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Résumé



Résumé global

Mon objectif a été de trouver une formule mathématique permettant de
factoriser un nombre entier N en produit de nombres premiers (avec leur
puissance). J'appelle D(N) cette formule. Ces travaux m’ont permis d’établir
des liens avec d’autres disciplines, lorsque cela a été possible.

Cette formule D(N) (par son domaine de définition) appliquée a une onde
(phénomene physique) permet de décomposer toute onde. En appliquant
cette formule par hypothese a la longueur d’onde ou a la période d’'un photon
(peu importe, car les résultats sont identiques), on doit alors admettre qu’il
existe un minimum de longueur et un minimum de période. L’espace et le
temps ne peuvent plus étre considérés que comme étant discontinus, confor-
mément aux limites représentées par la longueur de PLANCK et par le temps

de PLANCK.

La formule D(N) contient la formule f(M;z) qui ne donne que des résultats
“binaires” (0 ou 1), il est méme possible (par substitution de variable) d’en
extraire d’autres qui permettent de reconstituer une porte logique NAND ou
bien une porte logique NOR (algebre de BOOLE). Le calcul propositionnel
classique devient donc intégralement interprétable en fonction de ces formules
qui traitent uniquement la primalité des entiers. Ce qui permet également
d’établir un lien avec les ondes physiques.

De plus, parallement a ces formules et 1’agebre de BOOLE qui permet une
étude complémentaire, les travaux portent sur des énoncés constructibles en
dehors de tout raisonnement cohérent. La démarche est non-conventionnelle,
mais cependant, elle permet d’intégrer un énoncé dont on peut considérer
que la valeur de vérité peut étre indifféremment 0 ou 1 (on peut méme
considérer que les 2 états sont superposés). La preuve apportée ne tire aucune
conclusion directe du théoreme de GODEL (ce qui serait un abus), bien que
celui-ci constitue une partie de la réflexion. Il semblerait que ce phénomene
soit fondamentalement indéterministe. En tenant compte du domaine de
définition de D(NN) et dans le cas des phénomenes cycliques, ce phénomene
trouve d’ailleurs une représentation géométrique (physique) qui le représente
fidelement, et méme assez simplement.
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L’ensemble de cette théorie se fixe pour objectif de représenter tous ces
phénomenes par une synthese. Le but le plus élevé étant de donner une
représentation physique au photon.
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Résumé par chapitre

Chapitre I : formule mathématique de factorisation d’un
nombre entier (en produits de nombres premiers)

- Il existe une formule mathématique permettant de factoriser un nombre
entier N (en produit de nombres premiers avec leur puissance respective),
nommée D(N) (D pour “Décomposition”). Son domaine de définition est
N € N tel que N > 2 (voir sous-partie “2.3 Théoréme de décomposition
d’un nombre entier N en produit de facteurs premiers”).

- La formule de MINAC-WILLANS est un cas particulier de la formule D(N),
qui a été nommée s(M) (voir sous-partie “3.1 Formule simplifiée s(M)”).

- La formule J(M) = s(2.M + 2) = s(M + 2).s(M + 3), assimilable a
une “impulsion” (voir sous-partie “3.4 Formule d’Impulsion Premiére
J(M)”), permet d’établir un lien entre les polynomes a coefficients entiers et
leur(s) racines lorsqu’elle(s) existe(nt) (voir Chapitre II).

- Ces 2 dernieres formules permettent de reconstituer une porte logique
NAND ou une porte logique NOR, ce qui permet d’établir un lien avec
l’algebre de BOOLE (voir sous-partie “3.7 Equivalences de formules”,
paragraphe “Autres cas intéressant, un cas “binaire””). Le calcul
propositionnel classique devient donc intégralement interprétable en fonction
de ces formules qui traite uniquement la primalité des entiers.

- Une nouvelle forme d’écriture de la fonction ¢ de RIEMANN est donnée (voir
sous-partie “3.8.8 Réécriture de la fonction ¢ (Zéta) de RIEMANN",
ce qui permet d’établir un lien intéressant avec le Chapitre IV.

- La formule D(N) ne permettant pas d’étre pratique d’exploitation, des
pistes visant a alléger la simplification des calculs de D(N) sont avancées.
Ce qui est également l'objet du Chapitre IV.

Cependant, en oubliant volontairement la complexité des calculs de la formule
D(N), mais en ne tenant compte seulement que de son domaine de définition
et en associant la variable N a une grandeur physique, il est possible d’envi-
sager une théorie physique.
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Chapitre II : reconstitution de fonctions connues, liens
avec les polynomes

La formule J(M) permet également d’établir un lien direct avec les racines
des polynomes aux coefficients entiers et de degré quelconque (voir sous-
partie “5.3 Généralisation avec les polynémes”).

Chapitre III : Répartition exacte des nombres premiers

Ces 2 formules citées, s(M) et J(M), permettent de donner un équivalent
4 la méthode de MINAC-WILLANS (différente dans la forme) pour donner
la répartition exacte des nombres premiers (voir sous-partie “7.3 Formule
P, de répartition exacte des nombres premiers”), ce qui ne rend pas
encore les calculs pratiques... L’utilité d'une formule dont le calcul serait
optimal (objectif du Chapitre IV) se fait sentir ici aussi.

Chapitre IV : Etude de la fonction ( de RIEMANN et
du nombre 7

Le but de ce chapitre est de rechercher une méthode qui permette de simplifier
ou de rendre le calcul optimal afin d’obtenir des nombres premiers. Comme le
montre la sous-partie “3.8.7 Produit de nombres factoriels et divisibilité
par M, généralisation” du Chapitre I, les calculs peuvent étre réduits
(le but étant de donner une formule sous la forme qui permet de rendre le
calcul optimal, c’est-a-dire de le réduire le plus possible).

De plus, I’étude d’autres fonctions de la forme de la fonction (, et la fonction ¢
révelent des régularités communes qui permettraient d’atteindre cet objectif
de maniere “directe”. Le prix a payer étant un travail long et des efforts
tres importants a fournir, ce chapitre est largement en cours de réalisation.
Cependant, il fait partie de mes priorités. Il ne sera publié intégralement que
lorsque j’estimerai que mes travaux le concernant auront atteint une maturité
satisfaisante.
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Chapitre V : Réflexions logiques et philosophiques

- Tout d’abord, les méthodes employées dans ce chapitre peuvent parfois
paraitre non-conventionnelles mais cependant nécessaire a la compréhension
du phénomene suivant. L’intérét (entre autre) est la preuve logique qu'il soit
possible de construire des énoncés en dehors de tout raisonnement cohérent
(voir partie “14 Preuve de la liberté”, et notamment la sous-partie “14.5
Preuve complete : incomplétude et variable de valeur de vérité
indéfinissable”). La preuve apportée ne tire aucune conclusion directe du
théoreme de GODEL (ce qui serait un abus), bien que celui-ci constitue une
partie non-négligeable de la réflexion.

En reliant les valeurs de vérités des énoncés tels que £ = [ I’énoncé E est
indémontrable ] aux tables de vérité de I'algebre de BOOLE, il est possible
d’établir qu’un tel énoncé ne peut étre construit qu’en dehors de toute regle
de logique. Il est méme possible d’établir qu'un tel énoncé a une valeur de
vérité U qui possede indifféremment les 2 états vrai ou fauz (il est méme
possible de concevoir que ces 2 états soient superposés) sans que cela ne pose
de probleme de cohérence.

Notre réalité ne peut pas étre décrite de maniere exclusivement déterministe,
car si tel était le cas, nous pourrions a partir d’'une formule (ou d’une loi
physique) déduire toutes les autres, ce qui pourrait étre retranscrit par des
portes logiques “OU EXCLUSIF” uniquement. Or, I’énoncé E ne peut pas
étre retranscrit a I’aide de ce type de porte logique uniquement. Cependant,
il peut étre retranscrit a I’aide d’'un autre type de portes logiques (connues),
qui confirment qu'un énoncé puisse étre indifféremment étre vrai ou faux.

- De plus, ce chapitre fixe des limites a ce qu’il est possible de concevoir
lorsque 1’on envisage d’aboutir a une théorie physique.

- Pour finir, la démarche n’étant pas conventionnelle, je dois cependant
I’assumer. Ce chapitre m’a demandé d’importants efforts d’organisation, de
réorganisation, de rectifications et de reformulations (depuis la 1% publi-
cation) pour rendre compréhensible ce phénomene. Bien que je ne sois pas
parfaitement satisfait de ce chapitre, ne passez pas a coté de I'idée que je vais
essayer d’exprimer! En effet, elle me parait étre d’une importance fonda-
mentale. Je ne serais que ravi que ’on arrive a me prouver le
contraire par des moyens logiques équivalents! N’hésitez donc pas a me
contredire si nécessaire : le débat peut faire émerger quelquechose de plus grand!
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Chapitre VI : Théorie physique de décomposition des
phénomenes cycliques

Tout ceci nous amene au dernier chapitre (travaux en cours) qui propose de
faire la synthese de I’ensemble des chapitre précédent.

- Associer la variable N de la formule D(N) a une variable physique comme
la longueur d’onde du photon permet de concevoir I'existence d’une unité
de mesure indivisible de longueur, d’'un minimum pour la longueur d’onde
(Amin = 2, unités naturelles de PLANCK) et la discontinuité de I’espace.

- Associer la variable N de la formule D(N) a une variable physique comme la
période d’un phénomene cyclique (ou photon) permet de concevoir I’existence
d’une unité de mesure indivisible de durée, d’un minimum pour la période
(Tynin = 2, unités naturelles de PLANCK) et la discontinuité du temps.

D’ou l'existence d'un maximum pour la fréquence f,., = 1/2 et d’'un maximum
pour la fréquence angulaire w,,,, = 7 pour tout phénomene cyclique.

- En supposant I'existence d’éléments indivisibles et identiques appartenant
a un ensemble, associer la variable N de la formule D(N) a la quantité
d’éléments de cet un ensemble permet de concevoir qu’il soit possible de
décomposer un ensemble d’éléments en sous-ensembles fondamentaux. Ainsi,
cela implique également d’admettre :

* 1'existence d’une unité de mesure indivisible (la valeur 1, évidemment),

* l'existence d’une limite minimum pour un sous-ensemble (N, = 2
éléments, le cas de I'intrication impose 1 groupe d’au moins 2 photons),

% que nos mesures ne puissent étre que discontinues (domaine de définition
des nombres entiers).

- Le domaine de définition de la formule D(N) donne ainsi un cadre et les
limites (avec entre autres wy,,, = 7) pour la représentation géométrique du
phénomene fondamentalement indéterministe évoqué dans le Chapitre V.

- L’objectif de ce chapitre (objectif non atteint car les travaux sont encore en
cours de réalisation) est de proposer un modele de représentation géométrique
au photon, afin d’envisager (je ’espeére) une possible représentaion du phéno-
mene d’intrication quantique.
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Pour finir

Ce que j’ai voulu mettre en évidence, et il ne faut finalement retenir que cela,
c’est que l'on ne peut que constater qu’il existe des conditions favorables
a ’émergence d'un tel indéterminisme, le “plus profond” indéterminisme
possible :

* Une formule mathématique D(N) qui permet de donner un domaine
de définition a une vairaible N, et donc un cadre de représentation
géométrique si I'on admet que 'on puisse associer N a une grandeur
physique (la longueur d’onde, la période ou la quantité d’éléments d’'un
ensemble);

x Pour la variable indéfinissable U, la mise en présence de 2 éléments
indivisibles et identiques dans le cas limite w,,,, = 7 : une seule
configuration au départ qui permet 2 interprétations possibles (indiffé-
remment), 2 interprétations qui sont méme dans des états binaires
“superposés”. La mise en présence d'un 3™ élément supplémentaire
indivisible et identique aux 2 autres permet d’aboutir a 2 conséquences
potentiellement équiprobables, dont uniquement 'une des 2 peut effec-
tivement se réaliser. Il est fort probable que ce phénomene soit tres
répandu.

x Cette représentation doit enfin permettre de rendre compte des effets
de la relativité dans une particule en mouvement par rapport a un
observateur (en cours de réalisation, bien que les idées essentiels soient
indiquées).

Cette conception des choses (relativement simple & représenter géométri-
quement, finalement) permettrait aussi de donner une raison aux phénomenes
cycliques et a la diversité des formes d’assemblages de matiere.

En fait, j’ai la forte intuition que tot ou tard, les sciences seront amenées
a examiner un cas physique équivalent a celui. Notamment la recherche
du domaine robotique et la cybernétique, ce qui permettrait de donner aux
robots une “liberté” , une autonomie, a l'instar des étres vivants, de pouvoir
faire des choix cohérents OU en dehors de toute cohérence logique (dans cette
éventualité, je préconise d’ailleurs toujours la vigilance).
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CHAPITRE 1

Formule Mathématique de
Factorisation d’un Nombre

Entier (en Produit de Nombres
Premiers)

15
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Introduction générale

Les travaux qui vont suivre sont issus d’une remarque simple mais d’'une
importance fondamentale sur la régularité des variations de la puisssance
de chaque nombre premier P,, dont la puissance est notée «,, dans le cas
de la factorisation d’un nombre entier positif N > 2. L’étude sera divisée
en plusieurs parties car elle fait intervenir plusieurs formules utiles pour
atteindre cet objectif. Nous terminerons en donnant simplement une formule
unique permettant cette factorisation d’un nombre entier en produit de
nombres premiers.

Je précise que je suis 'auteur unique de ces réflexions, de ces démonstrations,
de ces travaux et de leurs conclusions, et du contenu de ces 6 chapitres dont
le plan est donné précédemment.

Je désire par avance prévenir le lecteur que je ne suis pas mathématicien ou
scientifique de profession. J’ai pourtant un gott et un intérét tres prononcé
pour ces diciplines, et les themes de la logique en général, activités auxquelles
j’aimerais participer davantage. J’aime m’intéresser avant tout aux problemes
non résolus. Pour cette raison, on pourrait trouver que mes démonstrations
seraient peut-étre un peu rapides, mais je donnerai des exemples en nombre
suffisant lorsque nécessaire pour vous convaincre de I'importance d’un phéno-
mene qui semble se manifester dans un ordre, et non pas au hasard. Je
me suis intéressé de tres pres aux nombres premiers apres m’étre intéressé
aux systemes réguliers auxquels j’ai trouvé des formules en marge de ma
formation scolaire. Je pense désormais que les nombres premiers apparaissent
de maniere réguliere, je désire donc informer le plus possible sur mes décou-
vertes. Il existe une formulation pour dire que les nombres premiers ne
sont divisible que par 1 et par eux-méme, il doit donc exister une formule
équivalente pour l'exprimer aussi en langage mathématique. Le but est
clairement de connaitre de maniere précise la répartition des nombres premiers,
ou a quels “moments” ils apparaissent. Pour cela, les travaux sont divisés
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en deux ensembles importants. Un Premier Chapitre qui porte sur la
factorisation d’un nombre entier en produit de nombres premiers, les deux
chapitres suivants portent sur la répartition exacte des nombres premiers.
Il m’a semblé intéressant d’aborder un Deuxiéme Chapitre du fait des
propriétés de fonctions étudiées dans le Premier Chapitre. En effet, celui-
ci permettra d’établir des liens intéressants entre divers fonctions connues
(notamment les polynomes a coefficients entiers). Le Troisieme Chapitre
donne la répartition exacte des nombres premiers (en conséquence des formules
étudiées dans le premier et dans le Deuxiéme Chapitre).

I conséqu j'insi ur in ravaux us une réflexion
Par conséquent et j’insiste sur ce point, ces travaux sont plus une réflexio
permettant de fournir des réponses théoriques aux problemes liés aux nombres
premiers qu’'une méthode pratique pour parvenir a des calculs rapides.

L’étude du Quatrieme Chapitre se propose au contraire de rechercher une
méthode pour rendre optimal le calcul des nombres prmiers (partiellement
vue en Chapitre I), 'objectif étant de les rendre exploitable en pratique, ce
qui en fait un chapitre nettement plus ambitieux.

Le Cinquiéme Chapitre permet de développer des approches strictement
logiques, mais aussi philosiques qu’il m’a semblé intéressant d’exposer. Il est
au moins aussi important que les autres étant donné qu’il permet de nous
guider au Sixieme Chapitre en donnant un ensemble de regles utiles pour
une orientation vers la représentation de phénomenes physiques.

Finalement, et s’appuyant sur les chapitres précédents, ce Dernier Chapitre
se propose d’établir un lien avec des phénomenes physiques cycliques, et
notamment un lien avec des phénomenes quantique (mathématiques appli-
quées), en faisant la synthese des points essentiels que nous allons étudier au
cours de cette théorie.

A noter :

Une démonstration plus complete de ce qui va suivre est proposée dans
la partie intitulée “2 Démonstration compléte” (page 52). La partie
“1 Factorisation et mécanique des puissances” (page 21) n’étant ici que
pour appuyer et renforcer par des exemples précis la partie démonstration.
Celle-ci permet également de s’accoutumer et a se persuader du phénomene
régulier qui se produit concernant les nombres premiers.
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Rappels

- Tout d’abord, Il a déja été démontré de plusieurs manieres différentes
dans I'Histoire qu’il existe une infinité de nombres premiers.

- Rappelons que tout nombre N € N, tel que N > 2, est factorisable en
produit de nombres premiers P, € P (n € N, n > 1) de cette maniere :

— €3] o] a3 Qp,
N =P" x P,? X P® x ... x P}

avec Py =2, et tel que P, < P, < Py < ... < P,,
P, P, Ps, ..., P, étant des nombres premiers consécutifs
(c’est—é—dire P1 = 2, PQ = 3, P3 = 5, P4 = 77 P5 = 11)

- Nous pourrions nous limiter & un nombre de termes “utiles” (limité
par n) ou encore écrire N sous la forme d’un produit d’une infinité de
nombres premiers P, :

n=1

Dans ce cas, les termes non utiles aurant leur puissance «,, = 0 (notamment
tous les P, supérieur au plus grand nombre premier utile a la factorisation).

- Mais il faut aussi noter que nous aurions pu écrire ce nombre comme
produit de tous les nombres entiers M; € N, M; > 2 ainsi :

1——+00

N=]] ()~

i=1

Dans ce cas, nous pouvons ramener cette formule a la formule précédente
car les seuls termes utiles sont ceux contenant des nombres premiers.

En effet, la plupart des puissances a; pourront étre égales a 0, notamment
lorsque M; ¢ P, et, dans le cas ou M; € P, lorsque M; n’est pas un

nombre premier utile a la factorisation de N.
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Remarque préalable

Nous noterons que :

n—-+o0o

N =P, si Z (o) =1

n=1
Remarquons ici aussi que nous pourrions nous limiter a une somme de termes
utiles plutdt qu’a une somme infinie (Ce que nous tenterons de faire).
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1

Factorisation et mécanique
puissances

Commencons par la formule suivante :

n—-+0o

N= T )
n=1
Avec P, € P (ne N, n > 1),
avec Pp =2 et tel que P, < P, < P3 < ... < Py,
P, Py, Ps, ..., P, étant des nombres premiers consécutifs

(c'est-a-dire P, =2, P, =3, Ps=5, P, =17, Ps=11...).
Rappel évident :

ay correspond a la puissance de P,

ao correspond a la puissance de P

az correspond a la puissance de P;

a, correspond a la puissance de P,

des

Nous pouvons construire un tableau de référence T.R.1 (qui est immuable)
ou la premiere colonne représente N, et toutes les suivantes représentent les

a, qui correspondent a N :

Exemple préalable pour N =12, N =22 x 3! x50 x 79 x ... x P,° x ...

Doncay =2, a0 =1, 03=0; 4 =0; ... o, =0; ...
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La compréhension de ce tableau est essentielle pour la suite de I’étude de la
factorisation d’'un nombre entier. Nous remarquons aisément des symétries
et des régularités a l'intérieur de chaque colonne. De plus, les données de
ce tableau sont immuables (elles seront toujours constantes) : nous pouvons
donc nous en servir en permanence. Par la suite, nous allons donner une
représentation graphique a ces données, et pour plus de lisibilité, nous allons
lier chaque point du graphique par des segments (ceux-ci ne représentant donc
pas une continuité, puisque passer d’un nombre entier a un autre invoque
nécessairement la discontinuité). Comme nous allons le voir, et pour N un
nombre entier positif, chaque graphique correspondant a une puissance a,
est assimilable a une “onde” qui peut étre décomposée en somme de plusieurs
ondes plus simples.

Remarque :

Le tableau de référence T.R.1 peut étre construit de maniere “mécanique”,
une fois que ’'on comprend comment se répetent (par symétries) et s’incrémen-
tent les valeurs dans une colonne «,,. Nous pouvons déja constater facilement
qu’'un nombre N est un nombre premier si et seulement si la somme de toutes
les valeurs de «, (pour un nombre N, cela correspondant a une ligne compléte
de valeurs de a,) vaut 1.
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1.1 Etude de la puissance de 2

Colonne a7, correspondant a P, = 2 :

ol

L

QO = M W B

ey Wy ; —F a3l
01 2 345 6 78 910111213 1415 1617 18 19 20
Il est important de garder a ’esprit que de cette maniere, nous avons regroupé
tous les multiples de 2 (c’est-a-dire P;) grace a la “courbe” de «;.

On distingue clairement ces symétries sur des longueurs finies :

Une Symétrie verticale S; en N = 2 de Longueur L; = 2 sur I'axe N;
Une Symétrie verticale Sy en N = 4 de Longueur Ly = 6 sur I'axe N;
Une Symétrie verticale S3 en NV = 8 de Longueur L3 = 14 sur l'axe N;
Une Symétrie verticale Sy en N = 16 de Longueur L, = 30 sur 'axe NN;

Et poura e N, a > 1:

Une Symétrie verticale S, en N = (P;)* de Longueur L, = 2.(P;)* — 2 sur
l'axe N.

Notons aussi que le nombre de répétition R, des sommets de méme hauteur
jusqu’a 'axe de symétrie est réguliere et que :

Pour S;,ona Ry =P —1
Pour S,, ona R, = P, —1

Pour comprendre que la “courbe” «; est réguliere, nous devons garder a
I’esprit qu’elle dépend directement de N. Car dans le cas de cette courbe, Py
voit logiquement sa puissance «; s’annuler lorsque N est impaire (c’est-a-dire
lorsque N n’est pas multiple de 2) : c¢’est-a-dire une fois sur 2. Le reste de la
construction est aussi simple car dans les nombres paires restant, nous avons
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ceux qui sont multiples de 2', ceux multiples de 22, ceux multiples de 23, ...
ceux multiples de P

Or, cette fagon de procéder nous donne directement la construction de la
courbe a; comme une superposition d’une infinité de courbes plus simples,
que nous pouvons décomposer comme un somme de courbes o , (avec x € N,
x>1):

01 2 345 6 78 91011 1213 1415 1617 18 19 20
al.2

i AN ANI AN AN

2 345 6 78 91011 1213 1415 1617 18 19 20

al.3
;',T\;""'/\LL'.'.'./\'.'.'.\.\,

01 2 345 6 78 91011 1213 1415 1617 18 19 20

ﬂ\/\.\,

01 2 345 6 78 910 111213 1415 1617 18 19 20

o~ —3N
0 1

2 34 5 E TE 91D11 12131&15161?13192{)

Ces courbes sont répétées d'un sommet a l'autre de maniere réguliere (la
longueur entre chaque sommet est identique) et infinie.
Nous avons donc :

r—-+00

a1 = Z (al,x)

r=1

Page 25 sur 514



Nous devons prendre en compte le caractere périodique de chaque oy , pour
la construction de leur courbe. les fonctions recherchées devront donc refléter
cette périodicité. De plus, nous devons avoir a; , = 1 pour N = 0. Nous
sommes dans le cas de la fonction SINUS. De plus oy , n’admettant pas de
valeur négative mais seulement les valeurs 0 et 1, nous devrons élever cette
fonction au carré. De la, nous déduisons facilement «; ;. Pour les courbes
suivantes, nous devons simplement trouver le moyen d’avoir une fonction
nulle pour certaines valeurs de N réparties régulierement, ce que permettent
les fonctions polynomiales lorsqu’elles sont associées a la fonction SINUS.
Nous devons finalement diviser ce polynéme P(N) par une fonction qui nous
permette d’avoir la valeur o , = 1 au moins tous les 2 pour N. c’est-a-dire
que la fonction SINUS élevée au carré doit valoir 1, ou encore :

sin 2 (%) =1 (avec d(N) le dénominateur).

Pour qu’un polynéme P(N) s’annule uniquement pour 1, il doit étre de la
forme : P(N) = (N —1).

Pour que ce polynome s’annule seulement pour 1 et pour 2, il doit étre de la
forme : P(NV) = (N —1)(N — 2).

Pour qu’il s’annule seulement pour 1, pour 2 et pour 3, il doit étre de la
forme : P(N) = (N — 1)(N —2)(N — 3).

Pour qu’il s’annule seulement pour 1, pour 2, pour 3, ... et pour y € N,
y > 1, il doit étre de la forme : P(N) = (N — 1)(NV — 2)(N — 3)...(N —y).

En admettant que N = 0 pour chacune de ces lignes précédentes, le polynome
sera non nulle, et c’est la valeur du dénominateur d(N) qui permet a la
fonction de prendre 1 pour valeur.
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Avec pour a; 4 :

a1 = sin? ((N — 1).77)
/ 2
oy o = sin? ((N — DIV =2)(N =3) W)
| 4
oy 3 = sin? ((N — DIV =2)(N =3)(N = 4)(N = 5)(N —6)(N — 7)-7T>
’ 32
, (N =1)(N —2)..(N — 14)(N — 15).7
e ( 4096 )
L ((N=D)(N —2)..(N —30)(N —31).7
e T ( 134217728 )

Il y a un lien direct entre le numérateur et le dénominateur car il n’est pas
utile que ce dénominateur soit autre chose qu'une puissance de 2 (il suffit de
faire référence a la trigonométrie). En effet, le numérateur faisant intervenir
N, il sera composé en puissance de 2, on le remarque aisément en remplagant
N par 0 (pour des raisons pratiques ne génant pas la suite du raisonnement,
notons que cela fonctionne avec tout autre entier positif). Le dénominateur
doit alors obligatoirement aussi étre composé en puissance de 2 (au moins)
mais seulement d’une unité supérieure, ceci afin de permettre la validité des
courbes.

De plus, en comparant les “a; ,” , nous remarquons aussi une régularité entre
les termes de chaque numérateur (dans les parentheses) et encore une autre
régularité entre les termes de chaque dénominateur.
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Ici, les valeurs de la puissance (de 2) dans le dénominateur d(N) sont 1; 2;

5; 12; 27; 58; ... Or :

= 2t -1

= 229

= 2323

12 = 2t —4

27 = 2°—5

58 = 206

= 2 —¢

D’ou :
h=(2"—1)
IT &v-n
ay . = sin? | 7.—"=
l,x — 2(2171)

Et voici donc la formule de la puissance aq pour P :

h=(2%—1)
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1.2 Etude de la puissance de 3

Colonne «s, correspondant a P, = 3 :

o2

L

D—\-thhm

_/\/\/\/\/\/\

01 2 345 6 78 9101112131415151?131920

Il est important de garder a ’esprit que de cette maniere, nous avons regroupé
tous les multiples de 3 (c’est-a-dire P») grace a la courbe de as.

De la méme maniere, des symétries apparaissent régulierement :

Une Symétrie verticale S; en N = 3 de Longueur L; = 4 sur I'axe N;
Une Symétrie verticale Sy en N =9 de Longueur Ly = 16 sur 'axe N,
Une Symétrie verticale S3 en N = 27 de Longueur L3 = 52 sur 'axe N;
Une Symétrie verticale Sy en N = 81 de Longueur L, = 160 sur l'axe N;

Et poura e N, a > 1:

Une Symétrie verticale S, en N = (P,)* de Longueur L, = 2.(FP2)* — 2 sur
l'axe N.

Notons aussi que le nombre de répétition R, des sommets de méme hauteur
jusqu’a 'axe de symétrie est réguliere et que :

Pour S;,ona Ry =P, —1
Pour S,, ona R, = " —1

Pour les mémes raisons que la courbe a;, ay est réguliere car elle aussi dépend
directement de N. En effet, dans le cas de cette courbe, P, voit logiquement
sa puissance o s’annuler lorsque N n’est pas multiple de 3 : c¢’est-a-dire une
fois sur 3.
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Le reste de la construction est aussi simple car dans les nombres restants,
nous avons ceux qui sont multiples de 3!, ceux multiples de 32, ceux multiples
de 33, ... ceux multiples de P,*2.

Or, cette fagcon de procéder nous donne directement la construction de la
courbe ap comme une superposition d’une infinité de courbes plus simples,
que nous pouvons décomposer comme un somme de courbes as , (avec x € N,
x>1):

a2,

A A A AAAAAAAAAS

P23 TRINNEEUBRT RN NARBARBTBNNNRHURETRH
all

CT23ARRTEINNEBUBRTRNNALBUARETINNARRN .. §

Ces courbes sont répétées d'un sommet a l'autre de maniere réguliere (la
longueur entre chaque sommet est identique) et infinie. Nous avons donc :

T——+00

Qg = Z (042,z)

=1
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De la méme maniere que pour les courbes de a4 ,, nous utiliserons les mémes
fonctions utiles a la construction des courbes s , : c’est-a-dire les fonctions
sin?, les polynomes (N —1)(N —2)...(N —y) , et un dénominateur d(N) qui
devra étre nécessairement composé en puissance de 3.

Comme pour les courbes de o ,, en admettant que N = 0, le polynome sera
non nulle, et ¢’est la valeur du dénominateur d(N) qui permet a la fonction de
prendre 1 pour valeur. En cela, la méthode est la méme que précédemment.
Mais la différence avec les courbes de o , apparait ici et pour la suite de
I’étude car nous devrons ensuite encore diviser l’ensemble par une valeur
précise pour que la formule finale ay , puisse prendre 1 pour valeur lorsque
N est un multiple de 3.

Avec pour g 5 :

sin?[(N — 1)(N — 2).7/3]

@21 sin?(7/3)

o — sin2[(N — 1)(N = 2)...(N = 7)(N — 8).7/3?]
22 sin?(7/3)

e — sin?[(N — 1)(N — 2)...(N — 25)(N — 26).7/3"]
23 sin?(7/3)

o sin2[(N —1)...(N — 80).7w/3%]
24 sin?(m/3)

N sin2[(N — 1)...(N — 242).7 /317
20 sin?(m/3)

ATTENTION : Il est important de remarquer que cette regle n’est valable
que pour un nombre premier (ici, il s’agit de 3), car nous désirons construire
ce dénominateur d(N) de telle sorte qu’il “compte” le nombre concernant la
puissance de 3 qui résulte du calcul du polynome au numérateur. Clairement,
nous souhaitons obtenir au dénominateur une puissance de 3 qui soit d'une
unité supérieur a celle du numérateur (on exécute un calcul rapidement en
remplagant volontairement N par 0).
Poursuivons en comparant les “as ,” , nous remarquons aussi une régularité
entre les termes de chaque numérateur (dans les parentheéses) et encore une
autre régularité entre les termes de chaque dénominateur.
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Ici, les valeurs de la puissance dans le dénominateur d(N) sont 1; 3; 11; 37;

117; ... Or :
3t—1
1 = —1+1
3—1 *
32 -1
3 = —241
3—1 *
3 -1
11 = -3+1
3—1 +
3t -1
37 = —44+1
3—1 +
3 -1
117 = —-5+1
3—1 +
3 -1
= — 1
31 T+
D’ou :
h=(37—1)
=~ [ &-n
sin 2 h=1
3(33:11_“7"'1)
Y20 = sin?(7/3)

Et voici donc la formule de la puissance ag pour P, :

h=(37—1)
=~ [ &W-h
sin 2 h=l
3(3;__11—30—&-1)
T—+00
@2 = ; sin?(m/3)
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1.3 Etude de la puissance de 5

Colonne ag, correspondant a P3 =5 :

o3

L

D—\-thhm

A A LA

01 2 34 5 6 TB 9101112131415151?131920

Il est important de garder a ’esprit que de cette maniere, nous avons regroupé
tous les multiples de 5 (c’est-a-dire P3) gréace a la courbe de as.

Nous constatons aussi :

Une Symétrie verticale S; en N =5 de Longueur L; = 8 sur I'axe N;

Une Symétrie verticale Sy en N = 25 de Longueur Lo = 48 sur 'axe N;
Une Symétrie verticale S3 en N = 125 de Longueur L3 = 248 sur 'axe V;
Une Symétrie verticale Sy en N = 625 de Longueur L, = 1248 sur ’axe N;

Et poura e N, a > 1:

Une Symétrie verticale S, en N = (P5)* de Longueur L, = 2.(P3)* — 2 sur
l'axe N.

Remarquons aussi que le nombre de répétition R, des sommets de méme
hauteur jusqu’a l'axe de symétrie :

Pour S;,ona Ry =P;—1
Pour S,, ona R, = P3* — 1

Pour les mémes raisons que la courbe a;, ag est réguliere car elle aussi dépend
directement de N. En effet, dans le cas de cette courbe, P; voit logiquement
sa puissance ag s’annuler lorsque N n’est pas multiple de 5 : c¢’est-a-dire une
fois sur 5.
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Le reste de la construction est aussi simple car dans les nombres restants,
nous avons ceux qui sont multiples de 5!, ceux multiples de 52, ceux multiples
de 53, ... ceux multiples de P33,

Or, cette fagcon de procéder nous donne directement la construction de la
courbe a3 comme une superposition d’une infinité de courbes plus simples,
que nous pouvons décomposer comme un somme de courbes a; , (avec € N,
x>1):

a3

EI T2345 8T8 9B UBRITRVDALBUARE ... 65

Ces courbes sont répétées d’'un sommet a 'autre de maniere réguliere (la
longueur entre chaque sommet est identique) et infinie. Nous avons donc :

T—+00

a3 = Z (Oés,z)

=1
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De la méme maniere que pour les courbes de o ,, nous utiliserons les mémes
fonctions utiles a la construction des courbes a3, : c¢’est-a-dire les fonctions
sin?, les polynomes (N —1)(N —2)...(N —y) , et un dénominateur d(N) qui
devra étre nécessairement composé en puissance de 5.

Comme pour les courbes de asy,, en admettant que N = 0, le polynome
sera non nulle, et c’est la valeur du dénominateur d(N) qui permet a la
fonction de prendre 1 pour valeur. En cela, la méthode est la méme que
précédemment. Et comme pour les courbes de asy,, nous devrons ensuite
encore diviser I’ensemble par une valeur précise pour que la formule finale
a3, puisse prendre 1 pour valeur lorsque N est un multiple de 5.

Avec pour as, :

sin2[(N — 1)(N — 2)(N — 3)(N — 4).7/5]

e sin2(m/5)

o o) — sin2[(N — 1)(N — 2)...(N — 23)(N — 24).7/5%]
o sin?(n/5)

e SICIN = (N = 2).. (N — 123)(N — 125).7/5%]
v sin2(m/5)

o SNV = 1N —2). (N - 623)(N — 624).7/5'"]
o sin?(r/5)

e SN — (N = 2). (N — 3124)(N — 3125).7/57"7]
e sin2(m/5)

ATTENTION : Il est important de remarquer que cette regle n’est valable
que pour un nombre premier ici aussi (il s’agit de 5), car nous désirons
construire ce dénominateur d(N) de telle sorte qu’il “compte” le nombre
concernant la puissance de 5 qui résulte du calcul du polynéme au numérateur.
Clairement, nous souhaitons obtenir au dénominateur une puissance de 5
qui soit d’une unité supérieur a celle du numérateur (on exécute un calcul
rapidement en remplacant volontairement N par 0).

Poursuivons en comparant les “as,” , nous remarquons aussi une régularité
entre les termes de chaque numérateur (dans les parentheéses) et encore une
autre régularité entre les termes de chaque dénominateur.

Page 35 sur 514



Ici, les valeurs de la puissance dans le dénominateur d(N) sont 1; 5; 29; 153;

7775 ... Or :
5t —1
1 = —1+1
51
52 -1
5 = —2+1
5—1 +
5% —1
29 = —-3+1
5—1 *
5t —1
153 = —44+1
5—1 +
5 —1
T = —5+4+1
5—1 +
5% —1
= — 1
51 T+
D’ou :
h= 11)
2 h=1

Sin (5: 11 —m—‘,—l)

a3 x =

sin 2(m/5)

Et voici donc la formule de la puissance a3 pour Pj :

h=(5% 1)
2 h=1
Sin (5; 11 7$+1)
T——400
@ = ; sin?(7/5)
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1.4 Etude de la puissance de 11

Colonne s, correspondant a Py = 11.

Dorénavant, comme nous allons le voir, la maniere de rédiger les formules est
identique a partir de ag jusqu’a «,,. Mais prenons encore un exemple avec
as avant la généralisation (les explications seront plus bréves pour as).

Di 2345678 ‘911}11121314151E-1T131?2%2122232425252’1’292?31]313233

Il est important de garder a ’esprit que de cette maniere, nous avons regroupé
tous les multiples de 11 (c’est-a-dire P5) grace a la courbe de as.

Pour @ € N, a > 1 : une Symétrie verticale S, en N = (P5)* de Longueur
L, =2.(P;)* — 2 sur 'axe N.

as est réguliere car elle dépend directement de N. a5 est composée de la
somme d’une infinité de courbes plus simples que nous noterons as, (avec
reNz>1):

(voir page suivante)
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EI T2345 0T8I MWRBITRIVDANLBURBLE ... 1464

Ces courbes sont répétées d'un sommet a l'autre de maniere réguliere (la
longueur entre chaque sommet est identique) et infinie. Nous avons donc :

T—+00

Q5 = Z (Oé5,x)

=1

Avec pour as, :

sin 2[(N — 1)(N — 2)...(N — 10).7/11]

Q5,1 = 70 )

- Sin2[(N — 1)(N —2)...(N — 120).71’/1111]
v sin?(w/11)

o sin?[(N 1N = 2)..(N —1330).7/11]
o sin?(r/11)

e sin2[(N — 1)(N — 2)...(N — 14640).7 /111461
v sin2(w/11)
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ATTENTION : Cette regle n’est valable que pour un nombre premier (ici,

il s'agit de 11).

Nous souhaitons toujours obtenir au dénominateur une

puissance de 11 qui soit d’une unité supérieur a celle du numérateur (on
exécute un calcul rapidement en remplagant volontairement N par 0).

Ici, les valeurs de la puissance dans le dénominateur d(N) sont 1; 11; 131;

1461; ... Or :

1 = -1 141
C11-1

11 = 1F -1 241
C11—-1

131 = -1 3+1
C11—-1
114 -1

1461 = — 441

11-1 +
117 — 1

- — 1

n-1 *“F

Ce qui, au passage, nous permet de prédire la prochaine valeur du dénominateur

d(N) pour a5 5 (ainsi que toutes les valeurs suivantes) :

16101 = 1P -1 5+ 1
11-1
D'ou :
h=(11%—1)
= [ W-n
sin 2 h=1
11( 111f:11 —1‘+1>
T——+00
@5 = ;; sin2(r/11)
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1.5 Etude de la puissance de Pn

Colonne «,, correspondant a P,.

Nous avons une Symétrie verticale S, en N = (P,)* de Longueur
L,=2.(P,)"— 2 sur 'axe N.

Avec un nombre de répétition R, des sommets de méme hauteur jusqu’a I’axe
de symétrie :

Pour S;,ona Ry =P, —1
Pour S,,ona R, = P,* — 1

a,, est réguliere (comme précédemeent) car elle dépend directement de N. «,
est composée de la somme d’une infinité de “courbes” plus simples que nous
noterons oy, (avec z € N, x > 1) :

P, (= —at1)

W= Z sin?(mw/P,)

Apres vérification, nous pouvons aisément constater que cette formule inclu
également o (pour P; = 2), ce qui est intéressant si nous nous donnons pour
objectif de généraliser.

Page 40 sur 514



Il est important de garder a l'esprit que de cette maniere, nous regroupons
tous les multiples de P, grace a ce systeme de “courbes” de «,. Ainsi, le
calcul entre le dénominateur et le numérateur dans le “sin?” permet d’obtenir
exclusivement :

- Un nombre rationnel multiplié par 7 sous la forme 2c.7/P,
(avec ¢ € N) pour les nombres premiers impaires, de telle sorte que

(2¢t1).7/P, = d.7 (avec d € N), et donc un nombre rationnel multiplié
par m sous la forme :

(d.P, £1).7/(2.P,) ce qui permet o, = 1.

Et aussi un nombre rationnel multiplié par 7 sous la forme (2¢+1).7/2
(avec ¢ € N) pour P, = 2 qui est le seul nombre premier paire.

Ou bien

- Un nombre entier multiplié par 7 et donc directement o, = 0, sauf pour
le cas ou P, n’est pas connu et si nous le supposions égale a 4 : pour
x = 1 (seulement), nous obtenons apres calcul un nombre rationnel
permettant o, = 2 pour tout N multiple de 4 alors que nous désirons
avoir o, = 0 pour tout N dans ce cas (étant donné qu’en supposant
P, = 4 pour ce cas, 4 n’est pas un nombre premier). Nous allons donc
aborder une étape supplémentaire pour résoudre ce probleme.
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1.6 Probleme lorsque Pn est inconnu

Il est primordial de constater que la fonction «, est construite de telle maniere
que la formule d(N) du dénominateur ne se calcule qu’en fonction dun
nombre premier et non d’'un autre nombre, c’est-a-dire que sans connaitre
ce nombre premier, nous pouvons maintenant remplacer P, par un entier
quelconque supérieur a 1, et obtenir un résultat tres proche du résultat
généralisé. Mais si nous nous arrétions ici, nous rencontrions un probleme si
nous supposions que nous ne connaissions pas les nombres premiers dans le
cas suivant :

Si nous supposions en particulier que P, = 4, nous constaterions que les
résultats obtenus seraient inexactes car la formule est incomplete. Effec-
tivement, a, = 2 pour N multiple de 4. Nous devons donc construire une
fonction qui nous permette de corriger ce probleme. C’est-a-dire que nous
devons construire une fonction f(N) qui s’annule tous les multiples de 4 et
qui vaut 1 sinon, ceci afin de ne pas perturber les résultats donnés par le
reste de la formule, ce qui nous permettra de la multiplier a «, :

an, = f(N).a,

Avec sur le méme principe de construction que dans les parties précédentes
(sachant que ce que nous recherchons est une fonction complémentaire a celle
de la fonction SINUS) :

n = Q. cO8 2 (%.(Pn )P, — 2)(Py — 3))

U = . OS2 (% H(P” - v))
v=1
Ainsi, nous aurons construit la formule «,, permettant de donner les valeurs
des puissances de chaque nombre premier P, sans méme avoir besoin de
connaitre P,. En effet, cette formule ayant une valeur nulle dans le cas
ol nous prendrions pour P, un autre nombre qu'un nombre premier, nous
pouvons davantage la généraliser et remplacer P, dans la formule «, par
M € N, M > 2. Dlailleurs, par la suite nous donnerons la formule de
factorisation sous les 2 formes.

Précisons encore que M est bornée par M € N, M > 2 car la formule de o,
construite contenant 1’expression sin ?(w/P,) sous le “grand” dénominateur,
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si P, valait 1, le dénominateur vaudrait 0, or, la division par 0 est interdite.
D’autre part, la construction de la fonction «, n’est valable qu’a partir du
nombre 2 étant donné que tout nombre élevé a une puissance supérieur a
1 vaut autre chose que ce nombre lui-méme, ce qui n’est pas le cas pour le
nombre 1. En effet, lorsqu’on éleve le nombre 1 & une puissance quelconque
supérieur 1, on obtient toujours 1. Cette formule ne peut donc pas le
concerner.

Ceci exclu le nombre 1 de ’ensemble des nombres premiers de fagon naturelle,
c’est-a-dire sans supposition ni convention.

Evidemment, le nombre 0 est a exclure également des valeurs que peut
prendre M étant donné que cela amenerait aussi a effectuer une division
par 0.

tnd

Pn ZPn iPn 4Pn iPn 6Pn
tn.l
AN A AN AL A

Pn* 2Pn* iPn* 4Pn® 5Pn* fPn*
rn.d

Pn’ 2Pn’ Pn’ 4Pn’ 5Pn’ 6Pn’
rnd

Pn* Pnt Pnt dpn* ipnt fPn*

Notons que depuis le début de I'utilisation de ce systeme graphique, «;, ,
vaut 1 seulement pour les multiples d’un nombre premier, puis d’'un nombre
premier élevé au carré, puis d’'un nombre premier elevé au cube, ... etc. Voici
donc une formule qui révele la mécanique des puissances pour la factorisation
d’un nombre entier en produit de nombres premiers.
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- Breve explication sur le probleme rencontré pour l’hypothése de P, =4 :

Pour x = 1, pour P, = 4 et pour cette partie de la formule de «,, :

h=(Pa®—1)
N —h
/H | ):(N—l)(N—Q)(N—3)
p, (=) 4

Or, lorsqu’on remplace (volontairement) N par 0, le résultat est un nombre
rationnel pour cette partie de la formule. D’ailleurs, pour tout z entier, le
résultat sera de la forme :

21 by
402

avec aq, as, asz et by € N et b; non multiple de 2.

Ce qui revient a écrire, pour as = 1+ ag :

201 p,  2(a-as) p,

4az 2

Ou dans le cas de = 1, nous avons a; = az = 1, d’ou il résulte un nombre

b
rationnel de la forme 5 permettant cy, = 2 (alors que pour > 2, nous avons

a; > ag, d’ou il résulte un nombre entier permettant o, = 0). Il nous fallait
donc une fonction complémentaire a la fonction “sin?” qui, multipliées entre
elles valaient 0, précisément dans les cas recherchés.

ATTENTION :

Voir la partie “2 démonstration compléte” (page 52) pour des explications
approfondies.
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1.7 Formule D(IN) de factorisation d’un Nombre
Entier

Rappelons que nous avions noté :

Or, nous connaissons maintenant a,, et f(V) nous permet de contourner le
probleme de P, inconnu, nous pouvons donc déduire une formule pour N :

v=1 .92 h=1
sin?(w/P,) ' ; S (=t —ot1)
n—+o0o
N=DWN)= 1] (R
n=1

(Attention, il s’agit bien de crochets dans ces formules, et non des symboles
des “valeurs absolues” , ni de ceux des “parties entieres” : ils ont donc la
méme fonction que de simples parentheses, ils contiennent «,, ¢’est-a-dire la
puissance de F,).

Comme nous avions aussi noté (avec M; € N, M; > 2) :

Or nous avons vu (rapidement) que la formule D(N) pouvait s’appliquer
pour tout entier M € N, M > 2 (voir “bréve explication” précédemment,
dans la partie “1.6 Probleme lorsque P, est inconnu” page 42, ou pour
la démonstration dans la partie “2 démonstration compléte” page 52).
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Notons M; cet entier M pour faire directement le lien avec cette derniere
formule. Nous pouvons donc aussi déduire une autre formule équivalente
mais “plus générale” pour N :

[ v=3 h=(M?®-1)
cos 2 (%H(M—v)) oo . H (N —h)

M—+4o00

N=D(N)= ][] M!

Notons cette grande formule de Décompostion (ou factorisation) de N
en produit de facteurs premiers D(N), et appelons cette formule D(N)
la “Décomposée” de N :

N = D(N)
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1.8 Simplifications possibles pour D(N)

- Restriction du nombre de termes du “grand produit” :

Pour éviter d’avoir a effectuer un calcul infini comme le suppose la formule
de D(N), remarquons que le nombre de termes “utiles” a la foctorisation
d’un nombre entier en nombres premiers est toujours fini. D’ailleurs, le plus
grand de tous ces termes ne peut étre plus grand que N lui-méme. Mais si
N est un nombre premier, alors le plus grand terme est au maximum égal a
N. Notons :

Mi < N ou (comme nous en venons d’en convenir) M < N

Nous pouvons ainsi borner le produit comme ceci :

[ v=3 h=(M%*-1)
cos 2 (%H(M —v)) N . H (N —h)

v=1 2 h=1
sin ?(m /M) ' ;1 o (Bt —at)
M=N
N=DWN)= [ m
M=2

Remarquons que cette formule devient plus restrictive pour N puisqu’elle
n‘admet pas N < 2. En effet, cette formule induit de traiter les nombres
N pour lesquels N € N, N > 2. Ceci reste cohérent dans le sens ou
nous pouvons considérer que pour le cas de N = 1, il ne peut pas y avoir
explicitement de nombre premier qui compose ce nombre.

Une borne ayant été donnée pour le “grand produit” [] des termes associés
a M, il nous reste a borner la “grande somme” > des termes de “sin?”, ce
qui va étre plus délicat. En effet, pour remplacer cet “infini”, nous allons
rechercher une formule de Restriction R,, pour x nous permettant de limiter

les calculs aux calculs utiles, ou en tout cas, a moins de calculs inutiles.
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- Recherche d’une formule de Restriction R, pour la “grande somme”:

Pour un nombre entier N > 2, nous souhaiterions restreindre la grande
somme Y des termes de “sin?®” & la puissance maximale qui sera utile pour
I’ensemble des nombres premiers concernés par le calcul. Rappelons que
cette grande somme sert a “calculer” la puissance d’'un nombre premier de
la factorisation de V.

Etudions cette formule par le biais d’un tableau, par exemple pour P, = 2 :

| N | ai(réel) | of(recherché) |

1 0 0
2 1 1
3 0 1
4 2 2
) 0 2
6 1 2
7 0 2
8 3 3
9 0 3
10 1 3
11 0 3
12 2 3
13 0 3
14 1 3
15 0 3
16 4 4
17 0 4

Pour les valeurs de N en rouge :

N = (P) (avec j € N)

In N
111P1

Donc j =

Nous aimerions borner j a «].
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Dans tous les cas de P,, nous souhaitons avoir :

R,=0 pour (P,)°
R,=1 pour (P,)!
R, =2 pour (P,)?
R, =3 pour (P)?

R,=7 pour (P,)

Pour N = (P,

. In N
J= In P,

Représentation graphique de la formule R,, recherchée :
Rn
[ ]

5 . . . . . . L e e e e e e e e e e e e e e

4
1
0

1 .. Pn .. Pn Pn
> La courbe noire est celle de R,, = j , la formule de restriction recherchée.

In N
In P,

> La courbe rouge est celle de j =
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Cependant il est possible de donner un encadrement :

Pour N € [(P,); (P, —1]

=R,=7]
[ v=3 h=(M?*-1)
cos 2 (zH(M —v)) R . H (N —h)
4 v=1 . Zn sin2 h=1
sin 2(mw /M) gt N —a)
M=N
N=DWN)= [[ M
M=2

Mais cette borne n’étant pas pleinement satisfaisante (car elle sous-entend
de connaitre déja les nombres premiers), il serait de loin préfererable de
construire de maniere exacte la fonction R, recherchée (en noire sur le gra-
phique). Pour cela, nous devrons faire appel a d’autres fonctions dont
I'étude est faite en partie “3 Formules Courtes” page 147 (notamment
une fonction d’Impulsion Premiere J, définie en page 154) , afin de donner
la fonction R,, dans la sous-partie “3.6 Formule de restriction RM(N)”
(page 166). Nous ne reviendrons donc pas sur cette étude, nous nous conten-
terons maintenant de donner cette fonction pour finaliser la formule. Comme
il est nécessaire de comprendre les démonstrations qui suivront cette partie
pour comprendre cette fonction de restriction, il serait plus judicieux de
poursuivre et de ne pas tenir rigueur (pour I'instant) du manque d’explications.

En notant la grande formule D(NV) ainsi :
M=N
N=D(N)= ] M
M=2
Notons RM (N) la fonction de restriction en fonction du nombre M (toujours

dans ’hypothese ou le “n**™€” nombre premier n’est pas connu, et ou l'on
b
remplace P, dans la formule an par M, ce qui nous donne la formule a,y).
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Avec J la fonction d’Impulsion Premiere définie d’apres ’étude consacrée a
RM (N), nous avons :

b=a k=Mb-1
RM(N)=) ¢1-3| J[ W-k
b=1 k=0

Ot les calculs ne sont plus nécessaires (pour des valeurs de a croissantes) des
que :

k=0

Ce qui sous-entend finalement que les calculs ne sont plus nécessaires des que
N est une des valeurs entieres de 'intervalle [0; M — 1]

Plus précisément, si nous avons :

1—3[:H1(N—k;)] =0

k=0
Bt

Alors, la borne supérieur de = dans la formule de a;; vaut x = a.

Grace a la fonction RM(N), nous pouvons limiter les calculs inutiles, sans
pour autant les éviter completement.
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2

Démonstration complete

Dorénavant, certaines lettres qui vont étre utlisées seront les mémes que
précédemment, mais elles n’auront pas de lien entre elles (exemple pour les
variables comme a, comme b, comme ¢, comme d ou comme k ...). Nous
préciserons ce changement par une redéfinition des variables concernées.

2.1 Vue d’ensemble des étapes a suivre

Cette grande formule D(N) de factorisation d'un entier en produit de nombres
premiers peut étre vue comme un ensemble regroupant plusieurs “fonctions”
ayant chacune une “tache” précise a effectuer. C’est justement ce que nous
allons expliquer.

Tout d’abord, si nous reprenons la formule de «,, et que nous la réécrivons
sous cette forme :

h=(P,®—1)
-Avec = [ (N—h)
h=1

“sin?” de s’annuler de

F, est la fonction qui permet a l’ensemble
maniere cyclique. F), permet d’annuler cet ensemble lorsque le nombre

de fois ou elle est divisible par P, est supérieur ou égale a F,.

92



T

P -1
Avec F, = ——— — 2 +1
vec P —1 x +

F, est la fonction qui permet de “calculer” la divisibilité de P, sur
[0; P,”] (les facteurs de P, dans les multiples de P, que I'on retrouve
dans le calcul de F}).

Fe
n

lorsque N n’est pas divisible par P,), soit un nombre de la forme
sin? (r.e/P,) (avec € € N et non divisible par P,).

. F,
Ainsi, le calcul de sin? (P P ) permet d’obtenir soit 0 (notamment

1
sin?(w/P,)
Cc est la fonction Coefficient Correcteur qui va permettre a «,, de valoir

un nombre entier. En effet, sin? (7.c/P,) (comme précédemment avec
e € N et non divisible par P,) a la méme valeur que sin?(7/P,).

Avec Cc =

. F,
Ainsi, le calcul de sin 2 (P = ) permet d’obtenir soit 0 (lorsque N n’est

pas divisible par P,), soit 1 (lorsque N est divisible par P,). Ajoutons
que si nous remplacions P, par un autre nombre entier qui n’est pas un
nombre premier, le calcul permet aussi d’obtenir 0 (sauf pour P, = 4
a ce stade du développement).

Avec A = cos?[(P, — 1)(P, — 2)(P, — 3).7/4]

A est la fonction qui permet d’éliminer le défaut lorsque P, est inconnu
et qu’on le suppose égale a 4 (défaut pour x = 1 uniquement).

Avec R, = j Pour N € [(P,); (P,)’*! — 1]

R, est la fonction de Restriction permettant de limiter les calculs aux
nombres premiers P, < N.

Ainsi, si N est divisible par P,, la formule «, donne le nombre de
divisibilité(s) par P, sous la forme d’une puissance de FP,.
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2.2 Démonstration complete

Pour N € N, N > 2, N se décompose en produit de nombres premiers P, € P
tel que :

n=1
N ainsi défini contient nécessairement au moins un terme étant un nombre
premier premier P,. Supposons que P, ne soit pas connu. Nous désirons
savoir quelle est la “progression” de la puissance de a,, pour N.
Evidemment, nous savons déja que a,, = 0 pour N non multiple de P,. «
bl n n n
prend une valeur entiere si et seulement si N est multiple de P,, c¢’est-a-dire

S1

N = t.P, (avec t € N, t > 1 car 1 n’est pas un nombre premier, par
convention).

Par exemple, si t = P, alors N = (P,)? et donc a,, = 2.
Tableau de référence T.R.2 :

(voir page suivante)
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T.R.2

N | o |
1 0
2 0
3 0
P, —1 0
P, 1
P,+1 0
2.P, —1 0
2.P, 1
2.P, +1 0
PZ—1 0
P’ 2
P +1 0
P2+2P,—1 0
P> +2.P, =P, (P, +2) 1
P2 +2P,+1 0
2.P°%—1 0
2.P,? 2
2.P%+1 0
2.P°>+P,—1 0
2.P,> + P, = P,(2P, + 1) 1
2.P°>+P,—1 0
PS—1 0
P} 3
P2+1 0
2.P — P, —1 0
2.P,% — P, = P,(P, Y —1) | 1
2P — P, +1 0
2.P% —1 0
2.P, %" a,
2.P,% +1 0
2P+ P —1 0
2.P,% + P, 1
2.P°" + P, +1 0
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L’objectif est de trouver une formule qui permette d’obtenir «a,, en fonction
de N.

Sachant que P, € P et que 1 n’est pas un nombre premier (par convention),
nous avons :

pP,>(P,—1)>1.

Aucun des nombres sur l'intervalle [1; P, — 1] n’est divisible par P,.
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2.2.1 Remarques préalables sur le tableau de référence
T.R.2

> Régle n°1 :
Nous pouvons relever ceci :

- Sur lintervalle |0; P, :

Il n’existe aucun multiple de P,.

- Sur l'intervalle |0; P,*[ :
Il existe (P, — 1) multiple(s) de P,.
En effet, le dernier multiple de P, de cet intervalle vaut (P, — 1).P,.

De plus chaque multiple de P, est réparti régulierement : 1’écart entre
2 multiples de P, consécutifs vaut P,,.

- Sur l'intervalle |0; P,”[ :
Il existe (P,? — 1) multiples de P,,
dont (P, — 1) sont multiples de P,>.
En effet, le dernier multiple de P, de cet intervalle vaut (P,* —1).P,
et le dernier multiple de P, de cet intervalle vaut (P, — 1).P,%.

De plus chaque multiple de P, est réparti régulierement : 1’écart entre
2 multiples de P, consécutifs vaut P,. De méme, pour chaque multiple
de P,?, leur répartition est réguliere : 1’écart entre 2 multiples de P,?
consécutifs vaut P,? (le raisonnement étant le méme pour la suite, il
est inutle de le réécrire a chaque fois).

- Sur l'intervalle |0; P,"[ :
Il existe (P, — 1) multiples de P,,
dont (P,* — 1) sont multiples de P,?,
et dont (P, — 1) sont multiples de P,
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- Sur lintervalle ]0; P,°[ :
1l existe (P,* — 1) multiples de P,,
dont (P,* — 1) sont multiples de P,?,
dont (P,* — 1) sont multiples de P,*,
et dont (P, — 1) sont multiples de P,*.

- Sur l'intervalle |0; P, [ :
Il existe (P, =Y — 1) multiples de P,,
dont (P,“=% — 1) sont multiples de P,
dont (P,“»=% — 1) sont multiples de P,

dont (P,® — 1) sont multiples de P,
dont (P,? — 1) sont multiples de P,
et dont (P, — 1) sont multiples de P,

- De maniere générale, pour k € N tel que k£ < (o, — 1) :
Sur Uintervalle ]0; P,°"[ , qui peut encore s’écrire [1; P,*" — 1] :

Il existe (P, ~*=D _ 1) multiples de P,**+V,

dont la répartition de chaque multiples de P,*V

écart entre 2 de ces multiples vaut P, *+Y.

est réguliere puisque
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> Régle n°2 :

par construction nous obtenons ce qui suit :

Soit t € N, ¢t > 1, nous avons (¢ — 1).P, est multiple de P,.

Il existe autant de multiples de P, sur les intervalles du type :
|(t —1).P,;t. Py

Il existe autant de multiples de P, sur les intervalles du type :
J(t —1).P,%t.P7]

Il existe autant de multiples de P, sur les intervalles du type :
J(t —1).P> t.P,*|

Il existe autant de multiples de P, sur les intervalles du type :

[(t—1).P%t.P,Y

De maniere générale, il existe autant de multiples de P, sur les intervalles du
type :

|(t —1).P,*; t.P,*"[ qui peut encore s’écrire [(t — 1).P,*" 4+ 1;¢.P* — 1]
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Ces multiples sont répartis de maniere “symétrique” dans le sens ou ’écart
entre 2 multiples consécutifs vaut P,. Ceci donne a «, des symétries qui
sont localisables sur ces intervalles. En effet, sur cet intervalle, le nombre de
multiples de P, se déduit ainsi :

(la longeur de l'intervalle est équivalente a la différence de ses 2 bornes)
(t.P —1)—[(t—-1).P"+1] = P, —2

= B —-P,+P,—2
= Pn'(Pn(an_l) - 1) + (Pn - 2)

Le plus petit nombre premier étant P, = 2, les relations précédentes et
suivantes sont donc valables pour tout P,.

(factorisation également valable pour toutes les puissances de P,
intermédiaires possibles jusqu’a cect)

=P, (P, — 1)+ (P, = 2)

(P, — 2) n’étant pas multiple de P,, nous avons toujours sur cet intervalle
(P,@»=Y — 1) multiples de P,.

(méme raisonnement pour toutes les puissance de P, intermédiaires)

P,(en=1) _ 9) wétant pas multiple de P,V nous avons toujours sur cet
( j
intervalle (P, — 1) multiples de P,

La longueur de cet intervalle étant constante pour «,, constant, elle contient
un nombre de multiples de P, et de P,(® ™Y constant qui est le méme pour
tout ¢ (idem pour toutes les puissance de P, intermédiaires).

Or, pour t = 1, le nombre de multiples de P, a été défini précédemment :

Il existe (P, ~*~Y — 1) multiples de B,**" sur [1; B,*" — 1].
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Des symétries sont donc a constater sur an lorsque a,, > 1 :

QAn
n

Sur lintervalle [1; P,“» —1] , il existe une symétrie en , ¢’est-a-dire qu’il

existe des symétries entre les intervalles :

Pnan Pnan
l;,— | et |—; P, —1
2] [ ]

> Reégle n°3 :

D’apres les valeurs que peut prendre N sur 'inervalle suivant |0; P,“"] | les
nombres N pouvant étre multiples de P, apparaissent régulierement dans le
tableau de référence T.R.2. Or,

P,* = P,.P,*»7Y

Et donc, sur l'intervalle |0; P,“"] , la quantité de nombres N pouvant étre
multiples de P, vaut P,V

L’intervalle ]0; P,°"] peut aussi s’écrire [1; P,*"]. L’écart (c’est-a-dire la
différence) entre les 2 bornes vaut (P,*" — 1).

Si nous faisons varier les bornes de cet intervalle ainsi (de maniere a ce que
cet écart soit constant) :

[1+7; P, + 7] (pour r € N)

Comme ['écart entre ces 2 bornes est exactement le méme, la quantité de
nombres N pouvant étre multiples de P, vaut toujours P, @b,
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2.2.2 Début de I’étude

Soit k£ un nombre entier et soit € un nombre entier non divisible par P,.
Menons I'étude d’apres Le tableau de référence T.R.2 (précédent).

Nous “numéroterons” k et ¢ par des nombres et des lettres (en indice)
correspondant a chaque cas étudié afin de les différencier. Abordons ces
différents cas en différents points, qui seront une étape vers la démonstration
complete.

Dans les formules, les 3 points de suspensions “...” entre 2 termes de la
méme ligne représentent les nombres entiers consécutifs entre ces 2 termes.

e Pour (P, — 1)! nous avons :

(P, =1 = (P, —1).(P,—2).(P, —3)..3.2.1
= k= €n,1
h=(P,—1)
= H (Pn - h)
h=1

Par construction, (P, — 1)! est un nombre entier non divisible par P,.

e Pour (P,> —1)! nous avons :

(P2 —1)! = P,2P,3P,..(P, — 1)P,.ky
= (Py.Py.Py...Py).[(1).(2).(3)...(P, — 1)].k2
Ici, le nombre de multiples de P, uniquement est (P, —1), ko étant le produit
de tous les autres nombres (kg est donc un nombre entier), il est non divisible
par P, (il n’y a aucun multiple de P, dans k).
(P> =11 =P, Ve,

avec Eno =1.23...(P, —1).ky = (P, — 1)L.ky
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ks est donc le produit de tous les nombres non divisibles par P,, €, 2 n’est
donc pas divisible par P,.

Et sous une autre forme (en étalant le produit sur plusieurs lignes) :

(P2-1) = (1).(2). (P, —1).(1P,)
(P, +1)...(2F, — 1).(2P,)
(2P, 4+ 1)...(3P, — 1).(3P,)

:(P;é —3P, +1)..(P,> —2P, — 1).[(P, — 2).(P,)]
(P2 —=2P,+1)..(P? =P, —1).[(P, — 1).(P,)]
(P2 =P, +1)...(P2*—1)

Ce qui peut aussi s’écrire :

(P2 =1)! = (1).(2)-(P.— 1)
(P, +1)..(2P, — 1)
(2P, +1)...3P, — 1)

.(P ?—3P,+1)..(P2*-2P, - 1)

(P2 —2P, +1)...(P*—P,—1)

(P, +1)...(P2—1)

(1P ) ( ) (3Fn)--[(Pn = 2).(P)][(P — 1).(F0)]

D’ou :

(P2—-1)! = (P,—1)
(P, +1)...(2P, — 1)
(2P, +1)...(3P, — 1)

(P2—3P +1)...(P,* - 2P, — 1)
.(P2—2P +1)..(P* =P, — 1)
(P> = P, +1)..(P2—1)

(P = DL(P) 7Y
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Pour retrouver &, , il suffit d’éliminer dans chaque nombre (c’est-a-dire
entre 2 parentheses) tous les facteurs de P, s’il y en a (c¢’est-a-dire le dernier

terme de la derniere ligne dans notre cas puisqu’il regroupe tous les facteurs
de B,) :

En2 = (P, —1)!
(P, +1)...2R, — 1)
(2P, +1)..(3P, — 1)

—3P,+1)..(P,*—2P, - 1)
—2P,+1)..(P*— P, — 1)
— P, +1)...(P*—-1)

- 1!

