée
en périodes plus simples (ou fondamentales) et que ces périodes prennent
nécessairement des valeurs qui peuvent être ramenées à des nombre entiers.

- La formule simplifiée s(M), doù peuvent découler des formules légèrement
différentes tels que s(2.M + 3), s(2.M + 5), s(3.M + 2), s(5.M + 2), ... et
dont chaque graphique peut présenter des analogies avec ceux des spectres
de lumière (lorsque la formule vaut 1 et pour M une longueur d’onde, le
graphique correspondant s’apparente à des raies spectrales. Rappelons que
les segments entre chaque point ne représente pas une continuité, ils sont
tracés seulement pour aider à la lecture des graphiques) :
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- Par extension, nous le verrons plus loin, la formule D(N) pourra aussi
être appliquée à la d’éléments indivisibles (chapitre VI), ce qui sous-entend
qu’un ensemble de N éléments indivisibles peut être décomposé en sous-
ensembles plus simples (ou fondamentaaux) et que ces quantités prennent
nécessairement des valeurs qui peuvent être ramenées à des nombre entiers.

- Les liens possibles entre les ondes et la logique binaire (conclusions du
Chapitre I et du Chapitre V), et donc l’implication des nombres entiers
et des nombres premiers dans la logique binaire se manifestant par les phéno-
mènes ondulatoires.

- La possibilité de former toutes les propositions du calcul propositionnel
“classique” à partir de la formule I(M) (conclusions du Chapitre I), et
donc seulement à partir d’ondes et d’un système de traitement de ces ondes.

- L’existence de choses (comme les énoncés) constructibles par des règles
cohérentes ou en dehors de tout système de raisonnement cohérent (conclusions
du Chapitre V). Les tables de vérité tenant compte d’une variable binaire
U dont la valeur de vérité est indéfinissable (conclusions du Chapitre V),
justifiée par les caractéristiques qui se manifestent à la construction d’un
énoncé indémontrable. En effet, pour les énoncés E1, E2 et E3, il existe un
cas nécessitant le théorème d’incomplétude de GODEL [10] tel que :

E1 = [ Tout énoncé est produit par un raisonnement cohérent, ou
produit en dehors de tout raisonnement cohérent ]

E2 = [ Il est possible de construire des énoncés démontrables (tel
que celui-ci) ]

E3 = [ Il est possible de construire des énoncés indémontrables (tel
que celui-ci) ]

Où nous avons (en algèbre de BOOLE [3]) :

E1 = E2 + E3
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Dont la table de vérité est la suivante :

E3 E2 E1 = E2 + E3

0 0 0
0 1 1
1 0 1
1 1 1

Et si nous cherchons à connâıtre E3 seulement à partir de E1 et de E2, nous
obtenons :

E1 E2 E3 = ?

0 0 0
1 0 1
1 1 0
1 1 1

Alors, nous sommes dans le cas :

E3 = E2.E1 + E2.U

Or, puisque nous sommes aussi dans le cas où (voir le Chapitre V pour les
détails) :

E1 est vrai (E1 = 1),
E2 est vrai (E2 = 1),

Nous sommes par conséquent dans le cas où :

E3 = U

Où U peut valoir indifféremment 0 ou 1 (il est même possible de considérer
que ces 2 valeurs sont superposées). Ce qui est bien le cas de l’énoncé E3

puisque :

* SiE3 est vrai, alors E3 ne peut provenir d’aucun raisonnement cohérent,

* Si E3 est faux, alors E3 ne provient d’aucun raisonnement cohérent
également (car aucun raisonnement cohérent ne peut produire quelque-
chose de faux).
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L’étude de la variable U justifie l’utilisation des probabilités. Cette variable
ne pouvant apparâıtre qu’à un niveau binaire (une fois le traitement des
ondes effectué par une des formules binaires fondamentales tel que f(M ;x),
s(M), I(M) , ... où notamment la formule I(M) permet de former toutes les
propositions du calcul propositionnel “classique” , or E3 est une proposition).

- L’invariance des règles logiques (conclusions du Chapitre V).

- La discontinuité de l’espace, du temps et d’autres grandeurs physiques
qui nécessitent des formules incluant des variables d’espace ou de temps
(conclusions du Chapitre V), et l’existence d’un minimum de distance
et d’un minimum de durée (en conformité avec la limite de longueur de
PLANCK [8] et avec la limite de temps de PLANCK [8]).

- L’incohérence d’obtenir le vide total à n’importe quel instant et par con-
séquent l’impossibilité de déterminer une origine de l’univers dans le temps
ni même une fin (Chapitre V)...
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21.1.2 Justification de l’application de D(N) aux phénomènes
cycliques

Ce paragraphe a pour objet de justifier de l’application de la formule D(N)
à une longueur d’onde d’un photon et la la période de l’onde d’un photon.
Rappelons que pour l’onde d’un photon, nous avons la formule :

f = c/λ = 1/T avec :

λ est équivalent à la longueur d’onde,
f est équivalent à la fréquence de l’onde,
c est équivalent à la vitesse de la lumière,
T est équivalent à la période de l’onde.

Dans un système de mesures (simplifié) ramené à des unités de mesure
indivisibles comme les unités naturelles de Max PLANCK [8], nous devons
considérer que :

c = 1

Or,

λ = c.T

Donc, dans le cadre des unités naturelles de PLANCK, nous avons :

λ = T

Ce qui signifie clairement que décomposer une longueur d’onde en longueurs
d’ondes fondamentales revient exactement à décomposer la période en périodes
fondamentales. D’où l’on déduit que la formule de décomposition D(N) est
indifféremment appliquable à la longueur d’onde ou à la période de l’onde
d’un photon.
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Nous pouvons donc associer indifféremment :

N à λ (en notant N = λ),

Ou

N à T (en notant N = T ).

Nous pouvons donc pour la suite de ce chapitre appliquer indifférement la
formule D(N) aux longueurs d’onde λ ou aux périodes T .

De cette manière, nous obtenons :

- L’application D(λ) correspondant à la formule D(N) lorsque N = λ.
- L’application D(T ) correspondant à la formule D(N) lorsque N = T .

Ce qui permet l’étude de phénomènes ondulatoire de particules en translation
linéaire dans l’espace (le photon) ou en “rotation sur elles-même” (ce qui peut
être représenté par des cycles ou également des périodes).

Cette formule D(N) est donc plus généralement applicable aux phénomènes
cycliques (ou périodiques, ce qui justifie le titre de ce chapitre). Ce qui
constitue la justification annoncée.
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21.1.3 Premières implications

Nous resterons dans le cadre des unités naturelles de PLANCK [8].

L’hypothèse principale étant la décomposition d’une longueur d’onde en
longueurs d’ondes fondamentales et la décomposition d’une période en périodes
fondamentales grâce à la formule D(N) appliquée à l’onde d’un photon (où N
peut être associée à une longueur d’onde ou à une période), si nous acceptons
que l’on puisse associer une onde à un photon. Ce qui implique d’admettre :

• L’application de la formule D(N) qui associe N à la longueur d’onde λ
d’un photon implique l’existence d’une valeur de mesure de longueur d’onde
exprimable seulement par un nombre entier supérieur ou égal à 2 (car λ ∈ N
tel que λ ≥ 2).

• Par conséquent, l’existence d’un minimum pour la longueur d’onde λ :

λmin = 2 (c’est à dire 2 unités en “unité de longueur”)

• Et donc l’existence d’une unité de mesure d’une longueur d’onde λ0 :

λ0 = 1 (c’est à dire 1 “unité de longueur”)

(Ce qui confirme partiellement le raisonnement du Chapitre V concluant
qu’il existe une disconuité de l’espace : partiellement car seule la longueur
de l’onde est concernée, nous ne pouvons pas encore faire d’affirmation
à propos des autres directions de l’espace comme l’amplitude de l’onde)

• L’application de la formuleD(N) qui associeN à la période T de l’onde d’un
photon implique l’existence d’une valeur de mesure de période exprimable
seulement par un nombre entier supérieur ou égal à 2 (car T ∈ N tel que
T ≥ 2).
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• Par conséquent, l’existence d’un minimum pour la période, puisque :

T est équivalent à la période (correspond à la mesure du temps).

Tmin = 2 (en “unité de temps”)

• Et donc l’existence d’une unité de mesure pour la période d’une onde :

T0 = 1 (c’est à dire 1 “unité de temps”, qui est une durée minimum)

(Ce qui confirme le raisonnement du Chapitre V concluant qu’il existe
une discontinuité du temps. Ce qui ne peut plus être considéré comme
une hypothèse, mais comme une implication logique)

• L’invariance de la vitesse d’un photon, puisque :

c = λ/T avec :

λ est équivalent à la longueur d’onde,
T est équivalent à la période.

Dans le cas d’une longueur d’onde minimum (λmin = 2),
la période est également minimum (Tmin = 2).