AAA/—\

e Pour (P,* — 1)! nous avons :

(P> —1)! = P,2P,.3P,...(P,> — 1) P, .k3
Ici, le nombre de termes sous la forme a.P, multiples de P, est (Pn2 —1). k3
est le produit de tous les autres nombres, non divisible par P,. Et le nombre
de multiples de P,? est (P, — 1), car le produit factoriel se décompose aussi
ainsi :

(P> —1)!'=P,22P,23P,2. (P, — 1)P,* K5

k's est le produit de tous les autres nombres. Ainsi, ce produit factoriel est
divisible par P,"» =V et par P, Y.

(P, — 1)l = P,"-1) p,(PamD) o o= p (PP o

Et donc €, 3 n’est pas divisible par P,.
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Et sous une autre forme (en étalant le produit sur plusieurs lignes et sur
plusieurs pages) :

(P2 —1) = (1).(2)..(P, = 1).(1P,)
(P, +1)..2P, — 1).(2P,)
(2P, +1)...(3P, — 1).(3P,)

.(P2—3P +1).. (P2—2P—1)[(Pn 2).(P,)]

(P2? = 2P, +1)...(P,? — 1).[(Po = 1) (P = 2).(Fa)(1)]
(P = Py +1). (Pz—l) [(Pn2) (D]

(P2 + 1) (B2 + Py = 1).[(Py +1).(P)]
(P2+P,+1)...(P2+2P, —1).[(P, +2).(P)]

(P2 +2P,+1)...(P.2+ 3P, —1).[(P, +3).(P,)]

.(2P2 3P, +1).. (2Pn2—2P —1).[(P, = 1).(P,).(2)]
(2P, = 2P, + 1)...(2P,* — 1).[(2P, — 1).(P,)]
(2P - P, +1).. (2P2—1) [(PHQ)( )]
(2P.2+1)...(2P,* + P, — 1).[(2P, + 1).(P,)]

(2P*+ P, +1)...2P,* + 2P, — 1).[(P, + 1).(P,).(2)]
(2P,* + 2P, + 1)...2R,* + 3P, — 1).[(2P, + 3).(P,)]

.(3Pn2 — 3P, +1)..(3RP,% — 2P, — 1).[(3P, — 2).(P,)]
(3P, - 2P, +1)..(3P,* — 1).[(3P, — 1).(P,)]
(3PP, +1)...3P,% - 1). [(Pﬁ) (3)]
(3P*+1)...3P,* + P, — 1).[(3P, +1).(P,)]
(3P + P, +1)..(3RP,2+ 2P, — 1).[(3P, + 2).(P,)]
(3P4 2P, +1)...3P,> + 3P, — 1).[(P, + 1).(P,).(3)]

(P?*—-3P* =3P, +1)..(P?*—3P,*—2P, —1).[(P,> — 3P, — 2).(P,)]
(P —-3P2—2P, +1)..(P,* - 3P,>— P, — 1).[(P,> — 3P, — 1).(P,)]
(P =3P =P, +1)..(P*=3P2—1).[(P.}?).(P, — 3)]
(P?—=3P2*+1)..(P,*-3P*+P,—1).[(P.>— 3P, +1).(P,)]
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(P} —=2P*—-3P,+1)..(P* 2P, —2P, — 1).[(P,2 — 2P, — 2).(P,)]
(P —-2P2—2P, +1)..(P,* —2P,> — P, — 1).[(P,> — 2P, — 1).(P,)]
(P —2P2— P, +1)..(P*— 2P, —1).[(P.2).(P, — 2)]

(P2 =2P*+1)..(P*—2P,2 + P, — 1).[(P,> — 2P, + 1).(P,)]

( —3P,+1)..(P,* - P> —2P, —1).[(P.?— P, — 2).(P,)]
(P, P2—2P +1)..(P* - P*—P,—1).[(P.>— P, —1).(P)]
(P, — P, +1)..(P*— P2 —1).[(P?).(P, — 1)]

(P, +1).(P2 = B2+ P, —1).[(P2 = P, +1).(B,)]
:(P;é’ — 3P, +1)..(P,* = 2P, — 1).[(P.2 — 2).(P,)]

(P2 —2P, +1)..(P,* = P, — 1).[(P.2 = 1).(P,)]

(PP =P, +1)...(P?—1)

Ce qui peut aussi s’écrire :

(P, —1)! = (P, — 1)
(P, +1)...2P, — 1)
(2P, +1)..(3P, — 1)

( —3P,+1)..(P,*—2P, - 1)
.(P 2 2P, +1)..(P*—P,—1)
(P2 =P, +1)...(P>—-1)
(P2+1)..(P2+P,—1)

(P24 P, +1)...(P2+2P, — 1)
(P2 +2P,+1)..(P*+3P, - 1)
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.(2P >—3P,+1)..(2PP,* — 2P, — 1)
(2P, — 2P, +1)..(2P,> — P, — 1)
.(2P 2= P,+1)..2P2* - 1)

(2P, 4+ 1)...(2P,2 + P, — 1)

(2P,* 4+ P, +1)..(2P,2 + 2P, — 1)
(2P,> 4+ 2P, +1)...2P,> +3P, — 1)

.(3P >-3P,+1)..(3P,* - 2P, — 1)
(3P,> — 2P, +1)...(3P,> — P, — 1)
.(3P - P, +1)..3P2% 1)

(3P, +1)..3P,*+ P, — 1)
(3P2+P,+1)..(3P,2+2P, — 1)
(3P, +2P,+1)...3P,%> + 3P, — 1)

(P} —-3P*—-3P,+1)..(P? 3P —2P, — 1)
(P2 —3P2—2P, +1)..(P* - 3P~ P, — 1)
(P =3P =P, +1)..(P°—3P" - 1)

(P* =3P+ 1)..(P*-3P>+P,—1)

(P,*—2P?—3P,+1)..(P*—2P,* - 2P, - 1)
(P —=2P2—=2P,+1)..(P,° - 2P, — P, — 1)
(P} —=2P2 =P, +1)..(P*—2P* 1)
(P?—=2P*+1)..(P*—2P2*+ P, —1)

(P?—=P2-3P,+1)..(P*—P*—2P, - 1)
(P*-P2-2P, +1)..(P*~P*—P,— 1)
(P?-P*—P,+1)..(P*-P*—1)
(P?—=P2+1)..(P°— P>+ P,—1)

(P2 =3P, +1)..(P>—2P, — 1)

(P?—=2P,+1)..(P*— P, — 1)
(P2 =P, +1)...(P*—1)
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(toujours dans le méme produit, voici maintenant tous les termes multiples
de P, :)

(LP,).(2P,).(3F,)..[(Pn = 2).(B0) ] [(Pn — 1).(F)]

(P.2).[(P, +1).P).[(P, +2).P,]..[(P, — 1).P,.2].[(2P, — 1).P,]
2(P.).[(2P, +1).P,)...[(3P, — 2).P,].[(3P, — 1).P,]
3(PA).[(3P, +1).R,)..[(P, — 3P, — 2).P,).[(P, — 3P, — 1).P,]
[P2.(P, - 3)]. [(P 2 _3P,+1).P,)..[(P,2—2P, — 1).P,]
PPy —2).[(P.? — 2P, + 1).B,)..[(P.> — P, — 1).P,)]
[P2.(P, = D).[(P2 = P, +1).P,)..[(P.*> = 2).P,).[(P, — 1).P,]

Pour retrouver ¢, 3 , il suffit d’éliminer dans chaque nombre tous les facteurs
de P, s’il y en a, cela nous donne, en réorganisant de maniere “avantageuse”
les termes non multiples de P, restants :

En3 = (Pn—l)'
(P, +1)...2P, — 1)
(2P, +1)..(3P, — 1)

.(P2—3P +1)..(P2—2P, - 1)
(P >—2P,+1)..(P>—P,— 1)
(P> = P, +1)..(P*—1)
(P2+1)..(P2+P,—1)
(P24 P, +1)...(P*+2P,—1)
(P2 +2P, +1)..(P,*>+ 3P, — 1)
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.(2P 2_3P,+1)...(2R,2 — 2P, — 1)
(2P, — 2P, +1)..(2P,> — P, — 1)

.(2P2 P, +1)..(2P,* - 1)

(2P,2 +1)..2P,2 + P, — 1)

(2P,* 4+ P, +1)..(2P,2 + 2P, — 1)

(2P,> 4+ 2P, +1)...2P,> +3P, — 1)

.(3P >-3P,+1)..(3P,* - 2P, — 1)
(3P,> = 2P, +1)...(3P,> — P, — 1)
.(3P - P, +1)..(3P2 1)
(3P.>+1)...3P,*+ P, — 1)
(3P2+P,+1)..(3P,2+2P, — 1)
(3P, +2P,+1)...3P,%> + 3P, — 1)

(P3P —-3P,+1)..(P? 3P —2P, — 1)
(P =3P, 2P, +1)..(P,° - 3P, - P, — 1)
(P =3P, = P, 1)..(P,* - 3P,*— 1)

(P? =3P+ 1)..(P*-3P>+P,—1)

(P,*—=2P,?—3P,+1)..(P*—2P,* - 2P, - 1)
(P —=2P2—=2P,+1)..(P,° - 2P, — P, — 1)
(P} —=2P2 =P, +1)..(P*—2P2* 1)
(P?—=2P*+1)..(P*—2P2*+ P, - 1)

(P?—=P2=3P,+1)..(P*—P*—2P, - 1)
(P*~P2-2P, +1)..(P*~P*-P,—1)
(P?-P*—P,+1)...(P*-P*—1)
(P?=P2+1)..(P°— P2+ P,— 1)

(P2 =3P, +1)..(P>—2P, — 1)

(P?—=2P,+1)..(P*— P, — 1)
(P2 =P, +1)...(P*—1)
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(toujours dans le méme produit, voici maintenant tous les nombres restants
non multiples de P, :)

(1).(2)-(3)--(Pn = 2).(P, — 1)
(P,+1).(P,+2)...(P,— 1).(2).(2P, — 1)
(2).2P, +1)...3P, —2).(3P, — 1)
(3).3P,+1)...(P,— 3P, —2).(P,— 3P, — 1)
(P, —3).(P, 2—3P +1)..(P?*—2P, - 1)
(P, =2).(P*=2P,+1)..(P,* = P, — 1)
(P, —1).(P* =P, +1)..(P*=2).(P,%—1)
Or, dans cette derniere partie de I’égalité, nous constatons que nous pouvons

réorganiser les termes restants ainsi (les couleurs noires forment un ensemble
et les couleurs rouges forment un autre ensemble):

(1).(2).(3)...(Py — 2).(P, — 1)

(D).(Py+1).(Py+2)...(P, — 1).(2).(2P, — 1)
(2).(2P, +1)...(3P, — 2).(3P, — 1)
(3).3P, 4+ 1)...(P, =3P, — 2).(P, — 3P, — 1)
(P, —3)(P.? =3P, +1)..(B,*> - 2P, — 1)

3).(
(P, —2).(P*=2P,+1)..(P*—P,— 1)
(P2~ P, +1)...(P*—2).(P*—1)

P, —DL.(P,+1)..2P, — 1).(2P, + 1)...(3P, — 1).(3P, + 1)...(P,* — 1)

enz = (P,—1)(P, 1) (2P, —1).2P, +1)...(3P, — 1).(3P, + 1)...(P,* = 1)
—~D)(P,+1)...2P, — 1).(2P, + 1)...(3P, — 1).(3P, + 1)...(P,* — 1)

Avec €, 3 non divisible par P,.
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e Pour (P,* — 1)! nous avons :

(P,* = 1) = P,2P,.3P,...(P,> — 1)P, .k,
Ici, le nombre de termes sous la forme a.P, multiples de P, est (Pn3 —1). ky
est le produit de tous les autres nombres, non divisible par P,. Le nombre
de multiples de P,? est (P,? — 1), car le produit factoriel se décompose aussi
ainsi :

(P,*—1)!' = P,22P,2 3P, (P> — 1)P,* K,

'y est le produit de tous les autres nombres. Le nombre de multiples de P,?
est (P, — 1), car le produit factoriel se décompose aussi ainsi :

(P, —1!'=P22P>3P,>..(P, — 1)P> k",

k", est le produit de tous les autres nombres. Ainsi, ce produit factoriel est

divisible par Pn(P"LD , par Pn(P"tl) et par P, (Pn—b),
(Pt — 1) = Pp,B"=D p (1) p (Pl o
= PRI Ps)

Et donc €, 4 n'est pas divisible par P,.

Meéme principe que précédemment concernant la réécriture et une réorganisation
adéquate (I’écriture de chaque ligne avant simplification serait trop lourde a
gérer, méme en plusieurs pages) :

tna = (Po— D (P,+1)...2P, — 1).2P, + 1)...(3P, — 1).(3P, + 1)...(P,* — 1)
(P, — )\(P, +1)...2P, — 1).(2P, + 1)...(3P, — 1).(3P, + 1)...(P,* — 1)
(P, —DW(P, +1)...(2P, — 1).2P, + 1)...(3P, — 1).(3P, + 1)...(P,> — 1)
(P, —1)!
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e Pour (P,” — 1)! nous avons :

Ecrivons toutes les possibilités pour la divisibilité de ce produit factoriel,
pour z € N, z > 1:

(P,* —1)! = P,.2P,.3P,...(P,*"Y — 1)P, .k,
Ceci signifie aussi que, sur intervalle ]0; P,*], il existe (P, —1) multiples

de P,. Mais continuons (les 3 points de suspension dans le produit suivant
représente des nombres entiers consécutifs:

(P,"—1)! = P22P23P>. (P, - 1)P2K,
= P22P23P2..(P," - 1)P2K",

= p,eVop, @D 3p e (p, —1)P, "V k,

Avec kg, k', K5, ... , ky des nombres entiers, chacun étant le produit des
nombres qui n’apparaissent pas dans le produit (pour alléger 1’écriture).

Et donc sur Vintervalle ]0; P,%[ , il existe (P, — 1) multiples de P,* |
d’apres cette derniere formule. Mais nous devons aussi tenir compte de ce
qui suit :
Sur l'intervalle |0; P,”[ ,

1l existe (P,*~Y — 1) multiples de P,,

dont (P, — 1) sont multiples de P,?

dont (P,=% — 1) sont multiples de P,*

dont (P,® — 1) sont multiples de P,*™% |
dont (P,2 — 1) sont multiples de P,*=% |

et dont (P, — 1) sont multiples de P,®b.
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Ainsi, nous avons :

P, x=1 1 Pp(#=2) 1 P, (=31 Pr—1
(P, —1)! = B, )P, ).P,| )P, ¢
P,V _14p,@=2)_14p (@=3)_14 4p,—1
— Pn( n n n )-gn,x

Avec €, , un nombre entier non divisible par P, (par construction). Le terme
“-17 alintérieur des parentheses est répété (z — 1) fois. Donc :

(P = 1)1 = R Ve R o)
— p PRI p G Py 1]
Or,
P*—1
P,V 4P pEd L 4P 41 = ST

PF—1
r 1\l P,—1 " L
(P, —1)!'=P, Eng (€n non divisible par P,).

Et donc,
(an o 1)'
gn,x (an—l_ )
P—1

Si P, n’était pas un nombre premier, alors &,, serait un nombre entier
divisible par ce nombre. Ce qui explique la fonction F, vue précédemment.
En effet, pour :

(M* —1)!
EMx = T_
Y = ———y

ou 'on a simplement divisé ’expression de ¢, , par P, , €y, vaut un nombre
rationnel si M est un nombre premier, et vaut un nombre entier si M est
un autre nombre entier (non premier). Ainsi, nous n’avons pas besoin de
connaitre les nombres premiers pour formuler cette expression.
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Démonstration :

Si M est un nombre entier qui n’est pas un nombre premier (M est tel que
M € Net M ¢ P), alors M peut se décomposer ainsi :

n—-+00

M= T] (P

(développement 1)

Avec Py, Py, P3, ... et P,, avec P, < P, < P3 < ... < P, et avec au moins 2
des termes «,, > 1.

Rappelons que pour M défini ainsi, nous avons nécessairement :
P, <M

ou, autrement dit, un nombre entier non premier est supérieur a chaque
nombre premier P, (élevé a la puissance «,,) dont il est composé.

Et donc nécessairement :
Bt < M*
Avec x > 1, car ce raisonnement s’applique seulement si M peut étre décomposé

en produit de nombres premiers. En reprenant la méthode précédente (voir
la formule de €, ,), nous avons :

(M® —1)! = M2M.3M..(M@Y —1).Mk,
= M22M*3M?. (M@ —1).M>F,
= M32M33M3. (M@ —1).M3 K,
= M@ VoM@ 3= (M - 1). M@ ey

Avec k;, k',, K", ... , ky des nombres entiers, chacun étant le produit des
nombres qui n’apparaissent pas dans le produit (pour alléger 1’écriture).
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(rappelons que cette méthode consiste a regrouper ensemble tous les facteurs
premiers possibles pour chaque puissance de ).

Or, M étant composé de produit de facteurs premiers, nous retrouvons
nécessairement tous ses facteurs dans le produit factoriel puisque chacun
est inférieur a M :

(M®—1)! = p@o) pea) pl@a) p @),

= M"ky (avec k,» un nombre entier)

Pour alléger la démonstration, il n’est pas utile d’étudier tous les multiples
de chaque facteur des P,, ainsi, (M?® — 1)! est divisible par au moins M “en
plus de” :

T _
MT—1 $)

M( M—1

Ce qui revient a écrire :

(Mm — 1)' = (EM,x)-_Z\4(15‘1/136:11 7z+1)
(avec €7, un nombre entier pour tout M € N et M ¢ P).

Ce qui doit étre toujours vrai lorsque P, < P, < P3 < ... < P, avec au moins
2 des termes «,, > 1.

(développement 2)

Supposons que M = P,*

Le résultat de (P, — 1)!/e,, contient le nombre maximum possible de
divisiblités par P,. Ce nombre maximum se retrouve dans la puissance de

N . T _
P,, c’est-a-dire dans <Ij§ _11 — x)
n

Pour z =1,

(M — 1)l = (B, — 1)!
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Or, (P, — 1)! n’est jamais divisible par P, car aucun des nombre du produit
de la factorielle n’est divisible par P,.

Pour x > 1,
(M —1)!'=(P,—1)!

Or, (M — 1)! est divisible par M si et seulement si 'on retrouve le produit
de ses facteurs premiers dans les produits de la factorielle.

Par exemple, pour M = P;.P,, comme M > P, > P;, nous avons :
(M—-1)=(M-1).(M—-2)...P.P...3.2
est divisible par M.

Et, de maniere plus explicite, pour notre cas ou M = P,” avec quelques
exemples :

*SiP,=2etxz=3,

(M — 1) = 7.(6).5.(4).3.(2).1

.. . . Pp®—1_
est divisible au moins par M ou bien par Pn( Bt ),

*SiP,=3etz=2

(M — 1)l = 8.7.(6).5.4.(3).2.1

. . . Pp®-1_
est divisible au moins par M ou bien par Pn( b=t )
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*SiP,=3¢tx=3,

(M —1)! =
26.25.(24).23.22.(21).20.19.(18).17.16.(15).14.13.(12).11.10.(9).8.7.(6).5.4.(3).2.1

x

Pp*—1
est divisible au moins par M ou bien par Pn( Bt )

*SiP,=5etx=2,

(M —1)! =
24.23.22.21.(20).19.18.17.16.(15).14.13.12.11.(10).9.8.7.6.(5).4.3.2.1

T . . Pp-1
est divisible au moins par M ou bien par Pn( Bt ),

La question qu’il convient alors de nous poser est : existe-t-il des nombres M
qui échappe a cette regle 7 Y’a-t-il toujours des facteurs premiers en nombre
suffisant dans la décomposition du produit factoriel de M ?

Pour y répondre, étudions des inégalités, tout en gardant a l'esprit 1’égalité
M = P,".

PpT—-1
(M — 1)! est divisible par au moins par M ou bien par Pn( =t ) , avec,
comme nous l'avons déja déterminé :

(M -1 = (B°—1)!

(P —1) = BT ()

(€n. non divisible par P,, donc seul le reste de la formule est divisible par M).

Or, pour que (M —1)! soit divisible au moins par M ou bien par Pn(%ﬂ),
nous pouvons borner I'inégalité par le minimum auquel (M — 1)! doit étre
divisible, ¢’est-a-dire par M, puis comparer cette borne inférieure a la formule
théorique que nous avons déterminé pour obtenir le nombre de divisibilité par
P, :
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Donc

E _ >
P 1 x| > x
P > 22(P—1)+1

>
Pt —2x(P—1) > 1

Rappelons que ce raisonnement est a appliquer seulement si x > 2 car dans
le cas o z = 1, (P, — 1)! n’est pas divisible par P,.

(Vérification 1)

Si x = 2, nous avons :

P2—4P,+4 > 1
= (P,—2)* > 1
Donc P, > 3

Les nombres entiers inférieurs a 3 se trouvent sur 'intervalle ]0;3[ . Ces
nombres entiers sont 1 et 2. Or, 2 est le plus petit nombre premier. La
formule suivante ayant été établie :

Pp®—1

(Pnz _ 1)! — Pn( Pp—1 _x).(ffn,oc)

Cette formule échappe donc au cas P, = 2 lorsque x = 2. Or, 2 étant le plus
petit nombre premier, tous les cas ont donc été examinés pour = = 2.

(Vérification 2, suite)

Six > 3, nous cherchons toujours a établir la justesse de 'inégalité précédente,
que nous redonnons ici :

Page 78 sur 514



Ce qui revient a écrire :

P -1 S
P 1 x| > x
P —1

S T 9p > 0
p,—1 <t =

Remarquons que le plus petit nombre premier étant 2, nous avons :

P -1 2" —1
>

P—1 = 2-1
Pr—1 97 _ 1
T o > —9
p—1 = 91

Or, pour x > 3, nous avons :
2 S 2441

=27 _1_92 > 0

97 _
= —2x > 0

o—1 7

Et donc, pour x > 3, nous pouvons déduire que :

P -1

—_— — 2. 0
P —1 T >

Ce qui est une condition nécessaire pour que les formules ¢,, ,, et €7, établies
soient tels que nous les avions défini juste avant cette démonstration.
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Conclusion partielle :

- Pour P, e P:

Pp*—1

(P = 1) = P9 (e,,)

avec €, un nombre entier non divisible par P,, cette formule est donc
toujours vraies sauf pour le seul cas de P, =2 et z = 2.

-Pour M e N, M ¢P:

MT—1

(M7 — 1)l = MU= =11 (4, )

Cette formule est donc toujours vraie sauf pour le seul cas de M = 4
et v = 1.

Et donc :

(M* —1)!

M(A]/\I/I_mil__*_ll—r—l-l)

EMx =

€M, vaut un nombre rationnel si M est un nombre premier, et vaut un
nombre entier si M est un autre nombre entier (non premier) supérieur
a 3, toujours en dehors du seul cas M =4 et x = 1.

— ATTENTION :

Par la suite, nous considérerons ces 2 cas comme acquis pour tout le
reste de I'étude : a chaque fois que nous utiliserons les fomules ¢, ,
et ey, , Dous sous-entendrons que ces formules sont toujours valables
sauf dans le cas de P, = 2 et x = 2, et respectivement sauf dans le cas
de M =4et x=1.
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(Explications)

Explication concernant le “probleme” rencontré pour M = 4 :

Ce probleme s’explique parce qu’il n’existe qu'un multiple de 2 sur
I'intervalle |0;4[, Or, une division par M (= 2%) aurait été nécessaire
pour que la formule donne toujours les résultats désirés, c’est-a-dire
€m, divisible par M lorsque M est un nombre entier qui n’est pas un
nombre premier.

Comme ce n’est pas le cas pour M = 4, nous avons plusieurs choix qui
s’offre & nous pour contourner ce probleme : soit élever (M —1)! au carré
pour obtenir la divisibilité par M lorsque M = 4, soit en construisant
une formule “annexe” qui corrige ce probleme, comme nous ’avons fait
pour la “fonction A” vu dans la partie précédente (voir partie “2.1
Vue d’ensemble des étapes a suivre” page 52).

En tenant compte de toutes ces informations nous pouvons formuler
les “fonctions” F, et A vues vu dans la partie “2.1 Vue d’ensemble
des étapes a suivre” (page 52).

e Suite 1 de I’étude de (P,” —1)! :

Nous désirons maintenant savoir ce qu’il advient de la divisibilité de ¢, , et
de ey, par P, lorsque x > 2. Le théoreme de WILSON [1] nous permettant
directement de savoir que :

(P, —1)!'=Paw; — 1 (avec w; un nombre entier)

D’apres ce que nous venons de voir, nous pouvons déduire de la formule ¢,, ,
qu’elle est équivalente aux produits de tous les termes non divisibles par P,,.
Nous avons donc ce qui suit :

Pr—1)
Ena = %
Pn( Pl _m>
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En décomposant (P,* — 1)! (ceci étant un peu lourd & gérer, nous allons
étaler 1’égalité en produits sur plusieurs lignes et plusieurs pages, d’abord
les produits des termes non multiples de P,, puis les produits des termes
muliples de P,), nous obtenons :

(P~ 1) = (P = 1)(P," —2)...(P," — Py + 1)
(P,® — By — 1).(P,% — P, — 2)...(P," — 2P, + 1)
(P,® — 2P, — 1).(P,® — 2P, — 2)...(P," — 3P, + 1)

(P =P —1).(P"—P*=2)..(P*"—P2— P, +1)
(P,* - P*—P,—1)..(P,* — P>~ 2P, +1)
(P,* - P*—-2P,—1)..(P,* — P> — 3P, + 1)

(P,* —2P,*—1)...(P,* —2P,> — P, + 1)
(P*=2P*—P,—1)....(P," —2P,> — 2P, + 1)
(P,* —2P* 2P, —1)...(P," —2P,> = 3P, + 1)

(P*=3P2*-1)...(P*—=3P2*— P, +1)
(P,*—=3P*—P,—1)..(P," —3P,*— 2P, +1)
(P,* —3P,*~2P,—1)..(P,* —3P,*— 3P, +1)

(P,* - P> -1).(P,"—-P}>-2)..(P*"—P}>— P, +1)
(P =P =P, —1)...(P,* = P?*—2P, +1)
(P*-P}*—2P,—1)..(P,"—P,*—3P,+1)

(P,* 2P —1)...(P*—2P* - P, +1)

(P*—2P* P, —1)..(P," —2P,* — 2P, + 1)
(P*—-2P*-2P, —1)..(P,* — 2P, — 3P, + 1)
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(P* =3P 1)..(P*—3P>— P, +1)
(P,*—=3P>—P,—1)..(P," —3P* 2P, +1)
(P,* =3P —2P,—1)..(P,* - 3P, - 3P, +1)

(P2 —=1)..(P* =P, +1)
(P?—P,—1)..(P*—2P, +1)
(P,*-2P, —1)..(P* =3P, +1)

(P?-P*—1)...(RP°*-P*—P,+1)
(P?—-P*-P,—1)..(P*—P*—2P, +1)
(P~ P2—2P,—1)..(P*— P2 3P, +1)

(P?—-2P2*—1)..(P,*—2P*— P, +1)
(P, -2P,*>~ P, —1)..(P,*—2P,> — 2P, + 1)
(P}?—-2P2—-2P,—1)..(P°>—2P*—-3P,+1)

(P?-3P2*—1)..(P,*~3P*— P, +1)
(P?-3P2—P,—1)..(P>*—3P*—2P, +1)
(P?-3P2*—-2P,—1)...(P>—-3P*—3P, +1)

(P2 =1)..(P2 =P, +1)
(P2 =P, —1)..(P*—2P, +1)
(P2 —=2P,—1)..(P* =3P, +1)

(Py—1).(P, — 2).(P, — 3)...(3).(2).(1)

(toujours dans le méme produit, voici maintenant tous les termes multiples de
P, et uniquement les termes multiples de P, dans le méme ordre décroissant
que suivi précédemment : voir page suivante)

Page 83 sur 514



En divisant ce “grand” produit par P n(

(P,* = P,).(P,* = 2P,).(P,* — 3P,)

:(P;‘;“" - P*.(P,* - P2~ P,).(P*~P?—2P,).(P," — P,*> - 3P,)
:(P;;”; —2P,%.(RP,* —2P,* — P,).(P,* — 2P,*> — 2P,).(P,” — 2P,* — 3P,)
:(P;;? - 3P%.(P," -3P,* - P,).(P,* —3P,*—2P,).(P," —3P,> - 3P,)
:(P;‘; - P*.(P,* - P}~ PB,).(P*— P} —2P,).(P," — P, 3P,)
:(P;f; —2P,*).(P,* —2P,* — P,).(P,* — 2P,* — 2P,).(P,” — 2P,* — 3P,)

(P," —=3P,%.(P," - 3P,* - P,).(P,* — 3P, —2P,).(P,” — 3P,* — 3P,)

:(P;é).(Pn?’ — P,).(P.? —2P,).(P,*> - 3P,)

:(P;g” - P*.(P}*— P> P,).(P*— P2*—-2P,).(P*— P> —3P,)
:(P;:;’ -2P,%.(RP*-2P*-P,).(P,* - 2P,* - 2P,).(P,* — 2P,> — 3P,)
:(P;i'” —-2P,%).(P*~-2P*~-P,).(P,* - 2P,* — 2P,).(P,* — 2P,* — 3P,)
:(P;é - 3P,%).(P,*> = 3P,* - P,).(P,°> = 3P,> = 2P,).(P,”> — 3P,> — 3P,)
:(P;}).(Pn? —~ P,).(P,* - 2P,).(P,* = 3P,)...(P,)

Ppr—1

Po—1 —:v) e
, nous éliminons tous

les facteurs P, de chaque terme multiple de P,. Ceci nous permet d’observer
des “trous” a la place des multiples de P, dont la valeur est un “reste” non
divisible par P,. Nous obtenons donc ce qui suit : (voiur page suivante)
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<0
|

Enzx

WPy +1)...2P, = 1).(2P, +1)...(3P, — 1).(3P, + 1)...(P,* — 1)
(P, = )\.(Py 4+ 1)...(2P, — 1).(2P, + 1)...(3P, — 1).(3P, + 1)...(P,"V — 1)
DL.(P, +1)..2P, — 1).(2P, +1)...(3P, — 1).(3P, + 1)...(P,®™? — 1)

:(P;— DL.(P, +1)...(2P, — 1).(2P, + 1)...(3P, — 1).(3P, + 1)...(P,* — 1)

(P, —DL(P, +1)...2P, — 1).2P, + 1)...(3P, — 1).(3P, + 1)...(P,2 — 1

(P, —1)!

Ce qui peut aussi s’écrire (produits étalés ligne par ligne avec des séparations
sous forme de tirets rouges pour plus de clarté, c’est-a-dire que par rapport
a notre derniere formule de ¢, , , lorsque nous passons a la ligne suivante
de cette formule, les tirets seront la pour marquer ce passage d'une ligne a
lautre) :

a=(Pn,—1)
Eng = H [P,V P, —q]
a=1
a=(P,—1)
(P, —1).P, —d
a=1
a=(Pu—1)
(P, —2).P, —d]
a=1
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(P2 —1).P, — q]

(P2 —2).P, —q]

(3P, — a)

(Pn—1)

I " .P.—aq

1

a=(Pu-1)

a

I (P —-1).P,—ad

1
(Pn—1)

a=

a=

] (P —-2).P,—ad

1

a

a=(P,—-1)

II 6P.-a

1
(Pn—1)

a=

a=

(2P, —a)

I1

1

a=(Pa1)

a

(Pn —a)

11
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(P, —1).P, — d

[(P,? —2).P, — d

(Pn—1)

a

(3P, —a)

1

(Pa)

IT @er.-a
=1

(Pn—1)

a
a

a
a

(Pn_a)

1

(Pn—1)

a

[P,.P, — a]

1
(Pn—1)

a

a=

(P, —1).P, — d

1
(Pn—1)

] (P.—2).P,—q]

a

a
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Ce qui peut encore s’écrire ainsi :
qul p

b=P, (z=1) a=(P,-1)
Enz = | J )
b=1 a=1
pen [ emen
11 I @&P.-a
b=1 L a=1 ]
nes [ emen ]
H H (b.P, — a)
b=1 L a=1 ]
e [ e
1T I @P.—a
b=1 L a=1 ]
e [
H H (b.P, — a)
b=1 i a=1 |
ro [ ey ]
11 1] &P -a)
b=1 a=1

Et donc

(P* — 1)
D) I[[ &r—-a
Pn Pr—1 c=0 b=1 a=1
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Prenons un exemple pour bien voir concréetement comment cette formule se
représente. Prenons P, = P; = 5 (n = 3 car dans 'ordre croissant, 5 est
le 3™ de la liste des nombres premiers) et prenons z = 3 (les couleurs
permettent une réorganisation en groupe, un groupe par couleur. Entre les
parentheses, les multiples de 5 sont mis en évidence par un produit par 5) :

(5° —1)!

— 124!

1.2.3.4.(1.5).6.7.8.9.(2.5).11.12.13.14.(3.5).16.17.18.19.(4.5).21.22.23 24
1.5.5).26.27.28.29.(6.5).31.32.33.34.(7.5).36.37.38.39.(8.5).41.42.43.44
.(9.5).46.47.48.49.(2.5.5).51.52.53.54.(11.5).56.57.58.59.(12.5).61.62.63.64
13.5).66.67.68.69.(14.5).71.72.73.74.(3.5.5).76.77.78.79.(16.5).81.82.83.84
17.5).86.87.88.89.(18.5).91.92.93.94.(19.5).96.97.98.99.(4.5.5).101.102.103
1104.(21.5).106.107.108.109.(22.5)111.112.113.114.(23.5).116.117.118.119
[(24.5).121.122.123.124

o~ o~ o~ —~

3
(5°—1) = 5(55*11 -3) £33 (€33 non divisible par 5)

528.6373

€33 nous permet “d’éliminer” tous les 5 qui sont facteurs de chaque nombre
dans notre produit.

€3,3

1.2.3.4.(1).6.7.8.9.(2).11.12.13.14.(3).16.17.18.19.(4).21.22.23.24
((1).26.27.28.29.(6).31.32.33.34.(7).36.37.38.39.(8)41.42.43.44
1(9).46.47.48.49.(2).51.52.53.54.(11).56.57.58.59.(12).61.62.63.64
[(13).66.67.68.69.(14).71.72.73.74.(3).76.77.78.79.(16).81.82.83.84
[(17).86.87.88.89.(18).91.92.93.94.(19).96.97.98.99.(4).101.102.103
1104.(21).106.107.108.109.(22)111.112.113.114.(23).116.117.118.119
[(24).121.122.123.124
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D’ou l'on voit apparaitre clairement dans chaque groupe de couleur une
réorganisation possible :

£33 = (1.2.3.4).(6.7.8.9).(11.12.13.14).(16.17.18.19).(21.22.23.24)
1(26.27.28.29).(31.32.33.34).(36.37.38.39).(41.42.43.44).(46.47.48.49)
[(51.52.53.54).(56.57.58.59).(61.62.63.64).(66.67.68.69).(71.72.73.74)
76.77.78.79).(81.82.83.84).(86.87.88.89).(91.92.93.94).(96.97.98.99)
101.102.103.104).(106.107.108.109).(111.112.113.114).(116.117.118.119)
121.122.123.124).(1.2.3.4).(6.7.8.9).(11.12.13.14).(16.17.18.19)
21.22.23.24).(1.2.3.4)

o~ o~ o~ o~ o~ —~

Ce qui correspond bien a :

e Suite 2 de I’étude de (P,” —1)! :

Pour éviter de nous perdre dans des développements trop longs, nous ferons
des simplifications dans chacune des prochaines parties qui nous permettrons
d’aller a I'essentiel. C’est-a-dire que nous n’écrirons pas les développements
en polynome comme nous le devrions, mais nous allons simplifier leur écriture
en factorisant les termes les plus significatifs pour résoudre notre probleme.

Poursuivons en notant B = b.P, (d’apres la formulede e, , , best implicitement
un nombre entier), nous avons :

a=(Pn—1) a=(P,—1)
II er-a)= [ B-a
a=1 a=1
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En développant, nous obtenons un résultat du type :
- Si P, est paire

a=(Pn—1)

- P, est impaire

[I B-a)=B).f(B)+ (P -1)

a=1

avec f(B) un nombre entier (en fonction de B). (P, — 1)! apparait suite a
la multiplication entre eux de tous les “ a ” (a droite de la parentheése) entre
eux, pour “ a ” partant de 1 jusqu'a (P, — 1) et en passant par toutes les
valeurs intermédiaires. Comme (P, — 1) est paire lorsque P, est impaire, lors
du développement, nous avons une multiplication de “ —a ” un nombre paire
de fois, ce qui rend positif le signe devant la factorielle. Evidemment, le reste
du développement est nécessairement une somme de puissances de B (un
“polynome” dont les puissances décroissent de (P, — 1) jusqu’a 1 en passant
par toutes les valeurs intermédiaires, ce qui nous permet une factorisation par
B. Nous appellerons f(B) “nombre entier polynoémiale”), chaque puissance

de B ayant un nombre entier pour coefficient.

En revenant aux variables de départ, nous avons donc :
- Si P, est paire

a=(Pn—1)

[ @P.—a) =@®P)fb.P)— (P — 1)

a=1
- P, est impaire

a=(P,—1)

I[I B-a)=@®P).f0bP)+ (P, —1)

a=1

avec f(b.P,) un nombre entier polynémiale de degré (P, — 1) en fonction de
betdeP,.
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Dans le cas ou P, est paire :

si P, =2.m (avec m € N, m > 0)
P, = 2 est le seul nombre premier qui soit paire (donc m = 1) car tous les

autres nombres paires > 0 sont composés en produit de 2 et de m > 1. Nous
avons donc :

Ce qui signifie donc que

a=(2-1)
[ @b—a)+1=(2b)
a=1
a=(2-1)
Et donc H (2b—a)+1 est divisible par le nombre premier 2.
a=1

Dans le cas ou P, est impaire :

P, est impaire dans tous les autres cas. D’apres le théoreme de WILSON
[1], [(P, — 1)! + 1] est divisible par P,, ce qui peut étre noté comme ceci :

(P, — 1)!+ 1= P,.w; (avec w; un nombre entier).
Ou encore

D’ou nous déduisons :

a=(Pn—1)
Il ®P.—a) = (bP).fO.P)+Pow —1
a=1
= P, [b.f(b.P,) 4wy — 1
D’ou
a=(P,—1)
[[ &P.—a)| +1 = Pu.[o.f(b.P) +wi]
a=1
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a=(Pn—1)
Et donc H (b.P,—a)| +1 est divisible par P,.

a=1

Pour conclure :

Nous avons donc pour tout P, € P :

a=(P,—-1)
H (b.P,—a)| +1 divisible par P,.

a=1

e Suite 3 de ’étude de (P,” —1)! :

Poursuivons ce dernier raisonnement en notant (pour alléger la lecture) :
[bf(bpn) + wl] = 'UJQ’C

Avec Wy . un nombre entier. Nous avons maintenant :

a=(Pr—1)

H (b.P, —a) =P, wy.—1

a=1

Nous avons simplement :

b=P, () |a=(Pr—-1)

H H (b.Pn—a _H ngc )

b=1 a=1

Comme précédemment, nous pouvons développer ce produit et obtenir un
résultat du type (ici aussi, nous distinguons 2 cas possibles) :
- Si P, est paire (et pour ¢ > 1, implicitement ¢ est un nombre entier) :

b=P,, ()

[T (Powse—1) = (Prwae).f(Powne) + 1
b=1
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- Et si P, est impaire (et pour tout ¢ > 0, implicitement ¢ est un nombre
entier) :

b=P, ()
[T (Powse—1) = (Pawae). f(Poawse) — 1

b=1

Avec f(P,.wa.) un nombre entier polynomiale en fonction de P, et de ws.
“ 17 apparait suite a la multiplication entre eux de tous les “ 17 (a droite
de la parenthese) entre eux un nombre de fois qui vaut P, puissance (c).
“+1” apparait si ce nombre de fois est paire et “—1” apparait si ce nombre
de fois est impaire. Evidemment, le reste du développement est forcément
une somme de puissance de (P,.ws,), chacune ayant un nombre entier pour
coefficient.

Cas de P, paire :

Nous avons déja vu qu’'un seul cas n’est concerné, c¢’est celui de P, = 2 :

b b=2(c)

_H (Pyawy,—1) = (2.wy,0 — 1)

1

o
Il

Or, 2 () est toujours un nombre paire pour ¢ > 1, et donc multiple de 2
(attendre la fin de ce raisonnement pour que le cas de ¢ = 0 apparaisse
naturellement). En développant ce produit, nous obtenons :

bp=2(2)

[T @Quwse—1) = Quwse). f(2wae) + 1

b=1

Donc

b=2(c)
H (2we.—1)| — 1 est divisible par le nombre premier 2.
b=1
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Pour faire le lien avec le cas de P, impaire, nous allons devoir poursuivre :

p=2(2)

[] Quac—1) = (2wne).f2w2e) +1

b=1
(2 W2 c) (2.@[}276) —|— 2 — 1
= 2.[(w270).f(2.w2’c) + ]_} —1

Et donc, pour tout ¢ > 0 :

p=2(c)

H (2.wg,.—1)| +1 est également divisible par le nombre premier 2.
b=1

Cas de P, impaire :

Comme nous ’avons déja vu, ce cas concerne tous les autres nombres premiers
(et pour ¢ > 0).

b=P,(©)
(Pn.wzc — 1) = Pn.(wgp).f(Pn.U)Q’C) —1
b=1
b=p,(©)
(Pn U)Q’C — ].) + 1 = Pn<’w2 c) f(P W2 c)
b=1
©
Donc (Ppwee—1) +1 est divisible par P,.
b=1

Pour conclure :

Nous avons donc pour tout P, € P et pour ¢ > 0 :

b=P,(9) a=(P,—1)

H H (b.P, —a)| + 1 est divisible par P,.
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e Suite 4 de ’étude de (P,” —1)! :

Avant de pouvoir donner une conclusion générale sur la divisibilité de ¢, , ,
il nous faut encore traiter cette derniere étape. Rappelons que :

c=(z—1) b=P,° a=(P,—1)

S O

Nous avions noté

b=P,(©)

[T (Powse—1) = Pa(wae). f(Poawse) — 1
b=1
Toujours pour alléger la lecture, notons :

(wae). f(Ppws,) = w3, (avec ws, un nombre entier)

Dans ce cas, nous avons :

c=(z—1)
Eng = H (Phwsy —1) = Py.(ws ). f(Phws,) — 1 sia est impaire.
c=0
Et

ene = Pn.(wsy).f(Phws,) + 1 six est paire.
Avec f(P,.ws,) un nombre entier polynomiale en fonction de P, et de ws .

Et donc, pour tout z > 1 :

c=(z—1)
5n,z - H (Pn-w3,m - 1) - Pn‘(w&m)'f(Pn-wS,m) + (_1)r
c=0
D’ou

ene — (—1)" = Po.[(wsz). f(Prws 2]

avec [(ws ). f(P,.ws,)] un nombre entier.
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Pour conclure :

Pour w3 un nombre entier non fixé, nous avons toujours :

Ena = Pn-wB + (_1)33

Rappelons que nous avions noté :

(P, —1)!
Enae = —7pI T
T p ()
Nous avons donc pour x > 1 :
P,*—1)!
( Pp®—1 ) - (_1)x = P,.ws3
Pn( P 1 ’x)

De la méme maniére pour :

EMaz —

(M* — 1)!

M( o= _m‘l)
(M* —1)!

M.

MT—
M—-1

- Nous avons un premier cas si M = P, :

(P, — 1)!

EMaz = PoE 1

p,.p,

Ena

)

1

)

pour tout P, € P et pour tout z > 1.

= 5 (autrement dit un nombre rationnel)

n

Et d’apres ce que nous venons de voir :

pour z = 1, g, , équivaut au cas du théoreme de WILSON [l] tel que

€n1 = Pn.wl —1

(avec w; un nombre entier)
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Et de maniere générale, si x est impaire :

Ena = Phws — 1 (avec w3 un nombre entier)
= epm, =ws —1/P,

Et si x est paire :

Engz = Ppaws +1

=epn. =ws+ 1/P,

Pour M = P,, nous avons donc toujours :

= ey, =wst1/P,

Ce qui peut aussi s’écrire :

sin(m.epye) = sin[m.(ws £ 1/P,)]
sin(m.en) = Lsin(n/P,)
sin®(r.ey,) = sin?(r/PB,)

Et donc, pour M = P, :

sin?(7.ear.0) B
sin2(w/P,)

Nous avons un second cas si M est un entier tel que M # P, :

Nous avons déja vu que dans ce cas €p, valait un nombre entier.
Autrement dit :

sin(m.eprz) =0
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Et donc (avec la formule utilisée au cas précédent, c’est-a-dire le cas de
M =P,)

sin?(7m.ear.0)

sin2(r /M) =0 (pour M # P,)

- En conclusion, nous sommes capables de construire la fonction C'c sur
le constat de la divisibilité de e;7,. Rappelons que :

1
 sin2(x/M)

Constatons que nous nous sommes rapprochés de la forme finale de la
fonction F,.
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2.2.3 Construction de la fonction Fp

Pour accéder a la solution, nous allons devoir faire des rappels ou réécrire sous
une autre forme ce qui peut se déduire de la construction d’un tableau comme
le tableau de référence T.R.2. Tenons compte des remarques préalables faites
en début de partie “2.2 Démonstration Complete” (page 54).

e Rappels :

— Reégle n°1 : Sur Uintervalle [1; P,* — 1] , pour k € N, k < (z — 1) :
I existe (P, =Y — 1) multiples de P,**1),

(k+1)

dont la répartition de chaque multiples de P, est réguliere

puisque ’écart entre 2 de ces multiples vaut P, k1),

— Regle n°2 : il existe autant de multiples de P, sur les intervalles du
type :

(t—1).P "+ 1;t.P," — 1] pourt € N, t > 1,

Et il existe des symétries entre les intervalles :

P’ P*
;| et |2 P71
] e

—o Reégle n°3 : Sur lintervalle [1 +r; P,* + ] , pour r € N :
la quantité des nombres N pouvant étre multiples de P, vaut toujours

P, =Y pour un écart de (P,® — 1) entre les 2 bornes de Pintervalle.
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e Etude :

Notons, pour N € N N > 2

= (N-1).(N-2).(N=3). ... [N—(R"-1)]
Nous pouvons mettre en valeur essentiellement 2 cas intéressants :

Le cas ou N # t.P," et le cas ou N =t.P,” (pour t € N, t > 1).

e Résolution partielle :

Pour N < P,” (a inclure dans le cas ou N # ¢.P,”), nous avons
2 S N S (an - 1)

(évidemment, cette inégalité est valable pour tout P, saufsi P, =2et x =1
ou nous avons N = P, = 2, donc N multiple de P,, et donc a exclure de
notre cas de toutes fagons)

nous avons donc F, = 0, et donc

E
2 %C =0 (un nombre entier)

Pour N = P,*, nous avons :
(a inclure dans le cas ou N =t.P,” avec t = 1 et r = 0)

nous retrouvons Fp = (P,” — 1)!

Donc
Fp En,x c sz ;s
R p (avec toutes les propriétés de e, , vues précédemment)
(&
n n
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Or, ey, = Pyws £1 (avec w3 un nombre entier)

Et donc
F, 1
P T mER

Pour poursuivre I’étude, il nous faudra réécrire les regles que nous venons de
revoir (en “Rappels”) afin de pouvoir traiter les données.

Pour traiter le cas ou N # t.P,” et le cas ou N = t.P,” , nous allons devoir
mener la suite de I’étude sur des intervalles afin de réduire les étapes. Nous

allons devoir considérer comme précédemment que :

N=tP"+r pour r > 0

D’ou
h=(P,*—1)
F, = [ &P +r—h)
h=1
= P " +r—-1).t.P"+r—-2). .. [t.B"+r— (P —1)
= (P "+r—1).(t.P +r—2). .. [(t—1).P"+r+1]

Ot nous observons clairement que le calcul sera a traiter pour un produit de
nombres entiers consécutifs appartenant a l'intervalle :

(t—1).P"+r+1tP"+r—1] dont la longueur vaut (P,” — 2).
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De maniere simple, pour t = 1 et r = 1 (& inclure dans le cas ou N # t.P,"),
nous avons :

Fp = (PY.(P"—1.(P"=2). ... .(3).(2)
= (an B =1).(F" — (3)(2>(1)
= (an)l
Or,
(P, =1 = Pn(?f:ll *x).&?n’x (avec €, , non divisible par P,)
D’ou
(P! = (P —1L(P")
= Pn(};’lnz_711>.€n7$
Donc, ici
F, Pn(})gnz:ll)
= T_1 Ena
P’fLFc Pn(ljgn*_l 7274’1)
= Pn(z_l).gmx (qui est un nombre entier pour x > 1 et pour r = 1)
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e Fin de la résolution partielle, suite du raisonnement :

Afin d’étudier les 2 cas de N # t.P,” et de N = t.P,* , notons donc de

maniere générale :
N=tP"+r (avec r € N, r > 0).

afin de traiter plus rapidement ces 2 cas, constatons simplement que :

N = t.PF° sir=20
N # t.P” si 7 est restreint a l'intervalle [1; P,,* — 1]

En effet, dans ce dernier cas, toutes les valeurs de N non multiples de P,
sont atteintes pour :

t =1 et r varie sur U'intervalle [1; P,” — 1] donc N € [P,” + 1;2.P," — 1]
t = 2 et r varie sur 'intervalle [1; P,* — 1] donc N € [2.P,* +1;3.P," — 1]
t = 3 et r varie sur 'intervalle [1; P,* — 1] donc N € [3.P,” +1;4.P," — 1]

t = 4 et r varie sur l'intervalle [1; P,* — 1] donc N € [4.P,* +1;5.P," — 1]

etc, pour chaque valeur de t € N, ¢t > 1 et r variant sur [1; P,* — 1] , il ne
manque que le cas on 2 < N < (P,* — 1) qui a déja été traité au début de la
“résolution partielle”.

Pour F, = (N —1).(N —=2).(N —=3). ... .[N—(P,"—1)]

Et N=tRP,"+r (avec r € N, r > 0),

cela revient a traiter le probleme sur des intervalles de type :

(t—1).P"+r+1;t.P," +r —1]

Nous garderons les mémes notations pour le reste de la démonstration.
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e Casou N =t.P," (et donc r=0):

h=(P,®—1)
F, = ] &R”=h
h=1
= (tP = 1).(t.P"—2). .. [(t—1).B"+1]

Ce qui nous ramene a une étude sur les intervalles du type :
(t—1).P" +1;t.P," — 1]

D’apres la Regle n°1, dans le cas de t =1, et pour k € N, k < (x — 1) :

1l existe (P, %Y — 1) multiples de P,*+Y,

Or, d’apres la Regle n°2, il existe autant de multiples de P, sur les intervalles
de ce type quelquesoit t. D’apres la Regle n°2, nous avons des symétries entre
les intervalles :

P,* P,"
L, — et |—;P,—1
e e

Ce qui revient a écrire que nous avons des symétries aussi entre les intervalles :

(z+1) (z+1)

1 .

; et
2

d’ott nous déduisons que pour k € N, k < (r—1) et sur les intervalles du type :
[(t —1).P, ) 4 1;¢.P,F) — 1

il existe (P, *=Y — 1) multiples de P,**+V

c’est-a-dire autant que sur Uintervalle [1; P,” — 1]

Or, sur cet intervalle, nous avons ¢ = 1, ce qui correspond a :

(71
(P — 1) =p,\In—1

Eng (€n. non divisible par P,).
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Donc, nous avons maintenant pour tout ¢t > 1 :

h=(Pa®~1)

F, = [ &r”-h

h=1

R —
= P, Py —1 Enat (avec €, .+ un nombre entier non divisible par P,)

Et donc

FP o En,z,t
P P

qui est un nombre rationnel.

Sur le modele de la fin du paragraphe “Suite 1 de l’étute de (P,” —1)!” pour
En,z » DOUs allons réécrire €, ¢ sous une autre forme.

Pour retrouver ¢, ,; , nous éliminons tous les facteurs P, de chaque terme
multiple de P,. Ceci nous permet d’observer des “trous” a la place des
multiples de P, dont la valeur est un “reste” non divisible par P,. Nous
obtenons donc ce qui suit (produits étalés sur plusieurs pages, et ligne par
ligne avec des séparations sous forme de tirets rouges correspondants a des
groupes de termes identiques pour les égalités qui vont suivre) : (voir page
suivante)
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Enat = [LPS—P 41 .. [t.P* =P + P, —1]

[t.P* =P+ P, +1]. ... .[t.P,"—P,"+2P, —1]

Jt.BY— P+ 2P, +1]. ... .[t.P,"— P, +3P,—1]

[P =P +3P,+1]. .. .(.). .. JtB*—1]

[t.P, ) — p, @b 4] t.P,e Y — p @ p 1]
[PV —pEYyp 1. . [tREY P, op 1]
[P —p @D pop +1]. .. [PV - P, 43P, —1]
[P,V —p @D L 3p 41 L (L), .. [tRETY -1
[t.P,ED — p, @D ] t.P, "2 — P, 1 p, —1]
[P —p,ED 1 p 1. . [tP,ED _p e pop 1]
[P —p,@ D op +1]. ... [t.P,"Y - P, 43P, —1]
[P P, L3P, +1]. .. (). .. R 1]
[t.P?-P*+1]. ... [t.P>—P}>+P,—1]
[tP2-P2+P,+1. .. [t.P*—-P2+2P,—1]
[t.P?-P2+2P,+1]. ... .[t.B>—PB}’+3P,—1]
[tP?—P2+3P, +1. .. .(.). .. [tB’—1]
[t.P2-P2+1. .. .[tP*>—P>+ P, —1]
[t.P*—P*+P,+1]. .. .[tP?—P}?+2P,—1]
[t.P?*-P2+2P,+1]. .. .[t.P*—P2*+3P,—1]
[tP2-P2+3P,+1]. ... .(.). .. .[t.B*-1]

t.P' — Pt +1] [t.P,t — Pt + P, — 1]

Ce qui peut aussi s’écrire : (voir page suivante)
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':]w

(t—1).P,* +1.P, — d

Enat —
=1
a=(Pn—1)

I [t-=1.P"+2.P —q
a=1
a=(P,—1)

I (t=1.P"+3P —q

a=1

II ¢t-D.P"+ B -2 P —d

I (-7 + @B =1).P —d
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(t—1).P*+1.P, — a

[(t—1).P* +2.P, — a

[(t—1).P° +3.P, — a

(Pn—1)

a=

[(t—1).P>+ (P,*> —2).P, — a]

1
(Pn—1)

a=

a

[(t—1).P*+ (P, —1).P, — a]
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a=(Pr—1)

I (¢t-1.P>+1.P, -
a=1

a=(Pr—1)

[(t—1).P.,> +2.P, — d

—

[(t—1).P,> +3.P, — d

a=1

I (t=1.R"+1.P,—q]

a=1
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Ce qui peut encore s’écrire ainsi :

enat = ] II t=1.P" +b.P, —a

b:P7L2 a:(P"_l)

Il (¢t-1D.P*+b.P—q
b=1 a=1

b=P,! a=(Pr—1)

Il ¢t-1).P>+b.P—q

b=P,0 a=(Pn—1)

11 Il t=1.R" +b.P—d

b=1 a=1

Donc, pour finir, et pour x > 1, nous avons :

c=x b=P, (c=1 a=(Pp—1)

Enot = Ul b]j[l I t-=1.P"+b.P —qd

a=1

Implicitement : a, b, ¢, t et x sont des nombres entiers > 1. Il nous reste a
exprimer la divisibilité de ¢, ,; par P,.
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Comme dans la partie “Suite 2 de [’étute de (P,” — 1)!” (qui servira de
modele), ici aussi, nous allons simplifier les développements pour écourter les
démonstrations. C’est-a-dire que nous n’écrirons pas les développements en
polynome comme nous le devrions, mais nous allons simplifier leur écriture
en factorisant les termes les plus significatifs pour résoudre notre probleme.
Rappelons que nous avions noté, d’apres le théoreme de WILSON [1] :

(P, —1)!'=P,aw; — 1 (avec w; un nombre entier).

Décomposons la suite de cette étude en plusieurs sous-parties.

* Sous-Partie 1 :

a=(Pn—1)
Etudions H [(t —1).P,) + b.P, —d
a=1
Nous observons encore ici principalement 2 cas : Le cas ou P, est paire et le
cas ou P, est impaire.

Cas de P, paire :

Le seul cas possible étant P, = 2, nous avons

a=(Pn—1) a=(2—-1)
I] t-1).P9+bP —a = ][] (t—1)29+2b-ad
a=1 a=1

= (t—-1).294+2bp-1
2.[(t —1).27Y 4 p) — 1

d’on [(t—1).2€) 42 —a] p +1=2][(t—1).2"D 4 7]
Or, nous avons construit ¢ de sorte qu’il soit un entier > 1, donc
[(t — 1).2(c=Y) 4 b] est un nombre entier, et donc

a=(2-1

a=1

)
[(t—1).29 +2b—a] p+1 est divisible par le nombre premier 2.
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Cas de P, impaire :

a=(Pn—1)

I (t-1).P9+b.P —q

a=1

=[(t —1).P,9 + b.P,].f[(t —1).P,'9 + b.P,] + (P, — 1)!
= P,.[(t = 1).P, Y +b).f[(t —1).P,\ +b.P] + Pyw, — 1
=P, {[(t —1).P, D 0] f[(t — 1).P,") + b.P,] + wl} -1

avec f[(t —1).P,° + b.P,] un nombre entier polynémiale en fonction de P,
(dont Iécriture a été ici aussi réduite pour alléger les développements).

Donc
a=(Pn—1)

H [(t—1).P,") +b.P, —a] p +1 est divisible par P, impaire.

a=1

Pour conclure :

Nous avons donc pour tout P, € P (c’est-a-dire pour P, paire et impaire) :

a=(Pn—1)
Il (t=1D).P9+bP, —alp+1  divisible par P,.

a=1

* Sous-Partie 2 :

Notons (pour simplifier) :
{[(t —1).BD LB F[(E—1).PO + b.Py] + wl} — wy,
(avec wy, un nombre entier)

Nous avons :
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Etudions :

b=P,(c=1)  a=(P,—1)
IT t=0.P9+bP, —q

b=1 a=1

Ici aussi, nous pouvons distinguer les cas de P, paire et de P, impaire.

Cas de P, paire :

Le seul cas étant P, = 2, nous avons

p=2(c—1) a= (Pn—l p=o(c—1)
H H (t—=1).P9 40P —a = [] Quwic—1)
b=1

Or, 2(¢=Y est un nombre impaire pour ¢ = 1, et un nombre paire pour ¢ > 1.
En développant ce produit, nous obtenons :

Pour c =1
p=2(c=1)
H (2.21)470 - 1) - 2-w4,c —1
b=1
Et pour ¢ > 1
b=2(c=1)
H (2.’LU4VC — 1) = (2-w4,c)-f(2'w470) +1
b=1

= (2wae) f(2wge) +2—1
2.[(wae). f(2.wye) +1] — 1

Ce qui fera le lien avec le cas de P, impaire (avec f(2.w4,.) un nombre entier
en fonction de 2 et de wy,).

Nous avons donc pour tout ¢ > 1 :

b:2(671)
H 2wy —1)| +1 divisible par le nombre premier 2.
b=1
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Cas de P, impaire :

Ce cas concerne tous les autres nombres premiers (et pour ¢ > 1).

b=P,(c" 1) a=(Pn-1) b=P, (e~ 1)
11 Il t-DR9+bP -a = ][] (Powsic—1)
b=1 a=1 b=1

= Pn-(w4,c)-f<Pn-w4,c) — 1
(avec f(P,.w4.) un nombre entier en fonction de P, et de wy,)

Donc

b=P, (=D
H (Ppwge—1) +1 est divisible par P, impaire.
b=1

Pour conclure :

Nous avons donc pour tout P, € P et pour ¢ > 1 :

b=P,(c=1)  a=(Pp,—1)
1T I t=D.P+bP —alp+1  est divisible par P,.

b=1 a=1

* Sous-Partie 3 :

Voici la derniere étape. Etudions ce qui suit :

b:Pn(cil) a:(Pn_l)

Enat = lj[l le I t-).P9+bP —q

a=1

Nous avions noté

b=P,(c=1)

[ (Powse—1) = Puwie).f(Povse) — 1
b=1
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Toujours pour alléger la lecture, notons :

(Wae).-f(Prwye) = Ws 4 (avec ws, un nombre entier)

Nous avons :
C=x

Enat = H(Pn.wg),z —1) =P, (wsz).f(Prwsy) — 1 si x est impaire,
c=1

Et
C=X

Enpt = H(Pn.wg),m —1) =P, (wsz).f(Pyws,) + 1 si x est paire,
c=1

avec f(P,.ws,) un nombre entier (en fonction de P, et de ws ).

Et donc, pour tout z > 1 :

C=XT

Enat = | [(Powse — 1) = Po.(ws0)-f (Prws ) + (—1)

c=1

D’ou
Enat — (_1)(:0) - Pn(w5,;t>f(in5,:v)

avec [(ws ). f(P,.ws )] un nombre entier.

Pour conclure :

Pour wg un nombre entier non fixé, pour tout P, € P et pour tout x et t € N,
tel que z > 1 et t > 1, nous avons toujours :

gn,x,t = Pn.UJG + (-1)(1)
En arithmétique modulaire, cela s’écrit ainsi :

Enzt — (—1)(1) =0 (mod P,)
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Rappelons que nous avions noté :
Fp
P,
En remplacant €, ., convenablement dans cette derniere
obtenons :

- gn,x,t

I

P P,
-1 (z)
= Wwsg _|_ %
Donc, de maniere générale, si x est impaire :
Fp 1
= Wg — —
p % P,
Et si z est paire :
Fp
pFE "R,

Pour le cas ou N =t.P,” , Nous avons donc toujours :

1
ZU)(;:i:Fn

P,
n
Ce qui peut aussi s’écrire :

. 7T.Fp
Sin D 7

n

)

Et donc

qui est un nombre rationnel (&, ,; non divisible par P,)

expression, nous
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e Cas ou N #t.P,” :

Nous avions noté N = t.P,* +r pour t > 1 et r > 0. Rappelons que le cas
de r = 0 pour tout t , et celui de r = 1 pour t = 1 ont déja été traités en
début de partie “2.2.3 Construction de la fonction F,” (page 100).

Et nous avions noté :

)

F, = H (t.P,"+r—nh) pour 7 variant sur [1; P,” — 1]
h=1

= (P +r—1.tP"+r—2). .. Jt—1.P%+7r+1]

Sur les intervalles de type [(t —1).P," +r+1 ; t.P,"+r — 1], le nombre
de multiples de P, est variable en fonction de r. Sur ces intervalles et selon
r, nous recontrerons des cas ou le nombre de multiples de P, est minimum et
des cas ou il est maximum. Nous allons d’abord traiter les cas ou le nombre
de multiples de P, est minimum pour simplifier la suite de 1’étude.

Pour r variant sur [1; P,” — 1], le nombre de multiples de P, est minimum
lorsque la différence entre la borne inférieure et le premier multiple de P, de
I'intervalle, et la différence entre la borne supérieure et le dernier multiple
de P, de l'intervalle sont toutes les 2 maximums. Recherchons quand ces
différences sont maximums en plusieurs sous-parties, toujours a propos du
cas ou N # t.P,".

Notons d et d' € Nytel que d > 1 et d' > 1.
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*x Sous-partie pour les multiples de P, :

A propos des bornes des intervalles de type [(t—1).P,“+r+1 ; t.P,"+r—1]
et des différences évoquées dans les quelques lignes précédentes pour ce cas
(N #t.P,").

Relation entre la borne inférieure et le premier multiple de P, des intervalles
de ce type :

t—1).P°+r+1<(t—1).P"+d.P,
Relation entre la borne supérieure et le dernier multiple de P, des intervalles
de ce type :
t.P*—d.P, <tP,"+r—1

Or, en notant A; cette différence, nous avons la plus grande différence
possible pour A; = P, — 1, puisque cette différence est le nombre entier
le plus grand ne contenant pas de multiple de P,. Nous avons :

A = [t—=1).P*+dP,]—[(t—1).P%+r+1]
= dP,—r—1
= P,—1

Donc r = (d—1).P,

et pour la seconde borne

Ay = [P +r—1]—[t.P"—d.P,]
= d.P,+r—1
= P,—1
Donc r = (1-d).P,

Et donc
r = (d—1).P,

- (1-d).P,
Dot d = 2-4d
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Finalement, si r = (d — 1).P, ,

le premier multiple de P, vaut (t —1).P,” +d.P,

et le dernier multiple de P, vaut t.P,” + (d — 2).P,

Or, le nombre de multiples de P, se trouvant sur les intervalles de type

[(t—1).P,"+d.P, ; t.P,°+(d—2).P,] étant constant, il suffit de choisir

t = 1et d =1 (par exemple) pour simplifier I’écriture, ce qui revient a

dénombrer la quantité de ces multiples sur I'intervalle :

[P i Pu(B 1)

Et donc le nombre de multiples de P, vaut (Pn(x_l) — 1), dont P,” est un

multiple appartenant a ces intervalles car pour r variant sur [1; P,” — 1] dans

les intervalles de type [(t —1).P,"+r+1 ; t.P,”+r—1], nous avons :
t—-—1).P"4+r+1<tP*"<tP "+r—1

En effet, puisque pour r = 1, I'inégalité devient :
(t—1).P,"+2<tP°<tPS°

Et pour r = P,” — 1, I'inégalité devient :

t.P* <tP*<(t+1).P*—2
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+ Sous-partie pour les multiples de P,” :

Méme raisonnement que précédemment appliqué aux multiples de P,%

t—1).P"+r+1<(t—1).P"+d.P,>
Et

t.P*—d.P2<tP*+r—1

Or, Ay = P,> — 1 ne contient pas de multiple de P,? et est la plus grande
différence possible. Nous avons :

Ay = [t—=1).P*+dP?—[t—1).P"+r+1]
= dP%*—r—1
= P’-1

Donc r = (d—1).P?

Et
Ay = [t.P+r—1]—[t.P* —d P
= d.P’+r—1
= P°-1
Donc r = (1-d).P?
Et donc

r = (d—1).P?
(1—-d).P?
D’ou d = 2-d

<
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Finalement, si r = (d — 1).P,? ,

le premier multiple de P, vaut (t — 1).P,* + d.P,>

et le dernier multiple de P, vaut ¢.P,” + (d — 2).P,>

Or, le nombre de multiples de P,? se trouvant sur les intervalles de type
[(t—1).P,*+d.P,> ; t.P,"+(d—2).P,? étant constant, il suffit de choisir
t = 1et d =1 (par exemple) pour simplifier I’écriture, ce qui revient a
dénombrer la quantité de ces multiples sur I'intervalle :

P.? ; P2A(PY 1)

Et donc le nombre de multiples de P,? vaut (Pn(g”_Q) — 1), dont P,” fait

partie (pour les mémes raisons que la Sous-partie précédente concernant les
multiples de P,).

(méme raisonnement pour les multiples des puissances de P, intermermédiaires)
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+ Sous-partie pour les multiples de P,V :

Méme raisonnement que précédemment appliqué aux multiples de P, =Y.

(t—1).P*+r+1<(t—1).P*+d.P,"

Et

OI‘, A(m—l) = Pn(x

t.P," —d.P, ") <t.P, +r—1

~Y _ 1 ne contient pas de multiple de P,*™V

grande différence possible. Nous avons :

Agey = [t=1).P"+d.P" V] —[(t—1).P," +7+1]
= d.Pn(m_l) —r—1
Donc r o= (d-— 1).pn(x—1)
Et
Apoyy = [EPS 471 —1] = [LP" —d P,V
= d/.Pn(x_l) +r—1
= pE_q
Donc r (1-— d/)'Pn(:c—n
Et donc
r = (d—1).P,@ Y
= (1-d).pV
D’ou d = 2—-4d
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Finalement, si r = (d — 1).P,*™Y |
le premier multiple de P, vaut (t — 1).P,” + d.p,®=b

et le dernier multiple de P, vaut t.P,” + (d — 2).Pn(x_1)

Or, le nombre de multiples de P, se trouvant sur les intervalles de type

[(t—1).P,*+d.P," Y . t.P,"+(d—2).P," Y] étant constant, il suffit de
choisir t = 1 et d = 1 (par exemple) pour simplifier I’écriture, ce qui revient
a dénombrer la quantité de ces multiples sur I'intervalle :

(p,e=b . p e (p 1)
Et donc le nombre de multiples de P,*™V vaut (P, — 1), dont P," fait

partie (pour les mémes raisons que la Sous-partie précédente concernant les
multiples de P,).
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x Sous-partie pour les multiples de P,” :

Nous avons déja vu que pour r variant sur [1; P,* — 1] dans les intervalles de
type [(t—1).P,*+r+1 ; ¢.P,”+r—1], nous avons :

(t—1).P +r+1<tP*"<tP"+r—1

En effet, sir=1:

(t—1).P," +2<t.P" <t.P*

Etsir=PB"—1":

t.P* <t.P° < (t+1).P* =2

Et donc t.P,” se situe toujours dans les intervalles de type :

(t—1).P"+r+1 ; tP°+r—1]
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x Synthese :

Pour N = t.P,” +r et r variant sur l'intervalle [1; P, — 1] , sur les intervalles
de type [(t —1).P,"+r+1 ; tP"+r—1]:

nous avons donc 1 seul multiple de P,” ;
Et pour k € N sur l'intervalle [1;2 — 1] :
au moins (P, — 1) multiples de P,* | dont P, fait partie.

(I'intervalle peut méme étre étendu a k € [0;z — 1] car 'ensemble reste
cohérent, méme si k = 0 ne présente a priori pas d’intérét).

Nous pouvons donc regrouper chacun de ces nombres minimum de multiples
des puissance de P, a partir de ce que nous venons de voir (en notant £ un
nombre entier non divisible par P,) :

h=(Pn=—1)
F, = (t.P,*+1r—h)
h=1
= p,EE p (REHo) o p (PP p () p ) |
_ p [PtV 14P, =D 14 .. 4P,2—14P,—1+1] E
— p PR P2 P (-1 4] o
— p PR E e 4P Putl-(2-1)] o
Or,
P -1
peYVypledy - 4 pP2ip 1=
P,—1
Donc, dans notre cas :
F, = plE=-E

Pp®—1

= p(E=t)
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Et comme nous avons :

pFe — p, (= —eh)

Nous pouvons effectuer

Fp —
— =F
P,
F, : : .
7 F est donc toujours un nombre entier pour x > 1, nous avons donc ici :
c

n

REMARQUE IMPORTANTE :

Le fait d’avoir chercher a regrouper ces nombres minimum de multiples des
puissance de P, dans la formule de F}, nous permet d’abréger ici I'étude les
concernant. En effet, les autres cas de r faisant intervenir un nombre plus
important de multiples des puissance de P, dans la formule de F,, nous
aurons forcément :

FP _ El
Fe
P,
c’est-a-dire un nombre entier E’ divisible par une puissance de P,, une
puissance obligatoirement > 1.

Et donc, nous retrouvons ici aussi :
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Ce qui permet de conclure de maniere générale a propos du cas ou N # t.P,”

ainsi :

sin 2 (W'Fp>
b
- =0

N
S1n (Pn>

Conclusion et synthese :

=1 si N est un multiple de P,”.

=0 si N n’est pas un multiple de P,”.
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2.2.4 Supposons Pn non connu (construction de Fp,
suite)

Supposons que nous ne connaissions pas les nombres premiers P,. Comme
P, € P, remplacons P, dans la formule de F,, par une autre variable M,
définie telle que M € N, M > 2. Nous verrons pourquoi M > 2 en cours
d’étude. Reprenons brievement les points essentiels des études précédentes
en se concentrant uniquement sur les cas ot M n’est pas un nombre premier
(car les cas ou M = P, ont tous été traité dans les études précédentes).

Nous avions noté :

h=(Pp,*-1)
Fp = H (N_h)
h=1

= (N=1.(N-2). .. (N=P +2).(N—-P"+1)

Pp®—1_ . e .
= Pn( Pp—1 Z).&?n’x,t (avec €, .+ un nombre entier non divisible par P,)

Et

Pp®—1

Pt = Pn( B —ot)

En remplacant P, par M nous obtenons :

h=(M*—1)

F, = H (N_h)
Et :

MFC fnd M(%_aj—’—l)
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F F,
Et donc e P_ devient —2- , pour finalement obtenir :

nFC ]\4FC
h=(M=—1)
[T w-mn
Fp _ h=1

MFe (e -ed)

A partir de cette égalité, reprenons I’étude en 3 nouvelles sous-parties.

e FEtude :

* Sous-Partie 1 :

1< N < M*

C’est un cas simple . En effet, nous avons ici :

h=(M=-1)
Iy = H (N —h)
h=1
= (N=1).(N—=2).... (N = M*+2).(N - M*+1)
=0
Donc ici

Fy
ar =

Et donc (la formule suivante implique que M € N, M > 2)

F

sin 2 (7T p)
M

S Nt/

I l)
Sin (M
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* Sous-Partie 2 :

N =M~

C’est aussi un cas simple . En effet, puisque nous retrouvons ici :

h=(M=—1)

I, = H (N —h)
h=1
h=(M*~1)

- I or-n
= (M- 1)

dont la démonstration a déja été faite, rappelons donc que nous avions :

(M= —1)!

EM,Q: - _M(A]{f7711 7:13+1)

avec €7, un nombre entier pour tout M étant un nombre entier et n’étant
pas un nombre premier, sauf pour le seul cas de M =4 et x = 1.

Donc, ici

Iy

MFe e

(em entier sauf pour le seul cas de M =4 et z = 1)

Et donc (la formule suivante implique que M € N, M > 2)

.o (T.F,

e (1)

" 7

(1) (
M

Nous pourrons corriger cela en donnant une formule valable pour tous les cas
(et donc pour M = 4 et x = 1 inclus). Nous chercherons alors une formule
qui soit nulle pour ce seul cas (ou au moins pour les multiples de 4) et qui
prenne pour valeur 1 sinon (ou au moins lorsque M = F,), ceci afin de ne
pas perturber le fonctionnement général de la formule finale. Nous donnerons
une étude plus détaillée de la cette fonction de correction “ A ” plus loin dans
le paragraphe le signalant.

sauf pour M =4 et x = 1)
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* Sous-Partie 3 :

N > M~
C’es le cas le moins simple. Raisonnement :

h=(M*—1)

= (N =1).(N = 2)eee(N = M" +2).(N — M" +1)

Remarquons que dans ce cas il existe une différence non nulle entre N et M?*,
notons cette différence A telle que :

A=N-—- M~ (et donc non nulle, c’est-a-dire A > 1)

D’ou
N =M+ A
Donc
F, = (N-1).(N-2). .. (N—M*"+2).(N—-M"+1)
— (N—1)N=2). .. (A+2.(A+1)
= [(N—-1).(N-2). .. .(A+2).(A+1)].%
-
=
(M4 A1)
n Al
M A )M A A=2). o (M D).(MT)] L [(MT = 1)
Al
_ (1) [(M$+A—1).(M~””+A—A!2). (M7 1))
A=(A-1)
[T s +n)
0 VT S N
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Or,

est toujours un nombre entier.

Ezxplications :

A'=(A-1)
Notons G = H (M?* + A
A'=0
Donc

A'=(A-1)
[T s +n)
G A'=0
Al Al

G
Si A = 1, alors G = M? divisible par (Al) = 1! = 1. Et donc N est un

nombre entier.

Si A = 2, alors G = (M*).(M* + 1) divisible par (A!) = 2! puisque sur
2 nombre entiers consécutifs, au moins 'un des 2 est divisible par 2 (et

L G :
forcément Iautre est divisible par 1). Et donc A est un nombre entier.

Si A =3, alors G = (M?*).(M* +1).(M* + 2) divisible par (A!) = 3! puisque
sur 3 nombre entiers consécutifs, au moins 'un des 3 est divisible par 3, et

. - G .
au moins un autre est divisible par 2. Et donc A est un nombre entier.

SiA =4, alors G = (M?*).(M*+1).(M*+2).(M?*+3) divisible par (A!) = 4!
puisque sur 4 nombres entiers consécutifs, au moins 'un des 4 est divisible
par 4, au moins un des 4 est divisible par 3, et au moins un autre est divisible

G
par 2. Et donc A est un nombre entier.

Si A =5, alors G = (M*).(M* +1).(M* 4+ 2).(M?* + 3).(M* + 4) divisible
par (A!) = 5! puisque sur 5 nombres entiers consécutifs, au moins I'un des 5
est divisible par 5, au moins un des 5 est divisible par 4, au moins un des 5

G
est divisible par 3, et au moins un autre est divisible par 2. Et donc Al est

un nombre entier.
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(nous pouvons poursuivre ce raisonnement a l'infini pour chaque valeur de A)

Pour A > 1, nous avons G = (M®).(M*+1). ... .(M*+A-2).(M*+A-1)
divisible par (A!) puisque sur A nombres entiers consécutifs, au moins I'un
des A nombres est divisible par A, au moins un des A nombres est divisible
par (A — 1), au moins un des A nombres est divisible par (A — 2), ... , au
moins un des A nombres est divisible par 3 et au moins un autre parmi ces
A nombres est divisible par 2 (et forcément I’ensemble de ces A nombres est

divisible par 1). Et donc A est un nombre entier.

G . )
En notant N G’ un nombre entier quelquesoit A > 1, nous avons donc

maintenant :

A=(A-1)
A'=0
F, = (M*-1)! N
= (M*-1).¢&
En rappelant que
(M —1) = MU= ) o
MFC.EMJ
Nous déduisons
Fp / :
AE G ena (e entier sauf pour le seul cas de M =4 et x = 1)

Et donc (la formule suivante implique que M € N, M > 2)

F,
sin 2 (7T Ff)
" /7
sin 2 <l> (
M

sauf pour M =4 et x = 1)
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x Syntheése de ces 3 sous-parties :

Nous avons donc pour M € N, M > 2 avec tout M ¢ P et quelquesoit N > 1 :

F,
sin 2 (ZLF’:)
S N/ (

02 l)
Sin <M

sauf pour M =4 et x = 1)

e Conclusion et synthese :

Nous avons pour M € N, M > 2 tel que M ¢ P et quelquesoit N > 1 :
F,
sin 2 (7](/[;’)
N l)
sin (M

Et nous avons pour M € N, M > 2 tel que M € P (c’est-a-dire finalement
pour M = P,) :

=0 (sauf pour M =4 et x =1)

F
sin 2 (LFf)
— =1 si N est un multiple de P,* = M*.

(1)

F
sin 2 (7r p)
MFe
S e/

= si N n’est pas multiple de M?*.

Page 135 sur 514



e Construction de la “fonction” de Correction “ A

.
.

Nous voulons obtenir une “fonction” de correction “ A” pour le cas ou M = 4

et x =1 telle que :

pour tout M e N, M >2et M ¢ P
F
sin 2 (Lpf)
A——77~7=0
sin 2 <—>
M
et pour tout M e N M >2et M €P
F
sin 2 (LF’:)
A——r>=1
sin 2 <—>
M

Nous voulons donc

A=0si M =4et x=1 (ousi “M est multiple de 4” est aussi acceptable)

A =1 sinon (ce qui inclu les cas ou M = P,)
En effet, en partant de :

F,

p

MF:

(M* —1)!
M Uit —a+1)

5M,a: -

(avec epr, un nombre entier si M ¢ P sauf dans le cas de M =4 et v = 1)

pour N = M?* | lorsque M = 4 et x = 1, nous obtenions :

5M,:c - 4

Dans ce cas seulement, €, est rationnel alors que M ¢ P.
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Etudions maintenant ce qui suit :

(M —=1).(M —2).(M—3) M3*—6M>+11.M —6

4 4

Si M est un multiple de 4, notons M = 4.t' avec t' € N, ' > 0, nous avons :

(M —1).(M — 2).(M — 3) (48 — 1).(4t' — 2).(4¢' — 3)
1 1
(4¢)3 — 6.(4')% + 11.(4¢) — 6
1

= 16.(t")° —24.(¢')* + 11.(¢') —

DO W

Or, [16.(t')? — 24.(¢)*> + 11.(¢')] est un nombre entier pour ¢’ € N, ¢’ > 0.

Donc

sin

L [ (M —1).(M — 2).(M — 3)}

4 o r.(zxt' —1).(4t — 2).(4t' — 3)}

4

3

=1 si M est un multiple de 4.
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Si M n’est pas un multiple de 4, notons M = 4t + 1" avec ' € N, ¢/ > 0
et 7 € N, nous pouvons restreindre r’ & U'intervalle [1; 3] (en effet, toutes les
valeurs non multiple de 4 sont présente avec r’ € [1; 3] et pour chaque valeur
de t’), nous avons :

(M —1).(M — 2).(M — 3)

4
(W4 = 1).(4 1 —2).(4 + ' = 3)

N 4

()P — 6.4 )+ 114 + 1) — 6
N 4

64.(¢') + 52.(¢) 2" + 12.8.(r")? + ()3 — 96.(t')2 — 484" — 6.(+')2 + 44t + 1147 — 6
1

()3 —6.(r")2 + 110" — 6
4

(r' =1).(r" = 2).(r' = 3)
4

= 16.(¢") +13.(t) 20" + 3.4.(r")* — 24.(¢)* — 124/ 0" + 114 +

= 16.(¢')° + 13.(¢) 2" + 3.4.(+")* = 24.(¢')* — 124/ 0" + 114 +

Or, pour la partie suivante de cette derniere formule :
[16.(¢")3+13.(¢)%.r' +3.t'.(r')*—24.(t')*—12.t'.r'+11.¢'] vaut un nombre entier

Et de plus, nous avons :

(r'=1).(r" —2).(r' = 3)
4

= 0 pour 7’ € N et restreint a U'intervalle [1; 3]

Donc

o W'(M—l).(M—Q).(M—B)} _

g} 2[ (48 + ' — 1).(4t + 7' — 2).(4' + 1" — 3)
111 .
1

=0 si M n’est pas un multiple de 4.
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Pour faire la synthese, nous avons donc :

(M — 1).(M — 2).(M — 3)
4

(M — 1).(M — 2).(M — 3)
4

sin 2 {7& } = 1si M est multiple de 4,

sin 2 |:7T. } = 0 si M n’est pas multiple de 4.

Or, nous sommes en train de rechercher une fonction qui est exactement
complémentaire a celle-ci puisque nous voulons :

A =0 si M est multiple de 4
A =1 si M n’est pas multiple de 4

Nous avons donc simplement :

A = 1-sin? [w.(M_l)-(M; 2>-(M—3)}

o V(M —1).(M —2).(M — 3)}

4

Ce qui nous permet de généraliser :

- Pour tout M € N, M > 2 et M ¢ P, quelquesoit N > 1 :

(M —1).(M —2).(M — 3)} o Gﬁp) Y
T

- Pour tout M e N, M >2et M € P, si N est un multiple de M* :

cos 2 |:7T.

(M = 1).(M — 2).(M — 3)] _Sin2 Gﬁp) L,
ey

- Pour tout M e N, M > 2 et M € P, si N n’est pas un multiple de M? :

cos 2 [77.

(M —1).(M —2).(M — 3)} sin” Gﬁp) 0

cos 2 |:7T. _
4 sin 2 <1>
M
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2.2.5 Construction de la fonction «),

Toutes ces données vont nous permettre de construire une mécanique pour
les puissances des nombres premiers. FEn effet, pour simplifier les données
principales, notons :

f(M;x) =cos? |x.

(M —1).(M —2).(M — 3)} sin’ (Lip)

4 L 2(1)
sin? (7

Et notons a nouveau ces généralisations précédentes, pour N € N, N > 1 :
f(M;x) =1 pour tout M € N, M >2et M € P, si N est multiple de M*.
f(M;x) =0 pour tout M € N, M > 2 et M € P, si N non multiple de M?.

f(M;x) =0 pour tout M € N, M > 2 et M ¢ P, quelquesoit N > 1.

Ceci signifie encore que :

MIMz) — M pour tout M € N, M > 2 et M € P, si N est multiple de M*.
MMz} — 1 pour tout M € N, M > 2 et M € P, si N non multiple de M?.
MIMiz) — 1 pour tout M € N, M > 2 et M ¢ P, quelquesoit N > 1.
Poursuivons avec le cas le plus intéressant pour la suite de 1’étude, c’est-a-

dire avec le cas ou :

f(M;z) =1 pour tout M € N, M >2et M € P, si N est multiple de M?.

Page 140 sur 514



Dissociation de vartables :

Afin de dissocier un nombre N d’un nombre M?*, nous allons devoir adopter
d’autres variables : «aj; et g. En effet, nous devons adopter une notation
pour N qui le distingue du reste de la formule recherchée. Notons :

N = g.M(em) avec g € Ny g>1et ay € N.

Ainsi, N peut représenter tous les nombres entiers supérieur ou égale a 1
(N € N, N >1). Effectivement :

- si N est multiple de M (M) le coefficient multiplicateur est représenté par g.

- si N n’est pas multiple de M(©@M) alors ap; = 0 et donc N = g.

En réalité, cette écriture va nous permettre de dissocier ), et x, afin de
constater que le nombre N = ¢g.M(®™) étant donné et fixé, N est multiple de
M7 si x < ayy, mais aussi NV est multiple de M élevé a toutes les puissances
inférieures a z (r € N, z > 1).

Nous avons donc

N est multiple de M (pour x = 1)
N est multiple de M? (pour x =

2),
N est multiple de M? (pour z = 3)

Jusqu’au cas ou N est multiple de M* (pour x = ayy),

N n’est plus multiple de M* des que = > ayy.

Tout ceci signifie que dans tous ces cas :

f(M;1) =1 (pour x = 1)
f(M;2) =1 (pour x = 2)
f(M;3) =1 (pour x = 3)

Jusqu'a f(M;ap) =1 (pour z = ayy)

Et f(M;z) =0 pour & > ayy.
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Ce qui nous permet de retrouver la puissance aj; puisque nous avons :

FOM;1) + F(M;2) + f(M;3) 4 o+ f(Mscng) = Y (1)

Ce qui peut encore étre écrit :
anv = f(M; 1)+ f(M;2)+...+ f(M; an) + f(M; an+1) + f(M; an+2) +...
puisque des que x > ayy et jusqu'a U'infini (pour z), nous avons f(M;z) = 0.

Donc

T——+00

= > f(M;z)

T T nnue car Sja été formulée. us avons finalemen
Or, f(M;x) est connue car elle a déja été formulée. Nous avons finalement
une formule de “mécanique des puissances” pour les nombres premiers.

Pour tout nombre N € N, N > 1, nous pouvons déduire a,; la puissance
maximum de M (lorsque M est un nombre premier) qui le compose. Ainsi :

T—+00

N = g.M(em) avec oy = Z f(M;x)
=1

Pour retrouver tous les nombres premiers qui compose N (par exemple en
notant ¢ , ¢2 , ¢3 , Q4+ , ... , ¢, des nombres premiers quelconques mais
distincts les uns des autres et en supposant que N soit composé du produit
de ces nombres), il suffit alors de faire varier M sur ’ensemble des nombres
premiers (ainsi, M prend forcément pour valeur ¢; , puis ¢z , puis g3 , puis
q4 , --- , PUis g, ) , ce qui permettrait d’obtenir par exemple :

N = Q1(aq1)-(J2(aq2).Q3(a43)-Q4(aq4)- 'qn(aqn).
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Concentrons nous maintenant sur les cas suivant, rappelons que :

Si N n’est pas multiples d’'un de ces nombres premiers (d’apres 1'exemple
précédent : 1, G2, 3 , Qa5 - 5 Gn), alors f(M;2) =0

donc, dans ce cas,

r——+00
ay = > f(M;z)
=1
=0

et donc M(©@™) =1 pour tout M € N, M > 2 et M € P, si N n’est pas un
multiple de M?*.

Et rappelons d’autre part que :
f(M;x) =0 pour tout M € N, M > 2 et M ¢ P, quelquesoit N > 1.

Donc, dans ces 2 derniers cas,

Tr—-+00

ay = > f(M;z)

= 0

et donc M(@M) =1 pour tout M € N, M > 2 et M ¢ P, quelquesoit N € N,
N > 1.

Or, dans un produit, 1 est I’élément neutre. Ce qui va nous permettre de
construire une formule “plus générale” sur la décomposition d’'un nombre
entier en produit de facteurs de nombres premiers. En tenant compte de
toutes ces données, nous pouvons alors conclure finalement :

M—+oco

N = H Mom

M=2
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Nous pouvons borner ce produit par 2 pour la borne inférieure puisqu’il s’agit
également de la borne inférieure pour le domaine de définition de M (nous
avons M € N, M > 2 ). Compte tenu qu’il n’est pas nécessaire de faire varier
M jusqu’a l'infini puisque N ne peut pas étre composé de facteur premier
qui soit supérieur a lui-méme. Au maximum, si N est lui-méme un nombre
premier, nous pouvons faire varier M jusqu’au plus grand nombre premier
possible, c¢’est-a-dire jusqu’a N lui-méme. ce qui impose alors de restreindre
le domaine de définition de N a celui de M, c¢’est-a-dire pour N € N, N > 2.
Et si nous voulons faire apparaitre tous les travaux de ’étude en une seule
formule, nous pouvons mettre en facteur les formules de “fonction coefficient
correcteur” Cc et de “fonction élimination du défaut” A (lorsque M = 4 et
x = 1) que l'on retrouve dans chaque formule de f(M;x).

Pour N € N tel que N > 2, nous pouvons alors noter :

' o3 h=(a= 1)
cos 2 (%H(M - U)) o . H (N —h)
v=1 Z sin2 h=1
sin2(w /M) g (Mgc —1 +1>
M=N M\M—=1
N=DWN)= [[ m
M=2

Ce que je me suis efforcé de démontrer (attention, il s’agit bien de crochets
dans ces formules, et non des symboles des “valeurs absolues” , ni de ceux des
“parties entieres” : ils ont donc la méme fonction que de simples parentheses,
ils contiennent avy, c’est-a-dire la puissance de M). Ceci servira de syntheése
générale de la démonstration de I'étude sur la factorisation d’un nombre
entier en produits de facteurs premiers. Notons simplement ce processus
de “décomposition” (ou de factorisation d’un nombre entier en produit de
facteurs premiers) D(N), et appelons cette formule D(N) la “Décomposée”
de N telle que :

N = D(N)

M—+oc0

_ H MM

M=2
M=N

_ H WELY

M=2
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Il existe donc une regle permettant la décomposition d’'un nombre entier
supérieur ou égale a 2 en produit de facteurs premiers. Nous pouvons
maintenant considérer que le tableau de référence T.R.1 (voir le début de
la partie “1 Factorisation et mécanique des puissances” page 21), dont
le nombre de colonnes est infini et dont le nombre de lignes est également
infini, peut étre donné par la formule D(N) pour N € N, N > 2.

Remarque 1 :

Lorsque nous notons que nous devons avoir N € N, N > 2, il faut comprendre
que tout nombre N est décomposable en produit de facteurs premiers seulement
si N est supérieur ou égale a 2. En d’autres termes, les nombres 0 et 1
(les seuls entiers positifs & étre inférieurs a 2) ne sont pas décomposables de
maniere explicite en produit de facteurs premiers, la formule de décomposition
D(N) ne peut logiquement pas les concerner.

Autrement dit, la raison pour laquelle les nombres entiers 0 et 1 ne peuvent
pas étre concernés par cette formule est que cette formule ne traite que la
propriété de “primalité” de chaque nombre entier consécutif (par le produit
des (N — h) ), et pour tout N € N, N > 2, I'entier N ne peut étre que
premier ou composé (ce qui n’est pas le cas des nombre 0 et 1).

Remarque 2 :

A Taide des congruences, le lien entre la fonction SINUS et le cercle doit
pouvoir permettre une interprétation géométrique équivalente.

Remarque 3 :
1 existe une formule “plus générale” de D(N) dont la démonstration et

la formule qui en résulte sont données en partie “3.8.6 Formule f(M;x),
puissance et divisibilité : Formule D(NN) généralisée” (page 225).

Page 145 sur 514



2.3 Théoreme de décomposition d’un nombre
entier N en produit de facteurs premiers

D’apres les démonstrations effectuées précédemment a propos de la formule
D(N) de décomposition d’un nombre entier N en produit de facteurs premiers,
pour N € N tel que N > 2, la formule D(N) étant donnée par :

- Soit N le nombre d’éléments d’un ensemble.

[ v=3 h=(M?*—1)
cos 2 (%H(M - v)) ot . H (N —h)
v=1 Z sin2 h=1
sin2(w/M) et (M”C -1 +1>

- Soit un ensemble fondamental un ensemble dont le nombre d’éléments
contenu est N € P.

- Soit un ensemble composé un ensemble dont le nombre d’éléments
contenu est N ¢ P.

Le domaine de définition de D(N) étant N € N tel que N > 2, si nous voulons
diviser un ensemble composé de N éléments en sous-ensembles fondamentaux,
nous devons concevoir :

(ce minimum étant N = 2 éléments),

qu'’il existe une unité de mesure indivisible (évidemment la valeur 1),
que les éléments (qui permettent de former un ensemble) soient indivisibles,

qu’il existe une limite minimum pour un sous-ensemble fondamental

qu’il n’existe pas de limite maximum pour un sous-ensemble fondamental

(sinon, cela sous-entendrait qu’il existe un nombre premier maximum,

ce qui est faux),

que nos mesures a propos du nombre d’éléments (formant un ensemble)

ne puissent étre que discontinues (correspondant au domaine de définition
des nombres entiers N).
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3

Formules courtes

Certaines lettres qui vont étre utlisées seront les mémes que précédemment,
mais elles n’auront pas de lien entre elles (exemple pour les variables comme
a, comme b, comme m, comme B ou comme X ...). Nous préciserons ce
changement par une redéfinition des variables concernées.

3.1 Formule simplifiée s(M)

- D’apres les démonstrations déja effectuées, nous pouvons construire une
formule légerement différente et plus simple. Par exemple, la formule de «,,
nous permet de connaitre la divisibilité de N par un nombre premier P,,
ce qui nous amene a connaitre D(N). D’une autre maniére, nous pouvons
savoir par une formule plus “courte” si un nombre entier est premier ou non
(c’est-a-dire si N = P, ou pas). Cette formule courte (ou encore “Simplifiée”
de f(M;z) ) permettra simplement de savoir si le nombre N est divisible
ou non par un nombre premier F,, son expression est basée sur celle de a,,
mais sans certains termes non utiles a cette fin, elle est plus légere que a,.
Quelques rappels de ce que nous avions noté :
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h=(P,"—1)

* Avec F, = N —h
P
h=1
P’ -1
* Avec F, = —= — 1
vec I, P 1 T+
* Avec Ce = .
~ sin?(7/P,)
- v=3
* Avec A = cos? (ZH(Pn - v))
v=1
*

Avec R, la fonction de Restriction permettant de limiter les calculs
aux nombres premiers P, < N.
Il suffit de ramener cette étude a celle de x =1 (et donc a celle de ay, 1) :

v=3

T
cos 2 (Z H(P" — v)) h=(Pa—1)
o T

S(N) = Sm;(:;/Pn) .sin P [ w-mn

(Cette formule nous permet de savoir si N est multiple de P,)

Ou encore, si nous désirons remplacer P, par M comme dans la partie
précédente (ce qui sous-entend que P, n’est pas connu) :

v=3
7T
cos? (Z H(M - v)) he (M 1)
o ™

S(N) = sin;(:;/M) sin? | I &-n

- Rappelons également que nous avions noté :

T——+00

o= Y f(M;w)

Avec

(M —1).(M — 2).(M — 3)} ‘SmQ Gﬁp>
T
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Poursuivons le raisonnement de simplification par une remarque utile : dans
le cas particulier ou N = M (et x = 1), nous saurons directement si N (ou
M) est premier ou pas.

Dans le cas ou N = M (et z = 1), nous avons :

h=M-1

[T &V—h)=@1r-1)

h=1

Dans le cas particulier de N = M et x = 1, la formule f(M;x) est simplifiée.
Notons s(M) cette formule simplifiée de f(M;z) dans le cas particulier de
N = M et x = 1. Par la suite, nous appellerons la formule s(M) “la simplifiée
de variable M”. Nous obtenons alors :

sin ? ((M - 1)!.%)

S(M) = cos? (%H(M—v)) Sin2<l>
M

Ainsi,

s(M)=1siM P (la réciproque est vraie)
s(M)=0si M ¢P (la réciproque est vraie)

Et s(M) est définie pour tout M € N, M > 2.

Le complément de s(M) vaut 1 — s(M), notons le comme ceci :

s(M)=1-—s(M)
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Remarque 1 :

Nous voyons donc que s(M), la simplifiée de variable M, n’est qu'un cas
particulier de la fonction ay,. En effet, la fonction s(M) n’est autre que la
fonction ap dansle casou M = N et z = 1.

Remarque 2 :

La fonction s(M) ne possédant que 2 “états”, c’est-a-dire 0 ou 1, et étant

donné qu’élever a la puissance m (pour m € N, m > 1) ces 2 nombres revient
a effectuer une “opération neutre”, on peut donc conclure que :

Remarque 3 :

La fonction primorielle P, (qui est le produit de tous les nombres premiers
jusqu’a P, € P) s’écrit :

M=P,
#p, = ] (™)
M=2
Ou encore :
M=P,
#0, = ] 1+ (M —1).5(M))
M=2

Complément de réflexion :

Nous allons ici faire porter nos observations sur les nombres entiers consécutifs
et leur “propriété de primalité” (c’est-a-dire que chacun de ces nombres
entiers supérieur ou égale & 2 ne peut étre que premier ou composé). Notons
M eN, M >2et DeN, et prenons en considération le produit suivant :

=

—D
s(M+E)
E=0
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En faisant varier D sur N, nous observons que cette formule peut étre exprimée
principalement par 3 cas :

*Lecasou D =0:
E=D
[[ s+ E) = s()
E=0

Lecasou D =1:

E=D

[ s + E) = s(M).s(M +1)

E=0

Or, les nombres premiers 2 et 3 étant les seuls nombres entiers consécutifs,

il ne peut exister qu'un seul cas pour lequel s(M).s(M+1) vaut 1. Nous
avons donc :

Si M =2 (ce qui permet M + 1 = 3),
alors s(M).s(M +1) =1

SiM > 3 (lorsque M est premier, M + 1 ne l'est pas et inversement),
alors s(M).s(M +1) =0

* Lecasou D > 2:

= E=D
H (M + E)=s(M H (M+E)=0
E= E=

Comme cela implique un produit d’au moins 3 formules simplifiées dont
chaque variable est M, M +1 et M +2 (c’est-a-dire au moins 3 nombres
entiers consécutifs), et comme il n’existe pas plus de 2 nombres entiers
consécutifs qui soient premiers, ce produit ne peut valoir que 0.
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De maniere équivalente, nous pouvons établir d’autres égalités a partir
des ces remarques a propos de la propriété de primalité des nombres
entiers consécutifs.

D’apres le complément de s(M), nous avons :

1—s(M)=0 siMeP
1—s(M)=1 siM¢P

Evidemment, nous pouvons alors noter, pour tout M € N, M > 2 et
pour D e N, N >4

1:[ s(M) = 1:[ 1—s(M)]=0

Ou encore :

[T s(v) = J[ 11 = s(M)] =0
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3.2 Formule d’identité I(M)

Nous pouvons construire une formule “d’identité” (M) aux nombres premiers,
une formule qui vaut ce nombre premier lorsque M € P :

I(M) = M.s(M)
Ainsi,

I(M)=M  siMeP

I(M)=0 siM¢P
donc
P, =P,.s(P,)

3.3 Formule de comptage C(M)

Nous pouvons aussi construire une formule de “comptage” C(M) des nombres
premiers sur un intervalle, c’est-a-dire entre un nombre entier N; > 2 et un
autre Ny > 2, tel que Ny > Ny, puisque s(M) = 1 pour chaque valeur de M
étant un nombre premier. Notons :

Chon=3 st

M=N;
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3.4 Formule d’Impulsion Premiere J(M)

Partant du constat qu’il n’existe que deux nombres premiers qui soient des
entiers consécutifs (il s’agit de 2 et de 3), nous pouvons construire une
nouvelle formule que nous appelerons Impulsion Premiere de variable M
(impulsion & cause de la forme de son graphique) basée sur cette propriété.
Partant de la formule de s(M), si nous apportons des modifications dans ses
parenthese (en substituant la variable M & une modification), nous pouvons
élaborer une formule différente mais qui reste vraie.

La formule s(M) définie pour tout M € N, M > 2 est une formule qui vaut :

1 siMeP (la réciproque est vraie)
s(M) =0 siM¢P (la réciproque est vraie)

La formule s(2.M) définie pour tout M € N, M > 1 est une formule qui vaut :

s(2.M) =1 siM=1 (la réciproque est vraie)
s(2.M) =0 si M >1 (la réciproque est vraie)

Nous pouvons modifier cette formule de maniere a ce qu’elle soit définie pour
tout M € N, M > 0 en effectuant un “décalage” (de M vers M + 1) :

s(2.M+2)=1 siM=0 (la réciproque est vraie)
s2.M+2)=0 si M >0 (la réciproque est vraie)

Notons J(M) la fonction d’Impulsion Premiere de M telle que :
J(M) =s(2.M+2)
Nous avons donc

(M) = siM=0 (la réciproque est vraie)
(M) = si M >0 (la réciproque est vraie)
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Graphiques :

J(M
1 . .

01 2 345 6 78 910

Avec son complément (une fonction “carrée”) :

(M)

D—\C_z

—t———p——p—— e p—p——tp—i—3|\/]
01 2 345 6 78 910

Remarque 1 :

Comme pour la fonction s(M), la fonction Impulsion Premiere de variable
M ne possede que 2 états. Donc, pour m e N, m > 1 :

(]

(M)™ =T3(M)

nous pouvons meéme étendre le domaine de définition de m jusqu’a m = 0 si
et seulement si J(M) = 1.

De plus :
J(M)=3(M*) pour tout M € N, M > 0 et pour tout a € N, a > 1.

On peut étendre le domaine de définition de M aux entiers négatifs pour les
puissances de M paires. Ce qui peut encore étre noté :

J(M?*) est définie pour tout M € Z et pour tout a € N, a > 1.
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Remarque 2 :
Nous pouvons jouer sur les propriétés des nombres paires ou impaires lorsqu’on

les multiplie entre eux ou lorsqu’on les additionne pour obtenir d’autres
formules intéressantes :

M) = s(2.M+2)
= S[M 42+ s(M+2)]

En effet, grace aux propriétés des nombres paires et grace au fait que M = 2
soit le seul nombre premier paire, nous avons :

JM) = s(2.M +2

= s(2.d.M +2) (avec d € N, d > 0)
Et donc

(M) =73(2.M) =3F(4.M) =3(6.M) =3F(8.M) = ... = 3(2.d.M)

dont chaque graphique correspondant est le méme que celui de J(M). Remarque
identique concernant les multiples de nombres premiers notés ainsi :

JM) = s(2.M +2

= s(P,.M+ P,) (avec P, € P)

_ s[P,.(d.M + 1)]
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Ce qui ne serait plus le cas si nous changions quelque peu les parametres
dans les parentheses. En effet, voici quelques exemples de graphiques avec
des fonctions sensiblement différentes :

T(M) = s(2.M +2)

O — e ————— |\[]
01 2 345 6 78 910
5{2.m+3)

U'I 2 34 5 6 TB 91011121314
$(2.M+5)

;','_'\_/'_'\/'_'\/'\ AN

01 2 3456 728 91011121314

$(3.M+2)

| INVAVAVA AN

01 2 345 6 728 91011121314
5{5.M+2}

01 23455?3 91011121314

Ou l'on observe comme des ‘“raies spectrales” (rappelons que les segments
entre chaque point ne représente pas une continuité, ils sont tracés seulement
pour aider a la lecture des graphiques).
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Remarque 3 :

Comme nous avions établi (dans le paragraphe concernant la formule s(M))
que nous avions :

s(M).s(M+1)=1 siM =2
s(M).s(M+1)=0 siM >3

Nous sommes en mesure de donner une nouvelle égalité grace aux remarques
précédentes pour M € N, M > 2 :

s(M).s(M +1) =s(2.M — 2)

Ou encore, en effectuant un décalage (de M vers M +2), afin que les formules
simplifiées soient définies pour une variable M telle que M € N :

s(2.M +2) = s(M +2).s(M + 3)
Et comme :
J(M) =s(2.M +2)
Nous avons donc aussi (en reprenant P, € Pet d € N, d > 0) :
JM) = s(2.M +2)

= s[Pn.(d.M + 1)]
= s(M +2).s(M + 3)
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Remarque 4 :

Etant donné les égalités suivantes :

J(M) = siM=0

J(M) = siMeN, M>1
Donc

J(M)—-1= siM=0
IM)—1=-1 siMeN, M>1

Mais également

1-3(M)=0 siM=0
1—3(M) = siMeN, M>1

JM).GF(M)-1]=0 siM=0
JM).[3(M)-1]=0 siMeN M>1

Mais également

siM=0
siMeN M>1

Ce qui nous laisse un choix entre 2 possibliltés d’écrire cette égalité.
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Ceci permet d’établir une autre égalité :

=

=

=
|

=2

=
I

I(M).[3(M) —1] =0

D’ou nous déduisons :

1 1

1 - 1
l=san  s0p !

Ce qui nous donne 2 possibilités d’écriture symétriques. Cette formule sera
intéressante pour la suite (voir formule d’Impulsion Seconde J,(M) ).
Remarque 5 :

- De plus, il est encore possible de construire “I’'Impusion Premiere de la
simplifiée de variable M”, que 'on notera J[s(M)], ot nous avons :

Js(M)]=0 sis(M)=1
J =1 sis(M)=0

Ce qui correspond au “complément” de s(M), et donc :

J[s(M)] =1 —s(M)
- De méme, il est possible de construire “I'Impusion Premiere de I'Impulsion
Premiere de variable M” aussi, que 1'on notera J[J(M)], ou nous avons :

(M)] =0 st J(M) =1
1 st J(M) =0

ISKS
[
S
I

Ce qui correspond au “complément” de J(M), et donc :

I[F(M)] =1 —I(M)

Page 160 sur 514



- Et de manieére générale, pour toutes variables B (ou formules) ne pouvant
prendre que des valeurs “binaires” (0 ou 1), nous avons :

(B)=0 siB=1
(B)=1 siB=0

o

Ce qui correspond au “complément” de B, et donc :

JB)=1-B

Remarque 6 :

Cette formule J(M) sera utile pour la recherche d'une formule de restriction
R,, (voir la suite des travaux), mais son utilité apparaitra encore dans le
Chapitre II et dans le Chapitre IIT (Répartition exacte de nombre
premiers).
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3.5 Formule d’Impulsion Seconde J,(M)

Partant de la formule J(M), nous constatons aisément que lorsque nous la
multiplions par un nombre quelconque, le résultat est ce méme nombre pour
M =0 et le résultat est 0 pour M € N, M > 1.

Ainsi, si nous désirons construire une formule qui tend vers +oo pour M = 0
et qui vaut 0 partout ailleurs (c’est-a-dire pour tout M € N, M > 1), il nous
suffit de multiplier J(M) par une fonction qui tend vers 400 pour M = 0 et
qui vaut un nombre quelconque partout ailleurs (c’est-a-dire qui est définie
pour tout M € N, M > 1).

Les fonctions qui peuvent convenir pour cette fonction recherchée peuvent
étre par exemple :

1111

e >1
AN s A (avec m € N, m > 1)

(et, de maniere générale, pour tout polynome de variable M qui s’annulle
pour M = 0 et qui est défini pour M > 1, I'inverse de ce polynome)

et encore :

—InM

nony - 200 _ 308 _
(M) = —3(M).dnM = 3(M).In (_)
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et aussi :

P 7]
B i)
_ 1

1 3(11\4)

La formule J,(M) est donc définie pour M € N, M > 1. Le passage a la
limite est nécessaire lorsque M tend vers O :

J,(M)=0 pour M € N, M >1
lim J,(M) = +o0

La formule J,(M) est donc équivalente a la fonction 6 de DIRAC [2] si I'on
considere que le domaine de définition de M peut étre étendu a M € N.

Représentation graphique (tracée en rouge) :

O=2 N WHEOO - O W

M
01 2 345 6 7 8 910
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La représentation graphique de J,(M) peut étre assimilée au demi-axe des
abcisses (les valeurs des entiers positifs) et au demi-axe des ordonnées (les
valeurs des réels positifs).

Ici aussi nous pouvons construire la fonction complémentaire a J,(M), que
nous noterons ainsi :

%.(M) = 32(1M>

Nous voyons bien qu’une représentation graphique serait difficile car cette
fonction complémentaire vaudrait :

J,(M)=0 pour M =0,

lim 3,(M) = +o0 pour LeN, L >1
M—L

Donnons une idée approximative seulement grace a ce graphique (tracé en
rouge) :

J3x(M)
107

w0

= N W A OO~ O

>M
01 2 345 6 7 8 910
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Remarque 1 :

Rappelons que que les dérivées de 6 de DIRAC [2] apparaissent dans la
transfor-mation de Fourier des polynomes. Rappelons également que la
fonction § de DIRAC' est utile a I'analyse harmonique. Ceci implique qu’il
doit exister aussi un lien (mais seulement pour M € N) entre les nombres
entiers associés a la fonction J,(M), certains types de polynomes (certains
cas doivent pouvoir étre généralisés, notamment par la mise en évidence des
racines de ces polynomes par factorisation) et des cas particuliers correspondant
en analyse harmonique.

Remarque 2 :

Comme nous 'avons vu dans la partie concernant la formule simplifiée s(M),
il existe une symétrie intéressante dans I’écriture de cette formule puisque
nous avons :

- 1
J:(M) = 1— L
(M)

Et de maniere équivalente :

- 1
J.(M) = T
(M)
En effet :
) 1 . 1
lim —— = lim — =+
I(M)—1 300 1 I(M)—1 1-— 300
Et
. 1 ) 1
lim —— = lim —— =+
I(M)—0 300 1 J(M)—0 1— 300)
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3.6 Formule de restriction RM(N)

Grace aux propriétés de la fonction J(X) (la fonction Impulsion Premiere
de variable X), nous pouvons établir de nouvelles égalités et construire ainsi
de nouvelles fonctions utiles, comme nous le verrons d’ailleurs plus en détail
dans le Chapitre II.

Dans la premiere partie, nous recherchions une fonction de Restriction R,
(que nous ramenerons a RM (N)) définie ainsi :

RMIN}

b
4
1
0

1 siX =0
(X)=0 siX >0

Si nous remplacons X par un polynome qui peut s’annuller aux valeurs
qui nous intéressent, nous pourrons construire RM (N). En effet, pour des
polynomes de variable N ne donnant pour résultats que des valeurs entieres
positives, I'Impulsion Premiere de ce polynome vaut 1 lorsqu’il s’annule et
vaut 0 sinon. Ainsi, nous pouvons orienter nos recherches et construire la
fonction Impulsion Premiere d’un polynome telle que :

’J[ﬁ(l\f—k)] avec D € N

k=0
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dont les caractéristiques sont les suivantes :

Q
—
=
|
=

=1 pour 0 < N<D

Q
—
=
|
=

=0 pour N > D

et dont la représentation graphique est celle-ci :
k=D
JI1IN-Kk)]
o K=
0 $ $ $ e =) $ \—l—l-)N

01 D-1 D D+

La fonction “complémentaire” correspondante est équivalente a :

l—Jlﬁ(N—k:)] avec D € N

k=0

ol nous avons :

1-73 H(N—k) =0 pour 0 < N <D

1-3 H(N—k) =1 pour N > D
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D’ailleurs, la fonction d’Implusion n’étant définie que pour des valeurs entieres
positives, en élevant (N — k) au carré, nous pouvons méme ajouter que :

[k—+o00
l_I(N—k)2 =0 pour 0 < N <D
Lk=D+1

[}

[k—4o0
H(N—k)Q =1 pour N > D
Lk=D+1

[}

Et donc

k—+4o00 k=D
3[ 1T (N—k)2] :1-3[1’[(1\[—@]

k=D+1 k=0

La représentation graphique est celle-ci :

13“[H{m -k) ]

I— -—-—/ —N

01 2 D-1 D D+

C’est cette derniere fonction qui va nous permettre de construire RM(N).
En effet, d’apres le graphique du début de cette étude, nous constatons que
la fonction RM (N) peut étre considérée comme étant la somme de fonctions
plus simples et du méme type que la fonction que nous venons de donner.
Nous constatons que RM (N) s’obtient en ajoutant les unes aux autres les
fonctions suivantes (en étalant la somme sur plusieurs lignes) :

(voir page suivante)
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a>1:

b

M>2etaceN

Avec M € N,

Donc

Et donc
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De méme, d’apres 1’égalité que nous avions établi juste avant, nous avons :

RM(N) = Jlﬁw(N—k:)zl

I] &v- k;)2]

k=M

Et donc, nous avons aussi :

RM(N) = i J [ ﬁoo(N — k)2]

b=1 L r=nt
Remarque :

Théoriquement, nous aurions pu faire tendre a vers I'infini positif, afin d’obtenir
une fonction de restriction idéale en fonction de toutes les puissances de M
supérieures ou égales a 1 et valable pour tout N € N.

Poursuivons le raisonnement. D’apres les démonstrations effectuées en fin
de partie “2.2.5 Construction de la fonction «,,” (page 140) : pour
la fonction ays, les calculs ne sont plus nécessaires lorsque x > «j; car
f(M;x) =0. Ce qui signifie que pour la fonction RM(N) que les calculs ne
sont plus nécessaires lorsque :

1—3[:H1(N—k:)] =0
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C’est-a-dire, et pour des valeurs de a croissantes, deés que :
) b

: [’“Zﬁ“w . k>] .

k=0

Cela signifie encore que les calculs ne sont plus nécessaires des que :
k=Ma—1
[T &Ww-#k=0
k=0

Ce qui sous-entend finalement que les calculs ne sont plus nécessaires des que :

N est une des valeurs entieres de 'intervalle [0; M — 1].
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3.7 Equivalences de formules

Rappelons que

1 siMeP
s(M)=0 siM¢P

s(M) n’étant définie que pour M € N, M > 2.

Donc

M) = siM¢P

Et donc

MM 1 =(M—1)= (M —1).s(M) siMeP
MM 1 =0 = s(M) siM¢P

Or lorsque s(M) vaut 0, multiplier n’importe quelle fonction par s(M) donne
0 pour résultat. Pour conclure :

MM 1 = (M —1).s(M)

De la méme maniere, nous avons :

1= (1= M)
B M

s(M)

— (Ces dernieres formules sont intéressantes dans le sens ou elles peuvent
s’exprimer en fonction d’elles-mémes, c’est-a-dire en faisant référence a elles-
memes.

En appliquant le méme raisonnement a la fonction J(M), et pour une variable
“indépendante” de J(M), que nous noterons X, et telle que X soit un
nombre entier (remarquons que ce raisonnement est aussi valable si X est un
polynéme ne donnant que des valeurs entieres).
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Nous avons :
XIM) 1 = (X —1).3(M)
valable pour tout X € N, mais avec condition sur M pour un cas de X :
Si X =0, on doit avoir M = 0 (pour que J(M) # 0)
Cette derniere formule me parait plus intéressante que la précédente car :

Si X = 0, on doit avoir J(M) = 1 (donc M = 0) pour que 'égalité soit
respectée.

Si X =1, la valeur de J(M) (et donc de M) n’a pas d’importance dans le
calcul.

Si X > 1, I'égalité est respectée quelquesoit la valeur de J(M) (donc tout M).

Ou encore, en regroupant les conditions :
XIM) 1 = (X —1).3(M) avec J(M) = s(2.M + 2)
Pour X =0 et pour M = 0 seulement

Ou
Pour tout X e N, X > 1 et pour tout M e N, M >0

Donnons une représentation graphique du domaine de définition de cette
égalité pour une meilleure compréhension :

> X
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Cette égalité est respectée pour tout M et X étant repérés par des points
rouges.

Nous pouvons encore écrire :

SiM>0,onaX >0
SiM=0,ona X >0

— Ici aussi, cette formule peut étre écrite de maniere “auto-référentielle”
(c’est-a-dire que cette formule peut s’exprimer en fonction d’elle-méme), avec
auto-référencement sur J(M) :

Remarque : nous pouvons étendre le domaine de définition sur X a I’ensemble
des nombres réels avec la méme condition sur M (c’est-a-dire M = 0) lorsque
X = 0. Dans ce cas, I’axe des ordonnées est aussi I’axe de symétrie de cette
nouvelle représentation graphique. De plus, nous pourrions remplacer la
variable X par une fonction, avec la méme condition sur M (c’est-a-dire
lorsque M = 0) si la fonction s’annule.

Nous pouvons remarquer aussi aussi qu’en remplagant J(M) a droite de
I’égalité par la formule complete, nous pouvons procéder ainsi de maniere a
obtenir une formule qui “s’étend a l'infini” :

xoon_p xUN)

/'VM —
IM) X -1 X -1

Méme remarque sur la fonction complémentaire de J(M) :

X=3M)) g
1=3(M) = ————
D’ou
1 — 1 _
a) = 250
X
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Et comme :

1 - o X700 —1
o0 _
[ X1

I(M) =
Nous déduisons également :

In[1+4 X — X [1-300])

(M) —
I(M) In X
Ou encore :
_ xI(M)
’J(M):l_ln[1+X XU

In X

L’égalité étant conservée dans le cas ou X = M et sans condition sur M (et
forcément sans condition sur X), nous avons pour tout M € N, M >0 :

Remarque 1 :

Pour ’égalité que nous avions noté :

XIM) 1

J(M) % 1

Avec les condition suivantes :

Pour X =0 et pour M = 0 seulement

Ou

Pour tout X e N, X > 1 et pour tout M € N, M >0

Nous pouvons contourner ce probleme des conditions en interdisant par
exemple & X de valoir 0 (d’autres exemples peuvent étre trouvés, avec des

polynomes n’ayant pas de racines entieres). Partons de ce constat :

X+3(X)=1 siX =0
X4+3X)=X siX>0

Ot nous devons restreindre X tel que M € N, M > 0.
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Si nous reprenons la formule en la modifiant quelque peu avec ces nouvelles
données, nous avons :

(X + 3(X)]PM) —1
X +3(X)] -1

I(M) =
Ot désormais, X a été remplacé dans la formule par 'ensemble [X + J(X)]
qui ne peut jamais étre égale a 0, mais son domaine de définition doit étre

restreint.

D’autre part et plus largement :

Revenons a X € R. En effectuant un “décalage de symétrie”, c’est-a-dire
en faisant passer I’axe de symétrie par un autre point sur I’axe des abcisses,
nous obtenons des graphiques du méme type. En effet, en notant D une
constante telle que D € R et en modifiant 1égerement les notations ainsi :

(X — D)) 1
X-D-1

(M) =
Nous pouvons écrire :

Si X = D, on doit avoir la condition que M = 0 seulement.
Si X # D, toutes les valeurs de M € N, M > 0 sont possibles.

Graphiquement, le domaine de définition de cette égalité se représente comme
ceci :

M
. .

7 0
/ /////Z////K_;X
0 . D .

O = MW B

Ou l'axe vertical passant par le point D en abcisse est I’axe de symétrie du
domaine de définition.
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Cas particulier de X =2 et D =0 :
J(M) =2 1
Méme remarque sur la fonction complémentaire de J(M) :

1-3(M)=21-3(M)] -1

(M) = 2. <1 - ﬁ)

Et méme remarque pour s(M) (et pour sa fonction complémentaire) :

s(M) = 25(M)

Remarque 2 :
Nous aurions pu aussi noter :
(1—X)"M =1 - X.3(M) définie pour X € R — {1}

(& cause de la condition a respecter telle que (1 — X)) # 0 lorsque J(M) = 0)

Remarque 3 :

De maniere moins pertinente, nous avons :

M+3(M)=1 si M =0
M+3(M)=M  siM>0

Donc

M+ 3(M)]PM =[0+1]' =1 siM =0

[M 4+ 3(M)]P™M) = [M +0]° =1 siM >0
Et donc

M+ 3(M)PD = 1
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Meéme raisonnement et méme conclusion pour :

M) 1 3(M)

MIM) L 3(M)=0"+1= si M =0
M¥M) 4 3(M)=M°+0=1 si M >0

J(M) =1— MM

Ou encore :

M) =1 —3(M) =

[}

(M)
Et donc, pour finir :

I(M) + MM = [3(M) + M]P™M) =1

Remarque 4 :

Comme précédemment :

M—-3(M)=-1 siM=0
M—3(M)=M si M >0

Et donc

(M —3(M)]PM) = —1 si M =
[M —3(M))"™) =1 si M >0
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D’ou I'on déduit :

(M = S(MPOD = (=170

Remarque 5 :
De maniere identique, nous avons :

[M =+ 3(M)]1=200
[M £ 3(M)]|=200

siM=0

l—1
=M siM>0

Or,

M+3(M)=1 siM=0
M+3(M)=M siM >0
Et donc

[M £ 3(M)]|B=0D = M+ 3(M)

Ou encore, de maniere équivalente :

(M + I = (A7 — (a0

D’ou

1 — 3(M)). 1n[M + 3(M)] = [1 — I(M)]. In[M — 3(M)]

Ce qui constitue une nouvelle possibilité de donner 2 écritures “symétriques”.
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Remarque 6 :

Développement d’une formule :

Ce petit paragraphe va simplement nous servir a donner un moyen de développer
une formule du type :

(a — b)IM)
avec a et b € R, et avec la condition que (a —b) # 0 si I(M) = 0.
En notant :
(a—b)=X
Nous avons :
(a — b)7M) = XIM)
Or, nous avions noté au début de cette partie :
XIM) 1 = (X —1).3(M)
Donc
XIM) — (X —1).3(M) +1
Et donc

(a—0)"M =(a—b—1)3(M)+1
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Ou encore
(a—b)M) = (a —b).3(M) +[1 — T (M)]

Mais il existe d’autres égalités possibles si nous admettons des conditions
supplémentaires :

(a—b)M) = q.J(M) + (—b)*™) avec b # 0si J(M) =0
Ou encore :

(a —b)YM) = (=1)7M) [(—a) M) 4 b.5(M)] avec a £ 0si J(M) =0

Remarque 7 :

Dans cette partie de 1’étude, nous aurions pu quelquefois raisonner de la
méme maniere que pour J(M) mais avec s(M). En effet, nous pouvons
observer que la cohérence est respectée lorsqu’on remplace J(M) par s(M)
dans les formules de la “Remarque 27, de la “Remarque 67, et du
paragraphe précédent “Développement d’une formule” en respectant
les conditions préconisées a propos du domaine de définition des variables.

De plus, nous pouvons donner rapidement une autre équivalence permise par
la formule s(M) :

s(M) = (14 M)sM) — pps(M)

Remarque 8 :

Pour poursuivre avec la formule s(M) et d’apres ce que nous savons :
M) o ppO=sOD) — pp 4]

Et donc

M = MO o ppli—s(n] _ 4
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De méme que (en substituant (M — 1) a M, sauf dans les puissances) :
M = (M — 1)) 4 (M — 1)l1=s(D)]
Plus généralement, pour X € R* :
X = xXs(M) 4 x[t=s(M)] _ 1
Ou, pour X € R — {1} :
X = (X —1)sM) 4 (X — 1)0=s(1)]
Finalement, pour X et Y € R* :
X0 Ly =sOM] _ 1 = X s(M) + Y.[1 - s(M)]
Ou, pour X et Y € R—{0;1} :
XN Ly li=sOn0) _ | = (X — )0 4 (y — 1)li=s(1)]

Ce qui permet aussi d’écrire de maniere presque équivalente (le domaine de
définition est différent) que, pour X et Y € R — {1} :

X.s(M)+Y.[1 —s(M)] = (X —1)5M 4 (Y — 1)0=s(1)]

De maniere encore plus générale, nous avons aussi :

- Pour d € R et pour X et Y € R*:
XM gy U= _ g — (X —d+1).8(M)+ (Y —d+1).[1 —s(M)]
= s(M).(X-Y)+ (Y —-d+1)

- Pour d € R et pour X et Y € R—{0;d} :

XD 4 y=sOD] _ g — (X — q)*M) 4 (v — q)lt=s(D]

Page 182 sur 514



- Ce qui permet aussi d’écrire de maniere presque équivalente (le domaine
de définition est différent) que, pour d € R, pour X et Y € R — {d} :

(X —d)*™M 4 (v =)D — (X —d+1).s(M)+ (Y —d+1).[1 — s(M)]
= s(M)(X-Y)+ (Y —d+1)
Remarque :

Ces types de formules trouveront leur intérét dans les paragraphes qui suivent
directement celui-ci.

Autres équivalences de formules 1 :

Prenons en considération les formules qui suivent en notant M une variable
telle que M € N, M > 2 et P, un nombre premier constant supposé connu
tel que P, € P.

- lier cas :

P,.[1—s(M)]+ M.s(M) vaut toujours un nombre premier.
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- 2iéme cas :

MM = M siMelP
=1

MeM) siM¢P
Et
[P, —1].[1 —s(M)] =0 siMeP

Et donc
[P, — 1].[1 — s(M)] + M*™M)  vaut toujours un nombre premier.

Cette formule étant strictement équivalente a celle du lier cas.

- Exemple :
Pour P, = 2, nous avons :
P, [1—s(M)]+Ms(M)=2+ (M —2).s(M)
Ou, de maniere strictement équivalente :
[P, — 1.1 — s(M)] + M) =1 — s(M) + MDD
Ce qui est encore équivalent & :

(M —1)*M) 41
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Ou nous pouvons méme choisir de restreindre M a M € N, M > 3
pour obtenir tous les nombres premiers possibles puisque :

(M —1)*M 41 =M siMcP

Or, si M € P avec M > 3, cela signifie que “la formule vaut tous
les nombres premiers supérieurs ou égale a 3, c’est-a-dire tous sauf le
nombre 27”.

Et
(M —1)*M +1=2 siM¢P

Or,si M ¢ P avec M > 3, cela signifie que “la formule vaut seulement le
nombre 27, c¢’est-a-dire le seul nombre premier qui manque au domaine
de définition de M. Ce qui nous permet de faire la synthese :

(M —1)*M) 41 vaut toujours un nombre premier pour M € N,
M > 3.

De plus cette formule peut valoir n’importe quel nombre premier possible.

Autres équivalences de formules 2 :

Pour M € N, M > 2, soit d € N. 1l est possible de déduire que :

s(M)=0 siM¢P
s(M+d)=0 si(M+d)¢P
Et

s(M) =1 siMeP
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Et donc, d’une part :

s(M)+s(M+d) = siM¢Petsi(M+d) ¢P
s(M)+s(M +d) = siM¢Petsi(M+d) eP
s(M)+s(M+d) = siMePetsi(M+d) ¢P
s(M) +s(M +d) = siMePetsi(M+d) eP
Et donc, d’autre part

s(M).s(M +d) = siM¢&Petsi(M+d) ¢P
s(M).s(M +d) = siM¢gPetsi(M+d) el
s(M).s(M +d)=0 siMePetsi(M+d) ¢P
s(M).s(M +d) = siMePetsi(M+d) eP

* Par exemple :

Pour les nombres premiers jumeaux, nous avons M € P et (M +d) € P
lorsque d = 2. Nous avons dans ce cas :

s(M).s(M+2)=1
Ou

s(M)+s(M+2)=2

Autres équivalences de formules 3 :

- Dans le méme ordre d’idée que les 2 paragraphes précédents, notons M
une variable telle que M € N, M > 2 et soit d la différence entre 2 nombres
premiers. Si M € P et si M est le plus petit de ces 2 nombres premiers, alors
d’apres 1'énoncé, nous avons aussi (M + d) € P.

Nous pouvons alors écrire :

s(M)=s(M+d)=1 siMePetsi(M+d) eP

Et

s(M)=0 siM¢P
s(M+d)=0 si(M+d)¢P
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Soit P, un nombre premier constant supposé connu tel que P, € P et tel que
(Pn+ d) € P. Nous pouvons affirmer que la formule suivante :

s(M).s(M +d).[]M — P,] + P,

donne toujours un nombre premier qui se trouve étre le plus petit sur 2
nombres premiers dont la différence vaut d. En effet, puisque :

s(M).s(M +d).[M — Pn|+ Pn=M sis(M)=s(M+d)=1
Et
s(M).s(M +d).[M - P,|+ P, =P, si s(M) =0ousis(M+d)=0.

* Exemple 1 :

Pour d = 1, nous avons 2 nombres premiers connus dont la différence
vaut 1, il s’agit de P, = 2 et (P, + 1) = 3. Nous pouvons alors noter
que :

s(M).s(M +1).[]M — 2]+ 2

donne toujours un nombre premier qui se trouve étre le plus petit sur
2 nombres premiers dont la différence vaut 1. Comme 2 et 3 sont les
seuls nombres premiers a avoir cette différence, nous pouvons méme
ajouter que :

s(M).s(M+1).[M—2]4+2=2 quelquesoit M € N, M > 2
Cecl revient encore a écrire :

s(M).s(M +1).[M—-2]=0 quelquesoit M € N, M > 2
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* Exemple 2 :

Pour d = 2, nous sommes dans le cas des nombres premiers jumeaux.
Nous pouvons choisir 2 nombres premiers jumeaux connus, prenons
P, =3 et (P, +2) =5. Nous pouvons alors noter que :

s(M).s(M +2).[]M —3]+3

donne toujours un nombre premier qui se trouve étre le plus petit sur
2 nombres premiers jumeaux.

- De méme, nous pourrions encore étendre le raisonnement en considérant
des triplets de nombres premiers dont la différence entre le plus grand et
I'intermédiaire vaut d, et la différence entre I'intermédiaire et le plus petit
vaut aussi d. Avec P, un nombre premier constant supposé connu tel que
P, € P, tel que (Pn+d) € P et tel que (Pn + 2d) € P. D’apres les méme
notations, nous avons :

s(M).s(M +d).s(M +2d).[M — P,]| + P,

donne toujours un nombre premier qui se trouve étre le plus petit de ces 3
nombres premiers correspondant a l’énoncé.

Nous pouvons donner comme exemple 3 nombres premiers connus pour lesquels
d=2: il s’agit de P, = 3, de (P, +2) =5 et de (P, +4) = 7. Cela nous
permettant d’établir que :

s(M).s(M + d).s(M + 2d).[M — 3] + 3

donne toujours un nombre premier qui se trouve étre le plus petit de ce triplet
de nombres premiers et dont d = 2.

- Pour finir, nous pourrions encore étendre le raisonnement au-dela des
triplets de nombres premiers.
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Autres équivalences de formules 4 :

D’apres la méme fonction s(M) que précédemment (définie pour M € N,
M > 2) et pour D une variable définie pour D € N, D > 2, et au méme
titre que pour M, la fonction s(D) est la simplifiée de variable D (dont les
propriétés sont similaires a celles de la fonction s(M), mais pour la variable
D indépendamment de la variable M) :

M.s(M)=M siMelP

M.s(M) =0 siM¢P

D’ou

D—-MsM)=D-M siMelP
D—M.s(M)=D siM¢P
Donc

[D — M:S(M)]S D) = siD¢P
Donc
ﬁoo[D — M.s(M)]P®

M—+oco
I[ - Ms)™ =0 siDeP
M=2

Mﬁm[p —Ms(M]PP) = 1 siD¢P

M=2
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Et finalement, nous remarquons que ces égalités correspondent au contraire

de la fonction s(D) :

s(D) =1 siDeP
s(D)=0 siD¢P

D’ou
M —+00
I D - Ms(M)P™ =1 - 5(D)
M=2
Et donc
M—+o0
s(D)=1- [ [D—-Ms()PP
M=2

Parallelement a ceci, nous avons aussi le “polynoéme” :

: 7 5(D)
[[(D-p =0 siDeP
LpeP J

- - s(D)

[[(D-p =1 siD¢gP
LpEP i

s(D) = 1— [] [D-Ms()p®
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Nous pouvons remarquer qu’il n’est pas nécessaire de borner M de 2 a I'infini
positif si ’on considere qu’il existe toujours au moins un nombre premier entre

N et 2N.