L’onde d’un photon effectue la distance λmin en un temps Tmin :

c = λmin/Tmin
= 2/2
= 1 (en unité de longueur d’onde par unité de temps)

Et donc λ = T (dans le cadre des unités naturelles de PLANCK )

Il est donc possible de décomposer indifféremment la longueur d’onde ou
la période.
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• L’existence d’un maximum pour la fréquence, puisque :

f = c/λ = 1/T avec :

λ est équivalent à la longueur d’onde
f est équivalent à la fréquence,
c est équivalent à la vitesse de la lumière,
T est équivalent à la période.

et pour c = 1, nous avons :

fmax = c/λmin = 1/Tmin
fmax = 1/2 (en “unité de fréquence” : 1 / temps)

• L’existence d’un maximum pour la fréquence angulaire, puisque :

ω = 2.π.f avec :

ω est équivalent à la fréquence angulaire,
f est équivalent à la fréquence,

ωmax = 2.π.fmax
ωmax = π (en “unité de fréquence angulaire” : radian / temps)

• L’existence d’un maximum pour l’énergie dans le cas de la lumière monochromatique.
En effet, dans ce cas, elle ne dépend que de la fréquence puisque :

E = h.c/λ avec :

E est équivalent à l’énergie,
h est équivalent à la constante de PLANCK,
c est équivalent à la vitesse de la lumière.
λ est équivalent à la longueur d’onde,

et pour

c = λmin/Tmin = 1
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Nous avons :

Emax = h.c/λmin
Emax = h/2 (en “unité d’énergie”)

• L’existence d’un maximum de masse lors de la conversion de l’énergie dans
le cas de la lumière monochromatique, puisque :

E = m.c2 avec :

E est équivalent à l’énergie,
m est équivalent à la masse,
c est équivalent à la vitesse de la lumière.

et pour

c = λmin/Tmin = 1

Nous avons donc une masse maximum lors de la conversion énergie-masse
donnée par :

mmax = Emax/c
2

mmax = Emax = h/2 (en “unité de masse”)

• L’existence d’un maximum pour la quantité de mouvement (aussi appelée
impulsion en physique quantique) toujours dans le cas de la lumière mono-
chromatique, puisque :

p = h/λ avec :

p est équivalent à la quantité de mouvement,
h est équivalent à la constante de PLANCK,
λ est équivalent à la longueur d’onde.

Nous avons :

pmax = h/λmin
pmax = h/2 (en “unité d’amplitude de quantité de mouvement”)
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Nous pouvons donc conclure que l’application de la formule de décomposition
D(N) à un phénomène cyclique justifie la quantification des grandeurs phy-
siques liées : pour la formule D(N), c’est donc le domaine de définition de la
variable N qui impose cette quantification (puisque D(N) n’est définie que
pour N ∈ N tel que N ≥ 2).

La décomposition implique la quantification.

- Repère des symboles utilisés :

Par la suite, nous gaderons les mêmes notations que précédemment : chaque
symbole utilisé désignera la grandeur physique correspondant à celle donnée
précédemment.

(Pour faciliter l’accès à cette sous-partie, ce Point de Repère est présent dans
le “Sommaire” en partie 21, sous le nom de “ — Repère des symboles
utilisés”. Il redirige directement la lecture vers le début de cette sous-partie
“21.1.3 Premières implications”, page 458)
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21.2 Principe de décomposition d’un phénomène

cyclique

21.2.1 Application D(λ) pour les longueurs d’onde

L’application D(λ) correspond à la formule D(N) lorsque N = λ.

Prenons pour variable la longueur d’onde (d’un photon par exemple). Coura-
mment, la longueur d’onde est représentée par le symbole λ. La formule
D(N) donnée dans le Chapitre I permettant de décomposer un nombre
entier N en produit de facteurs premiers, il devient possible de décomposer
une onde lorsqu’on applique cette formule à la longueur d’onde λ. Il nous
suffit de faire le lien en notant N = λ. La longueur d’onde λ est décomposable
en longueurs d’ondes fondamentales pour λ ∈ N tel que λ ≥ 2, la plus courte
longueur d’onde décomposable étant donc atteinte pour λmin = 2. La mesure
d’une longueur d’onde étant discontinue, l’unité de mesure d’une longueur
d’onde vaut 1 unité.

Ainsi, dans l’exemple suivant qui utilise un graphique, le graphique liant y à
la longueur d’onde ne représente pas la forme de cette onde, mais il représente
de manière symbolique le début et la fin de la longueur d’une onde (chaque
valeur de longueur L pour laquelle y = 1 permettant de donner une “borne”,
où le motif de la longueur d’onde λ est complet entre 2 de ces bornes).
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Graphique pour λ = N = 12 :

Dans cette exemple, la longueur d’onde λ = N = 12. Il est possible de la
décomposer en produit de longueurs d’ondes fondamentales (λ1, λ2, λ3, ...
λn) grâce à la formule D(N) appliquée à N = λ .
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Nous obtenons :

λ = λ1
α1 .λ2

α2 .λ3
α3 . ... .λn

αn

= D(λ) =
M→+∞∏
M=2

MαM

(D’après la formule αM donnée dans le Chapitre I)

D(N) = D(λ)

= D(12)

= 22.3

Où nous avons :

λ1 = 2 et α1 = 2
λ2 = 3 et α2 = 1
λ(M−1) = M et αM = 0 pour tout M ∈ N tel que M ≥ 4

Remarque :

Comme nous l’avons établi nous devons avoir λ ∈ N tel que λ ≥ 2, et donc
nous devons admettre qu’il existe une longueur d’onde minimum pour les
ondes et donc une unité de mesure des longueurs (l’unité de mesure d’une
longueur d’onde vaut λ0 = 1 unité).

Pour comprendre ce phénomène, nous devons bien nous rappelé que la longueur
d’onde représente la longueur nécessaire à la répétition de cette onde.
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Le minimum d’une longueur d’onde (λmin = 2) peut être représenté dans un
espace plan tel que :

Nous voyons clairement que pour une longueur d’onde égale à 2 (le minimum),
le phénomène ondulatoire se constate toujours.

Une longueur d’onde inférieure à 2 n’aurait pas de sens dans un espace où
la mesure de longueur vaut 1 unité, puisque le phénomène ondulatoire serait
impossible à constater. En effet, si la longueur d’onde λsupp était supposée
égale à 1, alors la représentation dans l’espace serait la suivante :

Nous voyons clairement que pour une longueur d’onde supposée égale à 1, le
phénomène ondulatoire ne se constate plus dans un espace discontinu dont
la mesure de longueur vaut 1 unité.

En effet, en supposant que le phénomène ondulatoire a toujours bien lieu,
nous devrions le représenter ainsi :
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Dans ce cas (ou même dans celui de longueurs d’ondes plus courtes où
λsupp = 1/a, avec a ∈ N tel que a ≥ 1), nous serions incapables de constater
le phénomène (ni de donner une valeur précise de a) puisque notre espace plan
ne permet de mesurer que les longueurs entières. Cet exemple montre que
le phénomène ondulatoire ne pourrait pas être mesuré dans les dimensions
(visibles) d’un espace.
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21.2.2 Application D(T ) pour les phénomènes périodiques

L’application D(T ) correspond à la formule D(N) lorsque N = T .

Pour un phénomène cyclique, la décomposition d’une période en périodes
fondamentales permet aussi une décomposition en fréquence, notamment
grâce à la relation simple :

f = 1/T

Etant donné l’application de décomposition d’une période donnée par D(T ),
nous obtenons :

T = T1
α1 .T2

α2 .T3
α3 . ... .Tn

αn

= D(T ) =
M→+∞∏
M=2

MαM

(D’après la formule αM donnée dans le Chapitre I)

Comme précédemment, prenons par exemple T = N = 600 :

D(N) = D(T )

= D(600)

= 23.31.52

Où nous avons :

T1 = 2 et α1 = 3
T2 = 3 et α2 = 1
T3 = 4 et α3 = 0
T4 = 5 et α4 = 2
T(M−1) = M et αM = 0 pour tout M ∈ N tel que M ≥ 6
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Interprétation en fréquence :

Nous pouvons donc maintenant donner une interprétation en fréquence puisque
nous savons que :

f = 1/T

= (1/T1)α1 .(1/T2)α2 .(1/T3)α3 . ... .(1/Tn)αn

Pour chaque période fondamentale Tn ramenée à des fréquences fondamentales
fn, nous avons :

f1 = 1/T1

f2 = 1/T2

f3 = 1/T3

...
fn = 1/Tn

Ce qui nous permet d’obtenir une décomposition en fréquence puisque nous
nous retrouvons avec la formule suivante :

f = f1
α1 .f2

α2 .f3
α3 . ... .fn

αn

Interprétation en fréquence angulaire :

La formule D(T ) peut être appliquée à une onde en translation linéaire dans
l’espace mais aussi aux sytèmes en “rotation sur eux-mêmes”. Effectivement,
puisqu’il est possible d’associer une période T équivalente à la période de
rotation de ce système.

Or, pour un système en rotation, la fréquence angulaire de ce système est
directement liée à la fréquence de rotation f , et donc à la période de rotation
T . Nous avons :

ω = 2.π.f = 2.π/T
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Ainsi, puisqu’une période est décomposable en période fondamentales, la
fréquence angulaire est décomposable en fréquences angulaires fondamentales.
En effet, nous avons :

ω = 2.π.f d’où f =
ω

2.π

Avec, comme nous venons de le voir :

f = f1
α1 .f2

α2 .f3
α3 . ... .fn

αn

Donc

f =
( ω1

2.π

)α1

.
( ω2

2.π

)α2

.
( ω3

2.π

)α3

. ... .
( ωn

2.π

)αn

Et donc

ω = 2.π.
( ω1

2.π

)α1

.
( ω2

2.π

)α2

.
( ω3

2.π

)α3

. ... .
( ωn

2.π

)αn

De la même manière qu’il existe un minimum de période Tmin pour une onde,
il existe un maximum pour la fréquence angulaire ωmax donné par :

ωmax = π (en “unité de fréquence angulaire” : radian / temps)

Dans ce cas, nous sommes dans la limite d’une mesure de fréquence angulaire.
En effet, si nous supposions que le maximum avait été de :

ωsupp = 2.π (radian par unité de temps)

Nous ne pourrions plus constater de mouvement, nous aurions l’impression
d’étudier un point immobile, ce qui en aurait été de même si pour d’autres
valeurs telles que :

ωsupp = 2.a.π (avec a ∈ N tel que a ≥ 1).

Dans ce cas, parler de période pour un phénomène qui pourrait aussi être
interprété comme ayant une période nulle n’a pas de sens : le cas de ωsupp
est donc à exclure.
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ATTENTION :

ωmax représente la fréquence angulaire maximum appliquée à un phénomène
cyclique. Etant donné que l’application D(T ) impose l’existence d’un mini-
mum de période pour tout phénomène cyclique, il convient donc d’effectuer
l’opération suivante :

ωmax = 2.π.fmax = 2.π/Tmin = π

Et non l’opération suivante, à supposer que :

ωsupp = 2.π/T0 = 2.π

qui n’est pas appliquée à la période d’un phénomène cyclique, mais à l’unité
de mesure de la période de tout phénomène cyclique. Rappelons simplement
que pour un phénomène cyclique, la valeur T0 = 1 est impossible à atteindre
car non décomposable par la formule D(N) appliquée à N = T .

Hypothèse :

Cette théorie pourrait aussi être appliquée à un phénomène cyclique plus
complexe, dont le motif du cycle est répétitif et dont la longueur associée à
la longueur de ce motif est mesurable (exemple possible pour les longueurs
d’onde : l’enveloppe d’un paquet d’ondes).
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21.2.3 Implication de l’application D(T )

Dans le cas de l’onde d’un photon, l’application de D(T ) à la période T de
l’onde permet de traiter le mouvement de translation linéaire du photon dans
l’espace mais nous donne également la possibilité de traiter le mouvement de
rotation.

Il est donc possible de ramener le mouvement de l’onde d’un photon indiffé-
remment à un mouvement de translation linéaire ou bien à un mouvement
de rotation, la cohérence de l’application D(T ) étant toujours respectée.

Ceci étant un constat important pour la suite de la théorie. Cette remarque
permet notamment de montrer qu’il devient possible de considérer qu’un
photon puisse être en rotation (ce qui peut être intéressant notamment pour
suggérer que toute particule absorbant des photons ne serait en fait composée
que de photons en rotation dans cette particule).

Hypothèse importante :

Considérer qu’un photon puisse être en mouvement de rotation permet de
supposer que cela permet la formation de particules plus complexes, c’est-à-
dire qu’une particule serait formée de photons en rotation.

En considérant que cette particule soit au repos (immobile par rapport à
l’observateur), le déplacement interne des photons est un mouvement de
rotation à la vitesse de la lumière.

En considérant que cette particule soit en mouvement de translation linéaire
par rapport à l’observateur (par exemple), le déplacement interne des photons
est un mouvement de rotation qui semble se ralentir dans la particule (et
semble donc inférieur à la vitesse de la lumière), alors que la résultante
de la composition des vitesses de translation linéaire et de rotation interne
conserverait la même mesure (c’est-à-dire la vitesse de la lumière) par rapport
à l’observateur.

Par conséquent, la vitesse que pourrait atteindre cette particule serait
nécessairement toujours strictement inférieure à celle d’un photon seul.
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L’hypothèse est la suivante :

Toute particule de matière qui n’est pas un photon est exclusivement composée
de photons.

Conséquences:

Toute particule composée de photons la rend nécessairement plus complexe et
par conséquent, il n’est plus possible de considérer cette particule composée
comme une particule élémentaire, à moins de définir une particule élémentaire
comme étant un ensemble formé de photons en rotation.
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21.3 Principe de décomposition du nombre

d’éléments d’un ensemble

Supposons qu’il soit possible de “compter” le nombre d’éléments formant un
ensemble. Supposons également qu’il soit possible de diviser ces éléments en
sous-ensembles fondamentaux afin de les séparer.

L’application D(Q) correspondant à la formule D(N) lorsque N = Q
(Q représente ici la quantité).

D’après la formule D(N) définie pour N ∈ N tel que N ≥ 2, nous obtenons
directement :

L’application D(Q) qui associe Q à la quantité d’éléments présents dans un
ensemble d’éléments donné implique l’existence d’une valeur de mesure de
quantité exprimable seulement par un nombre entier supérieur ou égal à 2,
dont 1 correspond à l’unité de mesure.

Ce qui signifie qu’un sous-ensemble fondamental ne peut être constitué au
minimum que de 2 éléments.

Dans ce cas également, il devient possibles de parler d’ensembles décomposables
en sous-ensembles fondamentaux.

Hypothèse 1 :

Cette application de la formule D(N) au nombre d’élément d’un ensemble
d’éléments permet de faire un rapprochement avec l’intrication quantique.
En effet, dans le cas de l’intrication quantique, l’état quantique de 2 objets
doit être décrit globalement, sans pouvoir séparer un objet de l’autre bien
qu’ils puissent être spatialement séparés. Les 2 objets ne sont cependants
pas indépendants et ils doivent être considérer comme 1 système unique (ou
ensemble unique).

L’hypothèse est de considérer que l’application D(N) puisse concerner les
photons intriqués. N est ici la quantité de photons intriqués présents dans un
ensemble donné. Ce qui amène à conclure qu’il est impossible de constituer
un sous-ensemble fondamental de photons intriqués inférieur à 2 photons,
puisque le domaine de définition de D(N) ne le permet pas.
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Hypothèse 2 :

Considérer que l’on puisse compter le nombre Q d’éléments d’un ensemble
revient donc à considérer qu’il existe une limite inférieure Qmin = 2 éléments.
Or, étant donné qu’il n’existe pas de limite supérieure, nous devons alors
concevoir qu’il soit possible que le nombre d’élément puisse être en quantité
infinie pour l’ensemble qui contient tous les éléments.

En effet, considérer qu’il existe une limite supérieure à la quantité de l’ensemble
qui contient tous les éléments reviendrait à fixer une borne supérieure à
l’ensemble des nombres entiers N ainsi qu’à l’ensemble des nombres premiers
P.

Or, il est possible de démontrer qu’il n’existe pas de limite supérieure à
l’ensemble des nombres entiers N, et qu’il n’existe pas de limite supérieure à
l’ensemble des nombres premiers P.

D’où l’on déduit que s’il est possible de compter de manière exacte le nombre
d’élément d’un ensemble, nous devons concevoir que le nombre d’éléments
totale d’un ensemble qui les contient tous soit infini.

Ce raisonnement nous suggère donc finalement de concevoir que, à partir
du moment où nous considérons que nous sommes capables de compter des
photons, le nombre de photons de l’univers puissent être en quantité infinie.

Remarque

Pour revenir sur les réflexions du Chapitre V, à propos de la sous-partie
“14.4 Remarque sur les énoncés constructibles” où une définition
suggère qu’un énoncé F puisse contenir une quantité infinie de mots, un
raisonnement cohérent ne permet pas d’attribuer un sens à ce genre d’énoncé
étant donné que F ne peut jamais être donné dans son intégralité, il n’est donc
jamais possible de raisonner sur le sens de F . De même, si nous définissons
l’univers comme contenant une infinité de photons (ou de matière), nous ne
pouvons attribuer un sens global à cet univers, étant donné que nous ne
pourrons jamais le connâıtre dans son intégralité, et donc sa définition ne
nous sera jamais donnée dans son intégralité.
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22.1 Rappels, réflexion et définition d’un primaryon

- Rappels :

Etant donné les formules d’application aux phénomènes cycliques :

D(λ) = D(N) pour N = λ, avec λ une longueur d’onde,
D(T ) = D(N) pour N = T , avec T une période.

Qui imposent que λmin = 2 et que Tmin = 2.

D’où l’on déduit une unité de mesure de la longueur d’onde dans l’espace :

λ0 = 1

Et d’où l’on déduit une unité de mesure de la période d’une onde dans le
temps :

t0 = 1

- Réflexion :

Cette discontinuité ne permet alors le repérage (par des coordonnées) dans
l’espace que par des points et elle ne permet le repérage (par des coordonnées)
dans le temps que par des instants. La position de toute étendue de matière
ne peut donc être exclusivement repérée que par des points et des instants.

Par définition, un point ou un instant est sans dimension (respectivement sans
longueur ou sans durée). Ces points sont donc tous identiques et indivisibles.

Une étendue de matière (y compris la lumière) ne pouvant être repérée que
par l’un des ces points ou l’un des ces instants, il est nécessaire que cette
étendue de matière soit représentée par ces points sans dimension et ces
instants sans dimension. Nous ne pouvons donc concevoir une étendue de
matière que comme des points placés dans l’espace et à un instant dans le
temps. Nommons un de ces points sans dimension (et donc identique aux
autres) un primaryon, constituant de toute matière et de toute lumière.
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- Définition d’un primaryon :

Ce mot est un nom masculin, représentant la contraction du mot “primary”
(mot anglais à prendre dans le sens du mot “primaire” ou du mot “fonda-
mental”) et du suffixe “-on” (suffixe servant habituellement à désigner les
particules élémentaires en physique). Un primaryon est donc un élément
primaire ou fondamentale, l’élément le plus “simple qui soit”, constituant
toute matière.

Un primaryon est un point sans dimension permettant un repérage de
la matière dans l’espace à un point spatial donné et dans le temps à un
instant donné. La présence d’un primaryon en un point d’espace donné à un
instant donné est indissociable de la présence de matière à ce point donné
et à cet instant donné. Par exemple, aucun primaryon sur un graphique
représentant l’espace d’une taille donnée signifie aucune matière dans cet
espace. Un primaryon est nécessairement indivisible. Un primaryon n’ayant
pas de dimension, il est par conséquent identique à un autre.

Un primaryon ne change pas de propriétés au cours du temps, il est donc
éternel. Il ne change pas de propriétés non plus en fonction de l’espace, ni en
fonction de n’importe quelle grandeur physique. L’existence d’un primaryon
est absolue (il représente l’idée d’ “existence éternelle” conclue dans la partie
“16 Preuve de l’existence éternelle” du Chapitre V).

Remarque :

De ce point de vue, la conception d’un primaryon est presque la même que
celle de “l’atome” selon Démocrite [9] (Philosophe grec, né vers 460 avant
Jésus-Christ). En effet, Démocrite considérait que les corps les plus divers
étaient produits par la combinaison de particules matérielles indivisibles et
éternelles, et en mouvement perpétuel.