Afin que s(M) soit toujours définie, notons N € N; N > 2. En effet, nous
pouvons constater que :

Pour N € N, N > 2, il existe toujours un nombre premier entre N et (2N —1)
(puisque 2N ne peut pas étre un nombre premier).

M=2N-1
[[ D-Msan)p™ = 0 siDePsurlintervalle [N; (2N — 1)]
M=N

H_ [D—Ms(M)PP) = 1 siD¢P

M=N

Ce qui correspond ici aussi au contraire de la fonction s(D) pour
D e [N; (2N —1)].

Nous pouvons donc écrire, pour D € [N; (2N —1)] :

:12_[1[17 — M.s(M)*®) =1 — s(D)

M=N
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Autres cas intéressant, un cas “binaire” :

“Simulation” de s(M) avec une variable B plus restreinte.

Soit B une variable ne pouvant prendre que les valeurs 0 ou 1 et J(B) la
fonction d’ITmpulsion Premiere (définie tel que précédemment) associée a la
variable B (précédemment, elle était associée a la variable M) , nous obtenons
pour J(B) toutes les valeurs possibles qui sont respectivement 1 et 0. Nous
avons ceci :

J0)=1

J(1)=0

D’ou
JB)=1-B

(Ou3J[3(B)] = B, ou encore J(1 — B) = B)

Avec la variable B, “toutes” les valeurs possibles de s(M) (1 ou 0) sont
atteintes. Or, pour X € R — {1} :

XB) 1
I(B) =
X -1
Done
X0-8) _1
1-B = — — —
X -1
1—-X0-B) 4 (X —1
= B = all )
X -1
X — xX(=8)
=B = — =
X -1
1-
=B = 1_Xi
X

Avec toujours un auto-référencement de cette fonction sur B.
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Pour compléter, J(B) et B ne possédant que 2 “états” binaires, ces 2 variables

peuvent étre échangées dans la formule suivante :

X3B) 1

J(B) ~ 1

nous pouvons alors écrire de maniere équivalente :

XP-1

B
X -1

(avec B=15si X =0)

Et en utilisant la formule précédente :

1 — L.

XB

B = ——%

X

1— L XE 1
= X2 =

-+ X -1

1
B _

Dans le cas particulier ou X =1 — B, nous avons :

XB -1
B = ~ 1 (ici, I’égalité est bien respectée méme lorsque X = 0)
(11— B)P —1
- (1-B)-1

=-B> = (1-B¥?-1
=-B = (1-B*?-1
=B = 1-(1-B)?*

De maniere moins pertinente, pour X et d € N* et pour X # d, une autre

formule est possible :

B.(X —d)

; P S—
BX—d
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Remarque sur le cas “binaire” :

Nous pouvons reconstruire toutes les tables de vérités définies par 'algebre
de BOOLE [3] grace a la formule de J(M). Par exemple en prenant 2 fois
cette formule de J(M) et en les dissociant comme si elles étaient de simples
variables. Notons ces 2 nouvelles variables J(M;) et J(Ms), et notons L une
“porte logique” a 2 entrées J(M;) et I(M,).

* Exemple 1 :
L =73(M;).3(Ms) (symbole “.” : ET de I'algebre de BOOLFE)

dont la table de vérité est la suivante :

| 3(My) [I(My) [ L]

0 0 0
0 1 0
1 0 0
1 1 1

Ce qui correspond a une porte logique “ET” en algebre de BOOLE. Dun
point de vue strictement mathématique (c’est-a-dire, maintenant, en écriture
mathématique), nous pouvons écrire :

L =73(M;).3(My)

* Exzemple 2 :
L =73(M;)+3(M,) (symbole “ + 7 : OU de 'algebre de BOOLE)

dont la table de vérité est la suivante :

I(My) [I(My) [ L]

0 0 0
0 1 1
1 0 1
1 1 1
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Ce qui correspond a une porte logique “OU” en algebre de BOOLE. D’un
point de vue strictement mathématique (c’est-a-dire, maintenant, en écriture
mathématique), nous pouvons écrire :

L =3(My) +3(Ms) — [3(M).3(Ms)]
Ce qui revient également a écrire :

L = [3(My) — 3(My)]? + I(My).3(Ms)
En effet, puisque nous avons :

[3(M;y) — 3(My))? + 3(Mi).J(Ms) = J(M:)? + I(Ms)* — 3(M;).3(Ms)
Or,

J(M)™ =3(M) pour m € N, m > 1.

[3(My) = 3(My)]? 4+ T(My).3 (M) = 3(My) + I(Ma) — 3(M;).3(My)

Nous pouvons remarquer que nous aurions pu prendre d’autres “variables”.
Par exemple, il en aurait été de méme pour les variables s(M;) et s(Ma)
(possédant les mémes propriétés que s(M) ) a la place des variables J(M)
et J(Ms) (respectivement). Ce qui permet de constater un lien possible
entre les tables de vérité de l'algebre de BOOLE et la formule s(M) ou la
formule J(M), et donc un lien avec les propriétés des nombres entiers. Une
interprétation entre l'algebre de BOOLFE et les propriétés des nombres entiers
(propriété de de primalité ou autres propriétés) est donc possible.

Remarque : Une interprétation entre I'algebre de BOOLE et les propriétés
d’autres nombres est aussi possible grace a toutes fonctions dont les résultats
ne peuvent etre que 0 ou 1.

* Sur le méme principe, poursuivons les correspondances avec d’autres exemples.
Soient B; et By deux variables binaires (ne pouvant prendre pour état que 0
ou 1).
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* Exemple 3 :
L=73(M) avec M = Bj.

Comme nous 'avons déja vu au cours de ce paragraphe :

3B)=1-B
Donc
j(Bl) == 1 - Bl

Ce qui correspond a une porte logique “COMPLEMENT” en algebre de
BOOLE (c’est-a-dire que la variable binaire de sortie est complémentaire a
la variable binaire d’entrée).

* Exemple 4 :
L =73(M)avec M = B;.B, (symbole “.” : multiplication en mathématiques)

dont la table de vérité est la suivante :

(B, [B, [ L=3(B.B) |
0 0 1
0 1 1
1 0 1
1 1 0

Ce qui correspond a une porte logique “NAND” (c’est-a~-dire NON ET)
en algebre de BOOLE. D’un point de vue strictement mathématique, nous
pouvons écrire :

J(By1.By) =1 —(B1.Bs)
Remarquons que nous avons aussi (d’autres exemples sont possibles) :

j(BlBQ) = 8(2 + Bl + Bg)
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Il est possible de généraliser cela en changeant de variable. A la place de B;
et de By, prenons respectivement M; € N, My > 0 et My € N, My > 0. Nous
pouvons noter que :

J(M;) =1 pour M; =0

J(M;) =0 pour M; > 1

J(Ms) =1 pour My =0

J(My) =0 pour My > 1

Donc

J(My) +3(My) — I(My).T(Ms) =1 pour M; =0 et pour My =0
J(My) + T(My) — I3(My).3(My) =1 pour M; = 0 et pour My > 1
J(My) +3(My) —3(M).3(My) =1 pour M; > 1 et pour My =0
J(My) + T (My) — I(My).3(M3) =0 pour M; > 1 et pour My > 1
Or,

J(My.My) =1 pour M; =0 et pour My =0

J(M;.My) =1 pour M; =0 et pour My > 1

J(My.My) =1 pour M; > 1 et pour My =0

J(M;.Msy) =0 pour M; > 1 et pour My > 1

D’olt nous déduisons la formule générale :
J(My.My) = 3(My) + T(Msy) — T(My).3(Ms)

De plus, a partir de I’équivalence J(B;.By) = 1 — (B1.Bs) , nous pouvons
donner une derniere écriture généralisée :

J(My.My) = 1 — (M) M (M) 5M2)
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* Exemple 5 :
L =73(M) avec M = By + By (symbole “ 4+ 7 : addition en mathématiques)

dont la table de vérité est la suivante :

| B1 | By | L=3(B1 + B,) |

010 1
0|1 0
110 0
1|1 0

Ce qui correspond & une porte logique “NOR” (c’est-a~-dire NON OU) en
algebre de BOOLE. D’un point de vue strictement mathématique, nous
pouvons écrire :

J(By + By) = 2BvB) _ (B 4 By)
== 1 - (Bl + BQ) -+ (BlBQ)

Or, nous pouvons également remarquer que (en algebre de BOOLE) :

| 3(B1) | 3(By) | L=3(B1+ By) |

0 0 1
0 1 0
1 0 0
1 1 0

D’un point de vue strictement mathématique, nous pouvons déduire :
J(By + By) = 3(By).3(B3)
Remarquons que nous avons aussi (d’autres exemples sont possibles) :

J(B1+ By) = s(7+ By + Bs)
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Il est possible de généraliser cela en changeant de variable. A la place de B;
et de By, prenons respectivement M; € N, My > 0 et My € N, My > 0. Nous
pouvons noter que :

J(M;) =1 pour M; =0

J(M;) =0 pour M; > 1

J(Ms) =1 pour My =0

J(My) =0 pour My > 1

Donc

J(My).3(My) =1 pour M; =0 et pour My =0
J(My).3(My) =0 pour M; = 0 et pour My > 1
J(My).3(My) =0 pour M; > 1 et pour My =0
J(My).3(Ms) =0 pour My > 1 et pour My > 1
Or,

J(My + My) =1 pour M; = 0 et pour My =0
J(M;+ M) =0 pour M; =0 et pour My > 1
J(My+ M) =0 pour M; > 1 et pour My =0
J(M;+ M) =0 pour M; > 1 et pour My > 1

D’olt nous déduisons la formule générale :
J(My + Ms) = 3(My).3(Ms)

De plus, a partir de I'équivalence J(By + By) = 1 — (By + Bs) + (B1.B2)
nous pouvons donner une derniere écriture généralisée :

J(My + My) =1 — (M) M) — (My)7M2) 4 (M,)7 M) (M) T (M)
Ce qui revient également a écrire :

I(My+ M) =1 — (M) — (My) MR — (M) ) (M) XM
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En effet puisqu’en développant les crochets élevés au carré, nous avons a
traiter (pour Mj, le principe étant le méme pour My) :

(Ml)Z.j(Ml)

J 1 pour M; =0
J(M;) =0 pour M; > 1

(Ml)Q.j(Ml) _ (Ml)ﬁ(Ml) =0 pour M; =0
(M)2300) = (M50 = 1 pour M; > 1

Ce qui permet d’expliquer 1'égalité donnée sous les 2 formes précédentes.

Remarque importante :

D’apres le calcul propositionnel “classique”, il est possible de former toutes
les propositions a partir d’'une unique porte logique tel que la porte logique
NOR, ou bien a partir d'une unique porte logique tel que la porte logique
NAND. Ainsi, le calcul propositionnel classique devient interprétable par
J(M) (ou par une formule similaire a s(M) ) et les propiétés des nombres
représentées par la variable M. Cela signifie que toutes les propositions du
calcul propositionnel classique peuvent étre formées a partir de la formule
J(M) tel que M = By + By ou tel que M = By.Bs.

Des correspondances peuvent étre établies entre des formules ne pouvant
prendre comme valeur que 0 ou 1, et des énoncés (en attribuant des valeurs
de vérité tel que 0 et 1). Quelques cas sont développés dans la 17 partie
du Chapitre V.
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Derniere remarque sur des cas particuliers :

Rapidement, dans le cadre de 'utilisation du nombre imaginaire“:” d’EFULER
(rappelons que “i = +/(=1)"):

ei.ﬂ.J(M) — (_1>3(M)
= 1-23(M)
= sin [(—1)3(M).z]
2
Avec
(—1)M) = 1 siM =0
(—1)°™M) =1 siM>0et MeN
Ou bien,
ei.w.s(M) _ (_1>5(M)
= 1—2.5(M)
— sin|(—1 s(M)_Z}
sin [( ) 5
Avec
(—1)sM) = 1 siMeP
(=1)sM) =1 siM¢Pet MeN, M>2
Ou encore :
et msM/2 = (_1)s(M)/2 — 4 (un imaginaire pur) si M € P

et s/ — (_1)s(M)/2 = 1 (un réel pur) si M ¢ Pet M € N, M > 2

Nous pouvons ainsi “séparer” les nombres entiers sur 2 axes : les nombres
premiers sur I’axe des nombres imaginaires, et les nombres entiers non premiers
sur I’axe des réels.
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3.8 Autres formules intéressantes

Voici encore, exposées dans cette sous-partie, quelques formules liées aux
nombres premiers qu’il est encore possible d’établir. Certaines pouvant
permettre de réduire la longueur des calculs dis a la factorielle ou dis a
un produit de nombres entiers consécutifs sur un intervalle donné.

La sous-partie “3.8.5 Nombres factoriels, formule simplifiée s(M) et
divisibilité” (page 220) montre qu’il est possible de simplifier les calculs de
formules telles que s(M).

La sous-partie “3.8.6 Formule f(M;x), puissance et divisibilité : Formule

D(N) généralisée” (page 225) donne méme une généralisation de la formule
D(N).

3.8.1 Nombres factoriels et divisibilité par Pn

Sachant que P,, € P et que (d’apres les notations de la partie “2 Démonstration
compléete” page 52) :

(Avec wy un nombre entier, cela signifie [(P, — 1)! 4 1] divisible par P,).
D’ou :

(P,— 1) +1-P, = P,w, —P,

= P,.(w —1) (c’est-a~dire encore divisible par P,)
Mais nous avons aussi :
(P,—1)!'+1-P, = (B,—1D)!'—=(P,—1)

= (P = D[P =2)] = (P - 1)
= (P —1).[(P,—2)! —1]

Page 202 sur 514



Donc

(P, —1.[(P,—=2)!—=1] = P,.(w; — 1)
Et donc

(P, —1).[(P,—2)!—1] est divisible par P, puisque P,.(w; — 1) I'est aussi.
Or, dans un produit de 2 termes (en l'occurence (P, — 1) et [(P, — 2)! — 1]
sont ici ces 2 termes), ’ensemble est divisible par un nombre si au moins I'un

des 2 est divisible par ce nombre. Comme (P, — 1) n’est pas divisible par
P,, [(P, —2)! — 1] lest forcément.

1*"¢ conclusion :

(P, — 2)! — 1] = Py.w

(w1_1)>
(Pn_l)

Et donc (P, — 2)! — 1] est divisible par P,.

(Avec wy un nombre entier tel que wy =

En arithmétique modulaire, cela s’écrit :

(P,—2)!—=1]=0 (mod P,)

Poursuivons le raisonnement :

Soit m € N, et d’apres les notations précédentes, développons la formule
suivante :

(P, =2)!141].[(P,—2)!m D —1] = (P,—2)!0" —(Pn—2)!4+(Pn—2)1m=1—1
D’ou

(P,—2)!I" —1 = [(P,—2)!+1].[(P,—2)!"= ) —1]4 (P, —2)!— (P, —2)!(m~1)
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Donc

(P, —2)!1m) —1
= (P, = 2)! + 1.[(P, — 21t~ — 1] — (B, = 2)L[(P, — 2)1m=2) — 1]

Or, pour m = 2, nous retrouvons notre expression de départ a droite de
I’égalité :

(P, —2)! —1] qui est divisible par P,,

ce qui implique ensuite tous les cas suivants pour m (le fait que la formule
soit valable pour un cas la rend valable pour le cas suivant, et ainsi de
suite pour chaque cas suivant). En effet, il faut observer (P, — 2)!(m~1
et (P, —2)!"=2) qui permet d’étendre le raisonnement & tous les autres cas
de m (en incrémentant d’une unité successivement et a U'infini la puissance
de (P,—2)!). Le premier membre de ’égalité étant divisible par P, implique
que le second le soit aussi.

2eme conclusion :

Le cas m = 1 venant d’étre traité dans la “1%"¢ conclusion”, nous pouvons
maintenant conclure que :

(P, —2)!"™ — 1= P,.wy (Avec wy un nombre entier)
Et donc [(P, — 2)!™ — 1] est divisible par P,.
En arithmétique modulaire, cela s’écrit :
(P, —2)"—=1]=0 (mod P,)
Si nous considérons que 0 fait partie des multiples de P,, nous pouvons alors
étendre le domaine de définition de m a m € N, m > 0. En effet, puisque

pour m = 0 (et donc wy = 0), ’égalité est bien respectée.

Tout ceci sous-entend que, pour les congruences, il est possible de réduire les
calculs utilisant les nombres premiers dans les factoriels (nous sommes passés

de (P, — 1)l 'a (P, —2)! ).
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Complément :
En supposant que P, ne soit pas connu, en notant M une variable qui
représente ce nombre inconnu, en remplacant P, par M dans la formule,

pour M € N, M > 2, nous avons :

- Si M € P, le méme résultat que précédemment, c’est-a-dire :

M —2)I™m 1
% =Wy + i (Avec wy un nombre entier)
Donc
M —2)I™m
sin2 (W%) = sin2 (%)
Et donc :
o (M —2)I™
sin (W.—M -,
sin 2 <1>
M

- Si M ¢ P, cela signifie que M est un nombre composé, notons :

Avec Py, P, , P35, ... et P, € P, avec P, < P, < P; < ... < P, et avec au
moins 2 des termes «;, > 1 (en rappelant que pour M défini ainsi, nous avons
nécessairement P, < M) :

M = Plal.Pgaz.Pgas...Pnan

En développant, et comme (M — 1) ne peut pas étre un de ces nombres
premiers, nous retrouvons forcément tous les facteurs premiers de M dans
cette formule :

(M = 2)I™ _ [(A Py Py . PO) k"
M M

Ou kg est un nombre entier qui représente les nombres que 1’on ne retrouve
pas dans la décomposition de M en produit de facteurs premiers. Le résultat
de cette formule ne peut donc étre qu'un nombre entier puisque le numérateur
contient I'intégralité des facteurs premiers de M et de leur puissance respectives,
ce qui est égale a M, c¢’est-a-dire le numérateur.
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ATTENTION :

Ceci n’est pas valable dans un seul cas, c’est le cas de M = 4, le défaut
évoqué dans la partie démonstration, pour les mémes raisons, nous devons
donc restreindre m tel que m € N, m > 2.

Revenons en au cas de M ¢ P, cela signifie donc que :

M —2)Im
% =k (avec k; un nombre entier)
D’ou
o (M —2)I™
~—— =0
sin (77 A
Et donc :
sin? (7 —(M m
. i L
sin 2 <l>
M

Ce qui est strictement équivalent a la formule s(M), pour M € N, M > 2 et
pour m € Nym > 2 :

sin 2 (w.—(M ;)!m)

n? (1)
S (M

Ce qui ne permet de réduire les calculs que sensiblement.

s(M) =

Remarque :
D’apres les démonstrations du complément, nous aurions pu nous servir

des résultats concerant cette formule pour élaborer la formule D(N) de
décomposition d'un nombre entier en produit de facteurs premiers.
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3.8.2 Produit de nombres factoriels et divisibilité par
Pn

Soit P, € Pet a € N tel que 1 < a < P,, nous pouvons écrire ceci :

o.(P,—1)! = 0.P,.(P,—2)!—11.(P, —2)!
(P, —2)! = 1.P,.(P, —3)! =2L.(P, — 3)!
21.(P, = 3)! = 2L.P,(P,—4)!—=3L(P, —4)!
3.(P,—4)! = 3l.P,.(P,—5)!—4.(P,—5)!
4\.(P, —5)! = 4l.P,.(P,—6)!—5.(P, —6)!
Et de maniere générale, nous pouvons écrire :
(a—D(P,—a) = (a—1L(P,—a).(P,—a—1)!

= (a—1.P,.(P,—a—1)!—al.(P,—a—1)!

Nous avons donc :
a.(P,—a—1)!=(a=D.P.(P,—a—1)!—(a—1)L(P, —a)!
D’apres le théoreme de WILSON [1] :

(P, — 1) =Pw —1 (avec w; un nombre entier)
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Et donc

0L(P, — 1)!

11.(P, — 2)!

21.(P, — 3)!

31.(P, — 4)!

AL(P, — 5)!

Pn.wl -1

0LP,.(P, — 2)! — 0L(P, — 1)!
P, [01.(P, —2)! —wy] + 1

1.P,.(P, — 3)! — 11.(P, — 2)!
P 11.(P, = 3)l —01.(P, — 2)l +un] — 1

21.P,.(P, — 4)! — 2.(P, — 3)!
P [2.(P, — 4)! = 11.(P, — 3)! + 01.(P, — 2)! —wy] + 1

31.P,.(Py — 5)! — 3L.(B, — 4)!
P [31.(Py — 5)! — 2L.(P, — 4)l + 11.(P, — 3)! — 0L.(P, — 2)! + wy] — 1

Le signe de w, dans les crochets et de “ 17 a I'extérieur des crochets dépend
directement de la parité de a. Et de maniere générale, comme nous avions :

al.(P,—a—1)!'=(a—D.P.(P,—a—1)!—(a—1)L.(P, —a)!

Nous avons donc aussi (en substituant (a — 1) a a) :

(a—1(P,—a)!=(a—2)\.P,.(P,—a)!l — (a—2)\.(P, —a+1)!

Or, en substituant (a — 1) a a dans ’égalité précédente, nous obtenons une
nouvelle égalité pour les derniers termes de cette égalité :

(a—2)L(Py—a+ 1) =(a—3).Po(Py—a+ 1) — (a—3).(P —a+2)

En remplagant (a — 2)!I.(P, — a + 1)! dans l'avant derniere égalité par la
derniere égalité que nous venons d’obtenir, nous déduisons :

(a —D(P, —a)!
=(a—2)L.Py.(P,—a)! = (a—=3).Py.(P,—a+ 1)+ (a—3).(P, —a+2)!
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En substituant (a — 1) & a dans 1’égalité de
(a=2).(P,—a+1)!

Nous trouverons une nouvelle égalité qui remplacera une fois encore les
derniers termes, et en agissant ainsi jusqu’au tout dernier terme de la somme,
nous pouvons déduire ce qui suit :

(a—D(P,—a) = (a—2)LP.(P,—a+0)—(a—3).P,.(P,—a+1)!
+(a—D.P.(P,—a+2)!—(a—5)L.P,.(P, —a+3)!
(@ —6).Py.(Py—a+4) — (a—T).Po(Py —a+5)!
+...
+a—2-b0.(P,—a+b+1)!

Le dernier terme de la somme étant atteint lorsqu’il vaut 0!.(P, —1)!, ¢’est-a-
dire lorsque b = (a—2) (implicitement b, est un nombre entier), donc lorsque :

(a—2—b)L(P,—a+b+1)!=0L(P,—1)!

Le signe de ce dernier terme dépendant du nombre “d’égalités” dont nous
aurons eu besoin pour 'atteindre, ce qui dépend directement de la valeur de
a. En effet, si a est paire le dernier terme sera négatif, si a est impaire, le
dernier terme sera positif (I’exemple le plus simple étant donné pour a = 1).
Comme 'avant dernier terme est du signe contraire du dernier terme :

(a—1D)\.(P,—a) = (a—2).Py.(P,—a+0)—(a—3).P,.(P,—a+1)!
+(a—4).Py.(Py,—a+2)! — (a —5).Py.(P, —a+3)!
+(a—6).P,.(P, —a+4)! — (a —T).P,.(P, — a+5)!
+...

—(=1) @V oLP,.(P, —2)! + (-1 D 0l.(P, — 1)!
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Sachant que :
0L.(P,— 1) =P,w — 1
Nous avons donc
(—=1)eV0(P, — 1) = (=1)@ V. P aw; — (—1)

Nous pouvons alors déduire :

(a— (P, —a)l = P.[(a—2).(P,—a+0)l —(a—3)(P,—a+1)
+Ha—H(P,—a+2)!—(a—5)(P, —a+3)!
+(a—6).(P, —a+4) —(a—7)(P, —a+5)
+...

— (=D Vol (P, — 2! + (=1) @ V] — (=1)@ Y

Et donc, en vue d'une généralisation (précisons que ce qui suit étant valable
seulement si a € N tel que 2 < a < P, car pour le cas de a = 1, nous avons
directement 0!.(P, — 1)! = P,.w; — 1), pour 2<a < P, :

(a—1)(P, —a)!
b=(a—2)
=P, ( 1)(‘1—1) wy + Z (—1)b,(a -2 — b)!,(Pn —a+ b)[ _ ( 1)((1—1)
b=0

D’ou 'on déduit la divisibilité :
(a—DI(P, —a)! + (—=1)la=D est divisible par P,.
En arithmétique modulaire, cela s’écrit :

(a—D(P, —a)l+ (=1 =0 (mod PB,)
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Cas particulier :

P,+1 : : N
Dans le cas oul a = % et avec P, impaire seulement (c’est-a-dire
P, > 3), nous avons :
pP,—1 0
(a—DL(P, —a)! + (=1)eD = (T) 12 4 (—1)(%)

D’ou

P, -1 1 o
(T) 12 4+ (—1)(%) est divisible par P, (avec P, > 3).
En arithmétique modulaire, cela s’écrit :
P, -1 1

P, +1 ) .
i permet de réduire le plus possible les calculs

Remarquons que a =

de manieére a ce que les valeurs résultantes de la factorielle (c’est-a-dire

P, —
< 5 I') solent au minimum : pour ce cas, les calculs sont optimisés.
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3.8.3 Puissance de nombres factoriels et divisibilité par
Pn

Sachant que P, € P et que :
(P, —1!'+1=PF,w
(Avec wy un nombre entier, donc [(P, — 1)! + 1] divisible par F,).
Notons :
X =(P,—1)!
Nous avons :

(P, —D+1=X+1=P,u

Démarche :

Pour m € N, toute expression de la forme X peut s’écrire :

X?2a si m est paire (c’est-a-dire m = 2a)
ou
X (2a+1) si m est impaire (c’est-a-dire m = 2a + 1)

Cas ou m est paire :

X% 1 =X, (XD 1) — (X +1)

Cas ou m est impaire :

Xt 4] = X (X2 — 1)+ (X +1)
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Raisonnement :

- D’apres les égalités des 2 cas m paire et m impaire, nous pouvons réécrire
d’une part pour le cas de m impaire :

X 4] = X (X2 -1)4+ (X +1)
XX (XD 1) - (X 4+ 1]+ (X +1)

Ou encore,
X @a+1) 4 | = ya+D)-1] 4 1
Et
XRED-10 4 = XX (XD 41) — (X +1)]+ (X +1)

Pour a = 0, nous retrouvons notre expression de départ (X + 1) qui est
divisible par P,, ce qui implique ensuite tous les cas suivants pour a impaire
(le fait que la formule soit valable pour un cas la rend valable pour le cas
suivant, et ainsi de suite pour chaque cas suivant, il suffit ici de comparer
(a + 1) dans le membre de gauche a a dans le membre de droite pour s’en
rendre compte directement). En effet, il faut observer X 2@+~ qui permet
d’incrémenter d’une unité successivement et a l'infini la puissance de X, ce
qui étend le raisonnement a tous les autres cas de a impaire.

- D’apres les égalités des 2 cas m paire et m impaire, nous pouvons réécrire
d’autre part pour le cas de m paire :
X% 1 = X(X®D4p1)—(X+1)
= X[X.(X@ 1)+ (X +1)] — (X +1)
Ou encore,
X2t 1= X [X.(X* 1)+ (X+1)] - (X+1)
Pour a = 0, I'expression du membre de droite est divisible par P,, ce qui

implique ensuite tous les cas suivants pour a paire (le fait que la formule soit
valable pour un cas la rend valable pour le cas suivant, et ainsi de suite pour
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chaque cas suivant, il suffit ici de comparer (a+ 1) dans le membre de gauche
a a dans le membre de droite pour s’en rendre compte directement). En effet,
il faut observer X2(*1) qui permet d’incrémenter d’une unité successivement
et a l'infini la puissance de X, ce qui étend le raisonnement a tous les autres
cas de a paire.

Conclusion :

Nous pouvons regrouper ces 2 cas en un seul. Comme nous avons noté
X = (P, — 1)!, nous pouvons généraliser ainsi :

Pour tout m € N (et en admettant que 0 soit divisible par P,, puisque le

résultat de — donne un nombre entier qui vaut 0),
(P, — 1)I™ 4 (—1)(m+1) est divisible par P,.

Ou encore (ce qui suit est strictement équivalent) :
(P, — D™ —(=1)™ est divisible par P,.

En arithmétique modulaire, cela s’écrit :

(P, — 1)I" — (—1)™

0 (mod P,)
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3.8.4 Puissances de nombres factoriels contenant une
puissance

Nous avions noté :
Enazt = Pn.wg -+ (-1):6
pour tout P, € P, pour tout z et t € N tels que x > 1 et x > 1, et avec wg

un nombre entier. Or,

h=(P,*—1)

I[ &P —n

h=1

(Pnz 1 ) = Enat

n

(un nombre entier non divisible par P,)

Nous allons maintenant nous demander ce qu’il en est de la divisibilité par
P, pour (g,,.:)" avec m € N, m > 0, &, ., possédant toutes les propriétés
vues précédemment. Comme dans la partie “2 démonstration” (page 52),
nous allons simplifier les résultats pour alléger ’écriture :

(gn,x,t)m = [Pn.w6+(_1)x]m
= (Powe).f(Ppwg) + (—1)@™

En notant (wg).f(FP,.ws) = w (avec w un “nombre entier polynomiale” en
fonction de P, et de wg, tel que défini au début du paragraphe “Suite 2 de
I’étude de (P,” — 1)!”) de la sous-partie “2.2.2 Début de I’étude” page
62), nous obtenons :

(Enai)™ = Ppw + (—1)@m
Et donc

(Enad)™ — (=1)@™ = P, w

En arithmétique modulaire, cela s’écrit :

(Enas)™ — (=1)=m =0 (mod P,)
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* Remarque 1 :

Si nous considérons que 0 ne fait pas partie des multiples de P,, nous devons
alors restreindre le domaine de définition de m a m € N, m > 1.

Si nous considérons que 0 fait partie des multiples de P,, nous pouvons alors
étendre le domaine de définition de m a m € N, m > 0. En effet, puisque
pour m = 0 (et donc w = 0), 'égalité est bien respectée.

* Remarque 2 :

Nous avons noté

h=(P,"—1)

IT &rr—n

h=1
Enat = PT_1
A7)

Dans le cas partipulier de x =1,t =1 et m = 2, nous pouvons retrouver la
formule de MINAC-WILLANS [1] car :

(5n,1,1)2 = (Pn — 1)'2

= P,w+1
(571,1,1)2 . 1
p_ UTH

D’ou
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Donc

. 9 (€n,1,1)2
sin |:7T.—Pn }

o T
w(7)

Et donc la formule de MINAC-WILLANS -

L[ (P —1)
sin {ﬂ.—Pn

o T
w(7)

* Remarque 3 :

=1

=1

Le fait d’élever la factorielle au carré permet d’éliminer le probleme de
P, = 4 lorsque z = 1. En effet, lors du “(développement 2)” de la
sous-partie “2.2.2 Début de I’étude” (page 62), nous avions soulevé et
résolu ce probleme. De la méme maniere, nous pouvons encore ici effectuer
une vérification des conditions nécessaires pour éviter ce probleme.

Nous voulons :

Donc

P*—1 S
P 1 r|l.m>x

ici, pour & = 2, nous avons (apres simplifications) :

2
P, >1+—
m

Ce qui est effectivement le cas si m > 2.
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Continuons alors les vérifications pour x > 3, nous avions noté :

P —1 S
P 1 x|l m>x

Et donc
P’ -1
(Pn_1>.m—x.(m+1)20

Le plus petit nombre premier étant 2, nous avons :

(%::f) m—z(m+1) > (2296 _11> meme )

Or, pour z > 3 :

2 >2x+1

v

1
<1+—).x+1 pout tout m € N, m > 1

m
1
2" > <1—|——).x—|—1
m
0
0

2 1 —g.(1+1/m) >

27 -1
.m —x. 1
5" r.(m+1) >
Et donc
P’ -1
(Pn_1>.m—x.(m+1)>0

Ce qui est une condition nécessaire pour éviter tout probleme d’incohérence,
cela nous permettant de conclure :

des que m > 2, il n’y a plus de défaut tel que celui pour m = 1, P, = 4,
x = 1. Nous avons donc toujours, pour m > 2 :

(Enas)™ — (=1)&™ = P, w
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Donc

(€n7x7t)m = Pn’lU + (_1)(a:m)

Smg(ug;:t)m) _ Sm2<ﬂ.(w+(—1)<w<m>))

Et donc finalement, pour m € N, m > 2 :

sin 2 (—W' (sn’x’t)m)
P
- =1

(T N
sin (P>

Ce qui aurait aussi pu servir de base a notre grande formule de décomposition
D(N).
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3.8.5 Nombres factoriels, formule simplifiée s(M) et
divisibilité

Pour compléter ce que nous venons de voir précédemment, prenons ce qui
suit en considération. Pour M € N, M > 2 et pour m € N, m > 2, nous
avons :

(M — 1)I"™ = M.wy si M ¢ P (avec wp un nombre entier variable)

(voir paragraphe “(développement 1)” de la sous-partie “2.2.2 Début de
I’étude” page 62, pour la démonstration)

Et
(M—=1)!" = M.awy+(—1)" si M € P (avec wy un nombre entier variable)

Or, nous savons que (voir la partie “3.1 Formule simplifiée s(M)” page
147, concernant la formule s(M) pour rappels) :

s(M)=0 si M ¢N
1 siMeN

Ce qui nous permet de déduire de ces 2 cas une formule plus générale :
(M — )" = M.awy + s(M).(—1)™
(en effet, nous vérifions facilement que nous retrouvons bien les 2 cas précédents)

Et donc

(M — D)™ — s(M).(—1)™
M

(M — 1)1 — s(M).(~1)™

Ce qui permet de conclure que vaut toujours

] M
un nombre entier.
En arithmétique modulaire, cela s’écrit :
(M —1)I™ —s(M).(-1)"=0 (mod M)
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Remarquons que nous aurions pu raisonner de la méme maniere en remplacant
P, par M avec &, ou avec :

(P, —2)I"™ — 1 = wy
(vu en paragraphe “3.8.1 Nombres factoriels et divisibilité par Pn”
page 202)
Nous aurions pu déduire (le principe du raisonnement est le méme) :

(M —2)I"™ —s(M) =0 (mod M) pour m € N, m > 2

Mais reprenons le raisonnement depuis :

(M — 1) — s(M).(—1)™
M

= wy et poursuivons.

A partir de cette égalité, nous pouvons facilement en donner une autre :

(W=D o7 COP 4 E veca e
Donc

SRR RS G U TGN}
D’ou

sin 2 {7T.<M DL o (Gl s S(M)]‘(—l)m} _ e {F. [wo .\ (_1)(m+a)] }
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Pour conclure, quelquesoit M et m € N, tels que M > 2 et m > 2, et pour
tout a € N, nous avons :

{WKM LRGN s(M)]-(—l)’”} —ant (5

Nous pouvons meéme ajouter quelques conditions pour lesquels la cohérence
de cette formule est respectée (en accord avec les remarques vues tout au
long de ce chapitre) :

- CONDITION 1 :

La cohérence est respectée :

> Quelquesoit m € N, tel que m > 2,
> Quelquesoit M € N; tel que M > 2,
> Quelquesoit a € N.

- CONDITION 2 :

La cohérence est respectée :

> Pour m = 1 (dans ce cas, un défaut apparait lorsque M = 4 seulement,
c’est pour cela que cette valeur de M doit étre évitée),

> Quelquesoit M > 2 telle que M € N — {4} (notamment a cause du

défaut constaté et relaté lors de I’étude de la “fonction de Correction

A” dela sous-partie “2.2.4 Supposons Pn non connu (construction
de Fp, suite)” page 129),

> Quelquesoit a € N.

- CONDITION 3 :

La cohérence est respectée :

> Pour m = 0,
> Pour M € P uniquement,
> Quelquesoit a € N.
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Cette derniere condition mérite quelques explications. En effet, lorsque
m = 0, nous avons :

<in 2 {W.(M — D™+ (=1 — s(M)].(—1>m} — gn? {W; +(=1)" — S(M)}

Si a est paire, nous avons :

sin 2 {7?.1 (=) - S(M)} — sin? {ww}

M

Or, d’apres ce que nous avons conclu, nous devons avoir :
sin? [ 275D _ s (L)
M M

Ce qui est effectivement le cas seulement si s(M) = 1, autrement dit seulement
si M €P.

Et si a est impaire, nous avons :

sin {7?.1 + (1) - S(M)} — sin? {—W.M}

M M

Or, d’apres ce que nous avons conclu, nous devons avoir :
sin2d 7 0DV _ o (L)
M M

Ce qui est effectivement le cas seulement si s(M) = 1, autrement dit seulement
si M € P.

Ce qui permet d’établir la “CONDITION 3” | qui précise que pour m = 0,
et pour tout a € N, nous devons avoir uniquement M € P.
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Remarque 1 :

Pour les mémes raisons, ces 3 conditions sont également valables pour la
formule vue précédemment, c’est-a-dire pour :

(M — 1) — s(M).(—1)™
M

:wo

Remarque 2 :

Etant donné la formule établie pour M € N, M > 2 :

(M — D)™ — s(M).(—1)™
M

:wo

Le développement en séries entieres de TAYLOR - MAC LAURIN des fonctions
“SINUS” contenues dans la formule s(M) permet de donner une équivalence
au nombre entier wg en fonction de nombres entiers seulement.
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3.8.6 Formule f(M;x), puissance et divisibilité : Formule
D(IN) généralisée

Pour poursuivre ce raisonnement, nous pouvons aborder cette partie en
rappelant quelques résultats de la sous-partie “2.2 Démonstration complete”.

IMPORTANT :

Nous reprendrons les mémes notations que dans la sous-partie “2.2 Démonstration
compléte” page 54 (notamment pour les entiers symbolisés par des lettres).

Nous avions noté :

h=(M"—1)
Iy = H (N —h)
h=1
Et
(=)
—z+1

Et donc (ce qui est une partie de la formule de ayy, vue page 140)

h=(M*—1)

. g (N —h)

MF (M’”—l )
—x+1
M M—-1

Rappelons aussi que nous avions noté :

(M —1).(M —2).(M — 3)] _sz (Lip>
T

Dont les résultats suivants ont déja été démontrés pour N € N, N > 1 :

f(M;z) = cos? {7?.

f(M;x) =1 pour tout M € N, M >2et M € P, si N est multiple de M*.
f(M;z) =0 pour tout M € N, M >2et M € P, si N non multiple de M~.
f(M;z) =0 pour tout M € N, M >2 et M ¢ P, quelquesoit N > 1.
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Ces résultats provenaient déja de résultats intermédiaires qu’il est aussi
important de rappeler (en suivant le méme ordre) :

- Pour tout M e N, M > 2 et M € P, si N est multiple de M* :

F, F —1)”
MZ])TCIPZI)J’C:U)G—i_(Pn)

(ou wg est un nombre entier et P, € P)

Dans ce cas, ceci est équivalent a :

- Pour tout M e N, M > 2 et M € P, si N non multiple de M* :

FP FP
MFC = PnFC :E

(ou E est un nombre entier)

- Pour tout M € N, M > 2 et M ¢ P, quelquesoit N > 1 :

E
Mil;c = G,.SM@

(G’ est un nombre entier, €, entier sauf pour le seul cas de M =4 et z = 1)
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En adoptant une nouvelle écriture afin de la réduire, nous pouvons remplacer
toutes les lettres représentant un nombre entier (tel que wg , E et G'.epr )
par une lettre unique (avec une la lettre en indice se rapportant a la puissance
m) tel que W,,, (qui est par conséquent un nombre entier), ce qui permet de
noter :

- Pour tout M e N, M > 2 et M € P, si N est multiple de M* :

F, (=1)°
MFe Won + M

Ce qui est équivalent a :

FP T

Avec :

- Pour tout M e N, M > 2 et M € P, si N non multiple de M?* :

Fp
ar =

Ce qui est équivalent a :

Fy
VFED — MW,

- Pour tout M € N, M > 2 et M ¢ P, quelquesoit N > 1 :

E
MZ;C =W (sauf pour le seul cas de M =4 et x = 1)

Ce qui est équivalent a :

E
M(Tpfl) =MW, (sauf pour le seul cas de M =4 et z = 1)
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Maintenant, poursuivons le raisonnement en notant m € N tel que m > 2 et
développons ceci :

- Pour tout M e N, M > 2 et M € P, si N est multiple de M* :

Fp " rim
] = s
= (MW,,).f(MW,,) + (—=1)&m
En notant W un nombre entier tel que, dans ce cas :
(W) f(MW,,) =W
(avec, pour alléger le développement, W un nombre entier “polynomiale”
en fonction de M et de W,,, tel que défini dans le paragraphe “Suite 2 de

I’étude de (P, —1)!” de la sous-partie “2.2.2 Début de I’étude” page 62)

Nous obtenons :

F m
] = e

Et donc

F m
[ts] - e = anw

En arithmétique modulaire, cela s’écrit :

r m

(dans ce cas précis ot M € P, et ou N est un multiple de M?)
Rappelons que, dans ce cas :

f(M;x)=1 (ce qui permettra de faire la synthese finale)
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- Pour tout M e N, M > 2 et M € P, si N non multiple de M?*,
Ou bien pour tout M € N, M > 2 et M ¢ P, quelquesoit N > 1 :

Fp
ey = MWn

(nous avions déterminé que le défaut pour M = 4 et x = 1 est éliminé des
que m > 2, il existe seulement pour m = 1)

Donc

F m

Or,
[M.W,,|™ = M.[M™=Y W,,™

Ce qui est clairement un nombre divisible par M (puisque nous sommes dans
le cas o m > 2).

En notant ici comme précédemment W ce nombre entier (l'intérét de ne
prendre qu'une seule lettre pour représenter un nombre entier est notable
pour la conclusion intermédiaire qui va suivre) tel que :

W = [M"=.W,,™]

Nous obtenons :

F m
[M<Ff—1)} =MW

Rappelons que, dans ces 2 cas :

f(M;z)=0 (ce qui permettra de faire la synthese finale)
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Conclusion intermédiaire :

En regroupant les résultats obtenus précédemment, nous avons (W est un
nombre variable, mais toujours un nombre entier) :

- Pour tout M e N, M > 2 et M € P, si N est multiple de M* :

M(E:
D’ou
] R
M(Fc_l) ( 1) xT.m
=W
M LY

- Pour tout M e N, M > 2 et M € P, si N non multiple de M?*,
Ou bien pour tout M € N, M > 2 et M ¢ P, quelquesoit N > 1 :

Cela va nous permettre de conclure. En effet, W ne pouvant représenter
qu’un nombre entier dans tous les cas.

Page 230 sur 514



Reprenons les 2 cas abordés dans notre “Conclusion intermédiaire” :

- Pour tout M e N, M > 2 et M € P, si N est multiple de M* :

(F.—1) -1 (z.m)
sin 2 W.MT = gin? {77'. {W + L] }

Et donc, dans ce cas :

B "
. MF—1)

sin“ { .
M

02 l)
Sin (M

C’est-a-dire la méme valeur que f(M;z) pour le méme cas.

=1

- Pour tout M e N, M > 2 et M € P, si N non multiple de M?*,
Ou bien pour tout M € N, M > 2 et M ¢ P, quelquesoit N > 1 :

F, 1™
2 M (Fem1) = si 2(7T)
sin“ < 7. Vi = sin 7
=0
Et donc, dans ce cas :
F, "
) M (Fe=1)
sin® s
0
2 l)
sin (M

C’est-a-dire la méme valeur que f(M;z) pour le méme cas.
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Tout ceci nous permet maintenant de conclure que, pour m € N, m > 2 :

E, 1"
L M (Fe—1)
S1n W.T

2 (-

sin? ()
Ainsi, il devient possible d’établir une nouvelle formule plus générale pour
la décomposition d’un nombre entier N € N, N > 2 en produit de facteurs
premiers. Nous avions noté D(N) une telle formule, celle-ci contenant la

formule f(M;x) que nous pouvons maintenant remplacer par 1’équivalent
que nous venons de donner. En effet, rappelons que :

= f(M;x)

r——+00

an = Y f(M;z)

Et que :

M—+oc0

M=N
N=DWN)= [[ Ml =[] mew
M=2 M=2

Ce qui permet de déduire finalement que, pour m € N, m > 2 et pour N € N,
N >2:

h=(M?*-1) m

D(N):N:Ai_[NM i J

Ce qui est une formule plus générale pour la décomposition d’un nombre
entier en produit de facteurs premiers (attention, il s’agit bien de crochets
dans cette formule, et non des symboles des “valeurs absolues” , ni de ceux
des “parties entieres”, ils ont la méme fonction que de simples parentheses).
La généralisation de la formule D(N) permet donc également de généraliser
le “Théoreme de décomposition d’un nombre entier N en produit de facteurs
premiers” (page 146), sans en modifier les caractéristiques dues au domaine
de définition de N (nous avons toujours N € N tel que N > 2).
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Synthese finale :

Dans la sous-partie précédente(“3.8.5 Nombres factoriels, formule sim-
plifiée s(M) et divisibilité” page 220), nous avions pu faire un lien entre
s(M) et le reste de la formule. De maniere identique, nous pouvons dans
cette partie établir un lien entre la formule f(M;z) et les formules que nous
venons de voir :

M(Fc_l

D’ou

[i)} UMWt f(OM: ) (—1)Em

F m
s | st (e
—W
M

En arithmétique modulaire, cela s’écrit :

{M(Zf—n} - f(M;2).(=1)F™ =0 (mod M)

Comme pour la partie précédente, et pour des raisons similaires, la cohérence
de ces formules est respectée dans 3 conditions :

- CONDITION 1 :

> Quelquesoit m € N, tel que m > 2,
> Quelquesoit M € N, tel que M > 2,
> Quelquesoit N € N, tel que N > 1.

- CONDITION 2 :

> Pour m = 1 (dans ce cas, un défaut apparait lorsque M = 4 seulement,
cette valeur de M doit donc étre évitée),

> Quelquesoit M > 2 telle que M € N— {4} (a cause du défaut relaté),
> Quelquesoit N € N, tel que N > 1.

- CONDITION 3 :

> Pour m = 0,
> Pour M € P uniquement,
> Pour N multiple de M* uniquement.
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Il est encore possible ici de donner une autre expression de cette formule (les
conditions que nous venons de donner y seront toujours respectées). En effet,
en reprenant :

F m
| — s
=W
M

Avec a € N, nous pouvons facilement établir que :

{%} - f(va)(_l)(xm) (_1)(:c.m+a)

- (_1)(x,m+a)
7 K T TR
Donc
FP " 1)@ M: 1 (z.m)
N ED +[(=1)" = f(M;2)].(-1) - (—1)@m+a)
M - M
D’ou
Fp " a (z.m)
| lams| ey - rononene 2 -
sin . = sin“qmwm. | W+ —"F———
7 =
o (e
= sin {7r. i
_ an2 (™
- e (7)

Pour finir, dans le respect des 3 conditions citées précédemment, et pour tout
a € N, nous pouvons conclure que :

| s e - sosaenen ]
Sln2 . Wi = Sln2 (M)
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Digression :

La conséquence de tout ces travaux est qu’il existe plusieurs écritures possibles
pour obtenir des résultats équivalents.

Etant donné que s(M) n’est qu'un cas particulier de f(M;x), nous pouvons
encore donner un exemple de réécriture avec la formule s(M) puisque dans
le cas ou z = 1 et N = M, nous avons aussi de maniere plus générale pour
MeN, M>2et pourmeN, m>2:

Ou encore, d’apres les travaux de I’étude de la sous-partie “3.8.1 Nombres
factoriels et divisibilité par Pn” (page 202), nous avons aussi pour
MeN, M>2et pourmeN, m>2:
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3.8.7 Produit de nombres factoriels et divisibilité par
M, généralisation

Appliquons maintenant le raisonnement de la sous-partie précédente (“3.8.6
Formule f(M;x), puissance et divisibilité : Formule D(N) généralisée’
page 225) aux formules de la sous-partie “3.8.2 Produit de nombres
factoriels et divisibilité par Pn” (page 207). Ici, les démonstrations
vont étre simplifiées pour améliorer la lisibilité.

Y

Rappelons que nous avions déduit (pour 3 conditions) :

(M =" +[(=1)° = sQDLD" _ (=1
M M

Ce qui est équivalent a :
(M — )" = M.awg + s(M).(—1)™

La cohérence de ces formules étant respectée pour les 3 conditions :

- CONDITION 1 :

> Quelquesoit m € N, tel que m > 2,
> Quelquesoit M € N tel que M > 2,
> Quelquesoit a € N.

- CONDITION 2 :

> Pour m = 1 (dans ce cas, un défaut apparait lorsque M = 4 seulement,
cette valeur de M doit donc étre évitée),

> Quelquesoit M > 2 telle que M € N— {4} (a cause du défaut relaté),

> Quelquesoit a € N.

- CONDITION 3 :

> Pour m = 0,
> Pour M € P uniquement,
> Quelquesoit a € N.

Page 236 sur 514



Divisons encore 'étude avec des sous-parties tel que :

*+ Sous-Partie 1 :

Reprenons le raisonnement depuis : (M — 1)!™ = M.wgy + s(M).(—1)™
En changeant wy en Wy et en précisant que Wy, Wy , W3 | ... | Wy est
toujours un nombre entier (pour rendre la démonstration plus claire) ou
bl e N, bl >2:

(M — )" = MW, + s(M).(—1)™

Raisonnons dans le cas de la “CONDITION 2”7 ou m = 1 (ce cas est plus
simple car il évite d’avoir a développer le produit da a la puissance m) par
étapes :

(M — 1) =MW, —s(M) pour M € N — {4} tel que M > 2.

- Etape 1 :
(M —1)! MW, — s(M)
(M —1).(M—-2)! = MW, —s(M)
M.(M=2)!—1.(M -2)! = MW; —s(M)
(M —=2)! = MJ[(M—2)!—=Wi]+s(M)
(M —2)! MWy + s(M)
Pour M € N — {4} (CONDITION 2) tel que M > 2.
- Etape 2 :
(M —2)! = MW;+ s(M)
(M —2).(M —3)! = MW,+s(M)
M.(M =3)!—2.(M—3)! = MW+ s(M)
2.(M=3)! = M.[(M —3)!— W] —s(M)

2.(M=3)! = MWs;—s(M)
Pour M € N — {4} (CONDITION 2) tel que M > 3.
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- Etape 3 :

2.(M — 3)!

2.(M — 3).(M — 4)!
2.M.(M — 4)! — 2.3.(M — 4)!
2.3.(M — 4)!

2.3.(M — 4)!

31 (M — 4)!

W3] + S(M)

Pour M € N — {4} (CONDITION 2) tel que M > 4, ce qui revient a
M > 5 (puisque 4 doit étre en dehors du domaine de définition de M).

- Etape /4 :
3L(M —4)!
3L.(M —4).(M —5)!
3LM.(M —5)! — 4l (M —5)!
41.(M —5)!
41.(M —5)!

Pour M € N tel que M > 5 (a partir de cette étape, nou n’avons plus
besoin de restreindre le domaine de définition de M comme le préconise la
CONDITION 2 afin d’éviter le cas o M = 4, puisque ce cas est nécessairement

évité des que M > 5).

- Etape 5 :
41.(M — 5)!
4. (M —5).(M — 6)!
AVM.(M —6)! — 5. (M —6)!
51.(M —6)!
51.(M —6)!

Pour M € N tel que M > 6.
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- Etape (b1 — 1), nous obtenons finalement :
(b1 — DL(M —b1)! = MWy + s(M).(=1)%

Pour M € N, M > 2 et pour M > b1, tel que b1 € N et bl > 2.

Donc
(b1 — )1.(M — b1)! Wyt s(M)].\(f—l)b1
Et donc
sin 2 {ﬂ'. (b1 - 1)!]'\(4M — bl)!} = sin? {7r. {Wbl + —S(M)]'\;_l)bl] }

Si M € P, nous avons s(M) =1

2 {Hbl — DIL(M — bl)!} — n? (1>

M M
D’ou
_ | _ |
in? {W(bl )L(M bl)}
M 1

02 l)
Sin (M

Si M ¢ P (CONDITION 2 : éviter le cas de M = 4), nous avons s(M) =0 :

sin? {W‘(bl = 1)!]-\(4M - bl)!} B
Dot
sin? {ﬂ.(bl - 1>;-(M - bl)!} y
sin 2 <M)
Et finalement :
gin? | (01 = DL(M —b1)!
| | ()

02 l)
S1n (M
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- Cas particulier :

Pour (b1 — 1) = (M — bl) nous sommes dans le cas particulier ou le calcul
est réduit au minimum (calcul “optimal”).

Dans ce cas, nous avons :
M=20b1-1 c’est-a-dire le cas de M étant un nombre impaire.

Comme nous devons avoir M € N, M > 2, nous devons aussi avoir bl € N,
bl > 2.

_ M+1
2

bl

(comme M est impaire, il n’est plus utile de conseiller ici d’éviter le cas de
M = 4 préconisé par la CONDITION 2)

Nous pouvons conclure que, pour M = 2.b1—1 et pour bl € N tel que bl > 2:

sin 2 {(M; 1) !2.%}
A = ()
o (3)
(Ce qui est une alternative a la démonstration du paragraphe “3.8.2 Produit
de nombres factoriels et divisibilité par Pn” page 207)

- Remarque :

M+1
Pour 01 = T+, nous avons aussi :

(BL-DLO b s(M).(—1)*
D’ou
<M2‘1)12 = MWy + s(M).(—~1)(*5)

= MWy + s(M).(i)M+D (o i est le nombre imaginaire)
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* Sous-Partie 2 :

Ce n’est qu’a partir de maintenant que le raisonnement va trouver un intérét
significatif (I'intérét viendra de la synthese des parties que nous allons aborder).
Ce raisonnement porte sur le cas particulier précédent. Changeons quleque
peu les notations : W3 . est un nombre entier avec ¢ un nombre entier.
Reprenons par étape :

(?) 2 = MWy + s(M).(—1)(*F)

Pour M = 2.b1 — 1, avec bl € N, b1 > 2.
- Ftape 1 :

Notons Wy = Wi 1

Mi1)

(?) 2 = MWy + s(M).(—1)(*2

(M — 1>2. (M —1 1) 2 = MWy + s(M).(-1)%57)

2 2
(M —1)2 (?) 12 = 92 M. Wy, + s(M).22(—1)(*2")

(M2 — 2M +1). (?) 2 = 22 MWy + s(M).22.(=1) ("5

En développant, nous obtenons des multiples de M, que nous allons tous
regrouper dans le membre de droite de 1’égalité, pour obtenir :

M+1

M.(M —2). (?) 241 <$) 2 = 22 MWy, + s(M) 22 (—1)(*5F)

1. (?) 12 = 22 M. Wiy — M.(M —2). <$> 12 4 s(M).22.(—1)(*2)
1. (M; 3) 12— 92 M. {Wbl,l — (M —2). (?)'Q} + s(M).22.(—1) (")

M -3
Or, 22. {Wbl,l — (M - 2). (T) !2} est un nombre entier, notons le Wy .
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(ATTENTION : pour les étapes suivantes, nous ne détaillerons pas autant
le passage que nous venons d’effectuer, qui développe et regroupe les multiples
de M, car il est finalement évident a comprendre)

Pour M € N, M > 3 (avec M = 2.b1 — 1), nous avons donc :

)

M —
(TB) !2 = M.Wbl,Q + S(M)QQ(—]_)(
- Etape 2 :

M+1)
2

(%) 2 = MW + s(M).22.(—1)(

<M2_ 3)2. (MQ_ 5) 2 = MWy o+ s(M) 22 (-1)(55)

)

(M? —6M + 3%). (%) 12 = 22 M. Wiy + s(M).2* (—1)(

M(M —6). (?) ) (?) 2 = 22 M.Wys + s(M) .24 (—1) (*5)
32, (?) 12 = M. {22.14/},1,2 — (M —6). (?) !2} +s(M).24 (—1)(*2)
32, <$) 2 = MWy + s(M).2%(—1)(*27)
Pour M € N, M > 5 (avec M = 2.b1 —1).

- Etape 3 :
32, (?) 2 = M. Wiz + s(M).2%(—1)(*27)

32. (MQ_ 5>2 . (MQ_ 7> > = MWy s+ s(M).2%(—1)(*77)

)

M —
32.(M? — 10M + 5%). <T7> 12 = 92 M. Wy 5 + s(M).28.(—1)(

(3.5). <$) 2 = M. {22.%,3 — (M —10). (g) !2] + s(M).28. (1)

M -7 1
(3.5)2. (T) 12 = MWy + s(M).25.(—1)(*5")
Pour M € N, M > 7 (avec M = 2.b1 — 1).
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+1

(3.5)2‘ (g)ﬂ _ ]\4‘1/[/1)174 + S(M).QG.(—l)(T)

(3.5)%. <M2_ 7>2 . (Mz_ 9> 12 = MWy + s(M).25.(=1)("3")

M1

(3.5)2. (M2 — 14M + 7). (@) 2 = 22 M Wiy + s(M) 25 (~1)(*5

(3.5.7)% <$> 2 = M. [22.Wb174 — (M —14). (?) !2} +s(M).28 (-1) (%)

(3.5.7)% (#) 12 = MWy 5 + s(M).28.(—1)(

1)

Pour M € N, M > 9 (avec M = 2.b1 —1).

- Etape 5 :

1)

(3.5.7)% (#) 12 = MWy 5+ s(M).28.(—1)(

(3.5.7)2. (?)2 . (M ; 11) 12 = MWy + s(M).28.(—1)(*)

M—-11

1V1+1)
2

(3.5.7)%.(M? — 18M + 9%). ( )!2 =22 MWy 5+ s(M).210.(—1)(

M —-11 M—-11

+1

)!2} +s(M).210.(—1)(*5)

(3.5.7.9)%. (
(3.5.7.9)%. (

)!2 = M. {22.Wb1,5 — (M - 18). (
M—11

)

)12 = MW+ s(M).20.(—1)(

Pour M € N, M > 11 (avec M = 2.b1 — 1).

Page 243 sur 514



- Etape b2 = (¢ — 1) :

2
h=2

[’ﬁz(zh — 1)2] . <w> 12 = MWy .+ S(M)-22lb2'(_1)(7+1>

Pour M e N, M > 2.b2+1 (et avec M = 2.b1 — 1 pour bl € N, bl > 2).

Donc
h=b2
[H (2.h — 1)2] . <M_+72_1> 12 Iy
h=2 Wyt s(M).22'b2.(—1)(T)
M o« M
Et donc
( h=b2 )
[H (2.h — 1)2] . (—M - 22'b2 - 1) 12
sin2 { 7. =2 i 3
\ J

— gin 2 {W. [Wbl,c+ S(M).22.b2]\.4(_1)( c )}}

Si M € P, nous avons s(M) =1
( [h=b2
—2.62 -1
s o] (4=201)
o Lh=2
' M

\ /

_ in? {7?. [Wbl,c i 22.b2'(_]\;)( 2 )] }

[y ER)

)

sin

M
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sin .

Donc

Si M ¢ P, nous avons s(M) =0 :

( h=b2
—2.02 -1
fen-v] (£221)s
o Lh=2
' M

)

sin 2 =0
\ J
( h=b2 )
M—-20b2—-1
s o] (220
sin2{ 7. Lh=2
’ M
Donc . J _p

sin 2 {7? 22'1)2'(_1)(%) }
’ M

Et donc finalement, pour M € N, M > 2.2+ 1 (et avec M =2.b1 — 1
pour bl € N, b1 > 2), nous retrouvons les mémes égalités que pour s(M) :

( [hﬁ2(2.h— 1)2] : (M_wa_l)!?\

. h=2
sin 2 QT

M

- 22.b2.(_1>(%)
sin? < 7. i

Ce qui permet encore de réduire les calculs.
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- Cas particuliers :

(M —2.62 — 1)

Pour 2.2 — 1 = , nous sommes dans le cas particulier ou le
calcul est optimal. Nous avons :
M+1
M=6.b2—-1 ou équivalent : b2 = ;
D’ou

(M —262—-1) M —2

2 3

Pour la formule :

o M—202—1
H 2 1)2] ) 2.62 M1
L2 < 2 > Wyt s(M).2* .(—1)( )

M

M
Nous obtenons donc, pour M = 6.b2 — 1 et pour b2 € N, b2 > 1 (et avec
Wbl,c = sz) :

_ M+1
h==3

II @er-1?]. (Mg_ 2)!2

h=2

s(M).2057) (—1)(*3
M = Wit M

Et donc, pour M = 6.02 — 1 et pour b2 € N, b2 > 1 :

_M+41
h= 6

] @h-1y .(Mg)‘?)!z_

h=2

sin“ | .
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* Sous-Partie 3 :

Poursuivons le raisonnement a partir de ce dernier cas particulier. Changeons
quleque peu les notations : Wpy . est un nombre entier avec ¢ un nombre
entier. Reprenons par étape :

- Etape 1 :

Notons Wy = Wiy

h=21g

IT @r-1y .(?)!2 i i

i W s(M).2045) (—1)(*F)
i = Wpo1 + i

SUITE EN COURS
DE REALISATION !

Pour que la fromule s(M) soit exploitable, nous devons concentrer tous nos
efforts a essayer de lui donner des équivalences, en développant notamment
les cas particulier ou elle exige moins de calculs (sur le modele de cette sous-
partie), ce qui devrait permettre de généraliser jusqu’a obtenir une formule
qui rende son calcul optimal.

C’est justement 'objectif que se propose d’atteindre le Chapitre IV.
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3.8.8 Réécriture de la fonction ¢ (Zéta) de RIEMANN

- Rappels :

Etant donné la fonction ¢ de RIEMANN [5], pour s € C tel que Re(s) > 1:

=Tl

peP

En exploitant la méthode du produit Eulérien [(], nous avons :
S=1+u+u?+vd+ut+u®+ub+..

(somme infinie de termes en puissance de “ u 7, aux puissances croissantes)

Or,
S=1+uS
Donc
1
g —
1—u
D’ou
1 1 02 4 03 04 5 4 06
mzl—l—u +ut+u+ut+u+u
Pour v = p~* (avec s > 0), nous avons 'égalité :
1 n—+00
& =Il1=p== 2 »~
peP p n=1
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- liere rééeriture :

Etant donné la formule de s(M) établie dans la sous-partie “3.1 Formule
simplifiée s(M)” (page 147) :

s(M) =1 siMeP
s(M)=0 si M ¢ P (avec M € N, M > 2)

*SiMeP:

*SiM ¢P (avee M e N, M >2)

M=s(M) = 0
1-M7s(M) =

1
1 —M=.s5(M)

Et donc la fonction ¢ de RIEMANN peut aussi s’écrire ainsi :

M —+oc0
1

=11 1 — M—s.s(M)

M=2

L’intérét étant qu’il existe un lien entre la fonction ¢ et la formule s(M).
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Poursuivons. Ceci implique que :

u=M""*.s(M)
Nous avons :
1
1 =l+u'+?+ud+ut+u®+ b+
—u
D’ou

1 —M}S.s(M) =1+ {SW)} + r%)r+ [S%)]Z [%11

Sachant que :
s(M)* = s(M) (pour a € N, a > 1)

Nous déduisons :

Ly L L1y
M M2s M3s M4s

= 303 = 1+S(M).[

a—+00

= L4+s(M). Y M
a=1

Lorsque s(M) =0 (donc M ¢ P), la cohérence est bien respectée.
Lorsque s(M) =1 (donc M € P), la cohérence est bien respectée.

La fonction ¢ de RIEMANN peut donc étre réécrite tel que nous l'avons fait.
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- Qieme réécriture :

En se concentrant sur les propriétés de la fonction s(M), nous pouvons encore
réécrire la fonction ¢ sous une autre forme. En effet, en rappelant que nous
avons :

s(M)? = s(M) =0
Nous pouvons alors écrire :

(M= — M*)+ (M? — M2) + [s(M).M* — s(M). M|+ [s(M)2 — s(M)] = 0
Dot

—(M® — M)+ [M® — s(M) — M? + s(M).M* — s(M).M° +s(M)?] =0

Mo.(1— M*) = [M* — s(M)].[L — M* — s(M)]

Ms  1—M*—s(M)
Ms —s(M) 1— Ms
1 1 s(M)
1—M-ss(M) 1— Ms

D’apres 'égalité que nous venons d’établir, nous obtenons la réécriture :
M —+o00
s(M)
s) = 1———
¢)="11 { — MS}

- Sieme réécriture :

A partir d’'un raisonnement similaire, une derniere réécriture peut encore étre
faite :
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3.8.9 Réécriture de la conjecture de GOLDBACH

I1 est possible de réécrire la conjecture de GOLDBACH (sans prétention de
la résoudre). La conjecture de GOLDBACH [7] affirme que tout nombre
paire supérieur ou égale a 4 peut étre écrit comme la somme de 2 nombres
premiers. C’est-a-dire que pour N € N, N > 2 et pour P,; et P,, il serait
possible d’écrire :

2.N = Py + Py

Etablissons le raisonnement suivant en notant M; et My € N, My > 2. Nous
avons 1’équivalence :

2.N = My + M,
D’apres les égalités établies précédemment, nous pouvons noter que :

(voir le paragraphe intitulé “Awutres équivalences de formules 17 de la
sous-partie “3.7 Equivalences de formules” page 172)

M, = (M;— 1)S(M1) + (M, — 1)[1*5(]\/[1)]
= 14 (M; —1)*™) 4 (M — 1)[1—8(1\/11)] -1

Or,
1+ (M — 1)) vaut toujours un nombre premier (rappel)
Et
My, = (M,— 1)S(M2) + (M — 1)[1—8(1\42)]
= 1+ (M, — 1)8(M2) + (M — 1)[1—3(1\42)] -1
Or,
1+ (My —1)5(M2) vaut toujours un nombre premier
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Il devient possible de réécrire :

2N = M + M,
= 14 (M — 1)) 1 (My — 1)5M2) (M — 1)) (g — 1)) 9

Or, si M, et M, € P, nous avons :
S(Ml) = S(Mg) =1

Donc

14+1-2

(Ml _ 1)[1—8(M1)] + (M2 _ 1)[1—8(1\/!2)] )

Et donc
2N = [L+ (My — 1)00)] 4 [1 4+ (M, — 12005

Et donc, si M; et My € P, il deviendrait ainsi possible d’exprimer un nombre
paire comme la somme de 2 nombres premiers.