La différence avec le primaryon est que celui-ci ne peut être considéré que
comme étant un point (sans dimension), et non une particule (une particule
possède une épaisseur).
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22.2 Conséquences

22.2.1 A propos de la vitesse

Pour un primaryon (tel que nous venons de le définir), la seule possibilité
est de parcourir une distantce minimum et un temps minimum, ce qui est
le maximum autorisé pour une vitesse, mais ce qui constitue aussi la seule
vitesse possible pour un primaryon.

Pour δmin = 1 le minimum de distance indivisible qu’un primaryon peut
parcourir, et pour tmin = 1 le minimum de temps indivisible, la vitesse Vp
d’un primaryon est donc :

Vp = δmin/tmin = 1

Avec Vp = 1 étant la seule vitesse possible pour un primaryon.

Remarque :

Si nous envisagions qu’un primaryon puisse avoir une vitesse nulle (même
temporairement), cela reviendrait également à envisager qu’il puisse avoir
(temporairement) une fréquence angulaire ωsupp = 2.a.π (avec a ∈ N tel que
a ≥ 1). En effet, dans ce cas, ce primaryon donnerait aussi l’impression
d’être resté au même point, ce qui est à exclure (comme nous l’avons déjà vu
en sous-partie “Application D(T ) pour les phénomènes périodiques”,
page 468).
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22.2.2 A propos de la quantité

Pour un ensemble de Q primaryons, l’application D(Q) correspondant à la
formule D(N) lorsque N = Q (Q représente ici la quantité) nous donne la
décomposition d’un ensemble de primaryons en sous-ensembles fondamentaux.
La formule D(Q) n’étant définie que pour Q ∈ N tel que Q ≥ 2, nous pouvons
déduire qu’un sous-ensemble fondamental de primaryons se constitue au
minimum de 2 primaryons (notons Qmin = 2). Ce qui nécessite une unité de
mesure indivisible de la quantité de primaryons contenue dans un ensemble.
Ceci implique également qu’un primaryon (notamment pour l’ensemble con-
tenant Qmin = 2 primaryons) ne peut être au même point en même temps,
puisque dans ce cas il serait impossible de les dissocier (la quantité Qmin = 2
ne serait plus respectée en ce point et à cet instant).

Par contre, pour un ensemble de primaryons, il n’y a pas de limite de
quantité maximum. Ce qui permettrait d’émettre une hypothèse concernant
la quantité de primaryon (et donc de matière) contenue dans l’univers : la
quantité Q peut tendre vers l’infini. En fait, considérer qu’il existerait une
limite à Q pour le nombre de primaryons reviendrait également à considérer
qu’il existerait un nombre Q maximum décomposable en produit de facteurs
premiers. Or, ce n’est pas le cas, la quantité de primaryons Q doit donc être
en nombre infini.

Partage d’un point de vue personnel :

De ce fait, en considérant que 2 points ne peuvent pas être situés dans la
même position au même instant, j’ai plutôt tendance à concevoir la dualité
onde-particule comme un ensemble de points capables de se situer à différentes
positions, ce qui engendre naturellement un phénomène cyclique à partir de
l’intéraction entre ces points. J’ai donc plutôt tendance à penser que les
phénomènes cycliques sont dûs à des interactions entre ces points élémentaires,
tous identiques, et donc à ramener ces point à des constituants fondamentaux
(disons même à des constituants identiques, ce qui est une condition nécessaire
pour qu’un observateur ne puisse pas faire la différence dans un cas comme
celui évoqué en partie “Représentation géométrique correspondant à
la variable U”, page 486) de la matière ou même des photons. Cette
vision des choses n’engage que moi, mais elle me parâıt plus naturelle et
plus intuitive que de concevoir de manière directe la dualité onde-particule.
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Cette vision des choses permettrait de donner une représentation géométrique
(spatio-temporelle) au phénomène vibratoire d’un photon.

Considérer les primaryons comme des constituants fondamentaux dénom-
brables de toutes forme de matière, et permettant la manifestation de phéno-
mènes cycliques et vibratoires, permet de percevoir la dualité onde-particule
de la matière comme une conséquence.

Un ensemble fondamental se composant au minimum de 2 primaryions per-
mettrait de donner une raison aux phénomènes cycliques.
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22.2.3 A propos de l’amplitude

L’ensemble fondamental minimum est constitué de Qmin = 2 primaryons.
Comme la cohérence impose que ces 2 primaryons ne puissent pas être
confondus, nous déduisons qu’il existe un minimum d’amplitude A entre ces
primaryons. Cette amplitude est une longueur mesurable dans un espace.

Pour l’instant, nous ne disposons pas de suffisamment d’informations pour
dire si cette amplitude a un minimum indivisible ou non.

- Remarque :

Toutes ces indications limitent déjà les possibilités de représentations des
phénomènes de l’univers.

SUITE EN COURS

DE REALISATION !
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22.3 Mouvements des primaryons dans un ensemble

“photon”

Nous allons voir qu’un photon peut être considéré comme étant formé d’un
ensemble de primaryons.

SUITE EN COURS

DE REALISATION !
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22.4 Mouvements des photons dans un ensemble

“particule”

Nous allons voir qu’une particule “complexe” (capable d’absorber et d’émettre
des photons) peut être considérée comme étant formé d’un ensemble de
photons.

SUITE EN COURS

DE REALISATION !
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Remarque :

En considérant que la vitesse de la lumière soit indépassable mais aussi
l’unique vitesse disponible pour les photons, pour une particule formée exclu-
sivement d’un ensemble de photons en rotation dans cette particule, toute
autre mesure de vitesse ne correspondrait alors qu’à une vitesse résultante.

Toutes ces particules correspondraient à la configuration de l’ensemble des
photons qui la composent :

- Au repos par rapport à un observateur, l’ensemble de la particule a une
vitesse nulle, alors que les photons qui la composent seraient tous en mouve-
ment de rotation dans cette particule (un vecteur vitesse peut représenter
cela). La vitesse des photons en rotation (dans la particule) par rapport à
cet observateur doit d’ailleurs être exactement la vitesse de la lumière.

- En mouvement de translation linéaire dans l’espace par rapport à un obser-
vateur (par exemple), l’ensemble de la particule a une vitesse supérieure
à 0. Ceci a pour effet que si la vitesse de la particule augmente, alors le
mouvement de rotation interne des photons dans la particule doit se réduire.

Pour un observateur, l’observation de cette particule en translation linéaire
dans l’espace (par rapport à cet observateur) doit l’amèner à constater cette
réduction du mouvement interne dans la particule (en conformité avec la
théorie de la relativité d’EINSTEIN ) [11], bien que la mesure de la vitesse
des photons par rapport à l’observateur (et non par rapport à la particule
observée) soit toujours la vitesse de la lumière.

- Ce principe exclu naturellement que la vitesse globale de la particule puisse
dépasser la vitesse des photons qui la composent, d’où l’impossibilité pour
les particules composées de photons de dépasser la vitesse de la lumière.
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23

Représentation géométrique
correspondant à la variable U

23.1 Introduction

Cette partie se propose de donner une représenation géométrique du phéno-
mène étudié dans la partie “14 Preuve de la liberté” du Chapitre V,
dans les limites de ce qui est permis par la formule D(N) et notamment par
son domaine de définition N ∈ N tel que N ≥ 2, et dans les limites des règles
que nous avons établi précédemment.

Nous allons aborder ce phénomène au caractère fondamentalement
“indéterministe” en soulignant que la représentation graphique qui va être
proposée n’est peut-être pas la meilleure ou l’unique, bien qu’elle semble
fidèlement représenter un tel phénomène.
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23.2 Etude du cas limite ωmax = π

A propos du cas de ωmax = π radian par unité de temps, celui-ci est intéressant
car il va nous donner un autre renseignement et même nous permettre de faire
une comparaison avec la variable U . Dans ce cas limite (correspondant à la
représentation graphique suivante), pour un phénomène cyclique, un point
situé en A se retouve en B (ce qui revient à effectuer une rotation d’angle π
rad) après une unité de temps :

Dans ce cas, il devient impossible de savoir si ce point a effecté la trajectoire
correspondant à la demie-circonférence du cercle (en bleu) ou au diamètre D
du cercle (en rouge). Si la trajectoire était celle du diamètre, la vitesse de ce
point ne pouvant dépasser la vitesse de la lumière c = 1 unité de longueur
par unité de temps, cela signifierait que ce diamètre ne mesure qu’une unité
de longueur. Et donc le diamètre minimum dans ce cas serait Dmin = 1.

Il est possible à partir de cette hypothèse de concevoir un nouveau cas
particulier, notamment la mise en présence de 2 de ces points nommés 1 et 2
et parcourant les trajectoires correspondantes 1 et 2 sur les représentations
graphiques suivantes :
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En considérant un point situé en A en rotation dont la fréquence angulaire
est au maximum (ωmax = π radian par unité de temps). Pour un point seul
nous sommes dans la même situation que précédemment : le point se trouve
en B après une unité de temps puis revient à nouveau en A après une unité
de temps, et ainsi de suite.

En considérant 4 positions possibles en A, B, C et D aux sommets d’un carré
où les longueurs sont données par :

AB = BC = CD = DA = 1

En mettant en présence un 2ième un point identique (ce qui est une condition
nécessaire pour obtenir ce qui va suivre) situé en C et dont la fréquence
angulaire est la même (ωmax = π), la situation devient immédiatement plus
délicate, car il devient impossible de savoir quel trajectoire a été suivie par
chacun des points. Comme le montrent les 3 représentations graphiques de
droite, la trajectoire du point 1 peut passer par A, D, revenir à A alors que
le point 2 peut passer par B, C, revenir à B. Mais pour un observateur, il
est impossible de savoir si le point 1 a effectué le trajet de A vers D ou le
trajet de A vers B. Idem pour le point 2 par rapport au trajet de C vers B
ou le trajet de C vers D.