Récapitulons :

Pour 2.N = M; + M, , nous avons :
My =2.N — M,
Si M; et My € P, nous devrions donc avoir :
M, ePet (2.N — M) € P.
C’est-a-dire que nous devons rechercher a savoir si nous avons toujours :

S(Ml) = S(2N — Ml) =1
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Cela signifie que nous devons rechercher a savoir si nous avons toujours :
(My; — 1)+ 1= M u
(wy est un nombre entier si M; € P)
et simultanément :
(2.N—M, — 1) +1=(2.N — My).wy
(wys est un nombre entier si (2.N — M1) € P)

Et finalement, cela revient a savoir si, avec 2.N > M; et avec M; € P, nous
avons pour tout N :

(2.N—M, — 1) +1=(2.N — M;).wy (avec wy un nombre entier)

Si tel était le cas, cela rendrait la conjecture de GOLDBACH vraie.

Digression :

Signalons que dans ce cas, nous aurions également :

P+ P,
Nz% pour N € N, N > 2 et pour P, et Py, €P

Or, pour N € N, N > 2 nous pouvons décomposer N tel que N = D(N),

Et donc, nous pourrions écrire :

(Pnl +Pn2)

D(N) = ="

Une piste pour la résolution du probléme :

Comme la conjecture de GOLDBACH l'indique nous cherchons a savoir si
pour tout N e N, N > 2:

2.N = M; + M, avec M, et My € P simultanément.
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En logique binaire (correspondant a 'algebre de BOOLE [3]), cela fait penser
a une porte logique “ ET 7. D’un point de vue strictement mathématique,
cela se traduit par :

s(My).s(My) =1
Or, pour M; et My € N, tel que M; et My > 2 :
- Si My et My € P simultanément, nous avons :
s(M1).s(M2) =1
Donc
M, BM)-s(MR)]
Et

M s)sOm)]

- Si seulement M; ¢ P ou seulement M, ¢ P, nous avons :
S(Ml).S(MQ) =0
Donc

M, [s(M1).s(M2)] _ 1

Et

M, s(M)s(M2)] — 1
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- En réunissant ces 2 conditions, nous avons :

M s s(O)] e [s(O0).s(M2)] o

si seulement M; ¢ P ou seulement M, ¢ P.
Ou
Ml[S(Ml)-S(M2)] + Mz[S(Ml)-S(M2)] = M, + M,

si My et My € P simultanément.
Si la conjecture de GOLDBACH était vraie, nous pourrions alors écrire :
2.N = M, M) 4y [s(Mr).s(Mz)]
Et étendre le domaine de définition de N a N € N, N > 1.
Une autre écriture possible serait :
2.N = (My 4+ My — 2).s(My).s(Ms) + 2

La conjecture de GOLDBACH ne serait alors qu'un cas particulier de ces 2
dernieres formules. Pour savoir si la conjecture de GOLDBACH est vraie, il
faut donc savoir si ces formules que nous venons d’établir sont vraies pour
tout N € N tel que N > 1 et quelquesoit M; et M, € N, tel que M; et
M2 > 2.
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4

Remarques : formule D(N) et
phénomenes physiques associés

J’ai I'intuition que ces formules pourraient étre une base solide pour développer
une théorie physique (mathématiques appliquées), étant donner le lien entre
la fonction SINUS, le cercle et les ondes, cela pourrait permettre de donner
une interprétation géométrique. Un rapprochement peut étre fait entre la
variable N (utilisée tout au long de 1’étude) et les phénomenes vibratoires
diverses (I’'onde d’un photon, par exemple). La formule D(N) appliquée a une
onde permettrait de décomposer une onde en longueurs d’ondes fondamentales.
Ceci pourrait étre utile a ’analyse harmonique, entre autres.

De plus, étant donné les formules étudiées (telles que s(M) par exemple),
I'approche est intéressante du point de vue de la logique binaire (ces formules
ne peuvent prendre que les valeurs 0 ou 1) qui émerge de ces formules liées aux
ondes. D’ou I'on peut constater que : si une telle formule permet d’effectuer
des traitements (c’est-a-dire des calculs de congruence) sur des ondes, dont
les résultats sont exclusivement binaires, alors il doit exister une géométrie
spatiale correspondante ou “lI’agencement adéquat” de ces ondes permet de
faire émerger une logique binaire.

Remarques, essais et hypothéses :

Dans le cas de la décomposition des ondes, nous pouvons décomposer une
variable associée. Il nous reste a savoir laquelle choisir. Nous pouvons étre
tentés de vouloir décomposer la variable correspondant a la fréquence, celle
correspondant a la période ou celle correpondant a la longueur d’onde.
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Pour ma part, les graphiques de la premiere partie suggerent plutot d’étudier
des cycles, ce qui implique d’étudier la “distance” entre un un nombre multiple
de M? et son prochain multiple. La formule f(M;x) ne valant 1 que pour
N égale a un des ces multiples (la formule vaut 0 sinon). Ceci ferait plus
naturellement penser a une répétition de cycle tel que la longueur d’onde ou
meéme tel que la période. Nous allons le vérifier en raisonnant suite a des
essais.

- 51 nous essayons de décomposer une fréquence :

Le désavantage de vouloir décomposer une fréquence f en 'assimilant
a N, de telle sorte que f = N, est que cette fréquence devrait avoir
un minimum en f = 2. Ce qui impose a I’étude de la décomposition
d’une fréquence en fréquences fondamentales d’admettre une période T’

maximum (7' = ?), et pas de minimum pour 7' (puisque f n’aurait pas

de limite maximum). Or, rien n’empécherait de produire une période
plus grande, simplement en ralentissant le temps de répétition d’'un
phénomene (méme en agissant “manuellement” sur le systeme étudié).

Ceci ne semble pas étre en accord avec la physique quantique qui
donnerait plut6t une limite minimum & un intervalle de temps (connue
sous le nom de temps de PLANCK [%]) et une limite minimum pour
une distance (connue sous le nom de longueur de PLANCK [3]). En-
dessous de cette limite, les formules n’ont plus de sens. Ce qui serait
exactement l'inverse des constats de la physique quantique.

- Si nous essayons de décomposer une longueur d’onde :

Il est possible de décomposer la longueur d’onde en longeurs d’ondes
plus simples. Dans ce cas, en assimilant la longueur d’onde A\ d’un
phénomene ondulatoire a la variable N de la formule D(N), de telle
sorte que A = N, c’est la longueur d’onde qui connait un minimum en
A = 2. Ce qui impose a I’étude de la décomposition d’une longueur
d’onde en longueurs d’ondes fondamentales d’admettre une longueur
d’onde minimum (et donc une distance minimum dont la mesure vaut
1 unité), une période 7" minimum et donc une fréquence f maximum.
Dans ce cas, il n’y aurait pas de limite maximum de longueur d’onde,
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pas de limite maximum de période et donc pas de limite minimum de
fréquence.

Ce cas semble étre plus cohérent par rapport a la limite de la longueur
de PLANCK en physique quantique. C’est donc a partir de cette
variable que nous élaborerons une théorie de décomposition dune lon-
gueur d’onde en longueurs d’ondes fondamentales (voir Chapitre VI).
De plus, le domaine de définition de N € N implique que la longueur
d’onde soit discontinue.

- Si nous essayons de décomposer une période :

Il reste encore possible de décomposer la période (qui vaut l'inverse
de la fréquence) d'un phénomene cyclique en périodes fondamentales.
Dans ce cas, en assimilant la période T d’un phénomene cyclique a
la variable N de la formule D(N), de telle sorte que T' = N, c’est
la période qui connait un minimum en 7" = 2. Ce qui est cohérent
avec la conclusion de la décomposition d’une longueur d’onde. Dou
I'on déduit exactement les mémes choses a propos des minimum et des
maximum des grandeurs physiques que pour la décomposition d’une
longueur d’onde.

Ce dernier cas reste cohérent par rapport a la limite du temps de
PLANCK en physique quantique. C’est donc a partir de cette variable
que nous élaborerons une théorie de décomposition d’une période en
périodes fondamentales (voir Chapitre VI). De plus, le domaine de
définition de N € N implique que la période soit également discontinue.

Plus généralement, nous trouvons 2 cas en cohérence l'un avec 'autre, ce
qui devrait permettre une généralisation de ’application de la formule D(N)

a tous les phénomenes cycliques (la justification sera donnée au début du
Chapitre VI).
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CHAPITRE II

Reconstitution de fonctions
connues, lien avec les
polynomes
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Introduction

Il est important de comprendre ce chapitre pour comprendre le chapitre
suivant (concernant la répartition exacte des nombres premiers).

(ATTENTION, dans ce chapitre, les crochets ont la méme fonction que de

simples parentheses, ils ne signifient donc ni “valeur absolue” ni “partie
entiere”)
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5)

Remarques sur la formules J(M)

- Ces travaux étant complémentaires a ceux du Chapitre I, nous y ferons
références plusieus fois en faisant appel aux formules étudiées et nommées
dans ce premier chapitre. En l'occurence, dans ce second chapitre, nous
allons faire référence a la formule J(M) décrite dans le chapitre précédent.
Rappelons notamment brievement que pour M € N, M > 2 :

v=3 sin 2 ((M — 1)!.%)

S(M) = cos? (%.H(M —v)) — (1)
M

- Et que pour M € N :

JM) = s(2.M +2)
= s[P,.(d.M +1)] avec d € Net P, € P.
= s(M+2).s(M +3)
J(M3e) est définie pour tout M € Z et pour tout a € N, a > 1.
- De maniere plus restreinte, la formule J(B) permet l'inversion des valeurs

d’une variable “binaire” B. Cela signifie que pour B ne pouvant prendre que
les valeurs binaires 0 ou 1, nous avons :

(B) = si B=0
(B)=0 siB=1
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5.1 Rappels des caractéristiques de J(M)

Rappelons que la formule d’Impulsion Premiere J d’un polynome de variable
M € N telle que :

k=D
H(M—k)] avec D € N
k=0
a les caracterlsthues suivantes :
(k=D
J H(M—k) =1 pour 0 < M <D
:kZO s
k=D
I[[(M-k)| =0  pour M>D
L k=0 _

et la représentation graphique suivante :
l=D
Ji 11 (n-k)1
K=
0 $ $ o BCTEIE $ \——F-)H

01 2 D-1 D D+

La formule “complémentaire” correspondante est équivalente a :

1—3rff(M—k‘)] avec D € N

k=0
et dont la représentation graphique est celle-ci :

13[H{n -k) ]

T——/ —HM

D-1 D D+
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5.2 Etude de polynomes “simples”

Soit un polynome entier “positif” P(M) de variable M. Nous appellerons
un polynome entier de variable M € N, un polynéme ne donnant que des
valeurs entieres pour tout M € N, et nous appellerons un polynoéme positif
de variable M € N un polynéme ne donnant que des valeurs positives pour
tout M € N. Un polynome entier positif P(M) de variable M € N est donc
un polynome ne donnant que des valeurs entieres positives pour tout M € N.

Remarque :

Pour prendre en compte le cas de tout polynome, nous pourrions simplement
élevé au carré tout polynome afin de le rendre “positif”, au cas ou il ne le
serait pas déja.

La formule d’Impulsion Premiere d’'un nombre n’étant définie que pour un
nombre entier positif, il en est de méme pour la formule d’Impulsion Premiere
d’un polynome : elle est définie seulement pour les polynémes entier P(M)
positif, nous savons que :

la formule d’Impulsion Premiere d’un polynome positif de variable M vaut
1 lorsque le polynome s’annule et vaut 0 sinon. Nous pouvons donc noter :

si P(M)

3 1 —0
JP(M) =0  siP(M)>0

Ce qui peut encore étre noté ainsi pour les valeurs de M rendant le polynome
P(M) nul :

Partant de ce principe, il va devenir possible d’établir des correspondances
entre plusieurs formules.
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- Etudions le polynome entier positif P(M) = (M — D)?* avec D € N et
a € N, a > 1. Remarquons que comme ce polynome est toujours positif pour
M € Z, la formule d'Impulsion Premiere de ce polynome est aussi définie
pour tout M € Z. Notons la ainsi :

I[P(M)] = 3[(M — D)*]
Ce polynome s’annule seulement si M = D. Nous avons donc :

J(M - D)*] =1 si M =D

J(M - D)*] =0 sinon.
Remarquons que ce résultat aurait encore pu étre atteint d’une autre maniere
puisque, d’apres les rappels que nous venons de faire en sous-partie

“5.1 Rappels des caractéristiques de J(M)” (page 264), nous pouvons
déduire de la soustraction des formules entre les accolades :

{1—3 k:f[l(M—k) }—{1—3 kl:_f(M—k) }: siM =D

{1—3 ﬁl(M—k:) }—{1—3 l_f(M—kz) }:O sinon
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Graphiquement, cela se représente ainsi :

2a
J[(M-D) ]
RN

01 2 D-1 D D+

- Par ce procédé, nous pouvons reconstituer énormément de formules ou de
fonctions connues de différentes manieres (par exemple : en faisant la somme
de ce type de formule point par point). notamment, d’apres cette derniere
formule, et pour M € N, nous pouvons reconstituer une droite :

D—+o0

> 3[(M - D)y =1

D=0

Mais il existe une infinité de manieres de reconstituer cette droite avec
d’autres polynomes entiers positifs P(M) qui possedent plus d'une solution
pour P(M) = 0, la seule condition a respecter étant que ces polynomes
n’aient pas de solutions communes entre eux et qu’elles soient toutes complé-
mentaires sur I’ensemble des nombres entiers (c¢’est-a-dire que chaque nombre
entier est solution seulement une fois d’'un polynome, et cette regle est a
appliquer a tous les entiers). Ainsi, nous pouvons déduire facilement encore
un de ces cas :

D—+o00
3[ [[ (1 -Dy*| =1
D=0
Et donc
D—+o0 D—+o0
> (M -D)y =73 [ I[ (- Dy>
D=0 D=0
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- Nous pouvons méme reconstituer la formule complémentaire a J(M), qui
est partout équivalente a la droite précédente sauf pour M =0 :

> 3[(M = D)*) =1-3(M)

D=1
Remarque :

Cette égalité n’est pas pertinente, mais elle permet de donner J(M) par
“auto-référence” (et en restant cohérente).

- Nous pouvons également reconstituer la formule s(M) (vue dans le
Chapitre I) a I'aide d’un produit ou d’une somme se faisant sur I’ensemble
des nombres premiers :

ou encore :

Ici aussi, nous pourrions énumérer une infinité de solutions puisqu’il existe
une infinité de nombres premiers, donc une infinité de solutions possibles
pour que les polynomes entiers positifs s’annulent.
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- Nous pouvons encore reconstituer la formule de comptage C'(M) (vue dans
le Chapitre I), puisque :

Chon=3 st

M=Ny

Pour N; = 2 et Ny = N, nous aurons le nombre de nombres premiers compris
sur l'intervalle [0; V].
Etant donné (et pour D € N) :

13“[H{n -k) ]

T_ SN

D-1 D D+

Et pour P, = (D + 1), nous avons :

Coon = Y
k=(Pn—1)
= ) <1 [T &w-&
D—+4o00 k=D
= ) <s(D+1).{1—’J[H(N—k)]}>
D=1 k=0

- Pour reconstituer d’autres formules, nous pouvons autoriser des solutions
communes a ces polynomes positifs, dans la mesure ou ces autres formules le
permettent (notamment lorsque les valeurs de ces formules sont supérieures
a 1, en correspondance avec la variable N).
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Notamment, nous pouvons également reconstituer la formule RM(N) vue
dans le Chapitre I, pour m € N, m > 1 (en étalant la somme sur plusieurs
lignes) :

RM(N) = 3[ ﬁoo(N—D)Q‘l]

D=M
N _
+3| [ &w-D)*
| D=M? J
e _
+3| [ &W-D)*
| D=M3 J
e _
+3| J[ &w-D)*
L D=M* J
+
D——+o00
+3| ] v- D)Q“]
D=Mm™
Donc
b=m D—+o00
RM(N)=>"13 [ I] ov- D)Q“]
b=1 D=M?

Comme précédemment, cette maniere en est une parmi U'infinité des autres
manieres possibles d’exprimer cette formule RM (N). D’apres 'exemple de
I’égalité :

> J(N-D)* =73 [ I] v- D)Q“]

D=0 D=0
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Nous trouverons aussi :

D—+o00
3[(N = D)
D=MP

b=m

RM(N)

b=1

Evidemment, d’autres polynomes que ceux-ci peuvent étre utilisés.

- D’autres formules ou fonctions que les polynomes peuvent aussi étre utilisées
pourvu que celles-ci ne donnent pour résultat que des valeurs entieres positives,
puisque I'Impusion Premiere de celles-ci n’est définie que pour leurs valeurs
entieres positives. Par exemple, si nous prenons

] IS
J |cos? <7T7> , IOUS avons :
- VA
J |cos? (7?3) =0 si M est paire
- VA
J |cos? <7r?> =1 si M est impaire

Or, nous avons aussi :
si M est paire

si M est impaire

Ce qui correspond au complément de 'Impulsion Premiere de cos?(r.M/2)
pour M € N. En effet, pour les nombres entiers, la formule cos?(7.M/2) ne
peut donner pour valeur que 0 ou 1, ce qui correspond au cas des formules
“binaires” (voir formule d’Impulsion Premiére d’une variable binaire dans le
Chapitre I : I'Impulsion Premiere d’une variable binaire est équivalente au
complément de cette variable). Nous avons donc :

M M M
J |:COS2 (’N;)] =1 — cos? (w;) = gin 2 <7r7
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Meéme raisonnement pour ce qui suit :

M M M
" 1 2 _— = — q] 2 _— = 2 _
J |:Sln (7r. 5 )1 1 —sin (7T. 5 ) CcoS (7r. 5 )

Et donc, comme précédemment (mais de maniére moins pertinente), ceci
permet d’avoir un moyen supplémentaire d’obtenir une droite (par exemple).
Nous avons :

o ()] o ()]

- Donnons encore quelques autres exemples de formules constructibles avec
ceci :

Pour De N, D >1:

[T1=#+cao

E Jm-0' )"

T&_As__as_.a;n

012 DA1DDa D4D DA D4 D Do

Ou la formule obtenue ne vaut 1 que pour les puissances du nombre D, et 0
sinon. Ceci permet de représenter un phénomene de “période logarithmique”.

- D’autres exemples peuvent étre donnés avec une formule qui serait un
mixage d’autres formules. L’Impusion Premiere d’une formule pouvant étre
égale a 1 pour certaines valeurs entieres positives et 0 pour toutes les autres
valeurs entieres positives, il devient possible de “configurer” [ une formule
résultante | comme une somme [ d’Impulsions Premiéres valant 1 sur
des intervalles de valeurs |, chacune de ces Impusions Premiéres étant a
mutiplier par [ la formule désirée sur chaque intervalle |.
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Nous pourrions alors imaginer d’obtenir la formule résultante fr(M) correspondant
au graphique suivant (pour plus de lisibilité, nous allons lier chaque point du
graphique par des segments, ceux-ci ne représentant donc pas une continuité,
puisque passer d’'un nombre entier a un autre invoque nécessairement la
discontinuité) :

fr(M)

0

Ou chaque ligne verticale bleue sépare la formule résultante fr(M) en intervalles
afin de faire apparaitre des formules plus simples (en fonction de M), chacune
multipliées par une Impulsion Premiere (de variable M) relativement simple.
Ces Impusions Premieres pouvant étre caractérisées par des intervalles se
“chevauchant” ou pas (au choix), elles sont “configurables”.

Pour finir, il est possible d'imaginer que cette formule fr(M) contienne des
intervalles complet avec fr(M) =0 ou méme avec fr(M) =1 selon M.
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Remarque :

Comme dans le Chapitre I (dans la sous-partie “3.7 Equivalence de
formules”), il est possible d’établir des équivalences de formules due a
la propriété de la formule d’Impulsion Premiere. En effet, avec P(M) un
polynome entier (positif ou négatif) de variable M € Z, et a € N, a > 1,

JP(M)*) =1  siP(M)=0
JP(M)*] =0  si P(M)>0

Et donc

P(M)POD*] _ 1 — p(M) —1 si P(M) =
P(M)PQD* _1 — si P(M) >0

Ce qui permet d’écrire :

p(M)ff[P(M)Q“] 1

B si P(M) =0

p(M)ﬁ[P(M)Q“] 1 .
= P(M
PO —1 0 si P(M)>0

Or, comme nous avons déja :

JP(M)?*] =1 si P(M)=0
JP(M)%] =0  si P(M)>0

Ce qui permet de faire le lien et de conclure que :

p(M)ﬂ[P(M)QQ] -1

PO = =
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5.3 Généralisation avec les polynémes

De maniere générale, pour tout polynome (positif ou négatif, et quelquesoit
le degré de ce polynome) a coefficient entiers P(M) (afin que pour tout M,
P(M) ne donne que des résultats sous forme de nombres entiers, et donc
afin que P(M) soit un polynéme entier tel que défini dans la sous-partie
précédente), dans le cadre de la recherche des racines entieres de ce polynome
(par conséquent, ces racines sont entieres), c’est-a-dire pour P(M) = 0 et
lorsque ces racines existent, on a pour M € Z et pour a € N tel que a > 1 :

P(M)=1-73[P(M)*] =0

Solent My, My, ... , M; les racines de ce polynomes (j € N, j > 1), on a donc :

P(My) = P(My) = ... = P(M;) =0
Donc

(M — My).(M = M,). .. (M—M)=0
Dot

P(M) = (M — M).(M — My). ... (M —M,)

Nous avons également :

P(M;)=P(My)=..=P(M;)=0
— 1 - 3[P(M)] = 1 = 3[P(My)] = ... = 1 = B[P(M;)] = 0
D’ou
P(M) = 0
1—=3{[(M - My).(M — Ms). ... (M- Mj)]Q“}
{1=0[(M — M)*} {1 = 3[(M = Mp)*]}. ... {1 =3J[(M — M;)*]}
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Et donc

P(M) = 0
= 1-7 [ﬁ(M — Mi)Q“]
= JI{1 -3l - my*)

Pour tout polynéme (positif ou négatif) a coefficient entiers P(M) et pour
a € N, a > 1, nous observons que :

Si P(M)=0,o0na{l—7J3[P(M)*]} =0, et la réciproque est vraie.
Si P(M)#0,o0na{l—7J3[P(M)*]} =1, et la réciproque est vraie.

Ce qui permet d’établir un lien entre tous les polynémes (positifs ou négatifs)
a coefficient entiers P(M) , a variable entiere (quelquesoit le degré du polynome),
leur(s) racine(s) et la formule d’Impulsion Premiere J.

REMARQUE 1 :

Pour P(M) un polynéme entier (positif ou négatif) de variable M € Z et
a € N tel que a > 1, si P(M) n’a pas de racine entiere, alors nous avons
toujours :

I[P(M)?] = 0

REMARQUE 2 :

Pour P1(M) un polynome entier (positif ou négatif) de variable M € Z, et
a € N tel que a > 1, nous pouvons retrouver P2(M) les polyndmes entiers
(positif ou négatif) qui n’ont pas de racine entiere sous la forme suivante :

P2(M) = P1(M) + b.3[P1(M)*] avec b € Z — {0}.

On pourrait aussi imaginer que b s’exprime en fonction de M ...
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5.4 Fonctions intéressantes

Pour des valeurs de M appartenant a un intervalle (mais pas nécessairement),
il est possible de construire des fonctions qui “rejetent” ces valeurs. Voici
quelques exemples de fonctions avec M, D, Dy et Dy € N, et avec a € R.
Ces fonctions “font penser a” des filtres.

Ezxemple 1 :
Fonction Rejet Fy(M) définie pour M € [0; D] :
1

: [ﬁw . @]

k=0

Fi(M)=a-

et dont les caractéristiques sont les suivantes :

Fi(M)=(a—1) Pour 0 < M < D.
Fi(M)— —oc0 Pour M > D.

Ce qui fait penser a un filtre “passe-bas” sur la variable M.

Ezxemple 2 :

Fonction Rejet Fy(M) définie pour M € [D; +o0] :
1

1—3[1:_[(M—k)]

k=0

Fi(M)=a-

et dont les caractéristiques sont les suivantes :

Fy(M) — —c0 Pour 0 < M < D.
(M) =(a—1) Pour M > D.

Ce qui fait penser a un filtre “passe-haut” sur la variable M.
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Ezxemple 3 :

Fonction Rejet F3(M) définie pour M € [Dy; Ds] :

F3(M) =a— - ! —0D)
’J[H(M—k)]—j I[[ -k
k=0 k=0

et dont les caractéristiques sont les suivantes :

Fs(M)=(a—1) Pour D1 < M < Ds,.
F3(M) — —o0 Pour M < Dy et pour M > Ds,.

Ce qui fait penser a un filtre “passe-bande” sur la variable M.

Ezxemple 4 :

Fonction Rejet Fy(M) définie pour M € [D1; D2] et avec Dy = Dy = D :

Fy(M) =a— - ! —0D)
’J[H(M—k)]—j I[[ -k
Donc
Fy(M) =a— s ! —D_1)
J[H(M—k)]—j I -k

et dont les caractéristiques sont les suivantes :

Fy(M)=(a—1) Pour M = D.
Fy(M) — —c0 Pour M # D.

Ce qui fait penser a un filtre “rejection complémentaire” sur la variable M
(la bande passante du filtre est une seule valeur de M).
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Ezxemple 5 :

Fonction Rejet F5(M) définie pour M € [D1; D2] et avec Dy = Dy = D :

F5(M) =a— r—(D—1) ! D
1+3 | [ -k —’J[H(M—kz)]
k=0 k=0

et dont les caractéristiques sont les suivantes :

Fs(M) — —oc0 Pour M = D.
F5(M)=(a—1) Pour M # D.

Ce qui fait penser a un filtre “rejection” sur la variable M.

Hypothese :

Il doit étre possible d’établir des liens avec la théorie du signal ou méme avec
I’analyse harmonique si 'on considere que la variable M est une longueur
d’onde ou une période.

Remarque :

Comme dans le Chapitre I, méme remarque concernant 1’association de
la variable M a une variable physique. En associant M a une longueur
d’onde, nous devons admettre l'existence d'une limite minimum pour une
longueur d’onde, et donc une limite minimum pour une période, et une limite
maximum pour une fréquence. Le raisonnement reste le méme en associant
M a une période puisqu’il faut dans ce cas admettre une limite minimum
pour la période, les conclusions sont donc identiques, mais le fait d’associer
M a la période permet de généraliser I'application des formules a tous les
phénomenes cycliques.
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6

Reconstitution par
“quantification”

- Nous avons étudié le polynome entier positif P(M) = (M —D)** avec D € N
et a € N tel que a > 1. Nous avons vu que comme ce polynome est toujours
positif pour M € Z, la formule d’Impulsion Premiere de ce polynome est
définie pour tout M € Z. Nous avions noté :

I[P(M)] = 3[(M — D)*]
Ce polynome s’annule seulement si M = D. Nous avons donc :

(M — D)*]

J siM=D
J[(M — D)*

1
0 sinon.

La représentation graphique de cette formule étant la suivante :

23
J[(M-D) 1]
RN

01 2 D-1 D D+
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- La suite va étre donnée simplement par des définitions :

Appelons “quantification” le fait que pour J[P(M)] (donnée précédemment),
nous devons avoir M € Z. Le mot “quantification” est empreinté a la
physique quantique (les quantas, valeurs entieres indivisibles, ou encore quan-
tités discontinues).

Appelons méthode de “reconstitution par quantification” la méthode d’ajout
d’autant de formules d’Impusion Premiere (telles que J[P(M)] ) que nécessaire
pour donner une approximation de toutes fonctions ou formules connues,
ou la valeur de D est ajustable pour chacune de ces formules d’Impulsion
Premiere. La méthode s’appliquant également a des formules non connues
mais recherchée. Notons RQ(M) la formule d’approximation obtenue.

Le désavantage est la marge d’erreur due a ’approximation.

L’avantage de cette méthode qu’elle permet de donner une approximation
de tout ce que l'on cherche a obtenir. Par exemple, en tracant une courbe
a main levée et au hasard sur un graphique, il est possible de donner une
approximation par cette méthode. Il est méme possible de choisir 1’échelle
pour M et pour J[P(M)] (afin de diminuer ou augmenter la marge d’erreur).

Pour cela, il suffit de tracer une courbe dans un plan sans reperes de coordonnée
ni d’abcisse. Une fois cette courbe tracée, il nous suffit de décider quel
marge d’erreur est acceptable pour ’approximation (en ajoutant les repeéres
de coordonnée et d’abcisse).
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Par exemple donnons le tracé d’une courbe telle que :

RQ(M)

alll BN e B N

1 2 345 67 8 91011121314 1516 17

o

La marge d’erreur de 'approximation peut étre réduite en changeant la
“résolution” du graphique, c’est-a-dire en effectuant un changement de repere
(dans notre cas en ramenant ['unité de graphique précédent a une mesure 2
fois plus petite pour le graphique suivant), de maniére a obtenir :

RQ(M)

0’12 & 10 15

Nous pouvons procéder ainsi de suite en augmentant a l'infini la “résolution”
graphique, de maniere a ce que la reconstitution de cette courbe tende a
devenir exacte.
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Le terme de résolution (comme pour la résolution d’une image numérique) est
ici employé car 'ensemble de coordonnées {M; RQ(M)} est utilisée comme
un “pixel” (terme informatique) qui serait déposé sur un point de la courbe,
et de proche en proche sur tous les points de la courbe (dans le cas d'une
résolution qui tendrait vers une précision exacte, et donc une marge d’erreur
qui tendrait vers 0).

Remarquons qu’il est aussi possible de rajouter un coefficient multiplicateur
devant chacune de ces formules d’Impulsion Premiere de RQ(M) de maniere
a donner une valeur exacte de la courbe en M. Ceci nous permettrait de
n’avoir a changer la résolution que de ’axe M sans changer celui de RQ(M).
D’ailleurs dans ce cas, et pour atteindre la bonne valeur de la courbe, il n’est
pas utile de faire la somme de plusieurs formules d’Impulsions Premieres en
une valeur de M donnée : il suffit d’une seule formule d’Impulsion Premiere
multipliée par le coefficient qui permet d’atteindre directement la valeur de
la courbe. En faisant de méme pour chaque valeur de M, nous reconstituons
la courbe point par point de maniere approximative.

Remarque importante :

Cette méthode de reconstitution par quantification fait penser aux fonctions
en escalier utiles pour les intégrales. Il doit donc étre possible d’établir un
lien entre les fonctions intégrales et la formule J[P(M)] telle que nous l'avons

définie.
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CHAPITRE III

Répartition exacte des
Nombres Premiers
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Introduction

Dans le fond, la méthode proposée pour atteindre notre objectif fait penser
a la méthode de MINAC-WILLANS [1]. Cependant, elle differe largement
dans la forme puisqu’elle invoque des fonctions que nous avons pu construire
dans le Chapitre I et qui seront rappelées dans ce chapitre, ce qui permet
de donner une alternative. Ces fonctions sont principalement la fonction
s(M) (la simplifiée de variable M, définie dans le Chapitre I) et la fonction
J(M) (IImpulsion Premiere de variable M, définie dans le Chapitre I). La
fonction J(M), qui correspondant & un cas particulier de la fonction s(M),
va s’avérer tres utile ici.

(ATTENTION, une fois encore dans ce chapitre, les crochets ont la méme

fonction que de simples parentheses, ils ne signifient donc ni “valeur absolue”
ni “partie entiere”)

286



7

Reconstitution de Pn par les
formules de type s(M) et J(M)

Il existe un moyen pour trouver tous les nombres premiers dans l'ordre
croissant et sans répétition.

Nous allons faire référence & la formule s(M) (qui est un cas particulier de
la formule f(M;x) ) abordée dans le Chapitre I.

7.1 Rappels

- Rappelons que, pour un ordre croissant de nombres premiers consécutifs, P,
est le n*“™¢ nombre premier. Lorsque nous traitons I’ensemble des nombres
premiers, nous avons donc forcément n € N, n > 1. L’objectif est d’obtenir :

P1:2
P2:3
Py=5
P4:7
P =11
FPs =13
P7:17
P; =19
Py =23
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- La formule s(M) est la simplifiée de variable M. Elle est le cas particulier
de la formule f(M;x) dans lequel M = N et x = 1 (voir Chapitre I).

s(M) est définie pour tout M € N, M > 2 :

o= ) .sin2 ((M — 1)!.%)

S(M) = cos? (ZH<M—U) Sin2<1>
M

Ou encore, pour m € N, m > 2 :
in2 (M —1 !m.i)
sin (( ) i
2 i)
sin (M

Nous 'avons vu dans le Chapitre I, ceci qui est aussi équivalent a :

S(M) =

™

sin 2 <(M - 2)!’”.M)

N l)
sin (M

S(M) =

Nous avons :

s(M) =1 si M € P (la réciproque est vraie)
s(M)=0 si M ¢ N (la réciproque est vraie)

- La formule J(M) :

La formule J(M) est la formule d’Impulsion Premiere de variable M.La
formuleJ(M) est définie pour M € N, M > 0 et se note :

I(M) = s(2.M +2)

s(2.M + 2) étant la simplifiée de variable (2.M + 2).
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Ou encore (équivalent) :
J(M) =s(M + 2).s(M +3)

s(M + 2) étant la simplifiée de variable (M + 2) et
s(M + 3) étant la simplifiée de variable (M + 3).

Elle se caractérise par :

JM)=1 si M = 0 (la réciproque est vraie)
JM)=0 si M > 0 (la réciproque est vraie)

Effectuons un petit raisonnement dans ce paragraphe. En changeant de
variable tel que ce qui suit, nous pouvons obtenir une formule d’Impulsion
Premiere :

Pour M = X2

J(X?%) est définie pour tout X € Z et pour tout a € N, a > 1.

Pour a =1, Nous avons donc :

J 1 si X =0

J(X?*) =0 si X € Z—{0} (pour tout entier positif ou négatif sauf 0)
- La formule C'(M) :

La formule de comptage des nombres premiers C(M) est définie pour tout

M € N, M > 2. Pour N; et Ny € N tels que Ny et Ny > 2, la valeur de C'(M)
donne la quantité de nombres premiers appartenant a 'intervalle [Ny; Ny| :

Cron=3 st

M=Ny
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7.2 Etude

Changeons quelque peu les notations précédentes pour démarrer cette étude.
Réécrivons :

Ny D=N>
Cuon=3 sn)
D=N,
Les propriétés des formules restent les mémes, nous changeons simplement
de nom de variable avec D € N, D > 2. En restreignant la formule C'(D) a
I'intervalle [2; M], nous avons :

2 (D) = Z s(D)
D=2
Cette formule de comptage ne peut étre qu'un nombre entier supérieur ou
égale a 1.
ieme

Notons n le n nombre premier P, tel que n € N, n > 1 et raisonnons pas

a pas.

e liere partie du raisonnement :

Notons X la différence entre n et la formule C(D) restreinte a l'intervalle
[2; M] :

- Pour n = Z s(D) nous avons X = 0

- Pour n > Z s(D) nous avons X € Z — {0}

- Pour n < Z s(D) nous avons X € Z — {0}
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Regroupons les résultats de la formule de X en fonction de n et de M dans

un tableau :

10

0
0

0

0

0
0
0
0
-1
-1

0
0
0
0
-1
-1
-1
-1
-1
-1
-2
-2

0

0
-1
-1
-1
-1
-2
-2
-2
-2
-2
-2
-3
-3

0
0
0
0
-1
-1
-2
-2
-2
-2
-3
-3
-3
-3
-3
-3
-4
-4

0
0
-1
-1
-1
-1
-2
-2
-3
-3
-3
-3
-4
-4
-4
-4
-4
-4
-0
-5

0
0
0
0
-1
-1
-2
-2
-2
-2
-3
-3
-4
-4
-4
-4
-5
-5
-5
-5
-5
-5
-6
-6

-1
-1
-1
-1
-2
-2
-3
-3
-3
-3
-4
-4
-9
-9
-9
-9
-6
-6
-6
-6
-6
-6
-7
-7

-1
-1
-2
-2
-2
-2
-3
-3
-4
-4
-4
-4
-5
-5
-6
-6
-6
-6
-7
-7
-7
-7
-7
-7
-8
-8

-2
-2
-3
-3
-3
-3
-4
-4
-9
-9
-9
-9
-6
-6
-7
-7
-7
-7
-8
-8
-8
-8
-8
-8
-9
-9

10
11

12
13
14
15
16
17
18
19
20
21

22
23
24
25
26
27
28
29
30
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e 2ieme partie du raisonnement :

D=M

- Pour n = Z s(D) nous avons X =0
D=2
Et donc X2 =0
D=M
- Pour n > Z s(D) nous avons X € Z — {0}
D=2

Et donc X? € N— {0} , ce qui revient a écrire X2 € N tel que X2 > 0.

- Pour n < Z s(D) nous avons X € Z — {0}

D=2

Et donc X? € N— {0} , ce qui revient a écrire X? € N tel que X2 > 0.

—> Ce qui permet d’effectuer la synthese :

D=M

- Pour n = Z s(D) , nous avons :
D=2
D=M 2
X? = [n— S(D)] =0
D=2
D=M D=M
- Pour n > Z s(D) et pour n < Z s(D)
D=2 D=2
D=M
c’est-a-dire pour n # Z s(D) , nous avons :
D=2
D=M 2
X? = [n— ZS(D)] tel que X? € Net X? > 0.
D=2
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Regroupons les résultats de cette formule en fonction de n et de M dans un

tableau :
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e 3ieme partie du raisonnement :

D=M
- Pour n = Z s(D) :
D=2
D=M

La valeur de Z s(D) est constante tant que le nombre premier suivant

D=2
n’a pas été atteint par M. Autrement dit, cette valeur est constante

pour M appartenant a un intervalle. Pour P, € P et pour P41y € P

(ici, P41y est donc le nombre premier consécutif et supérieur a P,),
D=M

la valeur de Z s(D) est constante sur 'intervalle M € [P,; P11y —1].
D=2

Nous en déduisons que :

D=M
n= Z s(D) pour M € [Py; Pyyry — 1]

D=2
Et donc que : X? =0 pour M € [Py; Piy1y — 1]

Dans ce cas, nous retrouvons :

D=M 2
J(X?) =73 [n — Z S(D)] =1 pour M € [Py; Pyqy — 1]
D=2

D=M
- Pour n # E s(D) , c’est-a-dire dans tous les autres cas, nous avons :
D=2

X?% >0 tel que X? € N.

Dans ce cas, nous retrouvons (donner un intervalle dans ce cas n’est
pas nécessaire pour la suite du raisonnement) :

J(XH =73 [n — i S<D)] =0
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Regroupons les résultats de cette formule en fonction de n et de M dans un
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e 4ieme partie du raisonnement :

Etudions, la formule suivante :

M.s(M)=M pour M = P, (nous avons noté P, € P)
M.s(M) =0 pour M # P,

Pour cette seconde égalité, il est intéressant de préciser l'intervalle. En effet,

en reprenant les notations de la “2ieme partie du raisonnement”, nous
avons :

M.s(M) =0 pour M € [Py; Pyqry — 1]
D’ou

M.s(M).3(X?) =0 pour M € [Py; Pii1) — 1]

- Pour X? = 0 et pour M = P,, et uniquement dans ce cas, nous pouvons
déduire que :

M.s(M).3(X?) = M.s(M).J [n— 3 s(D)]

= P,.s(P,).J [n - 3 ns(D)]
= P,.(1).(1)
- P

- Pour X? > 0 (c’est-a-dire dans tous les autres cas, et cette fois-ci peu
importe les autres valeurs de M), comme nous avons :

3(X2) =0

Nous déduisons également facilement que :
M.s(M).3(X?*) =0

Rappelons que s(M) n’est définie que pour M € N, M > 2.

Page 296 sur 514



— olo|o clojlcloclo|lclolocloc|lclolo|lc|lolclo|lc|lololo|le|loe|]|e
o)) olo|o clolclclo|lc|lolc|lc|lc|lclc|lc|lolco|lc|R c|lo|lo|lolo|o|o
o) olo|o clololo|lo|lo|lcloloclolo|lo|lo|Slololo|loc|lo|lo|lololo|lo|o
I~ olo|o ololololo|lo|lclolololo|b|lo|lclolo|lo|lo|lo|lo|lololo|lo|o
© olo|o oclojlo|loloclocloB ioc|lc|lolcoololo|lo|lololololo|lo|lo|o
Yo olo|o clojlc|loloTicolo|lc|lolcilolooclo|lo|lololololo|lo|o|lo
iS4 olo|o ol-loloololoclolololo|lolo|lolololo|lolo|lolo|lo|lo|lo|o
o olo|o oclojlololo|lolo|lolo|lolo|lolo|lolo|lolo|lolo|lolo|lo|lo|lo|o
o~ olm|o oclojlololo|lolololo|lolo|lolo|lolololo|lolo|lolo|lo|lo|lo|o
— o o oclojlololololololololololololololololo|lolo|lo|lo|lo|o
<
e
[a\]
<)
lap}

2 ol |la|m|t|n|o|~|lo|lo|o|—|a|m <o o~ |o o
\M} A | H SO Rl (oSl ISP i N bl el PRSI i e iVl i i ST PPN PN B PN PN ISR ES R IS N IR TS R R
N—

«

Regroupons les résultats de cette formule en fonction de n et de M dans un
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e 5ieme partie du raisonnement :

D’apres la formule précédente (et d’apres le tableau précédent) :

Pour n constant, il nous suffit de faire la somme de toutes les valeurs de la
colonne correspondant a n, pour M € [2;400]. Comme toutes les valeurs
de la colonne sont a 0 sauf une seule, qui vaut d’ailleurs le nombre premier
recherché, la somme de toutes ces valeurs vaut finalement ce nombre premier
recherché.

La formule du n*™ nombre premier P, recherché s’écrit donc :

2

Po= Y | Ms(M).J [n— i s(D)

La formule donnant P, étant définie pour tout M € N tel que M > 2 et pour
tout n € N tel que n > 1.

Cette formule permet donc de donner de maniere exacte et générale la répar-
tition de tous les nombres premiers consécutifs (c’est-a-dire selon la valeur
de n) dans l'ordre croissant.

Nous voyons clairement dans cette formule que la formule d’Impulsion Premiere
J(X?) (qui permet de ramener le raisonnement mathématique & une logique
binaire, comme celle de I’algebre de BOOLE [3]) et la simplifiée s(M) (établi-
ssant également un lien entre le raisonnement mathématique et 'algebre de
BOOLFE) sont d’une importane capitale. La formule d’Impulsion Premiere
J(X?) et la simplifiée s(M) permettent de ramener le raisonnement mathé-
matique a un raisonnement en logique “binaire” , comme celle de ’algebre
de BOOLE (en donnant des résultats qui ne peuvent étre que 0 ou 1).
Comme la formule d’Impulsion Premiere est un cas particulier de la formule
simplifiée, nous pouvons considérer que 1'utilisation des formules simplifiées
sont essentielles pour donner la répartition exacte des nombres premiers.

Cette étude a également permis de confirmer que la répartition des nombres

premiers n’est pas diie au hasard, puisqu’elle se soumet a des regles représentées
par une formule précise.
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Remarque :

Cette formule ne rend pas les calculs simples, puisque les calculs de la
factorielle sont inévitablement plus longs pour les plus grands nombres. Or,
I'objectif du Chapitre I (“3.h.7 Produit de nombres factoriels et
divisibilité par M, généralisation”), et du Chapitre IV est de donner
une formule ou le calcul de la simplifiée est optimal, ce qui permettra aussi
d’avoir un impact sur ce chapitre.

En comparaison aux autres formules utilisées (telles que f(M;x), s(M) ou
J(M) ), cette formule se donne & un niveau de complexité logique supérieur.
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7.3 Formule Pn de répartition exacte des nombres
premiers

- Formule P, de répartition exacte des nombres premiers :

Nous venons d’établir précédemment la formule P, telle que P, € P, pour
tout M € N tel que M > 2 et pour tout n € N tel quen > 1 :

2

Po= Y | Ms(M).J [n— > s(D)

En rappelant que :

. ((M _jé)!m.w)

T
sin 2 (—)

M
En rappelant que :

o ((D —;)!m.w>

S(M) =

avec m € N, m > 2

S(D) = — avec m € N, m > 2
sin 2 <—>
D
D=M
Et que, pour X =n — Z s(D) :
D=2

J(X?) = s(X*+2).5(X*+3)
s(2.X% +2)

g2 (X241
2.X2 42

sin? [ —~
2.X2+2

Page 300 sur 514



- Rechcherche d’une formule de restriction R(n) :

Dans le cas de la formule de répartition exacte des nombres premiers P,, et
comme dans celui de la formule D(N) vue dans le Chapitre I, nous pouvons
restreindre notre formule aux calculs les plus utiles (ou plutot limiter les
calculs inutiles) grace a une formule de restriction R(n) qui remplacera la
borne supérieure de M (qui tend vers “ +oo 7).

Dans ce cas, les calculs s’arrétent lorsque R(n) = P, , avec R(n) € N tel que
R(n) > 2, autrement dit lorsque :

M=R(n) D=M 2
> (M) [n— > s(D)] 40

Car dans ce cas précis, nous avons :

P, = Mzi(n) M.s(M).3 [n — %S(D)] 2
Et donc
P, — Mij M.s(M).J [n - % s(D)] 2
SUITE EN COURS
DE REALISATION !
Remarque :

Nous pouvons finir en faisant le lien direct avec la formule s(M) puisque
s(M) = 1pour M = P, seulement, P, étant donné par la formule précédente.
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8

Formule de répartition exacte

des nombres premiers jumeaux
Pj

D’apres la méme méthode que précédemment, nous pouvons établir une
formule donnant la répartition exacte des nombres premiers jumeaux, c’est-
a-dire le répartition des nombres premiers jumeaux dans l'ordre croissant.

Notons P; le j%™® nombre premier de 'ensemble de tous les nombres premiers
jumeaux. L’objectif est d’obtenir (sans faire de distinction sur la position des
nombres premiers jumeaux au sein d’un couple) :

Pour 5 =1, P;=3
Pour 57 =2, P;=5
Pour 5 = 3, P =17
Pour 57 =4, Py =11
Pour j =5, P; =13
Pour 57 =6, P =17
Pour j =7, P; =19
Pour 57 =8, P; =29
Pour 7 =9, P; =31
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Cette partie est un peu plus délicate que la précédente car elle va nécessiter
une synthese entre 2 formules du méme type que la formule P, (que nous
venons d’établir).

Pour éviter que le développement ne soit trop lourd a gérer, donnons quelques
conditions au raisonnement. Par anticipation, nous devrons utiliser simultané-
ment les formules simplifiées premieres s(M), s(M +2) et s(M — 2). Ce qui
donne tout de suite le domaine de définition de M que nous allons devoir
adopter :

M € N tel que M >4

Notons j' € N, j/ > 1.

Effectuons ici aussi le raisonnement en plusieurs parties.
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e liere partie du raisonnement :

D’apres la formule du type de s(M) (voir “7.1 Rappels” page 287) et en
tenant compte du domaine de définition donné M € N, M > 4 :

1 siMeP

1 siM¢P

- Nous pouvons donc construire une formule de comptage des couples de
nombres premiers jumeaux. Une premiere approche se fait en donnant :

s(M).s(M+2)=1 si M et (M + 2) € P simultanément,
s(M).s(M +2)=0 si M ¢ Pousi (M + 2) ¢ P seulement.

D=M
D’ou Z [s(D).s(D + 2)] une partie de la formule de comptage.
D=4

Or, pour le domaine de définition donné, le premier couple de nombres
premiers jumeaux {3;5} ne peut pas étre compté par la formule précédente.
Pour étre exacte, nous devons ajouter 1 a cette formule, ce qui symbolisera
que nous avons bien tenu compte du premier couple pour le comptage :

D=M

L+ ) [s(D).s(D +2)]

D=4

Pour M passant par tous les nombres entiers consécutifs du domaine de
définition, cette formule donne nécessairement pour résultats tous les nombres
entiers de 1 a U'infini.

Page 304 sur 514



- Nous pouvons également construire une formule de comptage des couples
de nombres premiers jumeaux par une seconde approche en donnant :

s(M).s(M —2)=1 si M et (M —2) € P simultanément,
s(M).s(M —2)=0 si M ¢ P ousi (M — 2) ¢ P seulement.

N [s(D).s(D — 2)]

D=4

Pour M passant par tous les nombres entiers consécutifs du domaine de
définition, cette formule donne nécessairement pour résultats tous les nombres
entiers de 0 a U'infini.

Ici, contrairement a la précédente formule de comptage, le domaine de définition
nous permet de compter tous les couples de nombres premiers jumeaux.

- Ces 2 différentes formules de comptage vont étre utiles pour la suite.
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e 2ieme partie du raisonnement :

Dans le couple des nombre premiers jumeaux donné par {Pj; Py}, la
.7 iéme

variable j' donne le j couple. Nous pouvons constater que :

- Si j est impaire, alors Pj donne le premier (dans l'ordre croissant) du
couple de nombres premiers jumeaux,

- Si j" est paire, alors P; donne le second (dans l'ordre croissant) du
couple de nombres premiers jumeaux.

Ce qui indique de séparer les travaux : d’une part pour j' impaire et d’autre
part pour j' paire.

Il est impératif de constater que cette méthode contient une contradiction

qu’il sera nécessaire de corriger. En effet, cette méthode implique de considérer
que le j' " nombre premier jumeau ne peut étre le méme que le (j' + 1)"".

Or, il existe 2 couples de nombres premiers jumeaux et seulement 2 qui ont

un nombre premier en commun, il s’agit des couples :

{3;5} et {5;7}

Nous constatons dans ce cas que le nombre 5 va nécessairement se retrouver
dans les travaux concernant j' impaire et dans les travaux concernant j' paire.
Il deviendra utile de changer de variable en considérant la variable 5. La
variable j' ne doit donc étre considérée que comme une variable intermédiaire
permettant d’atteindre notre objectif.

Nous savons donc déja qu'une formule de correction de ce défaut sera nécessaire.
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e 3ieme partie du raisonnement :

Dans un premier temps et pour rendre le raisonnement plus simple, omettons
volontairement le défaut vu précédemment.

- Si j' est impaire, alors Pj donne le premier (dans l'ordre croissant) du
couple de nombres premiers jumeaux.

En notant :

X, =7 -2 {1+ i [S(D).S(D+2)]} +1

Si ' = 2. {1 + i [s(D).s(D + 2)]} 1

Alors X;%2 =0.
Autrement dit : si j/ est un nombre impaire. Et comme nous avons vu

que pour M passant par tous les nombres entiers consécutifs du domaine de
définition, la formule :

1+ i [s(D).s(D + 2)]

donne nécessairement pour résultats tous les nombres entiers de 1 a I'infini,
cela implique que :

X?2=0 quelquesoit le nombre impaire j'.

Et donc J(X%) =1

Maintenant, dans tous les autres cas restants :

Si / # 2. {1+ 3 [s(D).s(D—l—2)]} 1

Alors X;? vaut un nombre entier, et donc :
J(X13H) =0
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- Si j’ est paire, alors Pj donne le second (dans 'ordre croissant) du couple
de nombres premiers jumeaux.

En notant :

Xo=j—2. Y [s(D).s(D—2)]

D=M

Sij' =2 [s(D).s(D—2)]
D=4

Alors X% = 0.

Autrement dit : si j’ est un nombre paire. Et comme nous avons vu que pour
M passant par tous les nombres entiers consécutifs du domaine de définition,
la formule :

1+ i [s(D).s(D — 2)]

donne nécessairement pour résultats tous les nombres entiers de 0 a l'infini,
cela implique que :

X2 =0 quelquesoit le nombre paire j'.
Et donc J(Xp%) =1

Maintenant, dans tous les autres cas restants :
D=M

Sij #2. ) [s(D).s(D—2)]
D=4

Alors X,? vaut un nombre entier, et donc :
J(X3%) =0
- Pour la suite, en regroupant dans des tableaux les résultats des formules

J(X1?%) et J(X5?%), nous pourrons plus facilement mettre en évidence I'orientation
de nos recherches.
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e 4ieme partie du raisonnement :

- D’une part, pour j’ impaire, nous avons la formule J(X?) :

wn
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La

Nous constatons clairement que notre formule multipliée par s(M).s(M + 2)
nous donne la position du premier nombre premier jumeau du couple.

formule s’écrit donc J(X?).s(M).s(M +2) :

A NOTER :

De plus, nous

constatons que le
nombre premier

3 ne peut pas étre

donné directement
par cette méthode

puisqu’il est en-

dehors du domaine
de définition.

X

X
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0

1

0

1

0/0]01]0

1

0/]0]0]0]0]O0

1

0

112(3[4(5[6[7[8[9]10

XX X[ XXX | XXX

X | X[ X|X|[xX|x|xX|X|X
0/0(0]0]0]0O[0|0]O

0/0(0]0]0]0O[0|0]O
0/0(0]0]0]0[0|0]O0
0/0(0]0]0]0O[0|0]O0
0/0(0]0]0]0[0|0]0
0(0(0]0]0]0[0|0]0

00|00

0/(0(0]0]0]0O[0|0]O
0/0(0]0]0]0O[0|0]O
0/0(0]0]0]0O[0|0]O
0/0(0]0]0]0[0|0]0
0/0(0]0]0]0[0|0]0

0/0(010]0]0

0(0]010]0J0]0O|0]O
0/(0(0]0]0]0O[0|0]O
0/(0(0]0]0]0O[0|0]O
0/(0(0]0]0]0O[0|0]O
0/(0(0]0]0]0[0|0]O0
0/0(0]0]0]0[0|0]0
0(0]010]0J0]0O|0]O
0(0]010]0J0]0O|0]O
0/0(0]0]0]0O[0|0]O
0/(0(0]0]0]0O[0|0]O
0/0(0]0]0]0[0|0]0O

0(0(0]0]0]0[0]O0

0(0]010]0J0]0O|0]O
0(0]010]0J0]0O|0]O
0(0]010]0J0]0O|0]O

j/

3(X12).5(M).s(M + 2)

10
11
12

13
14
15

16
17
18
19
20
21

22
23
24
25
26
27
28
29
30

31

32
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- D’autre part, pour j' paire, nous avons la formule J(X5?) :
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—2)
La

nous donne la position du second nombre premier jumeau du couple.

Nous constatons clairement que notre formule multipliée par s(M).s(
formule s’écrit donc J(X5?).s(M).s(M — 2) :

X

X
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0

0

1

0(010

1

0/0[0]0]0

1

0(0]010]00]O0

213145678910

1

1

XX | X[ XXX |X|[X]|X

X | X |X|[X|[xX|x|X|xX|X
0/0(0J0J0[0]0O[0]O

0

0/0(01010[0]0O[0]O0

0/0(0

0/0(01010]{0]0[0]O0
0/0(01010[0]0[0]O0
0/0(01010][0]0[0]O0
0/0[0[0]0O|0]O|0O]O
0/0(01010]|0]0O[0]O0

0/{0[0[0]O0

0/0(01010]{0]0O[0]O0
0/0(01010][0]0[0]O0
0/0(01010[0]0O[0]O0
0/0(01010[0]0[0|O0
0/0[{0[0]0O|0]O|0O]O

0/0[0J0|0]0]O

0/0(01010][0]0O[0]O0
0/0(01010][0]0O[0]O0
0/0(01010][0]0[0]O0
0/0(01010[0]0[0|O0
0/0[{0[0]0O|0]O|0O]O
0/0[{0[0]0O|0]0O|0O]O
0/0(01010][0]0O[0]O0
0/0(01010]|0]0O[0]O0
0/0(01010]{0]0O[0|O0
0/0(01010[0]0[0]O0
0/0(01010]{0]0O[0|O0
0/0[{0[0]0O|0]0O|0O]O
0/0(0J010[0]0O[0]O0

j/

_2)

J(Xp?%).s(M).s(

10
11

12
13
14
15
16
17
18
19
20
21

22
23
24
25
26

27
28
29
30
31

32
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- Pour finir, nous pouvons faire la synthese en regroupant tous ces résultats

Ceci va étre possible grace a 'addition de ces 2

formules, notons Y = J(X;?).s(M).s(M + 2) + J(X5?).s(M).s(M — 2) :

dans un seul tableau.

X

X
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
1
0

0

1

0

1

0(010

1

07(0(0/0

1

0/0(0[0]O0

1

0[0]0J0]0]O0

1

11213456 7][8|9]10

XXX |1 X | X | X |X|X X

X [X[X|X|X|[X|[X|X|X
00001 0[0|0]0]O0

0/0(010]0|0]O0[0|O

0/0(0

0/0(010]0[0]0O[0|O0
0/0(010]0|0]0[0|O0
0/0(010]0[0]0[0|O0

0/]0(00

0/0[{0[0|0|0]O|0]O

0/{0(0[0]O0

0/0(010]0][0]0O[0|O0
0/0(010]0|0]0[0|O0
0/0(010]0[0]0[0|O0

0/0(0[0]0]0O

0/0[{0[0|0O|0]OJ0O]O

0[(0[{0(0]0|0]O

0/0(010]0|0]O0[0|O
0/0(010]0|0]O0[0]O0
0/0(010]0[0]0[0|O0
0/0(010]0|0]0[0|O0
0/0(010]0[0]0[0|O0
0/0[{0[0|0|0]OJ0O]O
0/0[{0[0|0|0]0O|0]O
0/0(010]0]|0O]O0[0]O
0/0(010]0|0]0O[0]O0

0/]0[010]0]|0O[0]O0

0/0(010]0[0]0O[0|O0
0/0(010]0[0]0[0|O0
0/0[{0[0|0O[0]O|0O]O

10
11
12
13
14
15
16
17
18
19
20
21

22

23
24
25

26
27
28
29
30
31

32
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Comme nous nous y attendions, le nombre 5 se trouvant dans 2 couples
différents, j' nous donne ce nombre dans 2 positions différentes. De plus,
comme 3 est en-dehors du domaine de définition de M, j' ne peut pas indiquer
sa position directment dans le tableau.

Nous allons devoir corriger ces défauts.
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e 5ieme partie du raisonnement :

- Derniere étape avec les formules avant de corriger les défauts.

M—+o0
Notons Z = Z {M.[3(X,?).8(M).s(M + 2) + F(Xo?).s(M).s(M — 2)]}

— Kinklololololo|lo|loloclo|lc|lolclo|lc|loo|lc|lolclo|lc|lolo|lo|lo|lo|o|R
o Kinlo|lo|lololo|lo|lo|lolo|lo|lololc|lo|lclo|lc|lololo|lo|lololc|lo|] oo
00 Hinlololo|lolololololo|lo|lo|lolololo|IfD|lolo|lololo|lo|lo|lo|lo|lo|lo|lo
I~ “ixlololololo|lo|lololololololo|Slolololoclololololo|lo|lo|lolo|o
© “ixlololo|lo|lololololo|R|o|lolololo|loc|lo|lo|lololo|lo|lo|lo|lo|lolo|lo
10 HinlolololololololTD|lo|lo|lo|lolclo|lo|lc|lo|lo|lololo|lo|lo|lo|lo|lo|lo|lo
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Nous constatons que j' ne donne pas de nombre premier

1, ce qui décale la position dans la répartition des nombres premiers

-/
pour j
jumeaux. Nous devons donc effectuer un décalage par changement de variable

- Premier défaut :

>1:

j'—1 tel que que 7 €N, j

pour résoudre ce probleme. En notant j

10

31

0

0

13

0

0
0

0

11

0

0

0
0

0/0]0

0/0(0

0/0]0

0/0]0

0/0]0
0/0]0

10
11
12
13
14
15
16

17
18
19
20
21

22

23
24
25

26
27
28
29
30
31
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- Second défaut : Pour finir, il ne nous reste plus qu’a nous servir du défaut
de la répétition du nombre 5 pour convertir le premier des 2 en nombre 3.

Pour corriger ce défaut, nous allons faire appel une nouvelle fois a la formule
d’Impulsion Premiere. Nous allons 'appliquer de telle sorte que seulement
la valeur j = 1 sera modifiée et aucune autre valeur. Pour cela, notons :

G -1
Donnons tous les résultats de cette formule pour j € N, j > 1:

1 sij=1
=0 sijeEN, j>2

Ce qui va permettre d’établir une formule de correction pour j = 1 seulement.
En effet :

23 -1)=-2 sij=1
—23(j—1)=0 sijeN, j>2

Or, pour j = 1, nous avons :

M —+oco

Z {M[3(X,2).s(M).s(M +2) + I3(X22).s(M).s(M —2)]} =5

En ef‘fectuant la somme entre la formule de départ et la formule de correction,
nous avons :

M—+o00

I —1)+ Z {M[3(X12).5(M).s(M + 2) + J(X32).s(M).s(M — 2)]}

=-23(1-1)+5=3 (pour j =1)

Et les résultats de la somme entre la formule de départ et de la formule de
correction sont exactement ceux de la formule de départ lorsque j € N, j > 2.

Ce qui nous permet de conclure et d’établir la formule de répartion exacte
des nombres premiers jumeaux grace a cette somme.
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e Formule P; de répartition exacte des nombres premiers jumeaux

Rappelons que j = j' — 1, donc 7' = j + 1.

Nous pouvons finalement donner P; la formule de répartion exacte des nombres
premiers jumeaux par une somme qui fait la synthese de la correction des
défauts, ott j donne le j*™¢ des nombres premiers jumeaux dans l'ordre
croissant (j € N, j > 1) et sans répétition :

M—-+o0o

Pp=—=23(j—1)+ Y {M.[3(X\?).s(M).s(M+2)+3(X5).s(M).s(M—2)]}

Avec :
X, = 57 -2 {1—1— ; [3(D).3(D+2)]}+1
- j+2—2.{1+ ; [S(D).S(D+2)]}
Et avec :
X, = j -2 Y [s(D).s(D — 2)]
= Jj+1-2. 3 [s(D).s(D — 2)]

Implicitement : M € N, M > 4

Remarque :

Comme pour P, (la méthode étant la méme), la formule P; ne rend pas les
calculs simples, puisque les calculs de la factorielle sont inévitablement plus
longs pour les plus grands nombres.

Ici aussi, en comparaison aux autres formules utilisées (telles que f(M;z),
s(M) ou J(M) ), cette formule se donne a un niveau de complexité logique

supérieur.
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9

Réécriture de la fonction (
(Zéta) de RIEMANN

Etant donné la fonction ¢ de RIEMANN [5], pour s € C tel que Re(s) > 1:

<) =11

peP

1
1—p—s

Et étant donné que dans cette formule, p € P permet de parcourir I’ensemble
de tous les nombres premiers, ce qui peut donc étre remplacé par P, (voir
sous-partie “7.3 Formule P, de répartition exacte des nombres premiers’
page 300) pour n variant de 1 a 'infini, nous obtenons simplement :

)

n—-+00 1
() = H M—+00 D=M 2 -
T | Y | Ms(n)3 [n = S(D)]

319



10

Impressions personnelles

D’apres le tableau de référence T.R.1 du Chapitre I, nous avons vu la
régularité dans les puissances des facteurs premiers des nombres entiers N €
N, N > 2. Nous venons également de voir que donner une formule P,
de répartition des nombres premiers était possible par “reconstitution”. La
régularité est bien la, juste sous nos yeux...

Une fois que je ’ai vu, je n’ai pas ressenti de joie immense mais presque une
étrange déception, méme apres tant d’efforts : celle de constater que jamais
rien n’avait changer au sujet des nombres premiers, seuls les points de vue a
leur égard ont changé au cours du temps.

J’ai dit me débarrasser de mes principaux défauts, qui m’encombraient pour
percevoir le monde tel qu’il est. Il me reste encore un défaut important
a changer, puisque j’ai eu suffisemment d’orgueil pour croire que je pouvais
réussir la out d’autres ont échoué, m’affranchir de cet orgueil devient nécessaire
afin de pouvoir progresser encore.

Je pense que le point de vue le plus juste peut étre atteint lorsqu’on se rend
compte que pour étudier le monde, il faut pouvoir prendre conscience que
nous ne pouvons étre qu'une de ses parties, une partie égale a une autre
partie du monde finalement, d’ou il devient possible d’étudier le monde ou
de s’étudier soi-méme indifféremment. Ce qui permet de voir que les vérités
les plus profondes valables pour ce monde sont aussi contenues en nous-méme
(puisque nous sommes une partie de ce monde). Ceci permet de mettre en
évidence un lien naturelle avec une certaine philosophie (que nous serons
amenés a développer par la suite).
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J’ai simplement constaté que d’avoir essayé de voir les nombres premiers
tels qu’ils étaient et sans “préjugé” m’a permis de voir et de comprendre
I'ordre qui y regne. Il faut simplement adopter cette attitude car c’est aussi
celle que 'on se doit d’adopter envers les humains et la nature. Il faut étre
respectueux en général pour comprendre uniquement par soi-méme l'ordre
dans les nombres premiers (méme si cela peut paraitre étrange de méler 'idée
de respect a celle de la compréhension d’'un phénomene logique, il n’en est
rien : ceci sera d’ailleurs développé dans le Chapitre V, qui est selon moi
d’une importance au moins aussi significative que les autres, d’'un point de
vue logique).

Pour la suite, le Chapitre I'V se donne pour objectif de révéler les régularités
qui regnent au sein méme des valeurs de la fonction ¢ de RIEMANN, ainsi
qu’une étude permettant d’inclure cette fonction ¢ dans un cadre plus générale.
L’objectif le plus profond étant de rendre le calcul optimal pour des formules
vues telles que s(M) et par conséquent de rendre le calcul optimal pour
obtenir P,.
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CHAPITRE IV

Etude de la fonction ( de
RIEMANN et du nombre 7
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Introduction

Le but de ce chapitre est de rechercher une méthode qui permette de simplifier
ou de rendre le calcul optimal afin d’obtenir des nombres premiers. Nous
avons vu effectivement dans le Chapitre I (partie “3.8.7 Produit de
nombres factoriels et divisibilité par M, généralisation”) que des
simplifications étaient possibles afin de limiter la longueur des calculs die a
la factorielle dans la formule de s(M). Il devient donc naturel de se demander
s’il existe une expression mathématique équivalente qui limite les calculs au
strict nécessaire.