En effet, pour un observateur (qui observe en vue de dessus ou même en vue
de dessous), à chaque instant, seules 2 possibilités peuvent être clairement
dissociées : soit les points sont en position A et C, soit il sont en position B
et D. Mais dans ce cas, il devient impossible de définir le trajet effectué par
un seul des 2 points de manière exacte. Il n’est possible d’exprimer ce trajet
que dans le cadre des probabilités. Il est ici impossible de définir précisément
dans quel sens les 2 points se déplacent. Ceci étant valable à tout instant,
seulement des probabilités peuvent exprimer les chances que chaque point a
de passer par un trajet à tout instant. Sur une durée infiniment longue, il
existe une infinité de combinaisons de trajet possibles.

Nous pouvons même clairement exprimer ces probabilités dans un cas comme
celui-ci. A partir d’un instant initial t = 0, il devient même possible d’établir
un lien entre les probabilités et une durée, ce qui permet d’exprimer une
probabilité par unité de temps (pour les trajets de chaque point).
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Soit un “trajet” le segment par lequel le point A peut passer (un segment
tel que AB, BC, CD ou DA). Soit P la probabilité que le point 1 soit dans
une des positions A, B, C ou D d’un instant à l’instant suivant. Soit Ct
le nombre de combinaisons de positions possibles par lesquels peut passer le
point 1 depuis t = 0, et donc soit Pt la probabilité que le point 1 a d’être
passer par une suite de positions depuis t = 0.

Etant donné que le point 1 a une chance sur 2 de prendre une position ou une
autre d’un instant t à l’instant t+ 1, nous avons dans tous les cas : P = 1/2.

- A l’instant t = 0 :

1 est en A (c’est-à-dire dans la position initial)

Les positions que 1 a pu occuper depuis t = 0 sont :

A

C0 = 1
P0 = 1

- A l’instant t = 1 :

1 est en B ou D

Les positions que 1 a pu occuper depuis t = 0 sont :

A−B
A−D

C1 = 2
P1 = 1/2
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- A l’instant t = 2 :

Si 1 était en B à t = 1 : 1 est en A ou C
Si 1 était en D à t = 1 : 1 est en A ou C (également)

Les positions que 1 a pu occuper depuis t = 0 sont :

AB − A
AB − C
AD − A
AD − C

C2 = 4
P2 = 1/4

- A l’instant t = 3 :

Si 1 était en A à t = 2 : 1 est en B ou D
Si 1 était en C à t = 2 : 1 est en B ou D

Les positions que 1 a pu occuper depuis t = 0 sont :

ABA−B
ABA−D
ABC −B
ABC −D
ADA−B
ADA−D
ADC −B
ADC −D

C3 = 8
P3 = 1/8
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- A l’instant t = 4 :

Si 1 était en B à t = 3 : 1 est en A ou C
Si 1 était en D à t = 3 : 1 est en A ou C

Les positions que 1 a pu occuper depuis t = 0 sont (à lire par colonne) :

ABAB − A ABCB − A ADAB − A ADCB − A
ABAB − C ABCB − C ADAB − C ADCB − C
ABAD − A ABCD − A ADAD − A ADCD − A
ABAD − C ABCD − C ADAD − C ADCD − C

C4 = 16
P4 = 1/16

- A l’instant t = 5 :

Si 1 était en A à t = 4 : 1 est en B ou D
Si 1 était en C à t = 4 : 1 est en B ou D

Les positions que 1 a pu occuper depuis t = 0 sont (à lire par colonne) :

ABABA−B ABCBA−B ADABA−B ADCBA−B
ABABA−D ABCBA−D ADABA−D ADCBA−D
ABABC −B ABCBC −B ADABC −B ADCBC −B
ABABC −D ABCBC −D ADABC −D ADCBC −D
ABADA−B ABCDA−B ADADA−B ADCDA−B
ABADA−D ABCDA−D ADADA−D ADCDA−D
ABADC −B ABCDC −B ADADC −B ADCDC −B
ABADC −D ABCDC −D ADADC −D ADCDC −D

C4 = 32
P4 = 1/32

... (nous pourions continuer comme ceci à l’infini)
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GENERALISATION :

• Si nous prenons en considération la globalité du système (c’est-à-dire
l’ensemble {point 1; point 2} comme un ensemble indivisible, d’où l’on ne
peut séparer ces 2 points), nous pouvons savoir de manière exacte que :

- A l’instant t = 0 :
Les points 1 et 2 sont en A et C.

- A l’instant t = 2.a− 1 (avec a ∈ N tel que a ≥ 1) :
Les points 1 et 2 sont en B et D.

- A l’instant t = 2.a :
Les points 1 et 2 sont en A et C.

• Si nous ne prenons en considération que le trajet d’un seul des 2 points
(par exemple, le point 1, comme vu précédemment) :

D’un instant à l’instant suivant, le point 1 a une chance sur 2 d’occuper la
prochaine position : P = 1/2.

- A l’instant t = 0 :

1 est en A

- A l’instant t = 2.a− 1 (avec a ∈ N tel que a ≥ 1) :

1 est en B ou D (Que 1 aie été en A ou C à t = 2(a− 1) )

Ct = 2t (est le nombre de positions que 1 a pu occuper depuis t = 0)

Pt = 1/Ct (est le nombre de chance que 1 a eu de passer par un des trajets)

- A l’instant t = 2.a :

1 est en A ou C (Que 1 aie été en B ou D à t = 2.a− 1)

Ct = 2t (est le nombre de positions que 1 a pu occuper depuis t = 0)

Pt = 1/Ct (est le nombre de chance que 1 a eu de passer par un des
trajets)
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Suite du raisonnement :

Si nous ne prenons en considération que le trajet d’un seul des 2 points, d’un
point de vue des probabilités, nous pouvons alors ramener cette situation à
la superposition de toutes les situations possibles, sans que cela ne pose de
problème à son déroulement.

Précisons en outre que la représentation graphique précédente était une
possibilité, d’autres représentations où la situation est équivalente sont po-
ssibles (il est encore trop tôt pour savoir laquelle serait la meilleure, ou
même si plusieurs représentations seraient possibles). En effet, pour cacun
des points 1 et 2, nous avions choisi de représenter les positions disponibles
A, B, C et D aux sommets d’un carré, mais nous aurions pu aussi choisir
que ces positions soient aux sommets d’un losange. Comme l’indique la
représentation graphique suivante :

Pour un losange dont les sommets sont A, B, C et D, parmi un ensemble de
triangles équilatéraux joints les uns aux autres, et pour des longueurs tels que :

AB = BC = CD = DA = λ0 = 1 et
EF = FB = EG = FG = GH = EI = FI = IJ = λ0 = 1
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Pour les points 1 et 2 précédemment cités, nous nous retrouvons exactement
dans la même situation, en supposant que ces points sont en position A et C
et que leur fréquence angulaire est également ωmax = π.

En effet, nous avons vu précédemment que lorsque les points 1 et 2 sont
en position A et C, l’ensemble des 2 points {point 1; point 2} se retrouvent
l’instant suivant exactement en position B et D, sans que nous ne puissions
savoir par lequel des 2 trajets possibles ces points sont passés (pour le point
1 en position A, ce trajet peut être indifféremment AB ou AD). Cela a
pour conséquence que, d’un instant à l’instant suivant, il est possible de
considérer indifféremment que l’ensemble des points 1 et 2 a “tourné” dans
le sens trigonométrique ou dans le sens inverse.

Ce cas va devenir encore plus intéressant en introduisant un 3ième point
identique (nommé 3) en position E, car il va permettre de faire comprendre
sur quel norme pourrait se concevoir un système “libre” (ou contenant une
part de hasard, en référence au Chapitre V), en passant par une représen-
tation graphique (parmi d’autres possibles). Pour simplifier l’exemple, nous
n’allons étudier que le cas où nous pouvons indifféremment considérer que
l’ensemble des points 1 et 2 peut tourner exclusivement dans le sens
trigonométrique (c’est-à-dire sans retour en arrière) ou exclusivement dans
le sens contraire.

Remarque :

Bien que l’on considère que l’ensemble {point 1; point 2} est en rotation
uniquement dans un des 2 sens, il est encore possible d’attribuer une
période à cet ensemble. Il est donc également possible de concevoir que
l’ensemble {point 1; point 2} constitue un phénomène périodique.

Considérons le cas où le point 3 est situé en position E et qu’il se déplace
en position F . Ajoutons la condition qu’un point ne peut prendre la même
position qu’un autre, et qu’il se déplace d’une longueur λ0 après une durée
T0 (il ne peut pas avoir une vitesse nulle). Etablissons une chronologie de
l’évolution des points pour chaque instant (pour plus de clarté), avec t = 0
l’instant initial de notre étude :

(voir page suivante)
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- Cas 1 :

L’observateur considère que l’ensemble {point 1; point 2} tourne exclusivement
dans le sens trigonométrique :

pour t = 0 : 1 est en B, 2 est en D, 3 est en E.
pour t = 1 : 1 est en A, 2 est en C, 3 est en F .
pour t = 2 : 1 est en D, 2 est en B, 3 est en G.
pour t = 3 : 1 est en C, 2 est en A, 3 est en H.

Ici, le point 3 a été ejecté en G par l’ensemble de points en rotation dans le
sens trigonométrique. L’éjection est nécessaire car sinon, il serait possible
de considérer que 2 des points sont confondus. En effet, nous aurions :

pour t = 0 : 1 est en B, 2 est en D, 3 est en E.
pour t = 1 : 1 est en A, 2 est en C, 3 est en F .
pour t = 2 : 1 est en D, 2 est en B, 3 est en B.
...