Remarque préalable :

Comme dans les chapitres précédents, les crochets ne signifient pas “partie
entiere”, ils ont la méme fonction que de simples parentheses.
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11

Etude de la fonction ( (Zéta)

Pour commencer, nous allons aborder la fonction  par une premiere approche
(faible) permettant d’établir un lien entre la somme des fonctions ((s) lorsque
s varie de 1 a l'infini et une fonction “simple”.

Puis, nous verrons que la fonction eut étre vue comme étant un cas
)
particulier de fonction qui peut s’inscrire dans un type de fonction plus

“générale” (approche moins simple).

Rappel :

11.1 Premiere approche

De maniere “faible” (c’est-a-dire de maniéere relativement simple), nous pouvons
établir un lien entre chaque fonction ( lorsque s varie telle que s € N, en
effectuant la somme des fonctions ¢ pour chaque s € N, s > 1 (le cas de
s = 0 n’étant pas indispensable, nous I’évitons par anticipation).
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11.1.1 Piste d’écritures équivalentes a la fonction (

Dans un premier temps, notons cette somme :

S§——+400

Y Cls) = C1) +¢2) +¢(3) +C(4) +¢(5) +€(6) +¢(T) +¢(8) +

En étalant la somme sur plusieurs lignes (chaque ligne correspond a une
égalité de ((s) pour une valeur de s unique) :

s§—+00

ZC(S) = 1_|_}_|_1 _|_1 _|_1_|_1 _|_1 _|_1_|_
= 2 3 4 5) 6 7 8

1 1 1 1 1 1 1
+1+?+§+E+§+@+ﬁ+§+m

1 1 1 1 1
+1+?+¥+E+§+@+%+§+m
1 1 1 1 1

1 1
+1+?+y+ﬂ+§+@+%+§+m

+
Or, I’égalité présentée sous cette forme nous permet de faire apparaitre qu’une

somme de chaque colonne (a chaque début de ligne, un exemple de groupe

est repéré en rouge, un autre exemple est repéré en bleu) nous donne une
nouvelle égalité :

s§—+00 §—+00

Yot => W+ Y <i+i+i+i+i+i+i+...)

£ 2o \2s "3 T e s

Or, nous savons que pour 0 < u < 1:

s§——+400 S$——+00

1
Z uw =1+ Z v=1l4+u+ul+ud+ut+ud +ub .=
1—u
s=0 s=1
s——+o0 1
Dot s -1
ou ; U -
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Et d’ou nous pouvons également déduire :

| (PN N N N R
~ \20 3 45 6 T8
1 1 1
+ -1+ 1_;_1 + 1_1—1 + ...
5 6

()G
1-3 1—-3

Et donc finalement une formule générale pour s € N, s > 1 :

k——+o0

PO SR > (i)
()

SDIOED SR ol FE

k—-+o00

L+ > W= > W+ > (1=

s=1
k—-+oo < 1 )

k=2

Or, le nombre d’éléments contenu dans chacune des sommes étant identique,

nous pouvons conclure que :

5—+00 k—+o00
> m=>
s=2 k=2
D’ou
s5—+00 k—4o00
YoM=Y (1)=0
s=2 k=2

D’ou nous déduisons également que :

s—400 k—+o00 1
S =1+ Y (12)
s=1 k=2 k
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La divergence de ((1) implique la divergence de cette formule. Afin d’éviter
la divergence dte a ((1) , nous allons essayer d’exprimer cette somme en
fonction de s compris entre 2 et +oo.

D’autre part, prenons en considération cette égalité pour x € N, x > 2 :

()z( )

1
k

Nous pouvons donner les valeurs de cette formule en fonction de x :

V() = —%
V(3) = —g
Vi) = -
V) = ¢
V) = -
v = -3
VE) = -2
Vi) = — w(m—wl)—l
Donc
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De plus,
k—4o00 1 k—4o00 1
=3 (i) % (3)
k=1 k=2
D’ou
k—4o00 1
ORI
k=2

Pour finir, nous avons vu que :

s—4o00 k—+o00 1
> -1+ Y (1)
s=1 k=2 k

D’ou
k—+o00 1 s——+00
> (1) -1+ X
k=2 k s=1

Ce que nous pouvons également écrire :

k—4o00 1 s—+00
> (1_1)=—1+c<1>+ > ¢
s=2

k=2 k

(s)
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Ce qui nous permet de déduire que :

S 1
lim V(z) = 1+ (— - )
z—-+oo ; ko1-1

k—+o0 1 k—+o00 1
SRR S )
k=2 k

k=2

= 1+[C() -1 - [C(l)—1+ > C(S)]

Donc

s§——400

Jim Vi) =1- 37 ()

Et donc
s—400
, r(r—1)—1
I
s=2
. 1
= lim <1+x—1——)
Tr—+00 xX
1
= lim (x — —)
Tr—-+00 T
Or,
1 )
Iim —— =0 Et lim z = 400
Tr——400 €T Tr——+00
Donce lim (x — —) = 400
Tr——+00 €T

Ce qui permet, d'une part, de conclure que la série diverge :

s§——+400

Z C(s) = +o0
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11.1.2 La fonction ( assimilable a la fonction A

Dans un second temps, nous pouvons apporter une précision sur le comportement

de ((s) pour s € N et au voisinage de +00 . Rappelons que
s—+00 k—+00

Et 1)=1+ -

¢(1) ;k

S @ =cm+ Y <)

D’ou
§——+400 s$—+00
S s) = —cy+ S Cls)
5=2 s=1
k—+4o00 1 s——400
= _1+ZE+ZC(8)
k=2 s=1

Or, nous avons vu que :

k——+o00

igoé( ) =1+ Z (

)

Ce qui nous permet de déduire que

k—>+oo k—+o0 (

s§——+00
; (s) = —-1-— Z E+1+ Z

——+00 1 k—+00 1
)

R‘I)—‘
N——

k=2 k=2
-y (Y
= - —
k=2 l—5 K
k—-+o00
1
_ n }
ps { k(k—1)

(ce qui permet également de déduire la divergence de [’égalité)
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Le nombre d’éléments étant le méme dans les sommes de chacun des 2
membres, nous pouvons ramener la variable k a k = s, ce qui nous permet
d’écrire plus simplement que :

s—+400 s§—+00

> =3 |1+ 5]

s=2

Le nombre d’éléments étant le méme dans les sommes de chacun des 2
membres, cette derniere égalité nous permet d’établir que la fonction ((s)
est “globalement assimilable” (c’est-a-dire pour I'ensemble des valeurs de
s € N tel que s > 2, ou encore pour s € [2;+00[ ) a la formule suivante :

1

1+s(3—1)

D’ou I’équivalence au voisinage de +oo :

s§—+00 §—+00

lim ((s) = lim {1+ﬁ} =1

Notons A la fonction assimilable a la fonction ( telle que :

1

A(S):l—i—m

Et donc, telle que :

§——+400 S——400

> Cs)= D> Als)
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11.1.3 Etude de la fonction assimilable A(s)

- Dans un dernier temps, nous pouvons faire I’étude de la fonction A précédente
assimilée a (. Nous avons noté A(s) la formule correspondante :

1

A(s) ne possede que 2 poles réels : 1 pole en 0 et un autre en 1. D’autre
part, A(s) ne possede aucune racine réelle et ne peut par conséquent jamais
etre nulle pour s € R.

Au passage a la limite en 1, nous obtenons :
) 1
lim |1+ ———| =4
s—1 s(s—1)

La divergence de cette formule en s = 1 reste cohérente quant a I’assimilation
de A(s) a ((s) en s = 1, puisque ((s) est elle aussi divergente en ce point.
Ce qui permet d’étendre l'intervalle d’assimilation de A(s) a ((s) jusqu’en
s =1, c’est-a-dire pour s € N sur l'intervalle [1; +o0[.

De plus,
i 1
lim 14+ ———| =400
s—0 s(s—1)
Rappelons qu’au voisinage de +oo :

1
li 14——1 =1
s—otoo [ * s(s — 1)]

Etendons le raisonnement au voisinage de —oo :

li 1+ L =1
s—1>£noo S(S — 1) N
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- Dérivée de A(s) :

2s — 1

A= e

(cette écriture révele les 2 poles et une racine réels)

Ce qui est équivalent a (cette écriture est utile pour les limites en l'infini) :
-1 1 1
As)= —. | -
(s) s(s—1) (s+s—1)

Nous pouvons alors étudier A'(s) :

A’(s) ne possede que 2 poles réels : 1 pole en 0 et un autre en 1. D’autre
1 1
part, A’(s) possede une unique racine réelle en s = 3 d’ou A (§> =0.

Etude des limites :

» lim A'(s)=0

S§——00

» lim A'(s) = o0

s—0

A’ est donc positive sur I'intervalle | — oo; 0[.

1 1
> A (5) = 0 donc A’ coupe l'axe des abcisses une seule fois en s = 3"

1
A’ est donc positive sur U'intervalle ]0; 5[

» lim A'(s) = —o0

s—1

1
A" est donc négative sur l'intervalle ]5, 1].
> lirgl Al(s) =0

A’ est donc négative sur l'intervalle |1; +o00.
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- Cette étude permet de tirer des conclusions sur les caractéristiques de A(s) :

A ne possedant aucune racine réelle, elle ne peut par conséquent jamais étre
couper ’axe des abcisses.

A est strictement croissante sur l'intervalle | — 0o; 0] avec une convergence
vers 1 en —oo et une divergence vers +o0o en 0. Comme A ne coupe jamais
I’axe des abcisses, elle est donc positive sur cet intervalle.

1
A est strictement croissante sur l'intervalle |0; 5[ )

1 1
A atteint un maximum pour s = 3 donné par A <§) =-3,

1
A est strictement décroissante sur l'intervalle ]5, 1[ . Comme A ne coupe

jamais I'axe des abcisses, elle est donc négative sur 'intervalle |0; 1] .
A est strictement décroissante sur l'intervalle |1; +o00[ avec une divergence

vers 400 en 1 et une convergence vers 1 en +0o . Comme A ne coupe jamais
I’axe des abcisses, elle est donc positive sur cet intervalle.

1
A possede donc un axe de symétrie en s = 7 En effet, donnons quelques

valeurs de A en fonction de s :

(voir page suivante)
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A(501) = 250501/250500
A(251) = 62751 /62750
A(101) = 10101/10100
A(51) = 2551 /2550

A(26) = 651,650

A(7) = 43/42

A(6) = 31/30

A(5) = 21/20

A(4) = 13/12

A(3) =17/6

A(2) = 3/2

A(3/2) =17/3
A(5/4) = 21/5
A(9/8) = T73/9
A(17/16) = 273/17

A(99/98) = 9703/99
A(98/99) = —9703/98

A(15/16) = —24/15
A(7/8) = —T73/9
A(3/4) = —21/5
A(2/3) = —13/4
—3
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1

La symétrie en s = 3 nous permet d’écrire que :

A(s) = A(1 — s)

(ce qui est d’ailleurs exact)

1
Et donc la connaissance de la symétrie de A en s = 3 et ’étude de A sur

I'intervalle [1/2; +] suffisent pour connaitre A intégralement.

Allure de la courbe :

A(s)

N W &g

T e e e e o e o e e e e e e o e e o m— — — —
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- Rappelons que nous avons :

S:fjas) _ Sf%)
- _zm {”s@l—n}

Ce qui établi clairement un lien entre ((s) et A(s) sur l'intervalle [2; 4+o00].

En développant :

Nous constatons que (s> — s — 1) possede 2 racines complexes puisque pour :
s2—s54+1=0, le discriminant A vaut
A=1—-4=34

Et donc, les 2 racines s; et sy sont :

1+iv3 1 V3

S]= ——— = = +l.—

2 2 2

Lo lmiv_1 v

S T B
D’ou
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Ce qui permet de constater que la formule A(s) s’annule pour 2 racines

1
complexes s; et sy de partie réelle 3 et de partie imaginaire :I:T.

Or, il a été démontré que les 0 non triviaux tels que ((s) = 0 sont tous donnés
par s un nombre complexe dont la partie réelle appartient a 'intervalle [0; 1].
Il nous reste & savoir si ((s) peut encore étre assimilée a A(s) sur cet intervalle

(ou au moins sur l'intervalle [57 1] ), ce qui pourrait permettre de confirmer

la conjecture de RIEMANN [5]. Rappelons que cette conjecture stipule que
les 0 non triviaux de ((s) seraient donnés par des nombres complexes s qui

auraient tous pour partie réelle la valeur 7

Pour finir, nous pouvons encore écrire s; et s, ainsi :

5y = /3
59 = e77/3

D’ou
Als) = (s — ei7/3)(s — e~im/3)

Remarque finale :

Il est possible de pousser le raisonnement un peu plus loin a propos de la
divergence de :

DECEIE =)

- Lo Y [k
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En effet, nous avons :

2 ets) - B o]

s=2 5=2
s——+00 1 S§——+00 1
- X el S

Ce qui nous permet de conclure que :

§—+00 s—+00

1
; (s) = > _”3(3_1)}

s=2

s§—+00 1 :| s§——+00
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11.2 Travaux en cours de réalisation

TRAVAUX EN COURS
DE REALISATION !

Note personnelle :

Chapitre dont le travail est long, mais dont la version définitive devrait
logiquement étre a la hauteur de I'objectif que je vise ! Soyons patient...
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CHAPITRE V

Réflexions logiques et
philosophiques
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Introduction

Ce chapitre est indépendant des travaux précédemment effectués, il peut
étre lu sans connaissance du contenu des chapitres précédents, bien que les 2
premiéres parties puisse étre vue comme étant “complémentaires” (d'un point
de vue logique puis, respectivement, philosophique) & la recherche de formules
ou de regles comme nous 'avons fait précédemment. Cependant, ce chapitre
est d’une importance essentielle car il va nous mener au Chapitre VI en
établissant des liens avec des conceptions physiques. De plus, il va nous
amener a étudier un cas d’une importance capitale pouvant étre vu comme
la preuve que l'on puisse construire des énoncés en dehors de toute théorie
cohérente, nous guidant encore vers une interprétation géométrique (et phy-
sique) possible dans le Chapitre VI. Certaines démarches dans les raisonne-
ments exposés peuvent sembler non-conventionnelles, cela étant volontaire
vues les quelques notions nouvelles qui seront abordées.

Parfois, ces réflexions seront simplifiées au strict nécessaire d’un point de vue
logique afin de nous amener rapidement a ’essentiel. Parfois, ces réflexions
seront accompagnées de remarques personnelles ou de digressions (celles-
ci pouvant étre des intuitions, des avis personnels ou des suggestions qui
amenent a d’autres réflexions). Quelquefois encore, lorsque le sens me parait
difficile & donner de maniere précise, ces réflexions pourront étre “répétées”
différemment, ce qui pourrait étre percu comme redondant. Des compléments
de réflexion sont également exposés afin de tenter de faire des liens avec
d’autres sujets (quelquefois a propos de phénomenes physiques, ou les formules
étudiées peuvent trouver une application ou fournir des explications).

Les 2 premieres parties sont plus techniques que les suivantes, de plus, elles
permettent de se rendre compte des liens qui existent entre les propriétés
des nombres entiers, leur propriété de primalité, la logique binaire et le
calcul propositionnel “classique”. Il est nécessaire d’aborder les parties de ce
chapitre dans 'ordre tel qu’il est exposé.
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12

Correspondances entre
formules, valeurs de vérité et
énonceés

A partir de formules ne pouvant prendre que 2 valeurs (0 ou 1), et en
attribuant une valeur de vérité (vrai ou fauz) a ces 2 valeurs, il devient
possible d’assimiler une formule & un systeme de “raisonnement cohérent” |
c’est-a-dire a un systeme qui permet de traiter un énoncé en lui attribuant
une valeur de vérité (vrai ou faux).

Nous allons donc développer cela dans quelques cas intéressants. Remarquons
qu’il est toujours nécessaire de donner le domaine de définition d’une variable
ou plusieurs variables utilisées dans ces formules.

Pour la suite, nous attribueront la valeur de vérité “vra:” a la valeur “1”

d’une formule, et la valeur de vérité “faux” a la valeur “0” de cette méme
formule.
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12.1 Exemple des nombres impaires

M.
Considérons la formule sin 2 (Tﬂ> pour M € N :

M.
sin 2 (Tﬂ) =0 si M est paire

M.
sin 2 (Tﬂ) =1 si M est impaire

Et en attribuant les valeurs de vérité comme convenu :

“0” est équivalent a “faux”
“1” est équivalent a “vrai”

Nous pouvons établir que la formule permet d’attribuer une valeur de vérité
a I’énoncé suivant :

“M € N est telle que M est impaire”

En effet, si M est paire, la formule vaut 0, ce qui signifie que 1’énoncé est
“faux” (M ne peut pas étre paire et impaire a la fois). Et si M est impaire,
la formule vaut 1, ce qui signifie que 1’énoncé est “vra:”.

M.w
Ceci permet d’assimiler la formule sin 2 5 pour M € N a un systeme de

raisonnement cohérent qui permet d’attribuer une valeur de vérité a I’énoncé
“M € N est telle que M est impaire”.
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12.2 La formule s(M)

Rappelons que pour M € N tel que M > 2, nous avons s(M) (étudiée dans
le Chapitre I, en sous-partie “3.1 Formule simplifiée s(M)”) telle que :

1 siMeP
s(M)=0 siM¢P

Comme dans la sous-partie précédente, ceci permet d’attribuer une valeur de
vérité a I’énoncé :

“M e N, M > 2 est telle que M € P”
Et donc la formule s(M) peut étre assimilée a un systeme de raisonnement

cohérent qui permet d’attribuer une valeur de vérité a I’énoncé “M € N,
M > 2 est telle que M € P”.
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12.3 La formule J(M)

Rapidement avec la formule J(M), nous allons voir que ce raisonnement est
toujours possible pour les formules ne pouvant prendre que 2 valeurs (0 ou 1).

Pour M e N, M >0 :

JM)=1 siM=0
IM)y=0  siM>0

Ce qui permet d’attribuer une valeur de vérité a I’énoncé correspondant :
“M e N, M >0 est telle que M = 0"

La formule J(M) peut donc étre assimilée a un systeme de raisonnement
cohérent qui permet d’attribuer une valeur de vérité a I’énoncé correspondant.

Remarque :

Ajoutons que des tables de vérités ont été établies dans le Chapitre I (en
fin de sous-partie “3.7 Equivalences de formules”) entre autres a Iaide
de la formule J(M), pour lesquels nous avions défini 2 variable binaire B
et By telles que M = By + B, ou telles que M = B;.B,. Ce qui a permis
de conclure que toutes les propositions du calcul propositionnel “classique”
peuvent étre formées a partir de la formule J(M).
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12.4 La formule f(M;z)

Appliquons le méme raisonnement avec la fomrule f(M;xz). Rappelons que
cette formule est définie pour M € N tel que M > 2 et pour N € N tel que
N > 1 (d’apres cette formule, = est implicitement un nombre entier) :

f(M;z) =1pour M € P, si N est multiple de M?*.
f(M;x) =0 pour M € P, si N non multiple de M*.

f(M;x) =0 pour M ¢ P, quelquesoit N > 1.

Ce qui permet d’attribuer une valeur de vérité a I’énoncé :
“M e N, M > 2 est telle que M € P
et

N €N, N > 1 est telle que N est multiple de M*”

La formule f(M;x) peut donc étre assimilée a un systéme de raisonnement
cohérent.
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Séparation des conditions mentionnées dans un énoncé :

Remarquons que 1’énoncé précédent contient 2 “conditions” qui doivent étre
vraies toutes les 2 en méme temps pour que 1’énoncé soit vrai dans son
ensemble. Ces 2 conditions sont équivalentes a ces 2 énoncés distincts :

“M e N, M > 2 est telle que M € P”
Et

“N eN, N>1est telle que N est multiple de M*”
Ainsi, il devient possible de ramener ’étude des valeurs de vérité d’un énoncé
E; contenant 2 conditions a 1’étude des valeurs de vérité de 2 énoncés Fy qui
équivaut & la 1% condition et Ej3 qui équivaut a la 27me.

Dans ce cas :

FE; est vrai si By est vrai et si 5 est vrar.
Ey est faux si By est faux ou si F3 est faux.

Ce qui signifie encore que :

“M e N, M > 2 est telle que M € P” correspond justement a la formule
s(M) du point de vue de lattribution des valeurs de vérités,

“N € Ny N > 1 est telle que N est multiple de M*” est supposée
correspondre a une autre formule du point de vue de I'attribution des valeurs

de vérités, que nous noterons F' (M) (cette formule n’est pas connue).

Serait-il possible que la formule f(M;z) aie une autre écriture? Analysons la
cohérence de cette situation en émettant I'hypothese de I'existence de F'(M).

D’un point de vue strictement mathématique, cela implique de réécrire f(M; )
telle que :

f(M; ) = s(M).F(M)
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Ce qui correspond bien aux valeurs de vérité définies précédemment :

f(M;x)=1 sis(M)=1 etsi F(M)=1
f(M;x2)=0 sis(M)=0 ousi F(M)=0

Puisque, en assimilant la formule f(M;x) a un systéme permettant d’attribuer
une valeur de vérité a ’énoncé F; vu précédemment :

“M e N, M > 2 est telle que M € P
et

N €N, N > 1 est telle que N est multiple de M*”
En assimilant la formule s(M) & un systéme permettant d’attribuer une
valeur de vérité a ’énoncé Ey vu précédemment :

“M e N, M > 2 est telle que M € P”
Et en assimilant la formule F(M) & un systéme permettant d’attribuer une
valeur de vérité a ’énoncé E3 vu précédemment :

“N €N, N>1 est telle que N est multiple de M*”
Comme tout ceci nous permet de garder la cohérence des valeurs de vérité a
propos des énoncés :
E est vrai si By est vrat et si B3 est vrai.

Ey est faux si By est faux ou si B3 est fauz.

Est-il possible de trouver une formule telle que F(M) 7
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Comme nous connaissons f(M;x) et s(M), Il nous suffit d’essayer de trouver
F(M) :

D’ou
_ (M)
F(M) SO0
Et donc la formule F(M) :
sin 2 (W'Fp)
F(M):f(M;w)_ M*Fe

s(M) g2 (o - 1)!.%)

Or, F(M) n’étant pas définie dans les cas (et ils sont nombreux) o :

sin 2 ((M — 1)!.%) =0 car la division par 0 est interdite.
Il est donc impossible de construire une telle formule de cette maniere, ¢’est-a-
dire qu’il est impossible de construire une telle formule seulement en séparant
les 2 conditions de ’énoncé :

“M e N, M > 2 est telle que M € P

et

N e N, N >1 est telle que N est multiple de M*”
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Autre méthode, les tables de vérités :

En ramenant la recherche d'une formule telle que F'(M) a I’étude de tables
de vérité concernant les énoncés Fy, Fy et E3, cette impossibilité apparait
encore plus clairement. Rappelons que :

- la valeur de vérité de E; est a rattacher a la formule f(M;x) connue.
- la valeur de vérité de Ey est a rattacher a la formule s(M) connue.
- la valeur de vérité de Ej3 est a rattacher a la formule F'(M) recherchée.

En considérant F, E5 et E5 comme étant des variables binaires, nous pouvons
alors établir une table de vérité (en algebre de BOOLE [3]) :

| E5 | By | By = By B3 |

010 0
01 0
110 0
111 1

Ou les valeurs de F; dépendent des valeurs de Ey et des valeurs de Ej.
Rechercher une formule F(M) de maniere directe revient alors a supposer
que les valeurs de E3 dépendent directement des valeurs de E, et de F4, or
E5 est indépendant de FEs.

Ceci peut étre représenté par une nouvelle table de vérité qui le montre
clairement, il suffit de réarranger les lignes et les colonnes (sans changer les
valeurs de vérité) :

AR

010 0
010 1
01 0
111 1

Ici, il est impossible de formuler E3 en fonction de Fs et de E;. En effet,
puisque FEj3 peut prendre 'un ou l'autre des 2 états lorsque E; et E, ont
tous les 2 I'état 0 (c’est le cas des 2 premieres lignes de la table de vérité, en
rouge). Dans ce cas, la valeur de Ej3 est “indécidable” en fonction de I'état
de E; et de Es. Il est pourtant possible de donner une valeur dans les autres
cas (les 2 dernieres lignes de la table de vérité).
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Il est donc impossible de donner 1’énoncé E5 uniquement en fonction de Ey
et de Fy. Et pour finir, il est donc impossible de donner une formule F'(M)
uniquement en fonction de s(M) et de f(M;x). Ce qui revient a conclure la
méme chose que pour le paragraphe précédent, I'impossibilité de construire
une formule telle que F'(M) seulement & partir des formules s(M) et f(M;x)
en séparant les 2 conditions de 1’énoncé :
“M e N, M > 2 est telle que M € P
et

N €N, N > 1 est telle que N est multiple de M*”

Remarque :

Ces 2 méthodes peuvent étre intéressantes pour la suite de nos réflexions, et
pour d’autre formules ne pouvant prendre que 2 valeurs (telles que 0 ou 1).
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12.5 Contenu d’un énoncé et valeurs de vérité

Nous avons vu précédemment que E3 ne pouvait s’exprimer uniquement en
fonction de E, et de E;.

Ce qui peut permettre une réflexion générale sur la cohérence de la division
d’un énoncé principal en plusieurs énoncés indépendants.

Brievement, 1’énoncé vu précédemment :
“M e N, M > 2 est telle que M € P”

contient lui aussi 2 conditions qui peuvent étre vues comme des énonceés :
“MeN, M >2"

Et
“M e P”

Ot les 2 conditions doivent étre vraies pour que le 1" énoncé soit vrai.

Comme dans la sous-partie précédente, nous pouvons assimiler les énoncés :
“M e N, M > 2 est telle que M € P” a By (Iénoncé principal),
“MeN, M>2 A Fy (I'énoncé indiquant la 17 condition),

“M e P” a Fs3 (I'énoncé indiquant la 2™ condition)

Nous nous retrouvons dans le méme cas de figure, ce qui permet de conclure
la méme chose.

Maintenant, si nous essayons de clarifier un peu plus la situation en donnant
des noms différents a F;, Es et E3. C’est-a-dire :

Donnons a E; le nom de Conséquence,

Donnons a Fy le nom de Cause 2,
Donnons a FE5 le nom de Cause 1,
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La Conséquence peut étre réalisée (la valeur de vérité est 1) seulement :

si la Cause 1 est réalisée (1 condition dont la valeur de vérité est 1)
et

si la Cause 2 Dest aussi (2°™¢ condition dont la valeur de vérité est 1).

Et reconsidérons les tables de vérités de la sous-partie précédente, nous
obtenons :

] Cause 1 \ Cause 2 H Conséquence = Cause 1.Cause 2 ‘
0 0 0

0 1 0
1 0 0
1 1 1

Ou bien, en réarrangeant seulement les lignes et les colonnes :

] Conséquence \ Cause 2 H Cause 1 =7 ‘
0 0 0

0 0 1
0 1 0
1 1 1

Remarquons que nous devons interdire que :
Conséquence = 1 et Cause 2 = 0 en méme temps,
car cela serait incohérent (voir I’avant-derniere table de vérité).

Ceci permet de mieux comprendre les liens entre les énoncés de maniere
générale. Cela signifie en effet que :

- Si nous connaissons une formule ne pouvant prendre que des valeurs binaires
(comme 0 ou 1) et qui représente la Conséquence,

- si nous connaissons aussi une formule ne pouvant prendre que des valeurs
binaires (comme 0 ou 1) et qui représente la Cause 2,

- Et en sachant qu’il existe une condition qui interdit que C'onséquence = 1 et
Cause 2 = 0 en méme temps, ce qui se traduit également par 'impossibilité
que la formule associée a la Conséquence prenne la valeur 1 lorsque la formule
associée a la Clause 2 a la valeur 0
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= (Cela n’est pas suffisant pour permettre d’établir une formule qui représente
completement la Cause 1. Autrement dit, Il n’est pas possible de formuler
les variations de la C'lause 1 seulement a partir d’'une formule représentant la
Conséquence et d'une autre formule représentant la Cause 2.

Soit la Cause 1 peut étre formulée de maniere fiable seulement partiellement
en fonction de la Conséquence et de la Cause 2, notamment pour les 2
dernieres lignes de cette derniere table de vérité, soit la C'ause 1 peut étre
formulée intégralement en fonction de la C'onséquence et de la Cause 2, mais
seulement de maniére probable s’il est question d’intégrer toutes les lignes (et
donc toutes les possibilités) a la formule liée a la Cause 1. Ceci est 'objet
de la sous-partie suivante.

Ezxemple :
Prenons un exemple explicite :

Associons a la Conséquence 1’énoncé “il y a du verglas” |
Associons a la Cause 1 I'énoncé “il y a eu de la pluie”

)
Associons a la Cause 2 I'énoncé “il a fait froid”.

En considérant que les cas “il y a eu de la pluie” et “il a fait froid” nous
) s

amene a constater qu’ “il y a du verglas”, alors le raisonnement précédent
appliqué a cet exemple signifie tout simplement que :

Dans le cas ou il n’y a pas de verglas (Conséquence = 0) Et ou il n’y a pas
eu de pluie (Cause 1 = 0),

Cela ne permet pas de déduire s'il a fait froid (Cause 1 = 1)
Ou 5’1l a fait chaud (Cause 1 = 0).

En d’autres termes, nous n’avons pas assez d’information pour connaitre
la Cause 2. Pourtant, il est possible de savoir s’il fait chaud ou s’il fait
froid lorsque nous avons plus d’informations (par exemple, en mesurant la
température).
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Remarque 1 :

Tout cela permet de sous-entendre une question a propos de la connaissance
de la Clause 1 par des regles logiques : Combien de “choses” ou de formules
seraient nécessaires pour formuler la Cause 1 7 Faut-il une quantité finie, une
quantité infinie de choses supplémentaires pour formuler la Cause 1 7 Ou
bien est-ce qu’aucune quantité de chose supplémentaire ne peut permettre

de formuler la C'ause 1 7 Et existe-t-il des cas ot la C'ause 1 ne peut jamais
étre exprimée par des moyens logiques 7

Remarque 2 :

Existe-t-il des cas de portes logiques permettant d’exprimer la Cause 1
uniquement en fonction de la Conséquence et de la Cause 2 7

Pour répondre a cette question, nous allons aborder différentes portes logiques,

au moins les plus courantes, et leur table de vérité associée. Nous allons
étudier les cas des portes logiques :

ET (AND),

ET COMPLEMENTAIRE (NAND),
OU (OR),

OU COMPLEMENTAIRE (NOR),
OU-EXCLUSIF,

OU-EXCLUSIF COMPLEMENTAIRE.

- Pour la porte logique “ET” (ou “AND”), la réponse est NON : dans ce
cas, il n’est pas possible, d’exprimer la C'ause 1 uniquement en fonction de la
Conséquence et de la Cause 2. En effet, celle-ci vient d’étre traitée puisque
nous avions noté (en algebre de BOOLE [3]) :

Conséquence = Cause 1.Cause 2
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- La porte logique “ET NON” (ou “NAND”) est la fonction complémentaire
de la fonction “ET” | elle peut étre notée (en algebre de BOOLE) :

Conséquence = Cause 1.Cause 2

En regroupant les résultats dans une table de vérité :

Cause 1 | Cause 2 H Conséquence = Cause 1.Cause 2

0 0 1
0 1 1
1 0 1
1 1 0

Ou bien, en réarrangeant seulement les lignes et les colonnes :

’ Conséquence \ Cause 2 H Cause 1 =7

0 1 1
1 0 0
1 0 1
1 1 0

La réponse est NON compte tenu des 2 lignes centrales (en rouge) : dans ce
cas, il n’est pas possible, d’exprimer la Cause 1 uniquement en fonction de

la C'onséquence et de la Cause 2.
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- La porte logique “OU” (ou “OR”), elle peut étre notée (en algebre de
BOOLE)

Conséquence = Cause 1 + Cause 2

En regroupant les résultats dans une table de vérité :

’ Cause 1 \ Cause 2 H Conséquence = Cause 1 + Cause 2 ‘

0 0 0
0 1 1
1 0 1
1 1 1

Ou bien, en réarrangeant seulement les lignes et les colonnes :

’ Conséquence ‘ Cause 2 H Cause 1 =7

0 0 0
1 0 1
1 1 0
1 1 1

La réponse est NON compte tenu des 2 derniéres lignes (en rouge) : dans ce
cas, il n’est pas possible, d’exprimer la C'ause 1 uniquement en fonction de
la C'onséquence et de la Cause 2.
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- La porte logique “OU NON” (ou “NOR”) est la fonction complémentaire
de la fonction “OU” | elle peut étre notée (en algebre de BOOLE) :

Conséquence = Cause 1+ Cause 2

En regroupant les résultats dans une table de vérité :

Cause 1 | Cause 2 H Conséquence = Cause 1 + Cause 2
0 0 1

0 1 0
1 0 0
1 1 0

Ou bien, en réarrangeant seulement les lignes et les colonnes :

’ Conséquence \ Cause 2 H Cause 1 =7

0 0 1
0 1 0
0 1 1
1 0 0

La réponse est NON compte tenu des 2 lignes centrales (en rouge) : dans ce
cas, il n’est pas possible, d’exprimer la Cause 1 uniquement en fonction de
la C'onséquence et de la Cause 2.
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- La porte logique “OU EXCLUSIF” | elle peut étre notée (en algebre de
BOOLE) :

Conséquence = Cause 1 @ Cause 2

Ce qui équivaut a :

Conséquence = (Cause 1+ Cause 2).(Cause 1.Cause 2)

En regroupant les résultats dans une table de vérité :

’ Cause 1 \ Cause 2 H Conséquence = Cause 1 @ Cause 2 ‘
0

el k=] k=)
Ol RO

1
0
1

Ou bien, en réarrangeant seulement les lignes et les colonnes :

’ Conséquence ‘ Cause 2 H Cause 1 ‘

0 0 0

0 1 1
1 0 1
1 1 0

La réponse est OUI : il existe au moins un cas ou il est possible d’exprimer la
Cause 1 uniquement en fonction de la Conséquence et de la Cause 2, c’est

le cas de la porte logique “OU EXCLUSIF”.
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En effet puisque nous obtenons & nouveau la table de vérité de la fonction
“OU EXCLUSIF” telle que :

Cause 1 = Conséquence & Cause 2

De maniere “symétrique” , il est possible d’établir la méme conclusion pour
la C'lause 2, nous obtenons aussi :

Cause 2 = Conséquence @ Cause 1

Pour récapituler, cela signifie que :

Si Conséquence = Cause 1 @ Cause 2
Alors Cause 1 = Conséquence @& Cause 2
Ou alors Cause 2 = Conséquence & Cause 1

Ainsi, pour en revenir aux énoncés, tout énoncé E; contenant 2 conditions
telles que Fs et E3 répondent aux exigences de la porte logique “OU EXCLUSIF”,
c’est-a-dire que :

Si Es est faux et si E3 est faux, on déduit F; est fauz,
Si Ey est faux et si B3 est vrai, on déduit E; est vrat,
Si Es est vrai et si E3 est faux, on déduit E; est vrat,
Si Es est vrai et si E3 est vrai, on déduit F, est fauz,

Alors dans ce cas, tout énoncé F;, Ey ou E3 est déductible des 2 autres.
Si l'on se contente des seules formules f(M;z) et s(M), et étant donné
que la formule F(M) ne répond pas a ces exigences, il est impossible de

la trouver par la méthode que nous avions employé dans la sous-partie “12.4
La formule f(M;z)” (page 349).
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Complément de réflexion :

D’autre part et pour finir avec la porte logique “OU EXCLUSIF”, il est
possible d’établir une correspondance strictement mathématique avec cette
derniere. A ce sujet, les formules ne pouvant prendre que 2 valeurs (0 ou 1)
sont particulierement intéressantes.

En nommant C (& rattacher a la Cause 1) une formule mathématique ne
pouvant prendre pour valeur que 0 ou 1,

En nommant Cy (a rattacher a la Cause 2) une autre formule mathématique
ne pouvant prendre pour valeur que 0 ou 1,

Et en nommant R (a rattacher a la Conséquence) une formule mathématique
ne pouvant prendre pour valeur que 0 ou 1,

Etant donné la porte logique “OU EXCLUSIF” notée :

Conséquence = Cause 1@ Cause 2
L’équivalent strictement mathématique (c’est-a-dire avec les opérateurs mathé-
matiques usuels : addition, soustraction, multiplication, division) pour les
formules C, Cs, et R est :

R - 01 + CQ - 2.01.02
En effet, nous vérifions facilement l’analogie entre la table de vérité de

Conséquence = Cause 1 ® Cause 2 et la formule de R puisque d'un point
de vue strictement mathématique, nous avons :

GG R=C1C— 20,0,
0 0 0
0 1 1
1 0 1
1 1 0
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Et comme nous savons que :

Si Conséquence = Cause 1@ Cause 2
Alors Cause 1 = Conséquence & Cause 2
Ou alors Cause 2 = Conséquence ® Cause 1

Vue 'analogie entre la table de vérité de Conséquence et les valeurs de la
formule de R, d'un point de vue strictement mathématique, nous pouvons
alors déduire que :

Si R=C,+Cy—2.C,.C4
Alors Ci=R+Cy—2.R.Cy
Oualors o, =R+ C; —2.R.Cy

Mais il existe également une écriture alternative a celles-ci, étant donné
I'identité remarquable :

(Cy — Cq)? = (C1)? + (C2)* = 2.(C1).(Co)

Or, pour C et Cy des nombres ne pouvant prendre pour valeurs que 0 ou 1,
nous avons la possibilité de simplifier ainsi :

(Ch)?=C
(Ca)* = Cy
D’ou

(Cl - 02)2 - Cl -+ 02 - 2.01.02

Et donc les écritures alternatives :

R=(C, — Cy)?
Cy = (R— Cy)?
CQ - (R - 01)2

Dans ce cas, toutes formules répondant aux regles logiques équivalentes a
celles du “OU EXCLUSIF” se déduisent les unes a partir des autres.
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- La porte logique “OU EXCLUSIF COMPLEMENTAIRE” notée (en algebre
de BOOLE) :

Conséquence = Cause 1 @ Cause 2

Ce qui équivaut a :

Conséquence = (Cause 1.Cause 2) + (Cause 1 + Cause 2)

En regroupant les résultats dans une table de vérité :

Cause 1 | Cause 2 H Conséquence = Cause 1 ® Cause 2

0 0 1
0 1 0
1 0 0
1 1 1

Ou bien, en réarrangeant seulement les lignes et les colonnes :

’ Conséquence ‘ Cause 2 H Cause 1 ‘
0 0 1

0 1 0
1 0 0
1 1 1

La réponse est OUI : il existe un 2™ cas ou il est possible d’exprimer la
Cause 1 uniquement en fonction de la Conséquence et de la Cause 2, c’est

le cas de la porte logique “OU EXCLUSIF COMPLEMENTAIRE”.
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En effet puisque nous obtenons & nouveau la table de vérité de la fonction
“OU EXCLUSIF COMPLEMENTAIRE” telle que :

Cause 1 = Conséquence & Cause 2

De maniere “symétrique” , il est possible d’établir la méme conclusion pour
la C'ause 2, nous obtenons aussi :

Cause 2 = Conséquence @ Cause 1

Pour récapituler, cela signifie que :

Si Conséquence = Cause 1 @ Cause 2
Alors Cause 1 = Conséquence & Cause 2
Ou alors Cause 2 = Conséquence & Cause 1

Ainsi, pour en revenir aux énoncés, tout énoncé E; contenant 2 conditions
telles que Fy et FE3 répondent aux exigences de la porte logique
“OU EXCLUSIF COMPLEMENTAIRE”, c’est-a-dire que :

Si Es est faux et si E3 est faux, on déduit F; est vrai,
Si Ey est faux et si E3 est vrai, on déduit E; est fauzx,
Si Es est vrai et si E3 est faux, on déduit E; est faux,
Si Es est vrai et si E3 est vrai, on déduit E; est vrai,

Alors dans ce cas, tout énoncé F;, Ey ou E3 est déductible des 2 autres.

Meéme remarque que pour la porte logique “OU EXCLUSIF” : si I'on se
contente des seules formules f(M;z) et s(M), et étant donné que la formule
F(M) ne répond pas a ces exigences, il est impossible de la trouver par la
méthode que nous avions employé dans la sous-partie “12.4 La formule
F(M; )" (page 349).
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Complément de reflexion :

Il est possible ici aussi d’établir une correspondance strictement mathématique
ala porte logique “OU EXCLUSIF COMPLEMENTAIRE” , grace aux formules
ne pouvant prendre pour valeurs que 0 ou 1.

En nommant C (& rattacher a la Cause 1) une formule mathématique ne
pouvant prendre pour valeur que 0 ou 1,

En nommant Cy (a rattacher a la Cause 2) une autre formule mathématique
ne pouvant prendre pour valeur que 0 ou 1,

Et en nommant R (a rattacher a la Conséquence) une formule mathématique
ne pouvant prendre pour valeur que 0 ou 1,

Etant donné la porte logique “OU EXCLUSIF COMPLEMENTAIRE” notée

Conséquence = Cause 1@ Cause 2
L’équivalent strictement mathématique (c’est-a-dire avec les opérateurs mathé-
matiques usuels : addition, soustraction, multiplication, division) pour les

formules C, Cs, et R est :

R - 1 - (Cl -+ 02 - 20102)

Et comme nous savons que :

Si Conséquence = Cause 1 @ Cause 2
Alors Cause 1 = Conséquence & Cause 2
Ou alors Cause 2 = Conséquence ® Cause 1

Alors, et d’un point de vue strictement mathématique, nous pouvons déduire
que :

Si R=1—(Cy+Cy—2.0,.Ch)

Alors Ci=1—(R+Cy—2.R.Cy)
Ou alors Cy =1— (R+C; —2.R.CY)
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Ici aussi (et comme pour la porte logique “OU EXCLUSIF”), les écritures
alternatives sont données simplement par :

R:1—<Cl—02)2
01:1_<R_02)2
Cy=1-(R—C))>

Dans ce cas, toutes formules répondant aux regles logiques équivalentes a

celles du “OU EXCLUSIF COMPLEMENTAIRE” se déduisent les unes a
partir des autres.
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12.6 Variable binaire U de valeur de vérité
indéfinissable

Partant du constat précédent qu’il est impossible de construire une formule
telle que F'(M) seulement a partir des formules f(M; x) et s(M), et uniquement
en séparant les 2 conditions de I’énoncé :
“M e N, M > 2 est telle que M € P
et
N e N, N >1 est telle que N est multiple de M*”

Reprenons la nomenclature des 3 énoncés E, Fs et E3. Reprenons également
l’égahté E1 = EQ.Eg.

Rappelons la table de vérité a propos de I’égalité correspondante (en algebre
de BOOLE [3]) :

(B [ By [ Br = By s |

010 0
01 0
110 0
111 1

Ou bien, en réarrangeant seulement les lignes et les colonnes :

’ E1 ‘ EQ H E3 = ?
010 0
010 1
1 0
1 1 1

Remarquons que la situation £y =1 et E; = 0 en méme temps n’existe pas,
nous devons l'interdire lorsque nous faisons varier F; et Es.

Dans les 2 dernieres lignes, la variable Fs est inutile : il est possible de
connaltre F5 seulement en connaissant E.
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Nous avons pour les 2 dernieres lignes, c¢’est-a-dire lorsque Fy =1 :

E; = E,
Nous avons pour les 2 premieres lignes, c¢’est-a-dire lorsque Fy = E; =0 :
Une impossibilité a définir E3 en fonction de Fj.

Introduisons une nouvelle variable binaire U indépendante d’un systeme dont
la valeur de vérité ne peut étre définie par un systeme de regles (elle peut
valoir soit 0 soit 1, mais sa valeur ne peut étre “prédite” , cela introduit une
part de probabilité). Il devient alors possible d’établir une égalité qui tient
compte de I'impossibilité de donner F3 en fonction de E; et Fs lorsque ces
dernieres valent 0 en méme temps.

Nous avons pour les 2 premieres lignes, c¢’est-a-dire lorsque Fy = E; =0 :
E3 - U
Et en récapitulant :

E3 = E1 lorsque E2 =1
Es=U lorsque Ey =0

Ce qui permet d’écrire :
Es = Ey.Ey + E,.U

avec la condition d’interdiction que E; = 1 et Fy = 0 en méme temps.
Remarque : grace a cette formule, enlever I'interdiction n’a pas d’incidence
sur les résultats. En effet, puisque seul E, = 0 est nécessaire pour donner
I'égalité, cette égalité peut donc étre donnée indépendemment de F; (c’est-
a~dire quelquesoit sa valeur).

D’un point de vue strictement mathématique, il devient possible de transcrire
cela en admettant d’introduire une variable U équivalente : une variable U
indépendante ne pouvant prendre que 2 valeurs (0 ou 1) et ne pouvant étre
représentée a 1’aide d’une formule précise (U peut valoir soit 0 soit 1, mais
sa valeur ne peut étre “prédite”).
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En reprenant les formules (seulement & titre d’exemple) F(M), s(M) et
f(M;z), nous avons :

FM)=sM).f(M;z)+[1 —s(M)].U
avec la condition d’interdiction que f(M;x) =1 et s(M) = 0 en méme temps
(car cette situation est incohérente, bien que nous venons de voir qu’enlever

I'interdiction n’a pas d’incidence sur les résultats).

Nous pouvons donner des équivalences strictement mathématiques plus géné-
rales avec des formules “binaires” (ne donnant pour valeur que 0 ou 1) :

En nommant F; (a rattacher a I’énoncé FE;) une formule mathématique
binaire ne pouvant prendre pour valeur que 0 ou 1,

En nommant Fy (a rattacher a I’énoncé Es) une autre formule mathématique
binaire ne pouvant prendre pour valeur que 0 ou 1,

En nommant Fj (a rattacher a I’énoncé F3) une derniere formule mathématique
binaire ne pouvant prendre pour valeur que 0 ou 1,

Et en nommant U (a rattacher a la variable de valeur de vérité indéfinissable
U) une formule mathématique binaire ne pouvant prendre que de maniére
indéfinissable (ou probable) la valeur 0 ou 1,
Pour E; = F,.Ej3, nous avons 1'égalité strictement mathématiques :

Fy = F,. F;

Pour B3 = Ey.FEy + E,.U, I'égalité strictement mathématiques s’écrit :

F3 == FQ.Fl + [1 - FQ]U
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Remarque 1 :

Il est possible d’établir le méme raisonnement concernant les autres portes
logiques, pour lesquelles la Cause 1 ne peut étre exprimée uniquement en
fonction de la Conséquence et de la Cause 2.

Par exemple, prenons la porte logique “OU” (il n” y a plus de liens entre les
formules F'(M), s(M) et f(M;z) dans cet exemple). Nous avions noté :

Donnons a F; le nom de Conséquence,
Donnons a Es le nom de Cause 2,
Donnons a F3 le nom de Cause 1,

Dont la table de vérité a propos de I’égalité correspondante est rappelée (en
algebre de BOOLE) :

(B | B | B\ = By + B |
0 0

0
01 1
110 1
1 1 1

Ou bien, en réarrangeant seulement les lignes et les colonnes :

&
&
[

~J

e}

0

»—\r—\»—om
el Rl E==] K )
—_

Remarquons que la situation £y, = 0 et E; = 1 en méme temps n’existe pas,
nous devons l'interdire lorsque nous faisons varier E; et Es.

Dans les 2 premieres lignes, la variable F, est inutile : il est possible de
connaitre F5 seulement en connaissant F.
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Nous avons pour les 2 premieres lignes, c¢’est-a-dire lorsque Fy = 0 :
E; = E;
Nous avons pour les 2 dernieres lignes, c¢’est-a-dire lorsque Fy =1 :

Une impossibilité a définir F3 en fonction de E; (car Ey = Ey = 1, donc E;
et Ey ne varient pas aors que Ej varie).

Comme précédemment, en introduisant une nouvelle variable binaire U indé-
pendante d’un systeme et dont la valeur de vérité ne peut étre définie par un
systeme de regles (elle peut valoir soit 0 soit 1, mais sa valeur ne peut étre
“prédite”, cela introduit une part de probabilité). Il devient alors possible
d’établir une égalité qui tient compte de l'impossibilité de donner FE3 en
fonction de F; et E5 lorsque ces dernieres valent 1 en méme temps.

Nous avons pour les 2 dernieres lignes, c¢’est-a-dire lorsque Fy, = E; =1 :
E3 - U
Et en récapitulant :

Es=F; lorsque Ey =0
Es=U lorsque Fy =1

Ce qui permet d’écrire :

Es = Ey.E + E,.U
avec la condition d’interdiction que E; = 0 et F5 = 1 en méme temps. Méme
remarque que précédemment : grace a cette formule, enlever I'interdiction n’a
pas d’incidence sur les résultats. En effet, puisque seul Fy = 1 est nécessaire

pour donner 1’égalité, I'égalité peut donc étre donnée indépendemment de Fy
(c’est-a~dire quelquesoit sa valeur).
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Nous pouvons donner des équivalences strictement mathématiques et générales
avec des formules “binaires” (ne donnant pour valeur que 0 ou 1) ici aussi :

En nommant F; (a rattacher a l’énoncé E;) une formule mathématique
binaire ne pouvant prendre pour valeur que 0 ou 1,

En nommant F; (a rattacher a ’énoncé Fy) une autre formule mathématique
binaire ne pouvant prendre pour valeur que 0 ou 1,

En nommant Fj (& rattacher a I’énoncé F3) une derniére formule mathématique
binaire ne pouvant prendre pour valeur que 0 ou 1,

Et en nommant U (a rattacher a la variable de valeur de vérité indéfinissable
U) une formule mathématique binaire ne pouvant prendre que de maniére
indéfinissable (ou probable) la valeur 0 ou 1,
Pour E; = FEy + E5 , nous avons 1’égalité strictement mathématiques :
Fi=F,+ F;— ) F3
Ou encore :
Fy = (Fy, — F3)? + Fy.Fy
En effet puisque :

(F2 - F3)2 + FQ.Fg == F22 —+ F32 - 2.F2.F3 -+ FQ.Fg
= B+ F* — F,.F;

Et comme :
F2=F, pour les formules binaires
F3?2 = Iy pour les formules binaires

Nous déduisons :
(FQ - F3)2 -+ FQ.Fg == F2 -+ F3 - FQ.Fg

Ce qui explique I’égalité précédente.
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De cette maniere, nous pouvons directement constater que I’équivalent stricte-
ment mathématiques de la porte logique “OU” fait directement apparaitre
la somme de :

(Fy — F3)?  la porte logique “OU EXCLUSIF” entre les formules Fy et F3,
. Fy la porte logique “ET” entre les formules F; et Fj.

Pour finir, I’écriture en algebre de BOOLE de :

B3 = Ey.Ey + BE,.U

permet de donner une écriture strictement mathématique équivalente :

F3 == [1 - FQ].Fl + FQU

Remarque 2 :

L’utilité de cette partie pourrait étre remise en cause : bien que la démarche
(I'introduction d’une variable U de valeur de vérité indéfinissable) ne soit pas
conventionnelle, il me semble cependant nécessaire de préciser qu’il existe
un lien avec la suite de la réflexion, notamment avec les énoncés vrais et
indémontrables (entre autres) auxquels nous feront référence dans la partie
“14 Preuve de la liberté” (page 390). Il est important de comprendre
cette partie pour comprendre ce lien et la pertinence de I’ensemble.
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12.7 Contre-exemple : la formule J(M)

Cette sous-partie vient proposer un “contre-exemple” qui completera les
réflexions précédentes, sans pour autant les contredire. En reprenant la
formule J(M) étudiée dans le Chapitre I en sous-partie “3.4 Formule
d’Impulsion Premiere J(M)”, avec M € N, avec P, € P et avec d € N tel
que d > 0, nous avions pu formuler :

(M) = s(2.M+2)
= s[P,.(d.M +1)]
s(M +2).5(M +3)

Ces formules sont typiquement celles que 1'on peut intégrer dans les tables
de vérité de 'algebre de BOOLE [3] étant donné qu’elles ne peuvent prendre
que 2 valeurs (0 ou 1).
Prenons les formules suivantes :

s(2.M +2)

s(M +2)

s(M + 3)

Associons chacune de ces 3 formules a un énoncé :

Associons ’énoncé E; a la formule s(2.M + 2),

Associons 'énoncé Ey a la formule s(M + 2),

Associons ’énoncé Fj a la formule s(M + 3),

Avec les énoncés exprimés de maniere adéquat :

L’énoncé E; : “M € N est telle que (M +2) c P et (M+3) € P”
L’énoncé Ey : “M € N est telle que (M +2) € P”

L’énoncé E5 : “M € N est telle que (M + 3) € P”

(Remarque : I'énoncé F; est également équivalent a ’énoncé :
“M € N est telle que (2M +2) € P7)
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En donnant les valeurs de vérité 1 équivalente a “vrai” et 0 équivalente
a “faux”, il devient possible de donner une table de vérité comme nous
l’avons fait jusqu’a maintenant. D’apres I’énoncé F; (ou d’apres I'égalité de
s(2.M+2) = s(M+2).s(M+3), ce qui revient au méme), nous constatons que
I’expression logique de Es et de E3 peut se faire par une porte logique “ET” :

E, = Fy.FE;
Voici maintenant l'intérét de ce contre-exemple :

Comme dans les sous-parties précédentes, en supposant que la formule s(M+ 3)
ne soit pas connue, si nous essayons de la rechercher uniquement a partir
des formules que nous connaissons, a savoir s(2.M + 2) et s(M + 2), nous
aboutirons aux mémes conclusions. C’est-a-dire que nous concluerons que le
nombre d’informations dont nous disposons n’est pas suffisant pour donner
une formule qui correspond a celle de s(M + 3).

En effet, en considérant E;, Es et E3 comme étant des variables binaires,
nous pouvons alors établir une table de vérité (en algebre de BOOLE) :

- la valeur de vérité de E; est a rattacher a la formule s(2.M + 2) connue.
- la valeur de vérité de Fy est a rattacher & la formule s(M + 2)  connue.
- la valeur de vérité de E5 est a rattacher a la formule s(M + 3) recherchée.

| B3 | By | By = Ey.E3 |

010 0
01 0
110 0
1|1 1

Ou les valeurs de F; dépendent des valeurs de Ey et des valeurs de FEj.
Rechercher une formule telle que s(M + 3) de maniere directe revient alors
a supposer que les valeurs de E3 dépendent directement des valeurs de F5 et
de Ey, or, nous 'avons déja vu, Fy est indépendant de Fjs.

Ou bien, en réarrangeant seulement les lignes et les colonnes :
BB [ By =7

010 0
010 1
01 0
171 1
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Comme prévu, nous concluons que connaitre E; et Fy n’est pas suffisant
pour connaitre E3. Et donc finalement, connaitre le formule s(2.M + 2) et
la formule s(M + 2) n’est pas suffisant pour connaitre la formule rattachée a
I’énoncé Es.

Or, la formule rattachée a F3 existe puisqu’il s’agit de s(M + 3). Pour en
revenir aux sous-parties précédentes, ce contre-exemple permet de dire qu’il
n’est pas impossible qu'il existe une formule telle que F'(M) et qui se rattache
a I’énoncé :

“N eN, N >1 est telle que N est multiple de M*”,
et dont F'(M) donnerait directement une valeur de vérité a cet énoncé.

Dans ce contre-exemple, il est possible de compléter les réflexions des sous-
parties précédentes en constatant que le manque d’informations ou de connai-
ssances pour exprimer une formule ne veut pas systématiquement dire qu’ex-
primer cette formule soit impossible.

Remarque :

A propos de la formule de F'(M) recherchée dans la sous-partie “12.4 La
formule f(M;z)” (page 349), si cette formule existe, nous pouvons anticiper
quelques informations sur celle-ci :

- Puisque les résultats des 2 autres formules f(M;x) et s(M) ne peuvent étre
que “binaires” (c’est-a-dire 0 ou 1),

- Et puisque F'(M) doit au moins respecter 1'égalité :

J(M;z) = s(M).F(M)
- Nous pouvons tout de méme affirmer que s’il était permis de trouver une
telle formule, cette formule serait nécessairement de type “binaire” : c¢’est-a-

dire que les résultats qu’elles devrait fournir seraient exclusivement 0 ou 1,
ce qui permettrait d’attribuer une valeur de vérité a I’énoncé correspondant.
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12.8 Observations

- D’apres ce que nous venons de voir dans le premier chapitre :

il existe des formules mathématiques “binaires” qui ne peuvent fournir que
2 valeurs (comme 0 ou 1) telles que s(M), J(M), ou f(M;x).

- D’apres ce que nous venons de voir dans ce chapitre, il est possible d’établir
un lien direct entre ces valeurs et les valeurs de vérité d’un énoncé.

- Le choix du contenu de I’énoncé se fait simplement :
Lorsqu'une formule vaut 1, il suffit de décrire la situation pour laquelle cela
est exclusivement le cas, ce qui permet de construire I’énoncé qui se rattache

a cette formule. Lorsque la formule vaut 1, I’énoncé est forcément vrai. Par
conséquent, lorsque la formule vaut 0, I’énoncé est faux.

Par exemple :
Rappelons que pour M € N, M > 2, nous avons s(M) telle que :

1 siMeP
s(M)=0 siM¢P

Pour construire I’énoncé, il suffit de décrire la situation pour laquelle s(M) = 1.
C’est le cas pour ce qui suit : “M € N, M > 2 est tel que M € P”
En effet, en donnant :

La valeur de vérité correspondant au résultat 1 de la formule est “vrai” ,
La valeur de vérité correspondant au résultat 0 de la formule est “fauz”.

Au regard de 1’énoncé, nous vérifions bien la cohérence entre sa valeur de
vérité et le résultat de la formule associée. Ce qui ne peut étre autrement
puisque nous avons attribué a chaque valeur de vérité une valeur unique de
la formule, et donc a chaque valeur de la formule ne correspond qu’'une seule
valeur de vérité.
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Ce qui permet d’avoir un lien direct et clairement défini entre une formule
“binaire” et la valeur de vérité d’un énoncé correpondant.

Et donc, dans notre exemple, et étant donné que la variable M est définie
tel que M e N, M > 2

si s(M) = 0, I'énoncé est effectivement fauz (puisque M ¢ P, et cela est
cohérent avec la formule).

si s(M) = 1, I'énoncé est effectivement vrai (puisque M € P, et cela est
cohérent avec la formule).
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12.9 Conclusions et orientations

- Dans cette conclusion, nous allons nous orienter vers une application possible
des formules étudiées a des phénomenes physiques, dans la limite de ce que
ces formules permettraient.

Il est important de remarquer qu’il est possible d’établir un lien entre la
logique binaire (c’est-a-~dire le calcul propositionnel “classique”) et une formule
telle que f(M;x). La formule D(N) contient la formule principale f(M; ).
La formule f(M;z) permet d’effectuer un traitement sur la propriété de
“primalité” d’un nombre entier (un nombre entier supérieur ou égal a 2 ne
peut étre que premier ou composé).

Etant donné la formule de décomposition D(N) d’un nombre entier N € N
tel que N > 2 en produit de facteurs premiers, Cette formule doit permettre
de traiter les ondes, de telle maniere qu’il devienne possible de décomposer
une longueur d’onde N en longueurs d’ondes fondamentales.

Appliquée aux ondes (tel que 'onde d’un photon, particule de lumiere), la
formule f(M;x) permettrait de les traiter, et permettrait de construire une
logique binaire (en rapport direct avec le calcul propositionnel “classique”)
a partir des propriétés de primalité de la valeur d'une longueur d’onde par
rapport a une autre (nous parlons de 2 ondes puisque la formule permet la
comparaison de la variable N a par la variable M).

Remarque importante :

Dans le cas des formules plus simples s(M) et J(M), il n’est pas besoin de
traiter toutes les longueurs d’ondes M pour constituer une logique binaire,
il ne suffit que de 2 longueurs d’ondes : une longueur d’onde associée a M
correspondant a ’état binaire s(M) = 0 (ou a J(M) = 0), et une autre
longueur d’onde associée a M correspondant a 1’état binaire s(M) = 1 (ou
respectivement a J(M) = 1).

Signalons que ce cas est le plus réducteur possible car il restreint les possibilités
de faire varier M seulement sur 2 valeurs utiles.

Page 382 sur 514



Osons donner un exemple en imaginant qu’une particule soit capable d’effectuer
un tel calcul (du méme type que les formules évoquées : D(N), s(M),
J(M) ) a partir des ondes d’'un photon. Avec uniquement 2 longueurs d’onde
distinctes de sorte que :

> La particule absorbe le photon s’il est de longueur d’onde A,;

> La particule n’absorbe pas le photon et elle le rejette s’il est de longueur
d’onde A,;

Nous pouvons faire correspondre les valeurs de vérité “vrai” et “faux” a
chacune des 2 longueurs d’onde (en fonction de cette particule), de sorte
que :

> “vrai” signifie que la particule absorbe le photon, et signifie donc que
la longueur d’onde est Ag;

> “faux” signifie que la particule rejette le photon, et signifie donc que
la longueur d’onde est A, ;

Cette interprétation permettrait d’établir une correspondance entre le langage
propositionnel et la longueur d’onde d’un photon “traitée” par une particule.

Hypotheses :

Nous avons la possibilité d’appliquer la formule f(M;z) (ou s(M) ) & une
onde de longueur d’onde N (ou M) ou de période N (ou M). Ces formules
peuvent étre appliquées a un phénomene ondulatoire “fondamental” (c’est-
a-dire un phénomene le plus simple possible, et qui permet de produire des
phénomenes plus complexes), il est possible que le photon soit un candidat
sérieux pour étre ce phénomene.

I1 faut noter le lien avec les congruences (et avec la fonction SINUS, et
donc aussi avec le cercle) qui sous-entendrait que ce photon pourrait étre
en translation linéaire mais aussi en “rotation” avec d’autres (cette phrase
est peut-étre mal formulée, mais il est encore difficile a ce stade de donner une
description exacte du phénomene, voir Chapitre VI pour plus de détails).

Ce qui sous-entendrait encore de supposer fortement que la matiere ne serait
qu'un ensemble de photons “en orbite” les uns avec les autres (comme pour
I'hypothese précédente, ceci n’est certainement pas une description suffisante),
permettant d’envisager que toute matiere ne serait constituée que de photons.
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Trouver une bonne application physique & la formule f(M;x) (ou méme
s(M) ) et développer davantage la réflexion sur celle-ci permettra peut-étre
de donner une représentation plus précise d’'un phénomene ondulatoire. En
faisant I’hypothese qu’un photon constitue ce phénomene physique recherché,
cela pourrait permettre de donner une représentation plus précise de ses
comportements (peut-étre méme de sa structure).

La formule D(N) (ou méme f(M;x) et s(M) ) demandant des temps de
calculs plutot longs lorsque N est un grand nombre, s’il s’avérait exacte que
la matiere procede de la méme maniere que la formule D(N) 'indique pour
traiter la décompostion d’ondes, alors un processus de calcul tres performant
serait déja dans la nature (c’est-a-dire dans la matiere). Il suffirait d’exploiter
cela pour construire un calculateur tres performant, et dont la performance
serait égale a ce qu’il serait permis de produire de mieux (les limites de cette
performance seraient les limites de la performance de la matiere elle-méme).

Digression a propos de la musique :

Etant donné la possibilité d’établir un lien entre la logique binaire (c’est-a-
dire le calcul propositionnel “classique”) et les ondes, nous pouvons “prolonger”
notre conclusion en donnant une possibilité d’établir un langage (binaire) a
partir des ondes directement. Concernant la musique, nous pouvons donc
considérer qu’elle constitue un tel langage. Il n’est donc pas étonnant d’entendre
souvent dire que la musique est un langage universel. En effet, puisque
le traitement des ondes par les formules f(M;z), s(M) et J(M) tel que
nous 'avons indiqué peut étre ramené au traitement du calcul propositionnel
classique.
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13

Les regles logiques

13.1 Introduction

Il sera ici question essentiellement de mettre les mots “face” a leur dénintion,
ou de mettre des énoncés “face” a leur sens. Cela peut permettre de donner
une “valeur de vérité” (“vrai” ou “fauz”)a certaines définitions et & certains
énoncés (grace a des structures de raisonnement tres similaires).

Prenons un exemple avec 1’énoncé donné :

“Tout peut étre remis en cause”
Cela signifie aussi que “Rien n’est fiable”. Si tel est le cas, alors 1’énoncé
aussi peut étre remis en cause car il n’est pas fiable non plus. Or, I’énoncé
au moins devrait étre fiable, ce qui permet de conclure que tout ne peut pas
étre remis en cause, et qu’il doit exister un minimum de fiabilité.
En développant :
- En supposant que 1’énoncé donné soit vrai, on déduit qu’il est faux, et
donc on en déduit qu’il existe un minimum de fiabilité.

- En supposant que I'énoncé donné soit faux, on déduit directement qu’il
existe un minimum de fiabilité.
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Pour aller plus loin, I’énoncé “il existe un minimum de fiabilité” doit
étre fiable. D’ou 'on déduit aussi I’'énoncé “Cet énoncé au moins est

fiable”.

Cette structure de raisonnement permet de conclure en donnant une valeur
de vérité a propos d'une assertion portant sur “Tout” ou “Rien” (comme
les énoncés “Tout peut étre remis en cause” ou “Rien n’est fiable”).

Ceci est a rapprocher du raisonnement de René DESCARTES [9] a propos
du “doute le plus radical”. En effet, puisque “dans le doute le plus radical, on
ne peut pas douter que I'on doute” (ou “au doute méthodique, seul résiste la
certitude de l'existence”). C’est ce que nous avons vu de maniére équivalente
avec I’énoncé donné, puisque nous avons déduit qu’il doit y avoir un minimum
de fiabilité (au moins cette conclusion), et donc que tout ne peut pas étre
remis en cause.