Et donc pour t = 2, nous aurions les points 2 et 3 en B.
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- Cas 2 :

L’observateur considère que l’ensemble {point 1; point 2} tourne exclusivement
dans le sens contraire à celui du sens trigonométrique :

pour t = 0 : 1 est en B, 2 est en D, 3 est en E.
pour t = 1 : 1 est en C, 2 est en A, 3 est en F .
pour t = 2 : 1 est en D, 2 est en B, 3 est en I.
pour t = 3 : 1 est en A, 2 est en C, 3 est en J .

Ici, le point 3 a été ejecté en I par l’ensemble de points en rotation dans le
sens contraire du sens trigonométrique. Pour les mêmes raisons que pour le
Cas 1, l’éjection est nécessaire ici aussi.

- Synthèse des Cas 1 et 2 :

Dans cet exemple de représentations graphiques (d’autres sont peut-être
possibles), nous obtenons donc 2 trajets différents simplement en considérant
que la rotation s’effectue dans un sens ou dans un autre.
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Ce qui permet que le trajet suivi soit indéfinissable. Il peut s’agir indiffé-
remment du trajet aboutissant à la position G ou du trajet aboutissant en
position I.

Les 2 trajets étant de probabilité égale puisque la probabilité que l’ensemble
de points soit en rotation dans le sens trigonométrique ou dans le sens
contraire est la même (on peut indifféremment considérer que l’ensemble
tourne dans un sens ou dans le sens contraire), et cela même à chaque instant.
Dans notre exemple, nous avons simplifié les choses en considérant que la
rotation ne se faisait qu’exclusivement dans un sens ou qu’exclusivement dans
le sens contraire. Si nous revenons au cas plus complexe où à tout instant, il
est indifféremment possible de considérer que la rotation s’effectue dans un
sens ou dans le sens contraire, nous obtenons exactement le même résultat
quant à la trajectoire possibles des points 1, 2 et 3. le seul changement étant
que nous ne pouvons savoir vers laquelle des 2 positions possibles G ou I le
point 3 est éjecté.

Complément de réflexion :

Il m’a semblé intéressant de signaler cette représentation géométrique car elle
présente des analogies avec la variable de valeur de vérité indéfinissable U
par rapport à l’énoncé E3 (voir la sous-partie “Justification de la variable
binaire U de valeur de vérité indéfinissable” du Chapitre V).
Effectivement, dans cette représentation aussi nous ne pouvons jamais avoir
suffisamment d’informations, notamment pour savoir quel trajet a suivi chacun
des points 1 et 2 (il serait même incohérent d’avoir ces informations, puisque
chaque trajet est équivalent). Chacun des 2 points peut indifféremment
passer par un trajet ou un autre (lorsque un des points est en position A,
un observateur peut indifféremment considérer que ce point se trouve en
B ou en D l’instant suivant), ce qui donne un aspect “binaire” au nombre
de possiblités (2 possiblités) à chaque instant. Pour finir, cela correspond
à ce que l’on attend d’une représentation de la variable U . C’est-à-dire
qu’une telle variable binaire (et donc l’apparition du niveau binaire) ne
doit “apparâıtre” qu’à la suite d’un traitement sur les ondes (car toutes
les propositions du calcul propositionnel “classique” peuvent être formées à
partir de la formule I(M) et donc à partir d’un traitement sur les ondes
ou même sur les cycles), ce qui est bien le cas étant donné que nous avions
remarqué qu’il était aussi possible de considérer que le système
{point 1; point 2} constituait un phénomène périodique.
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Pour faire une curieuse analogie avec le langage, nous pouvons faire la synthèse
de tout cela en comparant les 2 situations :

I Pour l’énoncé E3 = U :

peu importe le sens (vrai ou faux), aucun raisonnement cohérent ne
peut produire E3 et lui atttribuer une unique valeur de vérité (et donc
un sens unique).

I Pour l’ensemble des points 1 et 2 :

peu importe le sens (de rotation : trigonométrique ou contraire), aucune
théorie exclusivement déterministe ne peut produire le système
{point 1; point 2} et lui atttribuer un sens unique de rotation.

Tout ceci ne signifie pas pour autant que cette représentation graphique
soit la meilleure ou l’unique représentation de U possible * (voir suite “Autre
représentation graphique possible”). Bien que l’hypothèse d’un élément
ponctuel identique avec d’autres permette de mettre en avant un phénomène
remarquable (ce qui en fait tout de même une hypothèse forte).

Remarque 1 :

Restreindre le sens de rotation du point 1 par rapport au point 2 (comme vu
sur le 1ier schéma au tout début de cette partie “23.2 Etude du cas limite
ωmax = π” page 487), permet toujours l’apparition de ce phénomène. Par
exemple, en supposant que le point 1 se rend de A vers B dans un sens de
rotation donné mais pour lequel ωmax = π, nous pouvons restreindre le sens
de rotation du point 2 qui se rend de C vers D en supposant qu’il est opposé
à celui du point 1. Pour la suite du raisonnement, même en supposant que le
sens de rotation du point 1 (permettant le déplacement d’une position à une
autre) et le sens de rotation du point 2 sont contraires, nous aboutissons au
même constat concerant les combinaisons que l’ensemble des 2 points peuvent
adopter. En introduisant le 3ième point, les 2 trajets possibles apparaissent
donc toujours.

De plus, considérer que tous photons puissent être constitués exclusivement
de primaryons permet de nous amener à penser que ce phénomène corres-
pondant à la variable U pourrait être très répandu, et peut-être même présent
dans chaque photon. Cela pourrait peut-être permettre d’expliquer le phéno-
mène d’intrication quantique.
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* Autre représentation graphique possible :

Nous allons donner un autre exemple de représentation graphique qui permette
de faire le lien avec la variable binaire U de valeur de vérité indéfinissable.
Ici aussi, nous aboutirons à 2 trajets équiprobables. Reprenons la même
structure de triangles équilatéraux que précédemment, nous avons :

AB = BC = CD = DA = λ0 = 1 et
EF = FB = AG = GH = CI = IJ = λ0 = 1

- Cas 3 :

L’observateur considère que l’ensemble {point 1; point 2} dans le losange
ABCD (le même que pour le “Cas 1 ”) est en rotation exclusivement dans
le sens trigonométrique :

pour t = 0 : 1 est en B, 2 est en D, 3 est en E.
pour t = 1 : 1 est en A, 2 est en C, 3 est en F .
pour t = 2 : 1 est en D, 2 est en I, 3 est en B.
pour t = 3 : 1 est en C, 2 est en J , 3 est en A.
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Ici, le point 2 a été ejecté en I et remplacé par le point 3 dans l’ensemble des
points en rotation. L’éjection est nécessaire car sinon, il serait possible
de considérer que 2 des points sont confondus (notamment à t = 2, les points
2 et 3 auraient été confondus au point B).

- Cas 4 :

L’observateur considère que l’ensemble {point 1; point 2} dans le losange
ABCD (le même que pour le “Cas 2 ”) est en rotation exclusivement dans
le sens contraire du sens trigonométrique :

pour t = 0 : 1 est en B, 2 est en D, 3 est en E.
pour t = 1 : 1 est en C, 2 est en A, 3 est en F .
pour t = 2 : 1 est en D, 2 est en G, 3 est en B.
pour t = 3 : 1 est en A, 2 est en H, 3 est en C.

Ici, le point 2 a été ejecté en G et remplacé par le point 3 dans l’ensemble
des points en rotation. Pour les mêmes raisons que le “Cas 3 ”, l’éjection
est nécessaire ici aussi.
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- Synthèse des Cas 3 et 4 :

Ici aussi, étant donné que nous ne pouvons savoir dans quel sens de rotation
tourne l’ensemble de départ {point 1; point 2}, nous ne pouvons pas savoir
quel trajet va empreinter le point 2 lors de l’éjection. Le point 3 remplace le
point 2 dans l’ensemble {point 1; point 2} pour former un nouvel ensemble
{point 1; point 3} équivalent dans le losange ABCD.

Nous pouvons tout de même constater une différence entre le “Cas 1 ” et
le “Cas 3 ” : malgré le sens de rotation identique au départ de l’ensemble
{point 1; point 2}, le trajet suivi par le point éjecté est opposé et avec un
décalage spatiale. Même remarque entre le “Cas 2 ” et le “Cas 4 ”.

Remarque 2 :

Le “Cas 1 ” et le “Cas 2 ” forment une représentation graphique possible, le
“Cas 3 ” et le “Cas 4 ” forment une autre représentation graphique possible,
Il serait préférable de pouvoir trancher en faveur de l’une ou l’autre, voire en
faveur d’une nouvelle représentation s’il s’avérait que celles-ci n’étaient pas
les meilleures.
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Possibilité de codage des
actions d’un système libre

Supposons qu’un système soit partiellement constituer d’un “assemblage de
matière” pouvant être décrit à partir d’une représentation telle que nous
venons de l’aborder dans la partie précédente. Appelons un tel système un
“système libre”.

Nous allons simplifier au maximum afin de rendre compréhensible une possibilité
de codage des actions d’un système libre.

Pour y parvenir, nous allons attribuer les valeurs des états binaires de l’algèbre
de BOOLE [3] (0 ou 1) aux 2 principales situations que nous avons abordé
précédemment.

Reprenons également les mêmes notations que dans la partie précédente (à
propos des points 1, 2 et 3).
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- Première situation :

En considérant que l’ensemble {point 1; point 2} tourne exclusivement dans
le sens trigonométrique, le point 3 démarre en E et fini par être éjecté en H.

Attribuons la valeur 0 à cette situation.
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- Seconde situation :

En considérant que l’ensemble {point 1; point 2} tourne exclusivement dans
le sens contraire à celui du sens trigonométrique, le point 3 démarre en E et
fini par être éjecté en J .