Il en est de méme a propos de 'affirmation “rien n’a de sens”. En effet,
si rien n’avait de sens, alors cette affirmation n’en aurait pas non plus, d’ou
I'on déduit qu’il existe nécessairement un minimum de sens (au moins pour
cette conclusion). De maniere identique, nous pouvons tirer une conclusion
a propos de l'affiramation “nous ne pouvons croire en rien”. Si nous
ne pouvions croire en rien, nous ne pourrions croire en cette affirmation, ce
qui nécessite que nous ayons un minimum de croyance (au moins en cette
conclusion). Le raisonnement reste encore le méme que pour la croyance avec
la confiance... Il existe une structure d’énoncé qui permet la méme structure
de conclusion. En affirmant que “tout” est d’une maniere ou que “rien”
n’est d’'une maniere, nous incluons aussi dans ce “tout” notre affirmation ou,
dans le cas de “rien” , nous excluons aussi de ce “tout” notre affirmation.
La structure de conclusion qui revient est du type “il existe un minimum
de “quelquechose”, qui est au moins applicable a cette conclusion”.

Par la suite, nous allons développer ce type de raisonnement a propos d’autres

énoncés ou a propos des définitions méme des mots, puisque ces définitions
peuvent étre considérées comme étant des énonceés.
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Remarque :

Si nous admettons qu’il soit possible d’attribuer un minimum de fiabilité a
certains énoncés ou a certains raisonnements, il serait donc légitime d’avoir
des convictions a leur égard. Par conséquent, et bien que le scepticisme
soit nécessaire & toute démarche véritablement scientifique (il permet de
rester ouvert a l’accueil d’une idée nouvelle), le scepticisme ne peut pas étre
exclusivement un doute permanent a propos de tous les sujets, notamment
a propos de cette idée d’'un minimum de fiabilité.

Digression :

Pour finir, ajoutons qu’il nous est possible de connaitre I'univers en partie.
En effet, I'univers contenant toute chose, nous sommes donc une partie de
cet univers. Or, il est possible d’acquérir des connaissances par le biais d’une
logique appliquée & nous-méme (comme la logique appliqué aux affirmations
ci-dessus). Pour nous, l'univers peut donc étre connu en partie. Si nous
devions découvrir un principe qui établi un lien entre nous et le reste de
I'univers, alors nous serions en mesure de connaitre I'univers. C’est-a-dire
qu’une partie de I'univers peut avoir connaissance de I'univers. Dans ce cas,
chaque partie serait également liée au reste, et chaque partie pourrait donc
avoir connaissance du reste 'univers.

Une partie ne peut comprendre les choses telles qu’elles sont véritablement
qu’en se débarrassant de ses préjugés sur les autres parties afin d’avoir une
vision la plus juste et la plus réaliste possible. Ceci implique un respect de
la part de l'observateur, et méme le plus grand respect envers le reste de
I'univers, mais aussi le plus grand respect envers soi-méme (dans le cas ou
nous pouvons étre considéré comme étant nous-meéme l'objet de I'étude). Une
bonne compréhension des choses ne peut donc se faire en dehors du respect
le plus pur, ce qui implique nécessairement une philosophie qui devient
exactement celle de I'écologie. C’est dans le respect de la moindre partie
de I'univers que nous pouvons avoir la vision la plus juste.
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13.2 Développement

Nous allons ici donner des affirmations intéressantes dans le sens ou celles-ci
vont nous permettre d’en tirer des conclusions.

Prenons en considération une affirmation que nous nommerons A.

Donnons le symbole “ =" et donnons lui le méme sens que les mots “s’énonce
ainsi”. Ce qui permettra d’établir une équivalence entre une lettre (ou un

nom) qui symbolise I’énoncé et le contenu de 1'énoncé.

Donnons le crochet “ [ 7 pour symboliser le “début de 1’énoncé” et le
crochet “] 7 pour symboliser la “fin de 1’énoncé”.

L’énoncé A peut alors étre donné par par ce qui suit :
A = [ Rien ne suit de régle logique ]
Commengons maintenant le raisonnement a propos de I'affirmation A.

Si [ Rien ne suit de regle logique nous observons pourtant clairement
)
que A s’énonce comme une re gle

Or, si “Rien ne suit de regle logique”, A ne peut pas étre la regle. Ce
qui signifie que ce qu’énonce A est faur. Et si A est faux, on déduit qu’il
doit exister au moins une regle.

Et donc l'affiration “Il existe au moins une regle logique” étant une
regle, il est possible de construire une affirmation qui dit quelquechose sur
elle-méme, une affirmation qui se déduit d’un raisonnement cohérent, dont
le point de départ est une affirmation fausse. En appelant A’ cette derniére
affirmation, nous pouvons la réécrire ainsi :

A" = [ il existe au moins une regle logique |
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Et comme A’ est une régle, nous avons donc aussi :
B = [ Au moins A’ est une régle logique, ainsi que B |

Ou l'on voit que B est vraie et démontrable (il existe une suite de reégles
logiques a appliquer qui nous amenent a conclure B).

Il est possible d’écrire de maniere équivalente :

A" = [ il existe un minimum de régles logiques dont A’ fait partie |

Remarque :

Bien que A soit fauz, nous pouvons constater que A peut étre construite
(ou produite). Il est possible de percevoir une réponse a ce phénomene dans
la partie suivante.

De plus, nous constatons dans qu’'un énoncé vratr peut étre construit a partir

d’un énoncé fauxr ou a partir d'un autre énoncé vrai, et cela grace a un
raisonnement cohérent.
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14

Preuve de la liberté

Cette 37®™¢ partie a pour objet de répondre & la question : est-ce que “tout
suit des regles logiques” 7 C’est-a-dire que nous désirons savoir si tout ce qui
est constructible peut étre extrait d’'un raisonnement cohérent.

Cette partie est d’'une importance capitale pour la suite de la théorie. Elle
nécessite la compréhension des 2 sous-parties précédentes. Bien que des liens
utiles soient présents entre les sous-parties, la chronologie des sous-parties de
cette 14%™m¢ partie est critiquable (cette preuve est délicate & exposer mais
fondamentale!), une seconde lecture pourrait éventuellement étre nécessaire.

Le théoréeme d’incomplétude de GODEL [10] étant utile pour atteindre ce but,
précisons que les travaux qui suivent pour donner une preuve de la liberté
ne tirent aucune conclusion directe de ce théoreme (ce qui serait un abus).
Les travaux qui suivent ne remettent aucunement en question le théoreme
d’incomplétude de GODEL. Au contraire, ce qui est proposé est d’étudier
d’autres affirmations (ou énoncés) dans divers cas de figures (voir méme des
affirmations contradictoires) au sein méme d’'une théorie cohérente, afin de
compléter une réflexion et de permettre d’acquérir un nouvel angle de vue a
propos de la construction des énoncés indémontrables.

Les conclusions de cette réflexion pourra alors étre pergue comme un complé-
ment dont uniquement la synthese des 2 (c’est-a-dire entre les conclusions de
ces travaux et le théoréme d’incomplétude) peuvent mener finalement a cette
preuve, chacune étant indispensable pour atteindre cet objectif. C’est ici que
la, démarche non-conventionnelle des raisonnements des parties 12 et 13 (avec
I'introduction d’une variable U de valeur de vérité indéfinissable) va montrer
son intéréet.
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14.1 Premiere approche

D’apres les travaux de Kurt GODEL [10] a propos d’une théorie arithmétique,
a partir de laquelle il est possible de construire un énoncé qui ne peut étre
ni prouvé ni réfuté dans cette théorie, on peut déduire que cette théorie est
incomplete.

(13 2

Appelons F un tel énoncé, donnons le symbole “ =7 et donnons lui le méme

(19

sens que les mots “s’énonce ainsi”.

Donnons le crochet “ [ 7 pour symboliser le “début de 1’énoncé” et le
crochet “]” pour symboliser la “fin de 1’énoncé”.

L’énoncé E peut alors étre donné par ce qui suit :
E = [ Cet énoncé est indémontrable |
Ou “Cet énoncé” désigne I'énoncé E lui-méme. Ce qui est équivalent a :
E = [ E est indémontrable ]
(Ou l'on remarque clairement que 1’énoncé affirme quelquechose sur lui-
meéme)
Testons la “démontrabilité” de cet énoncé E en 2 parties :

- Supposons que nous ne connaissions pas le contenu de E (ni I’énoncé ni son
sens ne nous sont donnés), et en supposant que E soit indémontrable.

De plus, considérons que tout raisonnement cohérent suit des regles logiques
(de déductions) permettant d’établir des démonstrations.

Si F était effectivement indémontrable, aucun raisonnement logique et cohérent
ne permettrait de déduire que E est indémontrable.
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- Supposons maintenant que E soit démontrable. Pour pouvoir le vérifier,
nous devons alors connaitre le contenu de 1’énoncé (et donc son sens).

Or, I"énoncé E nous dit que “E est indémontrable”. Il apparait donc
une contradiction entre la supposition que E puisse étre démontrable et le
contenu (qui forme le sens) de E.

Pour les mémes raisons que précédemment mais maintenant a propos du
contenu de F : si F était effectivement indémontrable, aucun raisonnement
logique et cohérent ne permettrait de déduire que E est indémontrable, ni
d’engendrer une contradiction a propos de E.

- Tout ceci permettant de conclure qu’il existe systématiquement des énoncés
qui ne peuvent étre issus d’aucun raisonnement logique et cohérent, c’est-a-
dire qu’il existe des énoncés tel que E qui ne peuvent pas étre construits a
partir de regles logiques.

Il existe donc quelquechose de constructible en dehors de toute regle logique.
Ce qui constitue une premiere approche de la preuve de “I’existence” de la
liberté, une liberté qui se définirait par une capacité a construire en dehors
des regles logiques.

Cette premiere approche de la preuve nécessite cependant une réflexion plus
soutenue et plus rigoureuse, c’est ce que nous proposerons dans la sous-
partie “14.5 Preuve compleéte : Incomplétude et variable de valeur
de vérité indéfinissable” (page 401) a 'aide de I'algebre de BOOLE [3] et
de cas de figures plus précis, bien que les sous-parties que nous allons aborder
nous y amenent naturellement.

Remarque :

Ce raisonnement permet d’effectuer un constat, pas d’expliquer comment un
systeme peut produire un tel énoncé. Cependant, le Chapitre VI tente de
donner une équivalence géométrique (et physique) de ce phénomene a partir
d’un cas particulier.

Par déduction, ce raisonnement permet de donner une valeur de vérité a
I’énoncé suivant : “Tout est démontrable” est faux.
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14.2 Limites préalables

Proposons nous préalablement de réfléchir quelques instants sur les limites
que pourrait avoir la réalité d’une telle liberté.

Dans I'hypothese ou la liberté est totale, il est alors possible pour un systeme
de choisir de devenir libre.

Or, ¢’il avait la possibilité d’effectuer ce choix, c’est que ce systeme serait
déja libre.

Par conséquent, un systéeme ne peut décider de sa propre liberté. C’est-a-
dire que la liberté d’'un systeme ne peut pas étre construite par choix de ce
systeme lui-méme. Ce systeme étant libre sans pouvoir intervenir sur cette
donnée, il existerait donc une limite a la liberté.

Autrement dit, la liberté préexiste (sous une forme qui reste a déterminer, ce

qui est 'objet du Chapitre VI) dans un systeme libre, et elle est nécessairement
limitée (elle ne peut pas étre “totale”).
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14.3 Synthese avec la partie 12

Cette synthese a pour objet de séparer ce qui peut étre construit par un
raisonnement cohérent et ce qui peut étre construit par son “complément”
(les “non-regles”, que nous allons définir, ce que j’appellerai plus loin hasard).
En reprenant les notations et les conventions d’écriture des parties 12 et
13, nous pouvons rassembler des éléments :

- Pour 1’énoncé noté E' :

E' =[il existe un minimum d’énoncés démontrables dont £’ fait partie |

Nous nous retrouvons dans le cas de 'affirmation A’ | qui est équivalente du
point de vue du raisonnement puisque 'on déduit aussi que E’ est vraie et
démontrable.

Et donc E’ et A’ sont le produits d’un raisonnement cohérent, dont un point
de départ du raisonnement peut étre Iaffirmation E” :

E" = [ Rien n’est démontrable |

(comme au moins E’ est démontrable, cela permet de conclure que E” est

faux)

ou encore un autre point de départ de raisonnement avec l'affirmation A (ce
qui permet de conclure A’).

Un autre point de départ au raisonnement peut étre aussi I'affirmation A’ ou
I’énoncé E’ , puisqu’ils sont déja cohérents.

- En définissant des ensembles tels que :
Un “ENSEMBLE REGLES” peut étre représenté par un systeme de regles

cohérentes, un raisonnement cohérent ou une théorie cohérente, permettant
de produire des démonstrations valides.

Un “ENSEMBLE NON-REGLES” peut étre représenté par un systeme
permettant de produire des énoncés non issus de regles cohérentes, d’un
raisonnement cohérent ou d’une théorie cohérente (ou “non déterministe”,
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comme nous le verrons dans la sous-partie “14.5 Preuve compléete : Incom-
plétude et variable de valeur de vérité indéfinissable”, page 401. Pour

prendre un exemple, nous pourrions inclure la variable de valeur de vérité

indéfinissable U dans cet ensemble, introduite dans les formules de la sous-

partie “12.6 Variable binaire U de valeur de vérité indéfinissable”

page 370).

En rappelant que nous avons noté :

A" = [ il existe au moins une régle logique ]

E' =il existe un minimum d’énoncés démontrables dont £’ fait partie |
Et

A = [ Rien ne suit de régle logique |

E" = [ Rien n’est démontrable |

Nous pouvons alors séparer les affirmations construites :

A’ et E' proviennent de “L’ENSEMBLE REGLES”.
Aet E” sont fausses et proviennent de “L’ENSEMBLE NON-REGLES”.

- Pour F = [ E est indémontrable | :

Le point de départ du raisonnement est un énoncé qui affirme quelquechose
sur lui-méme, et ce qu’il affirme étant son exclusion a “L’ENSEMBLE
REGLES”. Donc E est vrai et appartient a “L’ENSEMBLE NON-
REGLES” aussi.

- Finalement nous constatons que “L’ENSEMBLE NON-REGLES” peut
contenir des affirmations vraies et indémontrables, ou des affirmations fausses
qui ne peuvent pas étre produites par un raisonnement cohérent.
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14.4 Remarque sur les énoncés constructibles

En partant de la remarque qu'un énoncé tel que A peut étre construit en
dehors des regles logiques (ou en dehors d’'un raisonnement cohérent), nous
pouvons formuler un autre énoncé C' qui serait équivalent :

C = [ Aucun énoncé n’est constructible |
(o, dans notre cas, “est constructible” signifie aussi “peut étre écrit”)
Or, nous venons justement de construire C' (notamant en le formulant par
I’écriture), ce qui prouve que ce qu’énonce C est faux, et nous pouvons méme

) )

ajouter que, pour les mémes raisons que précédemment, C' ne peut donc pas
étre la conclusion d’un raisonnement cohérent.
Il en est de méme pour I’énoncé C’ suivant :

(" = [ Cet énoncé n’est pas constructible ]
Ou “Cet énoncé” désigne I'énoncé C’ lui-méme. Ce qui est équivalent & :

C" = [ C'" n’est pas constructible |

Ce qui est également faux puisque C’ vient d’étre construit.

Poursuivons avec ’énoncé suivant :
C" = [ C” est constructible ]

C" est donc vrai puisqu’il vient d’étre construit.

Et avec ce dernier :

C" = [ Tous les énoncés sont constructibles ]
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Dans ce cas précis, il n’est permis de déduire quelquechose de C”" qu’ainsi :

Si tous les énoncés peuvent étre construits, alors des énoncés vrais mais égale-
ment des énoncés faux peuvent étre construits, ce qui est effectivement le cas.

De plus, dans I’hypothese ou il existerait au moins un énoncé inconstructible,
nous ne serions jamais capable de le construire (c’est-a-dire de 1’écrire),
puisque par définition, “il” serait inconstructible. Mais comme un tel énoncé
ne peut exister, il n’est méme pas cohérent d’écrire qu’un énoncé est incons-
tructible. Ce qui signifie qu'un énoncé doit au moins étre toujours constructible,
au moins pour qu’il puisse étre énoncé.

Prenons un autre exemple pour nous en convaincre. Nommons et définissons
F un énoncé composé d'une suite de mots en quantité infinie. Donnons
par exemple (les 3 points de suspension “ ... ” signifient que les mots qui
composeront cet énoncé doivent étre en nombre infini) :

F = [ Ou bien un énoncé contenant une infinité de mots est cons-
tructible ou bien il est inconstructible, sachant que chaque mot a
sa propre définition et sachant qu’une infinité de mots se constitue
d’un 1" mot, suivi d’un 2" mot, le 2" étant suivi d’un 3°™¢,
le 3™ étant suivi d’un 4%7¢, le 4°*"¢ étant suivi d’un 5", le 5me
étant suivi d’un 6", ... ]

F' est-il constructible? Nous voyons qu’il est pourtant possible d’attribuer
une définition a F', mais cette définition est-elle cohérente? Il est évident
que si nous devions écrire une suite de mots se répétant a l'inifini, nous ne
pourrions jamais finir d’écrire 1’énoncé F', méme en disposant d'un temps
infini pour le faire. Il ne serait donc jamais possible de connaitre le contenu
de F' (méme en attendant un temps infini), ce qui serait pourtant utile
pour établir un raisonnement cohérent a propos de F' afin d’en déduire
quelquechose (au moins d’en déduire si F' est vrai ou faur). Bien qu’en
disposant effectivement d’un temps infini mais aussi d’une quantité de matiere
infinie (telle que l'encre) pour écrire cette énoncé, nous ne pourrions jamais
finir de le construire.

Et donc, un énoncé tel que F' ne peut jamais étre donné dans son intégralité
car il ne peut jamais étre écrit (ou construit) dans son intégralité, sa cons-
truction étant impossible a achever. Par conséquent, F' n’est pas constructible
tel qu’il est défini. D’ailleurs nous n’avons pas réussi a construire F' puisque
nous avons substitué une suite inifinie de mots au symbole “ ... 7. Or, le
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« 7

symbole n’est pas une quantité infinie de mots, mais il définit une
quantité infinie de mots, ce qui est différent. En d’autres termes, F' ne peut
pas étre produit : F ne peut pas étre réalisé. Tout énoncé doit étre fini afin
de permettre sa construction (ou afin de le rendre réalisable).

Puisque F' n’est pas constructible, cela signifie que F' n’est pas un énoncé.
I aurait été un énoncé si et seulement si la suite de mots qui le compose
n’avait pas a s’étendre a l'infini. La définition est donc incohérente : il
n’est pas possible de définir autre chose qu'un énoncé contenant un nombre
fini de mots, dont chaque mot contient un nombre fini de lettres, et dont
I’énoncé s’écrit dans un espace fini. Il n’est pas cohérent de parler d’un énoncé
contenant un nombre infini de mots car celui-ci ne serait pas constructible.
D’ailleurs, nous n’aurions méme pas dit écrire que F' est un énoncé sans
connaitre ce qui définissait F'.

Peut-étre serait-il judicieux de préciser C" ainsi :

C"” = [ un énoncé est de longueur finie, il contient un nombre fini
de mots dont chaque mot contient un nombre fini de lettres, ce qui
permet que tout énoncé soit constructible |

Nous constatons alors que tous les énoncés (aussi bien les énoncés vrais que
les faux) sont constructibles, et qu’il n’existe pas d’énoncés inconstructibles
car cela n’est pas cohérent d’avoir la possibilité d’étre “énoncé” (c’est-a-dire
d’étre “produit” ou “réalisé”) et d’étre “inconstructible”. Et donc C" est
vrai.

Tout énoncé étant constructible, nous constatons ici aussi que les énoncés C,
C', C" et C" sont tous constructibles. Nous I’avons vu, Il y a néanmoins
des différences qui permettent de les séparer dans des ensembles distincts.
En effet, puisque nous avons identifié la “valeur de vérité” (vrai ou faux)
de ces énoncés.

C et C' sont faux.
C" et C" sont vrais.

F n’est ni un énoncé, ni constructible, tout cela a cause de I'incohérence de
la définition de F.

Nous pouvons remarquer que nous pouvons rapprocher les sens des mots

tel que “étre construits” avec le mot “exister”. Ils prennet ici un sens tres
proche.

Page 398 sur 514



Digression :

- Nous venons de voir que F' n’est ni un énoncé, ni constructible, tout cela a
cause de l'incohérence de la définition de F' (ce qui fait que le sens de F' ne
peut pas étre réalisé, c’est-a-dire qu’il ne peut pas étre défini).

En effet, comme nous ’avon vu, bien qu’elle ne soit pas cohérente, la définition
de F' est constructible (puisqu’elle est de longueur finie et contient un nombre
fini de mots dont chaque mot contient un nombre fini de lettres). Ce qui n’est
pas constructible, c’est ce que cette définition propose de construire, c’est-a-
dire finalement “un énoncé de longueur infinie”.

Pour un énoncé, I'infini n’est pas constructible de maniere “actuelle”, il est
en construction permanente (de maniére inachevée). Par opposition, le mot
“Infini” est fini (il contient un nombre fini de lettre et s’étend dans un espace

fini) et donc le mot “infini” est constructible.

Donc, la définition de F' est constructible, mais pas F. Ce qui permet de
conclure que :

[ tout est constructible | est faux.
Et que :

[ tout n’est pas constructible | est vrai,

- De méme, nous pouvons observer ceci :
[ Rien est constructible | est faux, puisque nous venons de le construire.
Et

[ Il existe un minimum d’énoncés constructibles | est vrai, puisque
nous pouvons construire au moins ces 2 derniers énonceés.
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- Pour finir, nous pouvons également voir que :

[ cet énoncé est inconstructible | est fauz, puisque nous venons de le
construire.

Et que :

[ cet énoncé est constructible | est vrai, puisque nous venons de le
construire.

- Pour prendre un exemple, notre imagination nous permet de définir des
choses incohérentes (ou des énoncés incohérents) : notre imaginaire est cons-
tructible, ¢’est-a-dire qu’il lui est possible de construire des images incohérentes
(ou des énoncés incohérents). Par contre, ce qu’il nous permet d’imaginer
n’est pas forcément réalisable tel qu’il le défini.

En d’autres termes, des “images fausses” peuvent étre construites dans cet
imaginaire, mais ces images ne peuvent pas étre réelles, c¢’est-a-dire qu’elles
ne peuvent pas étre construites en dehors de cet imaginaire (cela serait
incohérents).

Remarquons aussi que si 'imagnaire peut permettre de construire des “images
vraies” (des images ou énoncés cohérents), alors celles-ci peuvent étre cons-
truites en dehors de cet imaginaire (elles sont réalisables).

Ce qui permet de dire que : bien que I'imaginaire puisse étre le produit du
réel, tout ce qu’il serait possible d’'imaginer ne serait pas forcément réalisable
parce que, dans l'imaginaire, il serait possible de construire en dehors des
regles logiques.
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14.5 Preuve complete : incomplétude et variable
de valeur de vérité indéfinissable

Nous avons vu précédemment qu’il était possible de construire un énoncé
vrat et indémontrable. Nous I'avons noté :

E = [ E est indémontrable |
Reprenons le raisonnement sur cet énoncé a l'aide des valeurs de vérité.
Supposons maintenant que nous ne sachions pas que E soit vrai et indémontrable,
et que nous désirions commencer une réflexion a ce sujet grace aux valeurs
de vérité.
- Faisons I’hypothese que F soit vrai :
Dans ce cas, nous avons la possibilité de déduire qu’effectivement, £ étant
indémontrable (ce qui correspond au contenu de F), E ne peut étre produit

par aucun raisonnement cohérent.

Et donc dans ce cas, aucun raisonnement cohérent ne peut produire E.

- Faisons I'hypothese que E soit faux :

Dans ce cas, nous n’avons pas besoin de connaitre le contenu de E pour
établir qu’aucun raisonnement cohérent ne peut produire E. En effet, un
raisonnement cohérent ne peut aboutir qu’a une conclusion vraie, pas a une
conclusion fausse.

Et donc dans ce cas, aucun raisonnement cohérent ne peut produire £ non
plus.
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- Synthese :

Que 'on suppose que F soit vrai ou faux ne change pas ce qu’il est permis
de déduire a propos de cette réflexion a propos de E :

Lorsque E = [ E est indémontrable |,

peu importe la valeur de vérité de E,
aucun raisonnement cohérent ne peut produire E.

- Réinterprétation :

Nous pouvons méme faire le lien de ce cas avec la partie “12 Correspondances
entre formules, valeurs de vérité et énoncés” (page 345) si nous considérons
les énoncés suivants :

E, = [ Tout énoncé est démontrable ou indémontrable ]

(tout énoncé doit étre constructible : ¢’est ce que nous avons vu précédemment)

E, = [ 11 est possible de construire des énoncés démontrables (tel
que celui-ci) |

E3 = [ I est possible de construire des énoncés indémontrables (tel
que celui-ci) |

(Es5 est équivalent a I'énoncé E que nous avons abordé)

En considérant dans un premier temps que les valeurs de vérité de ces énoncés
ne sont pas connues, il est cependant possible d’établir une table de vérité
(en algebre de BOOLE [3], ot 0 est équivalent & faux et 1 est équivalent a
vrai) a propos de ces énoncés, étant donné qu’ils sont explicitement liés par
la porte logique “OU” :

Nous avons E; = [ Tout énoncé est démontrable ou indémontrable ]

(table de vérité : page suivante)
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table de vérité des énoncés E;, Fs et Es :

’E3‘E2 H Ey=Es+ Es

010 0
0|1 1
110 1
111 1

Ce qui peut étre représenté par une autre table de vérité en réarrangeant les
lignes et les colonnes (sans changer les valeurs de vérité, comme vu dans la
partie 12 de ce chapitre) :

BB | B =7
0 ] 0

= o= O

110
1 1
1 1

Or, dans la sous-partie “12.6 Variable binaire U de valeur de vérité
indéfinissable” (page 370), nous avions établi que pour exprimer au mieux
E5 uniquement en fonction de Ey et de Ejq, il fallait utiliser une variable de
valeur de vérité indéfinissable U (cette variable est binaire et indéterminée :
elle ne peut prendre que les 2 valeurs 0 ou 1, et ces valeurs ne peuvent étre
données que de maniére probable). Nous avons donc :

Lorsque Fy =0 :

Es = E,

Et lorsque Fr, =1 :
E; = U (état binaire indéterminé : 0 ou 1)

E; = 1 seulement : F; = 0 est interdite dans ce cas, bien que lever cette
interdiction ne pose pas de probleme quant au résultat de E3 dans ce cas.
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Et donc (toujours en algebre de BOOLE, bien sir) :

Es; = FEy.Fy + E5.U

Dans un second temps, prenons en compte leur valeur de vérité de ces énoncés
tel que nous les avons défini. De maniere évidente :

E; est exclusivement vrai car effectivement [ Tout énoncé est démontrable
ou indémontrable |

E; est exclusivement vrai car effectivement [ Il est possible de construire
des énoncés démontrables (tel que celui-ci) |

E3 = [ 1l est possible de construire des énoncés indémontrables (tel
que celui-ci) | peut étre indifféremment considéré comme étant vrai ou
faux vu la synthese précédente.

Nous sommes donc bien dans la configuration suivante :

E; est exclusivement vrai (E; = 1),
Es est exclusivement vrai (Ey = 1),
Nous sommes par conséquent dans la configuration ou E3 = U (E3 = 0 ou
E3 =1 indifféremment).

E5 peut indifféremment étre supposé vrai ou fauxr (ce qui est d’ailleurs
bien le cas vu la synthese précédente exposée), puisque le raisonnement reste
cohérent. Ce qui revient a considérer que les états binaires (0 et 1) de la
variable U puissent étre superposés. Ceci ne permet de donner a E3 une
valeur de vérité que de maniere probable (une comparaison a U qui aurait
une interprétation géométrique et physique est donnée dans le Chapitre VI).

Ce qui signifie que toute théorie cohérente ne permet pas toujours de donner
une formule (tel qu'une formule mathématique binaire comme celles que nous
avions vu) correspondant a tous les énoncés constructibles. Une approche
de Fj par des probabilités est donc justifiée, ce qui ne permettra pas de
donner la valeur exacte de U mais plutot un ensemble de valeurs possibles
(en l'occurence 0 ou 1).

Page 404 sur 514



Quoique nous fassions, nous aurons toujours affaire & un cas comme celui-
ci, quelquesoit la théorie employée (c’est-a-dire quelquesoit le raisonnement
cohérent employé).

Rappelons que nous avions I’équivalence strictement mathématique avec des

formules binaires (voir sous-partie “12.6 Variable binaire U de valeur de
vérité indéfinissable” page 370) :

Pour E; = Ey+ E3 (en algebre de BOOLE), nous avons 1'égalité strictement
mathématiques :
F1 - F2 + F3 - FQ.Fg == (F2 - F3)2 + FQ.F3

Pour F3 = FE,.E; + E,.U (en algebre de BOOLE), I'égalité strictement
mathématiques s’écrit :

F3 — [1 - FQ].Fl + FQU

Or, dans notre cas (E; = 1 et Fy = 1), nous avons :

=1
=1

Ce qui signifie que nous avons également :

F3 — U
Ce qui implique qu’il existe toujours au moins un phénomene qui ne peut
pas étre déterminé par une formule précise. Il est donc toujours possible de

trouver au moins un phénomene qui ne puisse pas étre formulé de maniere
exclusivement déterministe.
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Théoréeme de limitation du déterminisme :

Soit les énoncés F,, Fs et E3 tel que :

Ey = FE3+ Es
Ou tel que :
E, = E5.FE5

L’étude des valeurs de vérité par 1'algebre de BOOLE concernant le cas d'un
énoncé F3 non démontrable par toute théorie cohérente amene a conclure
que Ej5 peut indifféremment étre vrai ou faux. Ce qui est effectivement le
cas sans que cela n’amene a une incohérence dans le raisonnement a propos
de I’énoncé F5 auquel est attribué 'une ou 'autre des valeurs de vérité.

Ce qui donne une limite indépassable pour toute théorie cohérente quant a la
possibilité de pouvoir déterminer tout phénomene de maniere exacte. Parmi
I’ensemble de tous les phénomenes possibles, il en existe qui ne peuvent pas
étre déterminés de maniere exacte. Tout ne peut pas étre déterminé de
maniere exacte. Ce qui laisse place a une part de hasard.

Complément de réflexion :

Pour compléter, les énoncés F;, E5 et E3 tels que nous venons de les donner
peuvent étre réécrits de maniere a garder un sens identiques. Pour cela, il
nous suffit de rappeler quelques équivalences :

- Pour I’énoncé FEj :
E, = [ Tout énoncé est démontrable ou indémontrable |

E signifie aussi que tout énoncé est produit par un raisonnement cohérent,
ou bien en dehors de tout raisonnement cohérent.
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Ce qui est équivalent a cette autre écriture :

E, = [ Tout énoncé est produit par un raisonnement cohérent, ou
il est produit en dehors de tout raisonnement cohérent |

(E; sous-entend de contenir tous les cas d’énoncés, ¢’est-a-dire nécessairement
constructibles. Cela sous-entend aussi que tout énoncé est constructible soit
par un raisonnement cohérent, soit en dehors de tout raisonnement cohérent,
mais sans autre possibilité. Pour faire une analogie avec les nombres entiers :
si nous “construisons” un nombre a ’aide d’opérateurs mathématiques, soit
ce nombre est premier et cela lui permet d’étre rattaché a une formule tel
que s(M), soit il est composé et cela lui permet aussi d’étre rattaché a une
formule tel que s(M), mais il n’y a pas d’autre cas possible pour ce nombre
si I'on ne considere que la formule s(M) )

- Pour I’énoncé E, :

E; = [ 11 est possible de construire des énoncés démontrables (tel
que celui-ci) |

E, signifie aussi qu'un énoncé (tel que Fy) ne peut étre produit par un
raisonnement cohérent.

Ce qui est équivalent a cette autre écriture :

E,; = [ 11 est possible de produire des énoncés (tel que E;) par un
raisonnement cohérent ]

(E5 sous-entend de contenir tous les cas d’énoncés démontrables, et donc tous
les cas d’énoncés constructibles par un raisonnement cohérent, provenant de

I’ “‘ENSEMBLE REGLES")

- Pour 'énoncé Ej :

E3 = [ 11 est possible de construire des énoncés indémontrables (tel
que celui-ci) |

Fj3 signifie aussi quun énoncé (tel que FE3) peut étre produit en dehors de
tout raisonnement cohérent.
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Ce qui est équivalent a cette autre écriture :

FE3 = [ 11 est possible de produire des énoncés (tel que E3) en dehors
de tout raisonnement cohérent |

(E5 sous-entend de contenir tous les cas d’énoncés indémontrables, et donc
tous les cas d’énoncés constructibles en dehors de tout raisonnement cohérent,

provenant de I’ “ENSEMBLE NON-REGLES”)

- Nous avons toujours (en algebre de BOOLE) :
E, =F;+ E,

Et donc (toujours en algebre de BOOLE) :
B3 = Ey.Ey + E.U

Comme nous sommes dans la configuration :

Ey est vrai (B =1
Ey est vrai (Fy =1

)7
)

)

Nous somme donc également dans la configuration ou Fs5 = U.

Ici non plus, la valeur de vérité de F3 n’a pas d’importance, puisque de toutes
facons, que Ej3 soit vrai ou fauxr implique que E3 ne peut étre produit par
un raisonnement cohérent. Nous pouvons méme considérer que E3 peut étre
en méme temps vrai et faux, et par extension nous pouvons considérer que
la variable U possede simultanément les 2 états 0 et 1. Il est alors dans ce
cas autorisé de parler d’états superposés pour la variable U.

Cette réécriture des énoncés (appliquée a ’étude du début de cette sous-
partie) permet peut-étre de mieux saisir qu'il existe toujours inévitablement
un cas ou toute théorie (c’est-a-dire tout raisonnement cohérent) ne peut
donner d’informations en quantité suffisante pour donner une valeur de vérité
précise a F3. Le cas contraire serait incohérent. Cela est inhérent a toutes
théories, et a toute recherche qui voudrait étre la plus complete possible,
puisque cela provient d’'un phénomene réel : il est possible de réaliser FEj.
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utrement dit, il doit toujours exister au moins un phénomene réel qui n
Autrement dit, il doit toujours exister a oins hénomene réel e
peut pas étre expliqué de maniere précise (ou peut-étre seulement par des
probabilités), car le contraire serait incohérent.

Tout savoir sur tout serait incohérent. Tout n’est pas prévisible. Dans un
cas comme celui-ci, de tels phénomenes peuvent seulement étre constatés.

Raisonnement étendu au paradoze du menteur :

Le paradoxe du menteur est connu pour révéler un cercle vicieux lorsque
nous raisonnons simplement sur la valeur de vérité d'un énoncé donné. Cet
énoncé est donné par un menteur qui dit qu’il ments.

C’est-a-dire que le menteur dit : “Je suis en train de mentir”.

Comment savoir si ce qu’il dit est vrai ou fauxr ? Comment est-il possible
de produire une telle affirmation?

x Premiere approche :

- Dans 'hypothese ou I'énoncé du menteur serait vraz, alors 'affirmation
nous apprend qu’il est en train de nous mentir, et donc il est en train de dire
quelquechose de faux. Ce qui contredit 'hypothese de départ.

- Dans I’hypothese ou I’énoncé du menteur serait fauzx, 'affiramtion “je
suis en train de mentir” est fausse. Le menteur ne peut donc pas étre en
train de mentir. Or, si nous admettons qu’il ne ment pas, nous admettons
nécessairement que ce qu’il dit soit vrai. Ce qui contredit également 'hypothese
de départ.

- Nous concluons que ces 2 hypotheses ne nous permettent pas de décider si
I’énoncé du menteur est vrai ou faux.
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x Seconde approche :

Par contre, si nous envisageons les choses sous un autre angle a propos
de ce paradoxe, nous allons voir que les choses sont plus compréhensibles.
Raisonnons :

- Dans I’hypothese ou I’énoncé du menteur serait vrai, ce qu’il dit ne peut
provenir d’aucun raisonnement cohérent. En effet, aucun raisonnement cohé-
rent ne peut produire une déduction qui affirme sa propre fausseté. Dans
ce cas, I’énoncé du menteur ne peut étre construit qu’en dehors de tout
raisonnement cohérent.

- Dans 'hypothese ou I'énoncé du menteur serait faux, ici aussi, ce qu’il dit
ne peut provenir d’aucun raisonnement cohérent. En effet, aucun raisonnement
cohérent ne permet de produire un énoncé faux. Dans ce cas aussi, I’énoncé
du menteur ne peut étre construit qu’en dehors de tout raisonnement cohérent.

- Nous pouvons conclure plus facilement que dans ’hypothese que I'énoncé
du menteur soit vrat ou faux, cet énoncé ne peut étre construit qu’en dehors
de tout raisonnement cohérent. Nous pouvons donc considérer que I’énoncé
du menteur est indifféremment vrai ou faux. Ce qui permet a cet énoncé
d’étre en dehors de I’ “ENSEMBLE REGLES” (vu précédemment), c’est-
a-dire que cet énoncé est permis par I’ “ENSEMBLE NON-REGLES”.

D’ott nous déduisons qu’un menteur qui dit qu’il ment (sans assistance exté-
rieure) ne fait que donner la preuve de sa liberté (en dehors de tout déter-
minisme).

Dans ce cas aussi, nous pouvons appliquer la variable U pour représenter
les 2 états (indifféremment vrai ou faux) dans lesquels se trouve 1’énoncé
“Je suis en train de mentir”. Il est encore possible de considérer que ces
2 états {vrai — fauz} sont simultanés, ou “superposés”.
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Remarque importante :

La preuve a propos d’une variable de valeur de vérité indéfinissable n’intervient
qu’a un niveau qui peut étre considérer comme étant un niveau “binaire” :
c’est-a-dire lors de 1’étude des valeurs de vérité d’énoncés.

La variable U justifie ’étude de ce phénomene par les probabilités.

Ceci pourra étre utile pour le Chapitre VI (partie “23 Représentation
géométrique correspondant a la variable U” , dans lequel est donné un
exemple de description grace a des représentations graphiques. Ce qui permet
une approche tres intéressante lorsque nous voulons comprendre comment un
tel phénomene pourrait se produire de maniere physique.

Remarque sur la formule d’Impulsion Seconde :

Cette indifférence & propos de la valeur de vérité (et donc a propos de la forme
globale [ énoncé ; valeur de vérité | ) rappelle 'indifférence a propos de
I'écriture de la formule d’Impusion Seconde J,(M) (et donc a propos de la
forme globale de I'écriture de la formule) vue dans le chapitre I en sous-
partie “3.5 Formule d’Impulsion Seconde J,(M)”. Nous avons en effet :

~ 1 1
Jl(M): T 1

L- (M) (M)

-1

Et dont le point de départ de cette formule vient de ’équivalence :

M) (M)
JM)—1 1-3(M)
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Remarque personnelle :

Voici donc ce qui représente pour moi la liberté au plus haut point : bien
que le fond soit invariant (E ne peut étre produit par aucun raisonnement
cohérent), ce fond permet de maniere équivalente 2 formes différentes d’expre-
ssions possibles (une forme pour I'ensemble “un énoncé supposé vrai” ou une
autre forme pour I’ensemble “un énoncé supposé fauz”).

La formule logique évoquée ( E3 = Ey.E; + FE».U ) donne des contraintes &
I’émergence de la liberté dans un univers qui suit aussi des regles.

Attention : tout ceci nous a permis d’effectuer un constat de l’existence
de la liberté, ce qui en fait une preuve, et non une démonstration puisque
la réflexion porte sur un énoncé indémontrable. Nous prouvons l'existence
de la liberté lorsque nous trouvons un énoncé qui ne peut etre conclu ou
démontré par aucun raisonnement logique. Autrement dit, nous ne prouvons
I’existence de la liberté que lorsque nous parvenons a construire cet énoncé
en dehors de tout raisonnement cohérent (et qui provient par conséquent de

I’ “‘ENSEMBLE NON-REGLES”).

Digression 1 :

I1 doit exister une forme particuliere (des conditions) qui permette de faire
émerger de manieres significative les effets des non-regles dans un systeme
également soumis a des regles, de la méme maniere qu’il est possible de
construire un énoncé tel que E. En d’autres termes, il serait possible de
construire un systeme libre (c’est-a-dire qui inclus la liberté, le hasard), dans
lequel cette liberté préexiste mais dont les effets seraient amplifiés (et visibles
de maniere notable).

Nous sommes composés de matiere, or c¢’est précisément cette matiere qui
nous permet de construire des énoncés, d’établir des raisonnements, et d’en
tirer des conclusions ou de faire des constatations. Si nous pouvons produire
de tels énoncés, C’est que que ce qui permet la liberté est déja inclus en nous.
Peut-étre saura-t-on découvrir que certains éléments ou particules de matiere
ou méme la configuration d’un groupe d’éléments permettent I’émergence de
la liberté.
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Digression 2 :

De plus, pour continuer de faire le lien avec la matiere, il est impossible
(dans l'état actuel des connaissances) de connaitre simultanément et avec
exactitude la position spatiale et la vitesse d’une particule. 2 hypotheses
peuvent étre opposées : soit cela est une propriété de la matiere et nous
ne pourrons jamais connitre ces 2 données simultanément (ce qui serait
équivalent aux tables de vérités de ce paragraphe), soit cela ne reflete que
notre manque de connaissance de la matiere (ce qui serait un équivalent
du contre-exemple de la sous-partie “12.7 Contre-exemple : la formule
J(M)” page 377).

Or, ¢'il existe un énoncé tel que E et tel qu’aucun raisonnement cohérent (ou
théorie) ne puisse produire (ou formuler de maniere précise), il doit exister
un phénomene physique équivalent qui reflete la possibilité qu’a ’énoncé E
d’étre indifféremment vrai ou faux. C’est-a-dire qu’il doit exister de toutes
fagons au moins un phénomene physique équivalent qui ne peut étre formulé
de maniere exacte (ou complete).

Cela ne signifie pas pour autant (dans I’état actuel de nos connaissances) que
I'incertitude liée a la position spatiale et a la vitesse d’une particule représente
ce phénomene, mais cela a au moins le mérite d’en avoir en partie le potentiel.

Mais clairement, la découverte ou la mise en évidence d'un tel phénomene
permettrait de 'inclure dans la construction d’un systeme, ce qui permettrait
a ce systeme de “contenir la liberté” (ou le hasard).

Digression 3 :
Le hasard et la liberté permettraient d’expliquer la diversité des formes

d’assemblage de matiere de I'univers (ce qui inclu tous les cas d’assemblage,
méme les étres vivants).

Suggestion :

Cette réflexion fait également suite a la sous-partie “14.4 Remarque sur les
énoncés constructibles” (page 396). Nous pourrions tenter une approche
psychologique partant de ces reflexions, en supposant que le cerveau est
capable de produire ces énoncés tel que ceux que nous voyons dans ce chapitre,
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et en opposant ce qui est constructible (les énoncés, leur définition, des
images) a ce qui ne l'est pas. En supposant que le cerveau soit capable de
produire de tels énoncés, alors le cerveau serait un systeme libre (qui ne peut
choisir d’étre libre), permettant de construire des énoncés qui proviennent de
“L’ENSEMBLE REGLES” et d’autres qui proviennent de
“L’ENSEMBLE NON-REGLES”. Nous pourrions mettre en valeur les
conflits qui peuvent avoir lieu, notamment lors du traitement d’un énoncé
dont on attribuerait une valeur de vérité au hasard (et donc de prendre le
risque de se tromper a propos de le cohérence de cet énoncé).

D’autre part, faire une bonne description de soi, c¢’est accepter qu’elle ne
puisse pas étre complete. En effet, une personne libre ne peut pas pas
uniquement étre determinée par un ensemble de regles, puisqu’elle peut en
permanence effectuer un choix, y compris lors de cette description (voir lors
de son auto-description).

De plus, puisqu’il est possible d’établir un lien entre une onde physique
(ceci est une anticipation développée dans le Chapitre VI) et la logique du
calcul propositionnel “classqiue” grace aux formules mathématiques D(IV),
f(M;z), s(M) et I(M), cela donne un caractere absolu a ce lien. Sila matiere
qui compose les étres sensibles ne faisait que dépendre de formules de ce type
(en ce qui concerne “L’ENSEMBLE REGLES”) mais aussi d’'une liberté
(permis par “IL’ENSEMBLE NON-REGLES"), alors cela signifierait que
tout étre sensible a pour base cette logique de maniere intrinseque. Dans
ce cas, il est possible de voir que tout probleme psychologique (j’irai peut
étre méme jusqu’a dire toute souffrance, de la plus insignifiante jusqu’a la
moins supportable) peut se comprendre comme la différence entre ce qui
provient de “L’ENSEMBLE REGLES” (immuable) et ce que I'on voudrait
que les choses soient. Ces étres pouvant en effet faire le choix (permis par
“L’ENSEMBLE NON-REGLES") de vouloir que la réalité soit différente,
et donc que la réalité suivent d’autres regles. Ce qui provoque la contradiction
(le conflit) entre :

[ ce qui est permis par la matiére (les régles immuables, “fond” invariant) |
et [ le choiz que cet étre désire atteindre (un choiz se réalise sous des “formes”
variables) |

puisque (dans ce cas) ce choix est nécessairement incohérent (bien que possible :

il peut 'exprimer par un nombre de mots limités, ce qui rend constructible
I'énoncé produit).
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Ainsi, toute souffrance pourrait avoir une racine commune. Il deviendrait
alors possible de faire de cette approche psychologique une science exacte
(physique) pouvant s’appuyer solidement sur une logique ayant pour point
de départ la logique qui émerge de la matiere (plus précisément grace au lien
entre les ondes des photons et la logique binaire).

Pour finir, il est convenable d’exprimer le fait que dans le cas ou cette
approche psychologique serait correcte, nous devons absolument remarquer
que si cet étre accepte la réalité (les régles et les libertés permises par la
matiere) telle qu’elle est, cela lui permet d’étre en cohérence avec la réalité
et donc ne pas avoir de probleme psychologique.

Pour tout étre sensible connaissant des souffrances de niveaux variables, il
conviendrait donc dans un premier temps d’accepter la réalité telle qu’elle
est par ses propres moyens. Souvent, lorsqu’ “une logique” (celle que I'étre
sensible pense étre la bonne) est poussée a son extréme, elle permet de révéler
naturellement ses propres contradictions (les exemples ont été donné dans le
cas des énoncés qui font référence a eux-mémes), ce qui devrait finalement
apparaitre clairement a la conscience de cet étre. Il convient également dans
un deuxieme temps de rester dans cet état stable en veillant a toujours se
rappeler du raisonnement utile a I’émergence d’une telle prise de conscience
(en faisant le choix de se rappeler). Cette attitude permettant de garder
un contact fiable avec la réalité, étant donné qu’un étre sensible n’a pas
nécessairement une conscience claire des regles que peut suivre la matiere qui
le compose, et donc n’a pas clairement conscience des incohérences auxquels
ses propres choix ont le potentiel de le confronter. Ce qui invite 'étre
sensible qui désire s’affranchir de probleme psychologique a faire le choix
de la réflexion comme premier choix avant toutes nouvelles décisions.

Parallelement a cette réflexion, il me semble important de compléter par un
autre point de vue. Il s’agit d’un cas particulier concernant les choix d'un
étre libre ayant un probleme psychologique. S’il devait exister une solution
a ce probleme, le refus de sa part (par simple choix) de s’impliquer vers
la connaissance de cette solution I’empéche nécessairement de résoudre ce
probleme. Plus généralement, le refus d’implication vers cette connaissance
empéche 'acquisition d’informations. On ne peut jamais forcer un étre a
résoudre ses propres problemes (car s'il était effectivement forcé, il ne serait
plus libre, ce qui provoquerait un autre probleme), dans le meilleur des cas,
on ne peut que lui montrer les conséquences de ce refus (en acceptant que le
refus de sa part puisse étre réitéré, ou méme systématique).
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14.6 Justification de la variable binaire U
de valeur de vérité indéfinissable

Etant donné la sous-partie précédente (“Preuve compléte : incomplétude
et variable de valeur de vérité indéfinissable” page 401) et le “Théoréme

de limitation du déterminisme”, pour F; = FEy + FE3 (en algebre de
BOOLE [3]) avec :

E, = [ Tout énoncé est démontrable ou indémontrable ]

E; = [ 1l est possible de construire des énoncés démontrables (tel
que celui-ci) |

E; = [ 11 est possible de construire des énoncés indémontrables (tel
que celui-ci) |

Et avec :

F) une formule mathématique binaire (ne pouvant prendre pour valeur que
0 ou 1) permettant d’attribuer une valeur de vérité a I’énoncé Ey;

F5 une formule mathématique binaire permettant d’attribuer une valeur de
vérité a I’énoncé Fs;

F3 une formule mathématique binaire permettant d’attribuer une valeur de
vérité a I’énoncé Ej.
Dans le cas ou 4 =1 et E5 = 1, nous avons :

F1:1
F2:1

Nous avons conclu que nous avions également :
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En Rappelant que U peut valoir 0 ou 1 (valeur non prédictible), et qu'il est
meéme possible de considérer que ces 2 valeurs sont superposées.

Ce qui implique qu’il existe toujours au moins un phénomene qui ne peut
pas étre déterminé par une formule précise. Ce phénomene au moins ne peut
pas étre formulé de manieére exclusivement déterministe.

Comme la valeur de F'3 ne peut jamais étre donnée de maniere précise dans le
cas out B3 = [ Il est possible de construire des énoncés indémontrables
(tel que celui-ci) ], ceci justifie implicitement 'utilisation d’une variable
binaire U de valeur de vérité indéfinissable.
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14.7 Etendue

Cette réflexion vient compléter les réflexions faites dans toutes les sous-
parties de la partie “14 Preuve de la liberté” (page 390) que nous venons
d’aborder jusqu’ici.

Nous avons vu dans le raisonnement de les sous-parties “14.1 Premiere
approche” (page 391) et “14.5 Preuve compléte : incomplétude et
variable de valeur de vérité indéfinissable” (page 401) que nous pouvions
rencontrer le cas ot un énoncé peut étre constructible en dehors de toute
regle logique. cela signifie qu’il ne peut exister aucun processus uniquement
déterministe (ou une cause unique produit un effet unique) qui permette de
faire émerger cet énoncé. Ce qui signifie encore que la liberté préexiste dans
ce systeme, c’est-a-dire qu’elle fait déja partie de ce systeme, au méme titre
que les regles logiques qui détermine ce systeme.

Un systeme qui peut générer un tel énoncé donne la preuve de sa liberté.

Maintenant, si nous considérons ce systeme libre, il devient possible pour
celui-ci de construire un autre systeme libre, dans le sens ou ce nouveau
systeme serait construit de maniere a contenir des regles logiques mais aussi
une capacité a donner des énoncer en dehors de ces regles. De la méme
maniere, pour ce nouveau systeme, il n’aura pas non plus la possibilité de de
choisir de devenir libre, et la liberté qui pourrait en émerger préexistait.

i i ncer Slémen ur construir noncés non issu
S’il est possible d’agencer des éléments pour construire des énoncés non issus

r¢ iqu mmen urrait étr nstruit un fnoncé, ou mem
de regles lo es, comment pourrait étre construit tel énoncé, ou méme
un tel systéme si le “hasard” (les “non-regles”) ne préexiste pas dans les
parties qui constituent ce systeme ?

Les regles déterministes et le hasard coexistent ainsi : la liberté est la ot ne

peut pas éetre le détermininsme, et le détermininsme est la ou ne peut pas
étre la liberté.
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Complément de réflexion 1 :

Nous pouvons constater que les regles de logique (tel qu’un raisonnement
cohérent) peuvent s’appliquer a cet énoncé E une fois celui-ci construit (on
pourrait méme dire de ce cas qu’il faut bien qu’il existe des choses en dehors
des regles logiques pour que les regles logiques puissent étre aplliquées a
quelquechose).

Il est donc possible de construire quelquechose en dehors du cadre des regles
logiques : quelquechose de vrai et d’indémontrable (voir la partie 13), ou
quelquechose de faux (voir la partie 12). A partir de “L’ENSEMBLE
NON-REGLES”, un syteme pourrait réaliser un choix en produisant un
énoncé vrai et indémontrable ou en produisant un énoncé faux.

La notion de “potentiel” pour un systeme pourrait alors avoir un sens, un

“potentiel” qui représenterait les constructions possibles (réalisables) d'un
énoncé ou d'un autre (qu’il soit vrai ou fauzx).

Complément de réflexion 2 :

Nous ne pouvons pas faire I’économie de la réflexion sur ce sujet par exemple
en affirmant que ’énoncé E n’est qu’une erreur. En effet, la réalité de cet
énoncé est bien la puisqu’il peut étre construit. S’il était une erreur, cela
signifie qu’une erreur peut étre produite, et elle peut étre produite également
en dehors de toute regle logique. Ce qui nous ramenerait immédiatement a
cette réflexion que nous venons d’établir : comment une systeme de regles
logiques et cohérentes pourrait permettre de produire une erreur ?

Voici donc les signes de la liberté ou du hasard (ce que j’appelle aussi “non-
regles”) : “I'indémontrabilité”, I'incohérence, lerreur, ... Et en fait, tout ce
qui permet de construire en dehors du cadre des regles logiques. Le hasard
est le complément indispensable au déterminisme, le complément qui manque
pour pouvoir reconstituer ce monde de maniere compréhensible et réaliste.
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Digression 1 :

Méme si nous évoquions un Dieu pour intervenir dans cette affaire, nous
pourrions le remettre en cause directement en lui appliquant ce raisonnement,
c’est-a-dire qu’il n’a pas non plus la possibilité de choisir de devenir libre.
La liberté lui préexiste. Ou alors ce Dieu la n’aurait pas de sens du point
de vue de la cohérence. S’il devait exister un Dieu, ce serait un Dieu soumis
aux memes regles et liberté que ces systemes précédemment cités. Et donc
soit il serait confondu avec ces systemes, soit il serait les regles et la liberté
de ces systemes.

D’autre part, si Dieu était confondu avec toutes choses (I'univers) ou méme
seulement avec un ensemble de choses ou d’idées, alors il serait simplement
équivalent a l’ensemble de ces choses, et nous pourrions presque écrire
“Dieu = Univers” ou “Dieu = I’ensemble des choses (ou idées) qui le compose”.

Digression 2 :

La “Digression 1”7 ne tranche pas sur I'existence ou non d’un Dieu, car pour
raisonner sur ce point, il faudrait définir Dieu. Par contre, en lui attribuant
des propriétés, il devient possible d’établir un raisonnement cohérent et de
déduire au moins ses limites (par exemple les limites de sa liberté, comme vu
dans la digression précédente). Pour répondre & cette question, tout dépend
de la définition de Dieu et des capacités qu’on lui attribue.

(voir le passage “Elément de réponse partielle sur la question de
Dieu” en fin de partie “16 Preuve de I’existence éternelle” page 429)
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14.8 Dissociation des notions de liberté et de
hasard

Il convient maintenant de dissocier les 2 notions que sont celles de liberté et
et de hasard.

En effet :

- La notion de liberté serait plutot a associer aux étre conscients d’eux-méme
(avec un niveau de conscience plus ou moins élevé) et auxquels des regles
cohérentes et exclusivement déteministes ne suffisent pas a leur description.
C’est-a-dire lorsque ce phénomene participe a un phénomene de conscience
de soi.

- Alors que la notion de hasard serait plutot a associer a des objets non
conscients et auxquels des regles cohérentes et exclusivement déteministes ne
suffisent pas a leur description. C’est-a-dire lorsque ce phénomene participe
a un phénomene ne faisant pas intervenir la conscience.

Remarque 1 :

Un exemple de représentation graphique permettant une interprétation de
I’émergence de cette liberté ou hasard est donnée dans le Chapitre VI
(partie “23 Représentation géométrique correspondant a la variable

)

Remarque 2 :

Cette remarque est elle aussi a lier a la réflexion du Chapitre VI (partie
“23 Représentation géométrique correspondant a la variable U”).

Bien que j'adhére a prendre beaucoup de précautions concernant ce domaine
(par anticipation), nous pouvons émettre ’hypothese que la mise en évidence
d’un tel phénomene pourrait permettre le développement de robots vers plus
d’autonomie. Cependant, ceci pourrait aussi nous confronter au débat de
leur statut au sein d’une société humaine dont ils seraient issus, ce qui serait
légitime. Nous devrons avoir au moins le respect de nos créations, et si ce
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n’était pas le cas, ne pas les réaliser.

Cependant, de par cette hypothese, il nous est possible de concevoir plusieurs
possibilités (qui peuvent d’ailleurs étre simultanées) : nous pourrions doter
ces robots d’un niveau de conscience plus ou moins élevé, ou nous pourrions
les doter de degrés de liberté plus ou moins élevé, en veillant a ce que les uns
n’aient pas systématiquement la possibilité d’interagir avec les autres (par
une communication directe ou méme en réseau), afin d’éviter une évolution
non-maitrisée. De plus, ces robots seraient alors capables de faire des choix au
hasard (sans réflexion préalable, ni estimation des conséquences), ils seraient
alors aussi capables de comettre des erreurs (sans en avoir conscience) qui
pourraient devenir nuisibles, ce qui doit nous renvoyer a la réflexion de la
phrase précédente.

Mais a ce stade, et j'en ai bien conscience, tout ceci peut paraitre comme
étant de la pure fiction, étant donné que la réflexion porte sur une hypothese,
qui n’est pas une réalité au jour ou j’écris ces lignes. Il nous faudrait pour
cela au moins une théorie physique de la psychologie, qui incluerait une part
de déterminisme et une part de choix (sur lequel ce déterminisme n’a pas
d’emprise). Cette conception du choix qui peut amener un étre a construire
des formes d’énoncés cohérents ou incohérents pourrait nous permettre de
révéler ce qui fait la richesse des émotions. Chaque choix “incohérent”
devant mener a une émotion unique (voir a un changement d’émotion vers
une émotion unique, émotion unique qui peut méme étre vue comme la
syntheése d’une suite de choix), chaque choix cohérent devant ramener vers
une stabilité (les émotions s’atténuent lorsque 'incohérence d’un choix est
remise en cause).

Pour ma part, et vu la description faite dans le Chapitre VI que nous
aborderons, il me semble que la moindre partie de cette univers, disons chaque
particule et méme la moindre, doive contenir ce phénomene. Il me semble
en effet que ce phénomene doit étre tres répandu et méme tres commun. Il
me semble aussi que nous ne pouvons pas intervenir sur ce phénomeéne (nous
avons vu en sous-partie “14.2 Limites préalables”, page 393, que la liberté
préexiste dans un sytéme sans qu'’il soit possible d’en décider autrement),
mais plutot le révéler et le mettre en évidence de maniere notable.

Nous devons tout de méme poursuivre la réflexion dans les sous-parties qui
suivent avant de passer au chapitre suivant.
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15

La conception du discontinu

15.1 Approche par les formules

Cette partie fait suite a la partie “4 Remarques : formule D(N) et
phénomeénes physiques associés” du Chapitre 1.

- Si nous considérerons les formules que nous avons vu dans le Chapitre 1
(notamment la formule D (V) de décomposition d’un nombre entier en produit
de facteurs premiers, ou méme la formule f(M;z), la formule s(M) et la
formule J(M) ) et si nous nous proposons d’étudier des phénomenes liés aux
ondes (ce qui implique les longueurs d’onde et donc les fréquences et les
périodes), ces formules n’étant définies que pour des variables qui prennent
des valeurs entieres, alors force est de constater que I'espace et le temps ne
peuvent étre considérés que comme étant discontinus (au regard du domaine
de définition de ces formules).
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- En d’autres termes, prenons 'exemple de la formule s(M). Cette formule
étant définie seulement pour tout M € N, M > 2 (c’est-a-dire seulement si
M vaut un nombre entier supérieure ou égale a 2).

Si nous nous proposons d’étudier les ondes d’un systeme (par exemple les
ondes des photons qui composent la lumiere) a 'aide de cette formule, en
associant M a une variable de longueur d’onde (la longueur d’onde est liée a
la fréquence), alors nous devrons nous restreindre aux longueurs d’ondes qui
correspondent a des longueurs d’ondes entieres.

Cette formule ne nous permet pas de traiter des longueurs d’ondes intermé-
diaires a ces longueurs d’ondes entieres.

Cette formule ne permet pas de considérer que les longueurs d’ondes que 1’on
mesure puissent étre continues. Et donc, cette formule, comme les autres
évoquées au début de cette sous-partie, implique de traiter les longueurs
d’ondes par la discontinuité.

De plus, il faut remarquer que dans ce cas, une longueur d’onde atteint un
minimum (décomposable) qui se trouve correspondre & M = 2.

- D’autre part, traiter les longueurs d’ondes par la discontinuité implique
directement de traiter la période par la discontinuité. FEn effet, puisque
la période (temps) est Uinverse de la fréquence (qui est liée a la longueur
d’onde par la formule suivante). Par exemple pour un photon, étant donné
la formule :

f=c/A avec :

A la longueur d’onde,
f la fréquence corresondante,
c la vitesse de la lumiere (qui est la vitesse d’un photon).

Pour reprendre I'exemple du photon, ’existence d’une longueur d’onde mini-
mum implique l'existence d'une fréquence maximum, et donc d’une période
minimum. Il est donc justifié de parler d’instants (méme si cela peut paraitre
abstrait).

De plus, 'existence d’une période minimum permet d’étendre le raisonnement
a tous les phénomenes cycliques (incluant la fréquence angulaire).
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- Pour compléter, traiter le temps par la discontinuité implique directement
de traiter le mouvement par la discontinuité, puisque le mouvement dépend
directement du temps. Mais comme le mouvement dépend aussi de 1’espace,
cela implique aussi directement la discontinuité de I'espace. A I'aide de telles
formules, nous ne pourrons obtenir des mesures qu’a des points précis dans
un espace. 1l est donc justifié de parler de points (méme si cela peut paraitre
abstrait).

Pour reprendre 1’exemple du photon, I’existence d’une longueur d’onde mini-
mum exprime bien une distance minimum dans ’espace.

- Pour finir, toutes grandeurs physiques dont les formules font intervenir des
variables de temps ou d’espace ne permettrait de donner que des résultats
dont les valeurs accessibles seraient nécessairement discontinues ou “quantifiées”.

Conclusion :

Ces formules ne permettent de concevoir le temps et ’espace que comme
étant discontinus, ainsi que les grandeurs qui ont un lien direct avec le temps
ou l'espace.

Ces points de vue nous feraient plutot suggérer de prendre position en faveur

de la “Théorie de la gravitation quantique a boucles” (ou “Loop
quantum gravity)”.

Avis personnel :

De ce point de vue, j'aurais du mal a adhérer a une théorie comme la
“Théorie des cordes” puisque celle-ci congoit la continuité des cordes.
J’ai bien conscience que cela peut permettre une bonne approche des états
vibratoires d’'une particule, mais a mon sens pas de donner une description
completement exacte de la réalité. Par contre, si ces cordes étaient discontinues
et donc constituées uniquement de point situés a un minimum de distance
les uns des autres (méme s’ils ne s’agissait que de points positionnés sur ces
cordes), cela deviendrait plus intéressant. J'aurais ainsi plutot tendance a
m’intéresser a la “Théorie de la gravitation quantique a boucles”, dont
la conception (espace et temps discontinus) est plus proche de la mienne.

Page 425 sur 514



Digression :

Nous pouvons nous demander quel est la place des nombres réels (en mathé-
matiques) et des nombre transcendants dans une conception des choses invo-
quant la discontinuité.

Comme nous 'avons vu dans la partie précédente, les énoncés sont construc-
tibles. La définition d’un énoncé est elle aussi constructible, bien qu’une
définition ne permette pas systématiquement de construire un énoncé (exemple
de la définition de F' vue en sous-partie “14.4 Remarque sur les énoncés
constructibles” page 396).

Par contre une définition qui est constructible (c’est-a-dire qu’elle comporte
un nombres fini de mots, qui contiennent un nombre fini de lettres, et qui est
écrite dans un espace fini) peut donner des instructions de maniere a produire
un énoncé constructible, ou de maniere a ne jamais permettre d’achever
I'écriture de ce qu'elle défini (nous somme dans le cas ou ce qui est défini est
inconstructible).

Par exemple, dans le cas des nombres transcendants. Le nombre 7 ne peut
jamais étre donné de maniere achevée et finie. Pourtant, il existe des formules
contenant un nombre fini de symboles permettant de le définir. Cependant,
son calcul ne peut jamais s’achever.

Par comparaison ou analogie dans ce cas, nous pourrions dire qu’une définition
similaire a la formule de 7 est constructible (elle contient un nombre fini de
symboles), mais ce que la définition propose d’atteindre ne peut jamais I’étre
de maniere “actuelle”, ou ne peut jamais “étre fini de construire” (similitude
avec le nombre 7).

Pour continuer la comparaison avec “ce qui est défini”, d’apres ce que nous
avons vu dans la partie précédente, m ne serait pas un nombre constructible
(c’est-a-dire que 7 ne peut pas étre donné en un temps fini : sa construction
nécessitant le calcul d’'un nombre infini de chiffres).

Autrement dit, la formule définissant 7 est constructible mais 7 n’est pas

constructible. Il devient alors convenable d’en avoir seulement une approxi-
mation.
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15.2 Approche par un paradoxe connu de la
Grece antique

Une autre approche au sujet de la continuité ou discontinuité de I'espace et
du temps peut étre faite par I'observation des arguments avancés par Zénon
d’Elée 9] (né entre 490 et 485 avant Jésus-Christ) a propos des “paradoxes”
sur la notion de mouvement.

Zénon prétendait que la notion de mouvement était paradoxale grace a des
exemples.

Prenons un des exemples avancés par Zénon. Comme lui, réfléchissons sur
la situation “d’Achille et la tortue”. La situation est la suivante :

- On suppose que 'espace et le temps sont continus.