Attribuons la valeur 1 à cette situation.
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- Codages des actions :

En attribuant les valeurs 0 et 1 à chaque situation, il devient possible de
coder les actions d’un tel système.

Nous devons pour cela préalablement convenir de règles de syntaxe :

La suite des valeurs consécutives 0110 marque le début et la fin d’un code
d’action. Appelons ce code “ordre”.

Le code binaire attribué à une action correspond à une suite de valeurs
binaires consécutives 0 ou 1, ce code ne peut pas contenir la suite des valeurs
consécutives attribuée au code “ordre” (donné ci-dessus), afin d’éviter qu’il
puisse être confondu avec un ordre.

Si la suite des valeurs correspond à plusieurs 0 consécutifs entre les marqueurs
de début et de fin (repérés par le code “ordre”), aucun changement n’est
demandé.

- Exemple :

Attribuons des Actions à des suites de valeurs binaires.

La suite de valeurs 00001 est attribuée à l’Action 1.
La suite de valeurs 00010 est attribuée à l’Action 2.
La suite de valeurs 00100 est attribuée à l’Action 3.
La suite de valeurs 00101 est attribuée à l’Action 4.
La suite de valeurs 01000 est attribuée à l’Action 5.
La suite de valeurs 01001 est attribuée à l’Action 6.
La suite de valeurs 01010 est attribuée à l’Action 7.
La suite de valeurs 10000 est attribuée à l’Action 8.
La suite de valeurs 10001 est attribuée à l’Action 9.
La suite de valeurs 10010 est attribuée à l’Action 10.
La suite de valeurs 10100 est attribuée à l’Action 11.
La suite de valeurs 10101 est attribuée à l’Action 12.
...
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Poursuivons en associant une tâche à chaque action :

l’Action 1 correspond au démarrage de la T âche 1.
l’Action 2 correspond à l’arrêt de la T âche 1.
l’Action 3 correspond au démarrage de la T âche 2.
l’Action 4 correspond à l’arrêt de la T âche 2.
l’Action 5 correspond au démarrage de la T âche 3.
l’Action 6 correspond à l’arrêt de la T âche 3.
l’Action 7 correspond au démarrage de la T âche 4.
l’Action 8 correspond à l’arrêt de la T âche 4.
...
l’Action n correspond au démarrage de toutes les tâches en même temps.
l’Action (n + 1) correspond à l’arrêt de toutes les tâches en même temps
(“arrêt d’urgence”, par exemple).

Ce système a donc la possibilité d’exécuter des tâches en parallèle (parmi
celles qui lui auront été prédéfinies).

Ainsi, ce système libre peut intervenir sur l’ordre d’apparition des valeurs
0 et 1. Certaines suites de valeurs pourront correspondre aux marqueurs
de début et de fin d’un code d’action, d’autres suites de valeurs pourront
correspondre à des actions prédéfinies, et enfin, un autre ensemble de suite
de valeurs ne correspondra à aucune action prédéfinie.

Il devient alors possible d’enchâıner une suite de valeurs qui permettront
d’engendrer un enchâınement de tâches.

Par exemple, et selon les notations précédentes :

Le code : 0110000010110 permet d’exécuter le démarrage de la T âche 1
uniquement.
Le code : 011000001011000000000000110 permet également d’exécuter uni-
quement la T âche 1.
Le code : 0110000100110 permet d’exécuter l’arrêt de la T âche 1 uniquement.
Le code : 01100000101100010001100000000000000000000110000100110 permet
d’exécuter le démarrage de la T âche 1, puis de la T âche 2, puis une pause,
puis l’arrêt de la T âche 1.
...
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- Remarque 1 :

La longueur du code crôıt avec la quantité d’actions que l’on souhaite attribuer
à ce système.

Cependant, il n’est pas exclu qu’un codage plus simple puisse être plus
efficace.

- Remarque 2 :

En restreignant volontairement les tâches que peut exécuter le système, cela
devrait permettre d’éviter d’occasionner une gêne sur son environnement.

En effet, il convient d’être vigilant, étant donné qu’il serait toujours possible
d’imaginer qu’un système libre aie un champ d’action plus important, c’est-à-
dire avec des tâches définies telles qu’elles pourraient permettre la construction
de nouvelles tâches, ce qui permettrait à ce système libre d’élargir lui-même
son propre champ d’action. Dans ce cas, nous ne saurions anticiper une
tâche potentiellement nuisible qu’à partir d’une surveillance importante de
ce système.

Un problème à résoudre est de savoir si la surveillance de ce système peut
être déjouée par ce sytème. Il faut donc être très vigilant dès le départ, c’est-
à-dire dès la définition des tâches que pourra accomplir un tel système.
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Avis éthique et implication
personnelle

Avis personnel :

Au regard de tout cela, je pense que l’univers est compréhensible de manière
exacte (même lorsqu’il s’agit d’utiliser les probabilités puisque nous savons
exactement pourquoi il est inévitable de le faire dans certains cas : voir la
variable de valeur de vérité indéfinissable U du Chapitre V), j’évite donc
si possible toute approximation des formules pour garder cette exactitude
(ou au moins, je garde les formules sous une forme qui pourrait permettre
d’effectuer un développement en série connu, en évitant d’autres approxi-
mations qui feraient perdre des informations au cours d’un raisonnement).

De plus, j’ai maintenant l’intime conviction que les règles (la formule D(N)
entre autres, impliquant la discontinuité du temps et de l’espace, et impliquant
une unité de mesure indivisible) et les “non-règles” (représentées par U)
auxquels obéit notre univers n’auraient pas pu être différentes, et les constantes
non plus. Dans le fond, tout est tel qu’il doit être, et cela de manière
immuable. Dans la forme, la diversité des assemblages de matière est permise
par l’inévitable indétérminisme qui résulte de la variable U . Autrement
dit, d’autres univers possibles ne pourraient donc être qu’exclusivement des
univers obéissants aux mêmes règles et “non-règles” que le nôtre, la seule
différence serait que les “non-règles” permettrait une diversité (dans la mesure
du possible) des formes d’assemblage de la matière (géométrie).
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Dans un cas comme celui-ci, je soutiens donc que les mathématiques appliquées
à la physique, ainsi que la logique permettent de comprendre l’ensemble de
notre univers. Nous pourrions même dire que mathématiques et logique
s’appliquent d’elles-mêmes à notre univers, sans que nous y puissions quoi
que ce soit dans le fond (nos choix interviennent seulement sur la forme,
c’est-à-dire sur la forme d’assemblages de matière...), et qu’il ne peut en être
autrement.

Hypothèses et implications personnelles :

Cette théorie peut être vue comme un point de rencontre avec d’autres
théories physiques qui se sont bâties d’après les expériences physiques, mais
avec une base mathématique (et il est très important de le signaler).

Elle doit être perçue comme le point de départ le plus fondamentale, qui
permettrait de rejoindre toutes les autres disciplines.

Cette théorie permet d’établir le lien entre longueurs d’ondes (ou période)
et logique binaire, et de elle permet de considérer que les formules binaires
(comme f(M ;x), s(M), I(M), ... utiles à la structure de la formule D(N) )
peuvent être perçues comme des systèmes contenant un énoncé et qui attribue
une valeur de vérité (une valeur binaire 0 ou 1) à une variable.

Ce qui permet de ramener le traitement des longueurs d’ondes (ou des périodes)
au traitement d’énoncés, et donc au traitement d’informations. Par extrapo-
lation, ceci doit permettre une traduction dans un langage compréhensible
des informations qui peuvent être représentées par un ensemble de photons,
et donc un assemblage de matière.

Ceci pourra permettre de comprendre, par le biais de ce langage de traduction,
les assemblages de matière tel que les châınes d’ADN. D’où j’ai bon espoir que
dans le cas de “maladies génétiques” (et même de maladies en générale), nous
pourrions découvrir les incohérences dans les informations contenues, source
de problème. Et finalement, par le biais de ce langage, j’ai bon espoir que
cela permette de traduire (dans l’autre sens) un remède exactement adapté à
la maladie sous la forme d’un assemblage de matière strictement nécessaire.
Ce qui éviterait les effets secondaires dûs à la présence de composés chimiques
pouvant contenir des informations incohérentes (ou en tout cas incompatibles).
Ce qui éviterait également d’avoir à se servir de cobayes vivants afin de tester
les effets sur des organismes vivants. J’ai bon espoir que cette théorie soit
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d’abord utile à cette fin. Pour être claire, l’utiliser ne serait-ce même que
partiellement à des fins militaires serait à l’exact opposé de la cohérence et
même en dehors de toute intelligence. Je développe d’ailleurs ce point de vue
par la suite, qui révèle même l’évidence de ce propos.

J’ai véritablement conscience de ce que cela implique d’avoir acquis la connai-
ssance d’une formule telle que D(N) et de pouvoir l’appliquer aux longueurs
d’ondes et donc aux expériences physiques, ainsi que la logique liée à la
notion de liberté. En effet, si quelqu’un avait la possibilité d’atteindre
les bases de notre réalité par une théorie, alors que cela n’aurait jamais
été fait, cette personne devient nécessairement la première à le faire. Et
dans un cas comme celui-ci, elle devient nécessairement la dernière, puisque
après ceci, plus personne n’aura besoin de le faire. Ce qui implique la plus
grande responsabilité quant à guider les choix des personnes qui utiliserons
les travaux d’une telle théorie. Car il est toujours possible de faire des choix
cohérents ou des choix incohérents.

C’est pour cette raison que je pense que tout travail, ne serait-ce que supposé
important par la personne qui le produit (la supposition inclu les cas où il
est possible de s’être trompé), demande une implication personnelle. Or,
si je pense avoir découvert une telle théorie, je la suppose nécessairement
importante, je dois donc nécessairement m’impliquer en affirmant mes convic-
tions personnelles afin d’éviter une mauvaise exploitation ou une exploitation
détournée. De mon point de vue, c’est aussi parce que j’ai ces convictions
que j’ai pu atteindre un tel degré de lucidité me permettant entre autres de
trouver cette formule D(N).

Par conséquent, s’il s’avérait exact que cette théorie puisse être utile à la
compréhension de tout phénomène physique réel, j’affirme que le traitement
des maladies devrait être la plus grande priorité. Cette théorie doit être
perçue comme devant rendre service à l’humanité. je n’accorderai donc
strictement aucun crédit (et j’insiste sur ce point) à des travaux qui se
développeraient à partir de cette théorie, mais à des fins néfastes pour le
reste de l’humanité et de la nature (il n’y a qu’à s’intéresser à certaines
périodes l’histoire pour comprendre).

A ce sujet, le choix de chacun implique nécessairement sa propre responsabilité,
même de manière strictement individuelle : nous ne sommes jamais obligé
de participer à des choix incohérents, nous pouvons même à chaque instant
choisir de ne pas y participer.
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Cette théorie doit être exclusivement considérée comme un moyen potentiel
d’être bénéfique à chaque organisme vivant, dans le respect de chaque orga-
nisme vivant, dans le respect de la nature, et dans le respect des choix de
chaque individu. Par hypothèse, ceci inclu le respect des choix d’autres
formes de vie consciente, cela va de soi.

L’aboutissement à une telle théorie n’a pu se faire que par le plus grand
respect, elle ne peut donc pas être réduite à un aspect purement mathé-
matique, elle s’accompagne nécessairement d’une philosophie se rapportant
à l’écologie (vue dans le Chapitre V). Le respect de toute chose permettant
l’émergence d’une vision juste des choses, seul le respect peut donc permettre
de progresser vers l’optimisation de nos actions. C’est donc de manière
évidente que je soutiens que le progrès ne pourrait plus se faire “en quantité
suffisante” sans être accompagné d’une pensée écologique : il atteindrait
même une limite plus rapidement s’il se passait de cette philosophie (car seul
un état d’esprit respectueux peut conduire à comprendre les subtilités de la
réalité).

Pour être accessible, un tel niveau de connaissance, ou même un niveau de
connaissance supérieur impose tout cela.

Remarque importante :

Cette partie est indissociable du reste des travaux de la théorie complète
(en 6 chapitres) intitulée :

“THEORIE DE DECOMPOSITION DES PHENOMENES CYCLIQUES”
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http://fr.wikipedia.org/w/index.php?title=Principe_de_

relativit%C3%A9&oldid=46360536

Page 514 sur 514

http://fr.wikipedia.org/w/index.php?title=Th%C3%A9or%C3%A8me_d%27incompl%C3%A9tude_de_G%C3%B6del&oldid=45902223
http://fr.wikipedia.org/w/index.php?title=Th%C3%A9or%C3%A8me_d%27incompl%C3%A9tude_de_G%C3%B6del&oldid=45902223
http://fr.wikipedia.org/w/index.php?title=Principe_de_relativit%C3%A9&oldid=46360536
http://fr.wikipedia.org/w/index.php?title=Principe_de_relativit%C3%A9&oldid=46360536

	Modifications éventuelles et droits d'utilisation / mail
	Résumé
	Résumé global
	Résumé par chapitre
	Chapitre I : formule mathématique de factorisation d'un nombre entier (en produits de nombres premiers)
	Chapitre II : reconstitution de fonctions connues, liens avec les polynômes
	Chapitre III : Répartition exacte des nombres premiers
	Chapitre IV : Etude de la fonction  de RIEMANN et du nombre 
	Chapitre V : Réflexions logiques et philosophiques
	Chapitre VI : Théorie physique de décomposition des phénomènes cycliques

	Pour finir


	I Formule Mathématique de Factorisation d'un Nombre Entier (en Produit de Nombres Premiers)
	Introduction générale
	Rappels
	Remarque préalable

	1 Factorisation et mécanique des puissances
	1.1 Etude de la puissance de 2
	1.2 Etude de la puissance de 3
	1.3 Etude de la puissance de 5
	1.4 Etude de la puissance de 11
	1.5 Etude de la puissance de Pn
	1.6 Problème lorsque Pn est inconnu
	1.7 Formule D(N) de factorisation d'un Nombre Entier
	1.8 Simplifications possibles pour D(N)

	2 Démonstration complète
	2.1 Vue d'ensemble des étapes à suivre
	2.2 Démonstration complète
	2.2.1 Remarques préalables sur le tableau de référence T.R.2
	2.2.2 Début de l'étude
	2.2.3 Construction de la fonction Fp
	2.2.4 Supposons Pn non connu (construction de Fp, suite)
	2.2.5 Construction de la fonction M

	2.3 Théorème de décomposition d'un nombre entier N en produit de facteurs premiers

	3 Formules courtes
	3.1 Formule simplifiée s(M)
	3.2 Formule d'identité I(M)
	3.3 Formule de comptage C(M)
	3.4 Formule d'Impulsion Première I(M)
	3.5 Formule d'Impulsion Seconde I2(M)
	3.6 Formule de restriction RM(N)
	3.7 Equivalences de formules
	3.8 Autres formules intéressantes
	3.8.1 Nombres factoriels et divisibilité par Pn
	3.8.2 Produit de nombres factoriels et divisibilité par Pn
	3.8.3 Puissance de nombres factoriels et divisibilité par Pn
	3.8.4 Puissances de nombres factoriels contenant une puissance
	3.8.5 Nombres factoriels, formule simplifiée s(M) et divisibilité
	3.8.6 Formule f(M;x), puissance et divisibilité : Formule D(N) généralisée
	3.8.7 Produit de nombres factoriels et divisibilité par M, généralisation
	3.8.8 Réécriture de la fonction  (Zêta) de RIEMANN
	3.8.9 Réécriture de la conjecture de GOLDBACH


	4 Remarques : formule D(N) et phénomènes physiques associés

	II Reconstitution de fonctions connues, lien avec les polynômes
	Introduction
	5 Remarques sur la formules I(M)
	5.1 Rappels des caractéristiques de I(M)
	5.2 Etude de polynômes ``simples"
	5.3 Généralisation avec les polynômes
	5.4 Fonctions intéressantes

	6 Reconstitution par ``quantification"

	III Répartition exacte des Nombres Premiers
	Introduction
	7 Reconstitution de Pn par les formules de type s(M) et I(M)
	7.1 Rappels
	7.2 Etude
	7.3 Formule Pn de répartition exacte des nombres premiers

	8 Formule de répartition exacte des nombres premiers jumeaux Pj
	9 Réécriture de la fonction  (Zêta) de RIEMANN
	10 Impressions personnelles

	IV Etude de la fonction  de RIEMANN et du nombre 
	Introduction
	11 Etude de la fonction  (Zêta)
	11.1 Première approche
	11.1.1 Piste d'écritures équivalentes à la fonction 
	11.1.2 La fonction  assimilable à la fonction A
	11.1.3 Etude de la fonction assimilable A(s)

	11.2 Travaux en cours de réalisation


	V Réflexions logiques et philosophiques
	Introduction
	12 Correspondances entre formules, valeurs de vérité et énoncés
	12.1 Exemple des nombres impaires
	12.2 La formule s(M)
	12.3 La formule I(M)
	12.4 La formule f(M;x)
	12.5 Contenu d'un énoncé et valeurs de vérité
	12.6 Variable binaire U de valeur de vérité indéfinissable
	12.7 Contre-exemple : la formule I(M)
	12.8 Observations
	12.9 Conclusions et orientations

	13 Les règles logiques
	13.1 Introduction
	13.2 Développement

	14 Preuve de la liberté
	14.1 Première approche
	14.2 Limites préalables
	14.3 Synthèse avec la partie 12
	14.4 Remarque sur les énoncés constructibles
	14.5 Preuve complète : incomplétude et variable de valeur de vérité indéfinissable
	14.6 Justification  de  la  variable  binaire  U  de  valeur  de  vérité  indéfinissable
	14.7 Etendue
	14.8 Dissociation des notions de liberté et de hasard

	15 La conception du discontinu
	15.1 Approche par les formules
	15.2 Approche par un paradoxe connu de la Grèce antique

	16 Preuve de l'existence éternelle
	17 Possibilité d'établir une théorie physique
	18 Le sens de la vie
	19 Accès à la vérité : la nécessité de la pensée écologique
	20 Impressions personnelles

	VI Théorie physique de décomposition des phénomènes cycliques
	Introduction
	21 Principes de base
	21.1 Hypothèse et rappels des conclusions des chapitres précédents
	21.1.1 Rappels
	21.1.2 Justification de l'application de D(N) aux phénomènes cycliques
	21.1.3 Premières implications
	——  Repère des symboles utilisés

	21.2 Principe de décomposition d'un phénomène cyclique
	21.2.1 Application D() pour les longueurs d'onde
	21.2.2 Application D(T) pour les phénomènes périodiques
	21.2.3 Implication de l'application D(T)

	21.3 Principe de décomposition du nombre d'éléments d'un ensemble

	22 Eléments de réflexion
	22.1 Rappels, réflexion et définition d'un primaryon
	22.2 Conséquences
	22.2.1 A propos de la vitesse
	22.2.2 A propos de la quantité
	22.2.3 A propos de l'amplitude

	22.3 Mouvements des primaryons dans un ensemble ``photon"
	22.4 Mouvements des photons dans un ensemble ``particule"

	23 Représentation géométrique correspondant à la variable U
	23.1 Introduction
	23.2 Etude du cas limite max = 

	24 Possibilité de codage des actions d'un système libre
	25 Avis éthique et implication personnelle

	Bibliographie