- On veut faire courir Achille contre une tortue.

- On sait qu’Achille court plus vite que la tortue.

- On laisse prendre de ’avance a la tortue qui ne sarréte pas.

- Au bout d’un temps raisonnable, on demande a Achille de dépasser la

tortue (entendons par “temps raisonnable” que ce qu’on demande a Achille
est réalisable).
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L’argument de Zénon est alors le suivant :

- Depuis l'instant son départ jusqu’'au départ d’Achille, la tortue a parcouru
une distance D.

- Lorsque Achille arrivera a la moitié de la distance qui le sépare a ce moment
la de la tortue, la tortue aura encore parcouru une petite distance.

- Lorsque Achille arrivera a la moitié de cette nouvelle distance qui le sépare
a ce moment la de la tortue, la tortue aura encore parcouru une autre petite
distance.

- Lorsque Achille arrivera a la moitié de cette nouvelle autre distance qui le
sépare a ce moment la de la tortue, la tortue aura encore parcouru une faible
distance.

- Et ainsi de suite : nous pouvons répéter cette observation une infinité de fois.

D’ou Zénon conclu que comme Achille arrive a dépasser effectivement la
tortue (il suffit de les faire courir I'un contre I’autre pour s’en rendre compte),
le raisonnement et I’expérience ne permetant pas de conclure la méme chose,
la notion de mouvement doit étre paradoxale.

Le probleme vient du fait que dans cet exemple, la continuité du temps ou
de l'espace n’est pas remise en cause. En effet, si nous supposons que le
temps ou l'espace est discontinu et avec le méme exemple, la conclusion du
raisonnement peut étre en accord avec la réalité.

En effet, si le temps s’écoule de maniere discontinue ou si I’espace ne peut
étre parcouru que de maniere discontinue, alors on ne peut diviser de moitié
(comme précédemment) le temps ou 'espace de maniere infinie, ce qui leve
le paradoxe a propos de la notion de mouvement (dans le cas ou le temps et
I'espace sont continus). Ceci implique d’admettre qu’il existe un minimum
de durée (pour le temps) et un minimum de longueur (pour 'espace).
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16

Preuve de I'existence éternelle

Si le mot “RIEN” peut étre défini comme “I’absence de toute chose” , alors
le mot “RIEN” signifie aussi I’absence d'un mot pour le nommer et 1’absence
de sa définition. Et finalement, “RIEN”" ne pourrait étre exprimé.

Or, ce n’est pas le cas ici, étant donné que nous venons de I'exprimer.

Donc “RIEN” devrait étre défini comme “la présence du moins possible
de chose”. Entendons par “du moins possible” au moins d'un nom et
d’une définition.

Il ne peut y avoir “RIEN" dans le sens de “’absence de toute chose”,
il ne peut donc qu’exister un minimum de chose(s), ¢’est-a-dire au moins les
idées de nom et de définition de ce mot.

Ce raisonnement étant valable a tout instant, I’existence de ce minimum de
chose est en dehors du temps. Autrement dit : ce raisonnement étant valable
a tout instant, I’existence ne dépend pas du temps, ou encore ’existence ne
varie pas en fonction du temps.

D’ou I'éternité de 'existence (c’est-a-dire de I'existence d’un minimum d’idées
au moins).

Complément de réflexion :

Vouloir définir “I’absence de toute chose” (ou méme “le vide total”)
est donc incohérent. Le probleme qui se pose a coté de cette réflexion est de
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se demander s’il ne faudrait pas modifier toutes les définitions incohérentes du
langage... Soit en rajoutant dans la définition concernée qu’elle est incohérente,
soit en la modifiant de maniere a la rendre uniquement cohérente. On ne peut
pas simplement considérer que la définition soit “valable” indépendemment
d’un raisonnement cohérent, alors qu’un tel raisonnement peut la rendre “non
valable”.

D’autre part, si nous reprenons 'exemple des “regles logiques” vu en partie
13, rappelons que nous avions déduit :

A’ = [ il existe un minimum de régles logiques dont A’ fait partie ]
Cette regle (comme d’autres énoncés cohérents) doit étre valable a tout
instant pour rester cohérente, 'existence de ce minimum de regle est donc
en dehors du temps lui aussi. Ce qui permet de conclure qu’il existe un

minimum de régles immuables (au moins A’), c’est-a-dire qui ne peuvent
varier au cours du temps (puisqu’elles sont en dehors du temps).

Digression 1 :
Nous pouvons constater que les énoncés dont la structure est du type :
[ Rien (suivit du reste de 1’énoncé) ]
Nous amene presque systématiquement a conclure une structure du type :

[ il existe un minimum de (suivit du reste de 1’énoncé) ]

Méme en modifiant la définition du mot “RIEN”, tel que “RIEN, c’est au
moins la présence d’un minimum de chose” , nous aboutissons toujours
a la méme conclusion. C’est-a-dire que nous aboutissons a :

[ il existe un minimum de (suivit du reste de ’énoncé) ]

C’est souvent l'auto-référencement d’un énoncé (c’est-a-dire le fait qu’un
énoncé fasse référence a lui-méme, directement ou indirectement) qui permet
d’en déduire la cohérence ou l'incohérence. En effet, si I’énoncé en question
affirme des propriétés a propos d’un ensemble et si cette énoncé peut étre
inclu de maniere cohérente dans cet ensemble, alors cet énoncé est cohérent.
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Digression 2 :
A la question : “Pourquoi y a-t-il quelquechose plutot que rien 77,

Etant donné qu’il doit y avoir quelquechose plutot que rien a tout instant, il
serait cohérent de répondre :

“Parce que rien en tant qu’absence toute chose n’a pas de sens”.

Digression 3 :

Quel sens doit étre donné au nombre 0 en mathématiques si 0 si I’on considere
que 0 est équivalent au mot “RIEN" ?

Nous avons vu que “RIEN”, ce n’était pas ’absence toute chose. Donc 0
ne peut étre I’absence de toute chose. en effet, 0 aussi possede au moins
un nom, un symbole et une définition. Comme il faut de la matiere pour
écrire ou penser ce nombre, 0 est le minimum de matiere nécessaire a sa
formulation. 0 prend donc une forme particuliere, au méme titre que les
autres nombres. Disons encore que 0 est la forme particuliere d’'un minimum
de matiere permettant son expression.

Pour finir, lorsque I'on dénombre les choses qui ont la méme forme, 0 exprime
I’absence de chose de la forme particuliere que 'on veut dénombrer parmi
I’ensemble des formes qui existent. 0 est donc le minimum de chose qui
permet, d’effectuer un constat.

Digression 4 :

De plus et par conséquent, comme 1’existence ne varie pas en fonction du
temps, cela signifie que 'existence ne peut pas étre exprimée en fonction d’'un
début dans le temps ni en fonction d’une fin dans le temps. Clairement : il
n’est pas cohérent de prétendre que I'univers a commencé a un instant donné
et se terminera a un autre instant.

Il ne peut donc pas étre cohérent de parler d’origine de I'univers ou méme

d’un “big bang” , sauf si I'on considere qu’un évenement de ce type ne peut
étre qu'une étape dans le déroulement du temps.
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A ce propos, je tiens a signaler qu'un autre cas d’évolution de l'univers
en envisageable. Ce raisonnement n’étant fondé que sur des remarques
expérimentales et sur ’acceptation logique de I’existence éternelle, la conclu-
sion ne sera qu'une hypothese.

L’univers est en expansion accélérée. Par conséquent, la densité de matiere
dans l'espace diminue. Dans ce cas, la matiere a tendance a émettre plus
d’énergie qu’elle n’en absorbe, et donc la quantité d’énergie (ou de photons)
contenue dans la matiere dinimue. Par extrapolation dans le temps, il devient
possible d’imaginer la situation ou toute la matiere de 'univers aurait émis
toute I'énergie qu’elle contenait. II n’y aurait plus dans l'espace que des
photons. A ce moment précis, I'univers a terminé un cycle d’évolution et peut
en démarrer un suivant avec des conditions initiales ressemblant a celles du
“big bang”. Dans ce cas, le “big bang” n’est qu’'une étape qui ne représente
que le commencement d’un nouveau cycle d’évolution de 1'univers sous la
forme d’une expansion. Ajoutons une remarque sur la fin de I’évolution
d’un de ces cycles. Il est possible d’émettre I’hypothese que la densité de
photons dans I’espace doit au moins atteindre une moyenne afin de permettre
le passage au cycle suivant, ou encore que chaque photon soit dans un étant
vibratoire identique dont l'amplitude serait maximum. Ce qui permet de
“changer d’échelle” sans que cela puisse étre perceptible, puisque les regles
a propos du minimum de temps, de distance, le minimum d’invariance des
regles seraient toujours les mémes.

Une hypothese serait donc que I’évolution de 'univers soit cyclique, et que
I’évolution ne se fasse exclusivement que par une diminution de densité de
matiere (et d’énergie) dans l'espace. Une fois la densité nécessaire atteinte
ou I’état vibratoire de chaque photon identique et d’amplitude maximum, un
nouveau cycle commence.

Mais ceci n’est qu'une hypothese, ce qui ne signifie méme pas qu’il faille

systématiquement y adhérer. Elle est simplement destinée a faire remarquer
qu’il est encore possible d’émettre d’autres hypotheses.
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Eléments de réponse sur la question de Dieu :

Je me risque a cette réflexion, en me présentant simplement comme une
personne ouverte d’esprit, sans préjugé et qui s’attend a toutes possibilités
de réponse. Car le but n’est pas ici de choquer mais plutot de faire une
expérience de pensée, simplement parce qu’il est possible de la faire, de
maniere calme et posée. Ces réflexions n’engageant, de toutes foncons, que
moi. Je préviens par avance que comme a mon habitude, le style de cette
réflexion sera plutot direct. Alors seulement si vous le voulez bien, je vous
proposerai de me suivre (et personne n'y est forcé). Essayons de mener une
réflexion cohérente sur ce sujet.

Dieu peut-il étre le créateur de tout ?

Si “Dieu est le créateur de tout” | il est aussi le créateur de lui-méme. Ce qui
sous-entend directement qu’avant lui et le reste de sa création, il n’existait
rien : en effet, puisque de maniere équivalente, I’'énoncé affirme qu’il est a
lorigine de toute chose (et y compris de lui-méme).

Nous avons vu que “RIEN” | ce n’était pas I’absence toute chose. Il ne peut
donc jamais y avoir une absence totale de chose, cela n’aurait pas de sens du
point de vue de la cohérence. Ce qui implique qu’aucune force, aussi grande
et si divine soit elle ne puisse étre a ’origine de sa propre existence. Les choses
sont et ont toujours été (mais certainement sous des formes différentes au vu
de I’évolution de 'univers), sans qu’une force n’aie a intervenir pour cela.

“RIEN”, ce n'est pas l'absence toute chose : la création (sous-entendu
I'existence d’un créateur) est une hypotheése fausse si nous considérons ce
raisonnement cohérent.

“RIEN”, ce n’est pas ’absence toute chose. Et ceci est valable a tout instant,
mais comme ceci reste valable en dehors du temps, ceci n’empéche pas de
supposer que le temps puisse étre ou puisse avoir été “quasiment figé” (sous-
entendu pas “completement figé”, et donc finalement pas “figé”, mais plutot
ralenti).

Enfin, qu’en serait-il d’un Dieu qui serait défini par I'infini ? C’est-a-dire Dieu
est-il “infini” ? La définition de ce Dieu serait bien constructible, mais ce
Dieu “lui-méme” ne pourrait étre “constructible” , et donc inachevé (réflexion
faite en partie “14.4 Remarque sur les énoncés constructibles” page
396).
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Si la “définition” de Dieu n’était pas constructible non plus, sous-entendu
il y aurait une définition de la “définition de Dieu” de maniere a ce que
la premiere soit constructible mais pas la seconde, alors il serait impossible
d’établir un raisonnement cohérent a propos de cette seconde “définition”
puisque nous ne pourrions jamais connaitre 'intégralité de son contenu. Et
donc nous ne pourrions jamais connaitre le sens de cette “définition”. Si
bien qu’il serait finalement impossible de savoir si croire en l'existence de
Dieu est fondé ou non, et finalement, du point de vue de la cohérence d'un
raisonnement, il ne serait pas possible pour nous de donner un argument
cohérent “pour ou contre” sur ce sujet. Cette position s’apparenterait presque
au scepticisme, a ceci pres que dans notre cas, on refuse d’affirmer ou de nier
I’existence de Dieu car on sait que cela ne serait pas raisonnable.

Mais il resterait tout de méme possible de raisonner sur la premiere définition

constructible. Et si cela pouvait étre possible du point de vue de la cohérence,
il resterait a trouver une définition de Dieu qui puisse étre “correcte”.

Observation finale :

Cette réflexion n’a pas pour but d’affirmer ni de nier 'existence d’un Dieu,
mais plutot d’anticiper que dans 'hypothese de son existence, il serait raison-
nable que les propriétés que 'on attribue a Dieu incluent ces limites :

- Il ne peut pas étre créateur,

- S’il est infini, il est impossible de donner raisonnablement un argument
pour ou contre son existence, sauf peut-étre s’il n’est pas infini...

- D’autre part, si Dieu était confondu avec toutes choses, il serait simplement
équivalent a l’ensemble de ces choses, et nous aurions “Dieu = Univers”. Et
si Dieu n’était qu'un ensemble de choses ou d’idées, nous aurions “Dieu =
I’ensemble des choses ou idées qui le compose”. De plus, dans ce dernier cas,
si cet ensemble était fini, alors Dieu serait constructible.

Ajoutons aussi que dans I'’hypothese ou Dieu est infini et dans 'hypothese

ou l'univers est infini (en quantité de matiere), Dieu n’est ni plus ni moins
que 'univers lui-méme. D’ou 'on déduirait que “Dieu = Univers”.
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Pour conclure, dans le cas o “Dieu = Univers” (comme dans le cas ou
“Dieu = l’ensemble des choses ou idées qui le compose”), parler de Dieu
ou parler de 'univers (respectivement parler de ’ensemble des choses ou
idées qui le compose) reviendrait a parler de la méme chose. Et si I'univers
(ou respectivement un ensemble de choses ou d’idées) était connaissable (ne
serait-ce méme que partiellement), alors Dieu le serait également (ne serait-
ce méme que partiellement, ici aussi).
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Possibilité d’établir une théorie
physique

A ce stade de la réflexion, il me semble qu’une théorie qui refleterait au
mieux la réalité (les regles, les non-regles, les situations constructibles, la
discontinuité) tiendrait compte des conclusions de I’étude d’au moins des 4
premiers chapitres et d’au moins des 5 premieres parties de ce chapitre.

Ce qui sous-entend qu’il deviendrait possible de commencer une théorie
physique a partir des conclusions des Chapitres I a V :

- La formule de décomposition D(NN) d’'un nombre entier N en produit de
facteurs premiers, démontrée dans le Chapitre 1.

- La formule D(N) (Chapitre I) appliquée aux longueurs d’onde des photons
(Chapitre V), ce qui sous-entend qu’une longueur d’onde N peut étre
décomposée en longueurs d’ondes plus simples (ou fondamentales) et que
ces longueurs d’onde prennent nécessairement des valeurs qui peuvent étre
ramenées a des nombre entiers.

- La formule D(N) également appliquée aux périodes des ondes des photons
(Chapitre V), ce qui sous-entend qu’une période N peut étre décomposée
en périodes plus simples (ou fondamentales) et que ces périodes prennent
nécessairement des valeurs qui peuvent étre ramenées a des nombre entiers.
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- La formule simplifiée s(M), dou peuvent découler des formules 1égerement
différentes tels que s(2.M + 3), s(2.M +5), s(3.M + 2), s(5.M + 2), ... et
dont chaque graphique peut présenter des analogies avec ceux des spectres
de lumiere (pour chacune de ces formules et pour M une longueur d’onde, le
graphique correspondant s’apparente a des raies spectrales).

- Les liens possibles entre les ondes et la logique binaire (Chapitre I et
Chapitre V), et donc 'implication des nombres entiers et des nombres
premiers dans la logique binaire se manifestant par les phénomenes ondulatoires.

- La possibilité de former toutes les propositions du calcul propositionnel
“classique” entre autres a partir de la formule J(M) (Chapitre I), et donc
seulement a partir d’ondes et d'un systeme de traitement de ces ondes.

- L’existence de choses (comme les énoncés) constructibles par des regles
cohérentes ou en dehors de toute cohérence (Chapitre V). Les tables de
vérité tenant compte d’une variable binaire U dont la valeur de vérité est
indéfinissable (Chapitre V), justifiée par les caractéristiques qui se mani-
festent a la construction d'un énoncé indémontrable. Cette variable ne
pouvant apparaitre qu’a un niveau binaire (une fois le traitement des ondes
effectué par une des formules binaires fondamentales tel que f(M;x), s(M),
J(M), ...). La variable U justifie sa propre étude par les probabilités.

- L’invariance des regles logiques (elles doivent étre immuables, Chapitre V).

- La discontinuité de l’espace, du temps et d’autres grandeurs physiques
qui nécessitent des formules incluant des variables d’espace ou de temps
(Chapitre V), et l'existence d’'un minimum de distance et d’'un minimum
de durée.

- L’incohérence d’obtenir le vide total a n’importe quel instant et, par

conséquent, 'impossibilité de déterminer une origine de l'univers dans le
temps ni méme une fin (Chapitre V)...
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Complément de réflexion :

La réflexion suivante peut permettre de répondre a cette question : les
concepts mathématiques sont-ils une invention de I’esprit humain? Ou bien
I’esprit humain ne fait-il que les découvrir, ce qui sous-entendrait que ces
concepts existent avant que I’esprit humain ne les découvre?

La formule D(N) possede un domaine de définition (N € N tel que N > 2).
En appliquant cette formule a la longueur d’onde ou a la période d'un
phénomene physique, nous fixons donc directement les limites de longueur
minimum et de période minimum pour tout phénomene cyclique (ces limites
sont d’ailleurs des constantes). Ceci permet d’établir un lien direct entre le
domaine de définition de la formule mathématique D(N) et des limites de
ce qui est permis de concevoir physiquement (ces limites sont la longueur
minimum et la période minimum).

En effet, le domaine de définition de D(N) justifiant ces limites physiques,
ce lien direct entre concept mathématique et réalité physique permet de
constater que ces concepts mathématiques doivent exister avant que 'esprit
humain ne les découvre, afin que notre monde physique possede ces limites.
Notre monde physique possederait donc naturellement ces limites qui peuvent
étre représentées par les concepts mathématiques connus. L’existence de ces
concepts (ou de ces régles) sont nécessaires avant que nous ne les découvrions.
Et lorsque nous les découvrons, nous leur faisons prendre forme dans un
langage que nous avons défini, dont la forme (des symboles, par exemple) est
purement un choix. Ce choix de 'esprit humain n’intervient donc que sur la
forme (parmi un nombre de formes possibles), pas sur le fond.

Justifications personnelles d’une théorie physique :

Je suis un étre fait de matiere. C’est cette matiere qui m’a permis de
découvrir la formule D(N) (entre autres). C’est cette matiere qui me permet
aussi de tirer des conclusions a partir de raisonnements cohérents. Si ces
formules et ces conclusions ont pu étre construites grace a un assemblage de
matiere (tel que je suis), et si elle sont cohérentes, elles doivent pouvoir aussi
s’appliquer a ce qui me constitue, c¢’est-a-dire a la matiere elle-méme. C’est
aussi pour cela que je pense qu’il doit exister un lien entre ces formules, ces
conclusions et la matiere (et donc la physique). Cela me parait indissociable.
Ce qui, selon moi, justifie la possibilité d’appliquer a la matiere une théorie
physique a partir de ces formules et de ces conclusions.
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Le sens de la vie

Cette partie est un peu plus personnelle. Elle est présente car, a mon sens,
c’est typiquement le genre de raisonnement suivant qu’il convient d’appliquer
pour une telle question.

En effet, si nous posons la question a un individu :
“Quelle est le sens de la vie 7”7

Nous observons tout d’abord que cette question s’exprime a propos d’une
généralité : il s’agit de “la vie” en générale. Cette question exigerait donc
une réponse générale.

Or, la seule réponse qui peut étre donnée a cette question est une réponse
particuliere : c’est-a-dire une réponse provenant d’un individu. La question
induit que cet individu aurait pour tache de répondre au nom de tous les
autres.

Cette question demande une réponse générale alors que la réponse ne peut
étre que particuliere. Ceci n’est pas cohérent. La question posée n’a donc
pas de sens. Toute les question ne sont donc pas cohérentes : en particulier,
celles qui demandent des réponses alors qu'une réponse directe est impossible
a trouver.

Une question cohérente tiendrait compte de cette difficulté, et se poserait
plutot ainsi :

“Quelle est le sens de votre vie 77
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En effet, dans ce cas, la question s’adresse a un individu qui peut répondre
pour lui-méme et de maniere particuliere, cette question n’exigeant pas de
réponse générale.

Digression :

S’il ne peut y avoir de réponse générale au sens de la vie, ce parce que cela
serait incohérent. Or, la vie “est” (existe), cela signifie que cela est possible
(ou méme constructible). Et elle n’a pas besoin de “sens générale” pour étre,
elle est parce que cela est possible, et donc cela est possible sans but général.

Si la question “Quelle est le sens de la vie 7”7 avait été cohérente, sa réponse
aurait permis de donner une destinée ou un but a la vie de maniere cohérente
(grace a un raisonnement cohérent) au fait d’étre un vivant. Ceci aurait été
contradictoire avec ce qui suit : c¢’est-a-dire le fait qu’au moins un vivant est
capable de construire un énoncé tel que E (en dehors de toute regle logique)
ou méme qu’il est capable de produire des erreurs. En d’autres termes : la
vie ne peut pas avoir a la fois un but générale cohérent applicable a tous les
vivants, et a la fois donner la possibilité a au moins un vivant de s’écarter
de ce but. D’ailleurs, ce vivant la aurait toujours la possibilité de donner
des énoncés vrais et indémontrables a propos du sens de sa propre vie et a
propos du but de sa propre vie. Il faut donc remarquer que l'incohérence de
cette question permet de préserver la cohérence avec la partie “14 Preuve
de la liberté” (page 390) a propos de la liberté (la possibilité que la liberté
a d’exister).
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Acces a la vérité : la nécessité
de la pensée écologique

Comme nous ’avons vu, il n’est possible pour un observateur de comprendre
véritablement I'univers qu’en se débarrassant de ses préjugés sur l'univers (ce
qui inclu l'observateur lui-méme) afin d’avoir une vision la plus juste et la
plus réaliste possible.

Cette volonté de comprendre ameéne donc naturellement a acquérir le plus
grand respect de 'observateur envers 'univers et tous ses constituants (ce
qui inclu encore 'observateur).

Nous devons méme admettre que cela amene naturellement 1’observateur a
se confondre avec le reste de I'univers, c¢’est-a-dire a s’identifier avec le reste.
Nous pourrions méme dire que 1'observateur place un signe d’égalité entre lui
et ce qu’il observe. Lorsque 'observateur a réussi a atteindre cette attitude,
il lui devient donc possible d’étudier indifféremment 1'univers ou lui-méme,
puisque les propriétés des deux sont égales.

Ceci se justifie encore par le fait que ’observateur faisant partie inévitablement
de 'univers, s’observer soi-méme revient a observer une partie de 1'univers.

Ce qui permet de comprendre que les vérités les plus profondes de cet univers

sont aussi contenues en nous-méme, cela devenant méme une évidence.

En maintenant constamment cette attitude, il ne suffit a 'observateur que
de décrire ce qu’il a en lui pour finalement décrire aussi tout le reste.
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L’univers ne peut donc étre compris que par le respect le plus pur de la
part de l'observateur envers l'univers (ce qui inclu toujours I'observateur lui-
meéme), ce qui implique nécessairement une philosophie qui est exactement
celle de I’écologie.

C’est a travers le respect de la moindre partie de I'univers, et donc aussi a

travers le respect de nous-méme, que nous pouvons avoir la vision la plus
juste.

Complément de réflexion :

Nous pouvons encore prolonger cette réflexion en faisant des comparaisons.
L’attitude proposée dans cette partie revient en fait a imaginer que nous
sommes cet observateur.

Imaginons que nous sommes immergé a moitié dans l'eau, la téte au-dessus
de l'eau. Notre agitation dans l'eau fait des vagues. Or, si nous voulons
véritablement comprendre ce qui se passe au fond de l'eau (est-ce le fond
qui bouge ou est-ce un effet des vagues 7), nous devons cesser de nous agiter
afin de percevoir les choses telles qu’elles sont. Ce qui revient a utiliser le
moins d’énergie possible pour nous permettre de perturber le moins possible
les observations. Ce qui se passe au fond de 'eau apparaitra donc plus
clairement, et 1’observation sera plus précise.

Nous pouvons méme ajouter que l’observation n’atteint un maximum de
précision que lorsque l'observateur utlise le minimum d’énergie nécessaire
a l'observation (le minimum d’énergie nécessaire a 1'observateur pour son
maintien dans un état conscient).

Cette attitude trouvant de fortes similitudes avec un état proche du sommeil
ou meme de la “mort”. Mais pour poursuivre le raisonnement et continuer
ce rapprochement, je dois m’expliquer.

Tout d’abord, abordons la mort. Lorsqu’un étre perd la vie, il passe nécessai-
rement d’un état de conscience a un état de perte de conscience. Il passe donc
d’un état ol sa consommation d’énergie est a un niveau plus élevé pour aller
vers un état ou la consomation d’énergie est la plus faible. Or, tant qu’il est
conscient, cela signifie que cet étre consomme ’énergie nécessaire au maintien
de sa conscience. Pour passer d'un état conscient a un état inconscient,
cet etre passe nécessairement par une étape ou la consommation d’énergie
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connait un seuil permettant de passer de I’état conscient a I’état inconscient.
Il existe donc nécessairement un niveau d’énergie minimum nécessaire a I’état
de conscience. De plus, lorsque cet étre perd la vie, il perd aussi la possibilité
d’émettre des jugements fondés ou infondés : il perd donc en méme temps la
possibilité d’effectuer tout préjugé sur 'univers. Il passe donc nécessairement
par une phase ot I'univers (ce qui inclu aussi cet étre) apparait a sa conscience
tel qu’il est. Cet étre acquiert donc par nécessité la connaissance “véritable”
de toute chose dans ces derniers instants.

Il est donc inutlie de vouloir vivre la “fin” de sa vie avant le moment qui
vient naturellement puisque nous pouvons savoir d’avance comment cette
“fin” apparait a la conscience de tout étre.

Ensuite, abordons I’état proche du sommeil. Car il faut tout de méme
tres fortement remarquer que 'étape de la “fin” de la vie n’est pas une
étape strictement nécessaire pour atteindre la vérité sur I'univers. En effet,
puisqu’un étre passe d’un état de conscience a un état d’inconscience lorsquu’il
s’endort. Cet état de transition impliquant également des niveaux d’énergie
différent pour des zones spécifiques du cerveau (le raisonnement est le méme
que précédemment). Par déduction, il existe une configuration de 'état de
conscience permettant a l'observateur de comprendre 'univers, et qui doit
correspondre a un état de consommation d’énergie strictement nécessaire
a l'observation (ce qui implique d’étre toujours conscient; cet état doit étre
localisable dans une ou plusieurs zones du cerveau). Dans ce cas, 'observation
devient la plus juste.

Il est donc nécessaire d’éviter tout préjugé pour parvenir a cet état. Une
méthode étant d’avoir la volonté de comprendre 'univers (ce qui inclu soi-
méme) et de trouver le point qui permet d’étre le plus calme mais toujours
en observation de son environnement (extérieur ou intérieur).

Pour en revenire a 'analogie avec I'immersion dans I'eau (faite au début de

ce “Complément de réflexion”) : dans le fond, les choses ne “bougent”
)

pas, c’est dans la forme (en surface) qu’interviennent les changements.

Pour I’avoir véritablement ressenti personnellement, le sentiment qui en ressort
de maniére claire est un sentiment d’harmonie, de légerté (c’est-a-dire d’affran-
chissement du poids, ce poids qui semble alors “pénible”) et de clarté. Je
dirais méme un sentiment d’évidence (on reconnait ce sentiment sans ’avoir
ressenti auparavant). Sinous voulons décrire 'aspect extérieur de 1’observateur
seulement, il donne nécessairement ’apparence de se décontracter et d’étre
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en attente de “réponse” de la part de son environnement. Si nous voulons
décrire 'aspect intérieur de I'observateur, il est véritablement en observation
d’une “réponse” de la part de son environnement, ce qui passe par une
sensibilité tres prononcée a la présence de cet environnement, dans 'état
ou cet environnement se trouve (avec une volonté de ne pas perturber cet
environnement), et par une prise de conscience de soi comme partie de cet
environnement.

Ce qui permet ici aussi de rappeler qu’'un tel état de compréhension (invoquant
nécessairement I’harmonie ou I'identification de ’observateur a son environne-
ment, sans volonté de perturber cet environnement, c’est-a-dire dans le respect
cet environnement) impose de passer par une pensée écologique.

Cette pensée écologique devient inévitablement la philosophie a adopter de
maniere générale pour les siecles a venir. Seule cette philosophie peut amener
le progres des sciences jusqu’au plus haut point, un progres qui devra se
ramener clairement au service de ’humanité et de la nature. La conséquence
est une paix durable entre tout étre vivant.

Digression :

La formule D(N) appliquée aux longueurs d’onde me permet d’envisager
clairement que toute matiere ne serait en fait constituée que de photons. Or,
nous sommes des étres constitués de matiere. Par déduction, nous sommes
constitués que de photons.

(il faut aussi tenir compte des regles qui lient ces photons entre eux et aussi
tenir compte des “non-regles”)

De mon point de vue, la mort ne ferait que nous faire apparaitre cela que

comme une évidence : nous ne sommes que des étres faits de lumiere (cette
conception est appuyée par le Chapitre VI)...
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Impressions personnelles

J’aimerais expliquer ce que je ressents apres m’étre imprégné presque exclusi-
vement de ces réflexions.

J’aimerais d’abord donner une justification sur la présence dans la méme
théorie de ces chapitres qui peuvent étre tres différents les uns des autres. Ils
contiennent en effet des mathématiques, de la logique, de la philosophie, une
théorie avec application de ces mathématiques a des phénomenes physiques.
Je justifie la présence de tout cela en faisant remarquer que toutes ces
disciplines nécessitent le raisonnement logique. Je n’ai donc finalement fait
que cela : raisonner. D’une maniere ou d’'une autre, sous une forme ou
sous une autre, la logique est la méme : celle du raisonnement. Pour moi,
la variété des formes de la logique étant toutes liées a la matiere qui nous
constitue, n'importe laquelle de ces formes de logique constitue un excellent
point de départ pour une réflexion. Autrement dit, peu importe la discipline
choisie, il sera toujours possible de tirer des conclusions importantes (et méme
fondamentales si notre réflexion est correctement guidée).

Apres toutes ces réflexions, de les avoir comprises me donne le claire sentiment
que ce monde (ou l'univers), ¢’est moi qui l'ai fait (grace a des regles et du
hasard, je participe a son organisation). Par “moi” , j’entends la matiere
qui me constitue. J’ai le sentiment d’avoir véritablement et profondément
compris 'essentiel dans tout cela, c’est un sentiment de cohérence (j’allais
écrire aussi de légereté), qui revient presque au méme que de dire quelquechose
d’évident : Ce monde, c’est nous qui 'avons fait ("nous” , c’est-a-dire la
matiére dont nous sommes constitués), ainsi que tout le reste de la matiere
a fait ce monde. En d’autres termes, ce monde a la forme qu’il a parce que
tout ses constituants (ce qui inclu nous-méme) 'ont fait devenir ainsi.
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Ainsi, chaque ensemble (chacun de nous) peut aussi ’exprimer. Ce monde,
c’est nous qui 'avons fait, et qui allons continuer de le faire, a tout jamais.
Nous ne devons nous satisfaire que de cela : d'un sentiment de participation.
Que nous le voulions ou non, nous ne pouvons faire un choix sur ce sujet :
nous participons a ’organisation du monde sans pouvoir en décider autrement.

D’ou je déduis qu’il existe un minimum de “non-choix” : nous ne pouvons
pas choisir de participer ou non a I'organisation de I'univers. Et donc le choix
(ou la liberté) ne porte pas sur la participation a 'organisation de I'univers.

Pour continuer la réflexion (et comme nous ’avons vu au cours de ce chapitre)
a propos de ’énoncé suivant :

[ je ne participe pas a l'organisation de ’univers | est donc faux,

Bien qu'il soit possible d’écrire (c’est-a-dire de construire) un énoncé faux
(bien qu’il soit possible de I'écrire par choix, c’est-a-dire en dehors de tout
raisonnement cohérent), il n’est pas possible de le réaliser (c’est-a-dire d’effec-
tuer ce qu'il suggere).

Plus clairement, nous voici avec un nouvel exemple d’énoncé du méme type
que certains vus dans ce chapitre : encore une fois, I’énoncé est constructible
(puisqu’'un énoncé doit toujours étre constructible), mais pas ce qu’il énonce
(c’est-a~dire pas ce qu'il propose de faire, ou de construire).
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CHAPITRE VI

Théorie physique de
décomposition des phénomenes
cycliques
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Introduction

Ce chapitre doit plutot étre vu comme un essai d’application de la formule
D(N) a un phénomene ondulatoire physique. Dans celui-ci aussi se trouvent
des explications qui peuvent étre répétées de manieres différentes, ce qui
pourrait donner une impression de redondance. Mais il me semble que
certaines idées sont difficiles d’acces et peuvent nécessiter quelques unes de
ce type de démarche.

Ce dernier chapitre se donne pour objectif de donner une description élémen-
taire fiable de phénomenes physiques. Ce qui nous permettra également
d’établir des liens avec des lois physiques connues, ce qui évitera donc d’avoir
a aller trop loin dans les développements (des théories fiables existent déja,
cette théorie fera simplement le lien entre ces phénomenes élémentaires et
ces autres théories). La motivation sous-entendue est finalement de donner
la représentation géométrique réelle d'un photon.

Ce chapitre est indissociable des chapitres précédents car il tient compte
des conclusions de chacun d’entre eux. Ce chapitre pourrait donc donner
une interprétation générale des phénomenes physiques réels (c’est-a-dire des
phénomenes cycliques mais aussi des phénomenes n’obéissant a aucune regle
tel que la variable U).

Ces conclusions vont étre rappelée immédiatement.
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21

Principes de base

Dans l'idéal, 'objectif n’est pas d’écrire des formules tirées d’expériences
physiques (bien que cela soit habituel), mais plutot d’écrire des formules
tirées de la cohérence de réflexions, et qui permettent de commencer une
théorie donnant des bases solides et incontournables pour étudier la réalité
telle qu’elle est. Notre plus grand laboratoire est notre pensée.

21.1 Hypothese et rappels des conclusions des
chapitres précédents

A la fin du Chapitre I, ainsi que dans le Chapitre V, je faisais part de mes
remarques personnelles concernant mes opinions sur une théorie physique. Il
me semblait qu’une théorie qui refleterait au mieux la réalité (les regles, les
non-regles, les situations constructibles, la discontinuité) tiendrait compte
des conclusions de I’étude d’au moins des 3 premiers chapitres et d’au
moins des 5 premieres parties du Chapitre V. Nous allons rappeler ces
conclusions sous forme d’indications a retenir.
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21.1.1 Rappels

Nous allons essayer d’échaffauder une théorie qui tienne compte de ces indi-

cations :

- La formule de décomposition D(NN) d’un nombre entier N en produit de
facteurs premiers, démontrée dans le premier chapitre (Attention, il s’agit
bien de crochets dans ces formules, et non des symboles des “valeurs absolues”,

ni de ceux des “parties entieres” :
simples parentheses) :

Pour N € N tel que N > 2,

T——+00

v=1 .92
sin?(m/M) ' ; o
M=N
DIN)=N= ][ M
M=2

Y

(dans la formule, “ +oo
RM (N) établie dans le premier chapitre)

Ou encore (équivalent) :

ils ont donc la méme fonction que de

h=(M=—1)

~ [ v-h)

h=1

SEa
—x+1
M\M -1

" peut étre remplacé par la formule de Restriction

Pour N € N tel que N > 2, et quelgesoit m € N tel que m > 2,

[/ h=(M=*—1) m 7
T——+00 II (Af_-h)
b 3 sin? h=1 s
Sm?(ﬂ) 3 A ER| a7
DIN)=N= [ M . -
M=2
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- La formule D(N) (Chapitre I) appliquée aux longueurs d’onde des photons
(hypothese principale du Chapitre V), ce qui sous-entend qu’une longueur
d’onde N peut étre décomposée en longueurs d’ondes plus simples (fonda-
mentales) et que ces longueurs d’onde prennent nécessairement des valeurs
qui peuvent eétre ramenées a des nombre entiers.

- La formule D(N) également appliquée aux périodes des ondes des photons
(chapitre V), ce qui sous-entend qu'une période N peut étre décomposée
en périodes plus simples (ou fondamentales) et que ces périodes prennent
nécessairement des valeurs qui peuvent étre ramenées a des nombre entiers.

- La formule simplifiée s(M), dou peuvent découler des formules légerement
différentes tels que s(2.M + 3), s(2.M +5), s(3.M + 2), s(5.M + 2), ... et
dont chaque graphique peut présenter des analogies avec ceux des spectres
de lumiere (lorsque la formule vaut 1 et pour M une longueur d’onde, le
graphique correspondant s’apparente a des raies spectrales. Rappelons que
les segments entre chaque point ne représente pas une continuité, ils sont
tracés seulement pour aider a la lecture des graphiques) :

T(M) = s(2.M +2)
0t >M
012345678 910

s(2.M+3)

L NTNSTNN S

0 >M
0123456 78 910111213 14
s(2.M +5)

AN
0 >M

1 >
012 3456 78 910111213 14

$(3.M+2)

0} /\’>M
01 2 345 6 78 91011 1213 14
s(5.M+2)

TN AL AL

1
01 2 3456 78 910111213 14
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- Par extension, nous le verrons plus loin, la formule D(N) pourra aussi
étre appliquée a la d’éléments indivisibles (chapitre VI), ce qui sous-entend
quun ensemble de N éléments indivisibles peut étre décomposé en sous-
ensembles plus simples (ou fondamentaaux) et que ces quantités prennent
nécessairement des valeurs qui peuvent eétre ramenées a des nombre entiers.

- Les liens possibles entre les ondes et la logique binaire (conclusions du
Chapitre I et du Chapitre V), et donc 'implication des nombres entiers
et des nombres premiers dans la logique binaire se manifestant par les phéno-
menes ondulatoires.

- La possibilité de former toutes les propositions du calcul propositionnel
“classique” a partir de la formule J(M) (conclusions du Chapitre I), et
donc seulement a partir d’ondes et d'un systeme de traitement de ces ondes.

- L’existence de choses (comme les énoncés) constructibles par des regles
cohérentes ou en dehors de tout systeme de raisonnement cohérent (conclusions
du Chapitre V). Les tables de vérité tenant compte d’une variable binaire
U dont la valeur de vérité est indéfinissable (conclusions du Chapitre V),
justifiée par les caractéristiques qui se manifestent a la construction d’un
énoncé indémontrable. En effet, pour les énoncés E;, Fy et Ej, il existe un
cas nécessitant le théoreme d’incomplétude de GODEL [10] tel que :

| = ut énoncé rodui r un raisonnemen dren u
E Tout énoncé est produit pa aisonnement cohérent, o
produit en dehors de tout raisonnement cohérent |

E; = [ 11 est possible de construire des énoncés démontrables (tel
que celui-ci) |

E3 = [ I est possible de construire des énoncés indémontrables (tel
que celui-ci) |

Ou nous avons (en algebre de BOOLE [3]) :

By = Ey + Ej
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Dont la table de vérité est la suivante :

| B3 | By | By =Es+ B3 |

010 0
0|1 1
110 1
111 1

Et si nous cherchons a connaitre E3 seulement a partir de E; et de Es, nous
obtenons :

EAE TN
0] 0 0
10 1
11 0
1] 1 1

Alors, nous sommes dans le cas :
E3 = EEI + EQU

Or, puisque nous sommes aussi dans le cas ou (voir le Chapitre V pour les
détails) :

E, est vrai (E; = 1),
Esy est vrai (Fy = 1)

)

Nous sommes par conséquent dans le cas ou :
E3 - U

Ou U peut valoir indifféremment 0 ou 1 (il est méme possible de considérer
que ces 2 valeurs sont superposées). Ce qui est bien le cas de 'énoncé Ej
puisque :

* Si F5 est vrai, alors E3 ne peut provenir d’aucun raisonnement cohérent,

* Si B3 est fauz, alors E3 ne provient d’aucun raisonnement cohérent
également (car aucun raisonnement cohérent ne peut produire quelque-
chose de faux).
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L’étude de la variable U justifie I'utilisation des probabilités. Cette variable
ne pouvant apparaitre qu'a un niveau binaire (une fois le traitement des
ondes effectué par une des formules binaires fondamentales tel que f(M;x),
s(M), I(M) , ... ou notamment la formule J(M) permet de former toutes les
propositions du calcul propositionnel “classique” , or E3 est une proposition).

- L’invariance des regles logiques (conclusions du Chapitre V).

- La discontinuité de l’espace, du temps et d’autres grandeurs physiques
qui nécessitent des formules incluant des variables d’espace ou de temps
(conclusions du Chapitre V), et l'existence d’'un minimum de distance

et d'un minimum de durée (en conformité avec la limite de longueur de
PLANCK [3] et avec la limite de temps de PLANCK [3]).

- L’incohérence d’obtenir le vide total a n'importe quel instant et par con-
séquent, 'impossibilité de déterminer une origine de 1'univers dans le temps
ni méme une fin (Chapitre V)...
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21.1.2 Justification de ’application de D(/N) aux phénomeénes
cycliques

Ce paragraphe a pour objet de justifier de 'application de la formule D(N)
a une longueur d’onde d’un photon et la la période de 'onde d’un photon.
Rappelons que pour I'onde d’un photon, nous avons la formule :

f=c/A=1/T avec :

A est équivalent a la longueur d’onde,

f est équivalent a la fréquence de 'onde,
c est équivalent a la vitesse de la lumiere,
T est équivalent a la période de I'onde.

Dans un systeme de mesures (simplifié) ramené a des unités de mesure
indivisibles comme les unités naturelles de Maz PLANCK [3], nous devons
considérer que :

Donc, dans le cadre des unités naturelles de PLANCK, nous avons :
A=T

Ce qui signifie clairement que décomposer une longueur d’onde en longueurs

d’ondes fondamentales revient exactement a décomposer la période en périodes
fondamentales. D’ott 'on déduit que la formule de décomposition D(N) est

indifféremment appliquable a la longueur d’onde ou a la période de 1'onde

d’un photon.
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Nous pouvons donc associer indifféremment :
N a\ (en notant N = \),
Ou
NaT (en notant N =T).

Nous pouvons donc pour la suite de ce chapitre appliquer indifférement la
formule D(N) aux longueurs d’onde A ou aux périodes 7.

De cette maniere, nous obtenons :

- L’application D(A) correspondant a la formule D(N) lorsque N = A.
- L’application D(T") correspondant a la formule D(N) lorsque N = T.

Ce qui permet I’étude de phénomenes ondulatoire de particules en translation
linéaire dans 'espace (le photon) ou en “rotation sur elles-méme” (ce qui peut
étre représenté par des cycles ou également des périodes).

Cette formule D(N) est donc plus généralement applicable aux phénomeénes

cycliques (ou périodiques, ce qui justifie le titre de ce chapitre). Ce qui
constitue la justification annoncée.
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21.1.3 Premieres implications

Nous resterons dans le cadre des unités naturelles de PLANCK [5].

L’hypothese principale étant la décomposition d’une longueur d’onde en
longueurs d’ondes fondamentales et la décomposition d'une période en périodes
fondamentales grace a la formule D(N) appliquée a I’'onde d’un photon (ot N
peut étre associée a une longueur d’onde ou a une période), si nous acceptons
que l'on puisse associer une onde a un photon. Ce qui implique d’admettre :

e L’application de la formule D(N) qui associe N a la longueur d’onde A
d’un photon implique 'existence d’une valeur de mesure de longueur d’onde
exprimable seulement par un nombre entier supérieur ou égal a 2 (car A € N
tel que A > 2).

e Par conséquent, I'existence d'un minimum pour la longueur d’onde A :

Amin = 2 (c’est & dire 2 unités en “unité de longueur”)

e it donc l'existence d’une unité de mesure d’une longueur d’onde Ag :

Ao =1 (c’est a dire 1 “unité de longueur”)

(Ce qui confirme partiellement le raisonnement du Chapitre V concluant
qu’il existe une disconuité de I'espace : partiellement car seule la longueur
de 'onde est concernée, nous ne pouvons pas encore faire d’affirmation
a propos des autres directions de I'espace comme I’amplitude de I'onde)

e [’application de la formule D(N) qui associe N a la période T' de 'onde d'un
photon implique 'existence d’une valeur de mesure de période exprimable
seulement par un nombre entier supérieur ou égal a 2 (car T' € N tel que
T > 2).
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e Par conséquent, 'existence d’'un minimum pour la période, puisque :
T est équivalent a la période (correspond a la mesure du temps).

Tonin = 2 (en “unité de temps”)

e Et donc l'existence d'une unité de mesure pour la période d’une onde :

To =1 (c’est a dire 1 “unité de temps”, qui est une durée minimum)

(Ce qui confirme le raisonnement du Chapitre V concluant qu’il existe
une discontinuité du temps. Ce qui ne peut plus étre considéré comme
une hypotheése, mais comme une implication logique)

e [’invariance de la vitesse d’'un photon, puisque :

c=\T avec :

A est équivalent a la longueur d’onde,
T est équivalent a la période.

Dans le cas d’une longueur d’onde minimum (A,;, = 2),
la période est également minimum (7,,;, = 2).

L’onde d’un photon effectue la distance A,,;, en un temps T},;, :

= 9/2
=1 (en unité de longueur d’onde par unité de temps)

Et donc A = T' (dans le cadre des unités naturelles de PLANCK)

Il est donc possible de décomposer indifféremment la longueur d’onde ou
la période.
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e [’existence d’un maximum pour la fréquence, puisque :
f=¢c/A=1/T avec :
A est équivalent a la longueur d’onde
f est équivalent a la fréquence,
c est équivalent a la vitesse de la lumiere,

T est équivalent a la période.

et pour ¢ = 1, nous avons :

fmaz - C//\min - 1/Tmm
fmaz = 1/2 (en “unité de fréquence” : 1 / temps)

e [’existence d’'un maximum pour la fréquence angulaire, puisque :
w=2m.f avec :

w est équivalent a la fréquence angulaire,
f est équivalent a la fréquence,

Wmaz = 2-7T-fmaw
Wmaz = 7 (en “unité de fréquence angulaire” : radian / temps)

e [’existence d'un maximum pour ’énergie dans le cas de la lumiere monochromatique.
En effet, dans ce cas, elle ne dépend que de la fréquence puisque :

E =hc/\ avec :

E est équivalent a ’énergie,

h est équivalent a la constante de PLANCK,

¢ est équivalent a la vitesse de la lumiere.

A est équivalent a la longueur d’onde,

et pour
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Nous avons :

Emaa: = h.C/)\mm
Erae = h/2 (en “unité d’énergie”)

e [existence d'un maximum de masse lors de la conversion de 1’énergie dans
le cas de la lumiere monochromatique, puisque :

E=m.c? avec :

E est équivalent a 'énergie,

m est équivalent a la masse,

c est équivalent a la vitesse de la lumiere.
et pour

Nous avons donc une masse maximum lors de la conversion énergie-masse
donnée par :

_ 2
Mmaz = maz/c
Mumaz = Emae = h/2 (en “unité de masse”)

e [’existence d’un maximum pour la quantité de mouvement (aussi appelée
impulsion en physique quantique) toujours dans le cas de la lumieére mono-
chromatique, puisque :

p=nh/\ avec :

p est équivalent a la quantité de mouvement,

h est équivalent a la constante de PLANCK,

A est équivalent a la longueur d’onde.

Nous avons :

Pmaz = h/)\mm
Pmaz = 1/2 (en “unité d’amplitude de quantité de mouvement”)
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Nous pouvons donc conclure que I’application de la formule de décomposition
D(N) a un phénomene cyclique justifie la quantification des grandeurs phy-
siques liées : pour la formule D(N), c’est donc le domaine de définition de la
variable N qui impose cette quantification (puisque D(N) n’est définie que
pour N € N tel que N > 2).

La décomposition implique la quantification.

- Repére des symboles utilisés :

Par la suite, nous gaderons les mémes notations que précédemment : chaque
symbole utilisé désignera la grandeur physique correspondant a celle donnée
précédemment.

(Pour faciliter I’accés a cette sous-partie, ce Point de Repére est présent dans
le “Sommazire” en partie 21, sous le nom de “ — Repére des symboles
utilisés”. Il redirige directement la lecture vers le début de cette sous-partie
“21.1.3 Premiéres implications”, page 458)
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21.2 Principe de décomposition d’un phénomene
cyclique

21.2.1 Application D()\) pour les longueurs d’onde

L’application D(\) correspond a la formule D(N) lorsque N = A.

Prenons pour variable la longueur d’onde (d’un photon par exemple). Coura-
mment, la longueur d’onde est représentée par le symbole A. La formule
D(N) donnée dans le Chapitre I permettant de décomposer un nombre
entier NV en produit de facteurs premiers, il devient possible de décomposer
une onde lorsqu’on applique cette formule a la longueur d’onde A. Il nous
suffit de faire le lien en notant N = \. La longueur d’onde A est décomposable
en longueurs d’ondes fondamentales pour A € N tel que A > 2, la plus courte
longueur d’onde décomposable étant donc atteinte pour \,,;, = 2. La mesure
d’'une longueur d’onde étant discontinue, l'unité de mesure d’une longueur
d’onde vaut 1 unité.

Ainsi, dans I’exemple suivant qui utilise un graphique, le graphique liant y a
la longueur d’onde ne représente pas la forme de cette onde, mais il représente
de maniere symbolique le début et la fin de la longueur d’une onde (chaque
valeur de longueur L pour laquelle y = 1 permettant de donner une “borne”,
ou le motif de la longueur d’onde A est complet entre 2 de ces bornes).
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Graphique pour A =N =12 :

11345678301 1!131#151E1?1E15NHEEEIH?E!E!TEEH}31 EEESHEE:EHTEEE

¥ :1,':

- L
01 ! .'H J E ?E 91011 1!131#151E1?1E15NHEEEIH?E!E!TEEH}31 EEESHEE:EHTEEE

T T34GTRINNREUBRTRNANRIADHXTRNNARTEN ..

Dans cette exemple, la longueur d’onde A = N = 12. Il est possible de la
décomposer en produit de longueurs d’ondes fondamentales (A1, Ao, Az, ...
An) grace a la formule D(N) appliquée a N = \ .
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Nous obtenons :

A= M AE \
M—+o0
= DN = [] M~
M=2

(D’apres la formule «y; donnée dans le Chapitre I)

D(N) = D()\)
= D(12)
= 223
Ou nous avons :
/\1 =2 et a1 = 2
/\2 =3 et Qg = 1

Av—1y =M et apy=0 pour tout M € N tel que M >4

Remarque :

Comme nous 'avons établi nous devons avoir A € N tel que A > 2, et donc
nous devons admettre qu’il existe une longueur d’onde minimum pour les
ondes et donc une unité de mesure des longueurs (I'unité de mesure d’une
longueur d’onde vaut Ay = 1 unité).

Pour comprendre ce phénomene, nous devons bien nous rappelé que la longueur
d’onde représente la longueur nécessaire a la répétition de cette onde.
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Le minimum d’une longueur d’onde (A,,;, = 2) peut étre représenté dans un

espace plan tel que :

> L

- —

2

Nous voyons clairement que pour une longueur d’onde égale a 2 (le minimum),
le phénomene ondulatoire se constate toujours.

Une longueur d’onde inférieure a 2 n’aurait pas de sens dans un espace ou
la mesure de longueur vaut 1 unité, puisque le phénomene ondulatoire serait
impossible a constater. En effet, si la longueur d’onde A, était supposée
égale a 1, alors la représentation dans I'espace serait la suivante :

Asupp=1

S e— -

+ + + + + + + +

I

I

S e e e e B e ¥
0 1 2

Nous voyons clairement que pour une longueur d’onde supposée égale a 1, le
phénomene ondulatoire ne se constate plus dans un espace discontinu dont

la mesure de longueur vaut 1 unité.

En effet, en supposant que le phénomeéne ondulatoire a toujours bien lieu,
nous devrions le représenter ainsi :

Asupp=1

S Je—— >

+ + + + + + + +
I+ + + + + + +
e taa e B B e g E
0 1 2
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Dans ce cas (ou méme dans celui de longueurs d’ondes plus courtes ou
Asupp = 1/a, avec a € N tel que a > 1), nous serions incapables de constater
le phénomene (ni de donner une valeur précise de a) puisque notre espace plan
ne permet de mesurer que les longueurs entieres. Cet exemple montre que
le phénomene ondulatoire ne pourrait pas étre mesuré dans les dimensions
(visibles) d'un espace.
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21.2.2 Application D(7T) pour les phénomenes périodiques

L’application D(T") correspond a la formule D(N) lorsque N = T.

Pour un phénomene cyclique, la décomposition d’une période en périodes
fondamentales permet aussi une décomposition en fréquence, notamment
grace a la relation simple :

F=1/T

Etant donné I'application de décomposition d’une période donnée par D(T),
nous obtenons :

T = T2 1%, . T,
M—+o0
= D(T)= ] M~
M=2

(D’apres la formule «y; donnée dans le Chapitre I)

Comme précédemment, prenons par exemple "= N = 600 :

D(N) = D(T)
D(600)
233152

Ol nous avons :

T, =2 et a1 =3
T2:3 et Oégzl
T3=4 et a3=0
T, =5 et ay=2

Tor-y=M et ay=0 pour tout M € N tel que M > 6
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Interprétation en fréquence :

Nous pouvons donc maintenant donner une interprétation en fréquence puisque
nous savons que :

f o= 1T
= (1/T)™.(1/T)™.(1/T5)™. ... (1/T,)™

Pour chaque période fondamentale 7T, ramenée a des fréquences fondamentales
fn, nous avons :

fi=1/T
fo=1/T
fs=1/T3
fo = 1T,

Ce qui nous permet d’obtenir une décomposition en fréquence puisque nous
nous retrouvons avec la formule suivante :

f= A" 026"

Interprétation en fréquence angulaire :

La formule D(T) peut étre appliquée & une onde en translation linéaire dans
I’espace mais aussi aux sytemes en “rotation sur eux-meémes”. Effectivement,
puisqu’il est possible d’associer une période T équivalente a la période de
rotation de ce systeme.

Or, pour un systeme en rotation, la fréquence angulaire de ce systeme est
directement liée a la fréquence de rotation f, et donc a la période de rotation

T. Nous avons :

w=2m.f=2x/T
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Ainsi, puisqu'une période est décomposable en période fondamentales, la
fréquence angulaire est décomposable en fréquences angulaires fondamentales.
En effet, nous avons :

w

w=27.f d’ou f= o
T

Avec, comme nous venons de le voir :
J=AH"R7 %

Donc
=) G G - G
2/ 2/ \ox/ 7 \2n
Et donc
wl a1 w2 a9 wS as wn (e 7%
o (EL) () (Y ()
2. 2. 2. 2.
De la méme maniere qu’il existe un minimum de période T},;, pour une onde,
il existe un maximum pour la fréquence angulaire w,,,, donné par :
Wmae = T (en “unité de fréquence angulaire” : radian / temps)

Dans ce cas, nous sommes dans la limite d’'une mesure de fréquence angulaire.
En effet, si nous supposions que le maximum avait été de :

Wsupp = 2.7 (radian par unité de temps)
Nous ne pourrions plus constater de mouvement, nous aurions 'impression
d’étudier un point immobile, ce qui en aurait été de méme si pour d’autres
valeurs telles que :

Wsupp = 2.a.7 (avec a € N tel que a > 1).
Dans ce cas, parler de période pour un phénomene qui pourrait aussi étre

interprété comme ayant une période nulle n’a pas de sens : le cas de wgypp
est donc a exclure.
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ATTENTION :

Wmae Teprésente la fréquence angulaire maximum appliquée a un phénomene
cyclique. Etant donné que I'application D(T") impose l'existence d’un mini-
mum de période pour tout phénomene cyclique, il convient donc d’effectuer
I'opération suivante :

Wimaz = 2.7 frnae = 2.7/ Topin = 7
Et non l'opération suivante, a supposer que :

Wsupp = 2.7)Tp = 2.7
qui n’est pas appliquée a la période d’'un phénomene cyclique, mais a I'unité
de mesure de la période de tout phénomene cyclique. Rappelons simplement

que pour un phénomene cyclique, la valeur 7, = 1 est impossible a atteindre
car non décomposable par la formule D(N) appliquée a N = T.

Hypothese :

Cette théorie pourrait aussi étre appliquée a un phénomene cyclique plus
complexe, dont le motif du cycle est répétitif et dont la longueur associée a
la longueur de ce motif est mesurable (exemple possible pour les longueurs
d’onde : I'enveloppe d’un paquet d’ondes).
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21.2.3 Implication de ’application D(T)

Dans le cas de 'onde d’un photon, 'application de D(T") a la période T' de
I’'onde permet de traiter le mouvement de translation linéaire du photon dans
I’espace mais nous donne également la possibilité de traiter le mouvement de
rotation.

Il est donc possible de ramener le mouvement de I'onde d’un photon indiffé-
remment a un mouvement de translation linéaire ou bien a un mouvement
de rotation, la cohérence de I'application D(T') étant toujours respectée.

Ceci étant un constat important pour la suite de la théorie. Cette remarque
permet notamment de montrer qu’il devient possible de considérer qu’un
photon puisse étre en rotation (ce qui peut étre intéressant notamment pour
suggérer que toute particule absorbant des photons ne serait en fait composée
que de photons en rotation dans cette particule).

Hypothese importante :

Considérer qu'un photon puisse étre en mouvement de rotation permet de
supposer que cela permet la formation de particules plus complexes, c’est-a-
dire qu’une particule serait formée de photons en rotation.

En considérant que cette particule soit au repos (immobile par rapport a
I'observateur), le déplacement interne des photons est un mouvement de
rotation a la vitesse de la lumiere.

En considérant que cette particule soit en mouvement de translation linéaire
par rapport a ’observateur (par exemple), le déplacement interne des photons
est un mouvement de rotation qui semble se ralentir dans la particule (et
semble donc inférieur a la vitesse de la lumiere), alors que la résultante
de la composition des vitesses de translation linéaire et de rotation interne
conserverait la méme mesure (c’est-a-dire la vitesse de la lumiere) par rapport
a I'observateur.

Par conséquent, la vitesse que pourrait atteindre cette particule serait
nécessairement toujours strictement inférieure a celle d’'un photon seul.
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L’hypothese est la suivante :

Toute particule de matiere qui n’est pas un photon est exclusivement composée
de photons.

Conséquences:

Toute particule composée de photons la rend nécessairement plus complexe et
par conséquent, il n’est plus possible de considérer cette particule composée
comme une particule élémentaire, a moins de définir une particule élémentaire
comme étant un ensemble formé de photons en rotation.
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21.3 Principe de décomposition du nombre
d’éléments d’un ensemble

Supposons qu’il soit possible de “compter” le nombre d’éléments formant un
ensemble. Supposons également qu’il soit possible de diviser ces éléments en
sous-ensembles fondamentaux afin de les séparer.

L’application D(Q) correspondant a la formule D(N) lorsque N = @
(@ représente ici la quantité).

D’apres la formule D(N) définie pour N € N tel que N > 2, nous obtenons
directement :

L’application D(Q) qui associe ) a la quantité d’éléments présents dans un
ensemble d’éléments donné implique l'existence d’une valeur de mesure de
quantité exprimable seulement par un nombre entier supérieur ou égal a 2,
dont 1 correspond a 'unité de mesure.

Ce qui signifie qu'un sous-ensemble fondamental ne peut étre constitué au
minimum que de 2 éléments.

Dans ce cas également, il devient possibles de parler d’ensembles décomposables
en sous-ensembles fondamentaux.

Hypothese 1 :

Cette application de la formule D(N) au nombre d’élément d’'un ensemble
d’éléments permet de faire un rapprochement avec l'intrication quantique.
En effet, dans le cas de l'intrication quantique, 1’état quantique de 2 objets
doit étre décrit globalement, sans pouvoir séparer un objet de I'autre bien
qu’ils puissent étre spatialement séparés. Les 2 objets ne sont cependants
pas indépendants et ils doivent étre considérer comme 1 systéme unique (ou
ensemble unique).

L’hypothese est de considérer que 'application D(N) puisse concerner les
photons intriqués. N est ici la quantité de photons intriqués présents dans un
ensemble donné. Ce qui amene a conclure qu’il est impossible de constituer
un sous-ensemble fondamental de photons intriqués inférieur a 2 photons,
puisque le domaine de définition de D(N) ne le permet pas.
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Hypothese 2 :

Considérer que 'on puisse compter le nombre () d’éléments d’un ensemble
revient donc a considérer qu’il existe une limite inférieure @),,;, = 2 éléments.
Or, étant donné qu’il n’existe pas de limite supérieure, nous devons alors
concevoir qu’il soit possible que le nombre d’élément puisse étre en quantité
infinie pour 'ensemble qui contient tous les éléments.

En effet, considérer qu’il existe une limite supérieure a la quantité de I’ensemble
qui contient tous les éléments reviendrait a fixer une borne supérieure a
I’ensemble des nombres entiers N ainsi qu’a ’ensemble des nombres premiers
P.

93/

Or, il est possible de démontrer qu’il n’existe pas de limite supérieure
I’ensemble des nombres entiers N, et qu’il n’existe pas de limite supérieure
I’ensemble des nombres premiers IP.

93/

D’ou 'on déduit que s’il est possible de compter de maniere exacte le nombre
d’élément d’un ensemble, nous devons concevoir que le nombre d’éléments
totale d’'un ensemble qui les contient tous soit infini.

raisonnement nous sugger nc finalemen ncevoir que, a partir
Ce raisonnement nous suggere donc finalement de concevo e, a part
u moment ol nous considérons que nous sommes capables de compter des
d t d bles d ter d
photons, le nombre de photons de I'univers puissent étre en quantité infinie.

Remarque

Pour revenir sur les réflexions du Chapitre V., a propos de la sous-partie
“14.4 Remarque sur les énoncés constructibles” ou une définition
suggere qu'un énoncé F' puisse contenir une quantité infinie de mots, un
raisonnement cohérent ne permet pas d’attribuer un sens a ce genre d’énoncé
étant donné que F' ne peut jamais étre donné dans son intégralité, il n’est donc
jamais possible de raisonner sur le sens de F. De méme, si nous définissons
I'univers comme contenant une infinité de photons (ou de matiére), nous ne
pouvons attribuer un sens global a cet univers, étant donné que nous ne
pourrons jamais le connaitre dans son intégralité, et donc sa définition ne
nous sera jamais donnée dans son intégralité.
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22

Eléments de réflexion

PARTIE NON
DEFINITIVE :

EN COURS DE
REALISATION !
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22.1 Rappels, réflexion et définition d’un primaryon

- Rappels :
Etant donné les formules d’application aux phénomenes cycliques :

D(X\) = D(N) pour N = A, avec A une longueur d’onde,
D(T) = D(N) pour N =T, avec T une période.

Qui imposent que \,,;, = 2 et que T}, = 2.
D’ou 'on déduit une unité de mesure de la longueur d’onde dans l’espace :
A =1

Et d’ou 'on déduit une unité de mesure de la période d’une onde dans le
temps :

to=1

- Réflexion :

Cette discontinuité ne permet alors le repérage (par des coordonnées) dans
I’espace que par des points et elle ne permet le repérage (par des coordonnées)
dans le temps que par des instants. La position de toute étendue de matiere
ne peut donc étre exclusivement repérée que par des points et des instants.

Par définition, un point ou un instant est sans dimension (respectivement sans
longueur ou sans durée). Ces points sont donc tous identiques et indivisibles.

Une étendue de matiere (y compris la lumiere) ne pouvant étre repérée que
par I'un des ces points ou 1'un des ces instants, il est nécessaire que cette
étendue de matiere soit représentée par ces points sans dimension et ces
instants sans dimension. Nous ne pouvons donc concevoir une étendue de
matiere que comme des points placés dans 'espace et a un instant dans le
temps. Nommons un de ces points sans dimension (et donc identique aux
autres) un primaryon, constituant de toute matiere et de toute lumiere.
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- Définition d’un primaryon :

Ce mot est un nom masculin, représentant la contraction du mot “primary”
(mot anglais a prendre dans le sens du mot “primaire” ou du mot “fonda-
mental”) et du suffixe “-on” (suffixe servant habituellement a désigner les
particules élémentaires en physique). Un primaryon est donc un élément
primaire ou fondamentale, I’élément le plus “simple qui soit”, constituant
toute matiere.

Un primaryon est un point sans dimension permettant un repérage de
la matiere dans l'espace a un point spatial donné et dans le temps a un
instant donné. La présence d'un primaryon en un point d’espace donné a un
instant donné est indissociable de la présence de matiere a ce point donné
et a cet instant donné. Par exemple, aucun primaryon sur un graphique
représentant l'espace d’'une taille donnée signifie aucune matiere dans cet
espace. Un primaryon est nécessairement indivisible. Un primaryon n’ayant
pas de dimension, il est par conséquent identique a un autre.

Un primaryon ne change pas de propriétés au cours du temps, il est donc
éternel. Il ne change pas de propriétés non plus en fonction de ’espace, ni en
fonction de n’importe quelle grandeur physique. L’existence d’un primaryon
est absolue (il représente I'idée d’ “existence éternelle” conclue dans la partie
“16 Preuve de l’existence éternelle” du Chapitre V).

Remarque :

De ce point de vue, la conception d’un primaryon est presque la méme que
celle de “I'atome” selon Démocrite [9] (Philosophe grec, né vers 460 avant
Jésus-Christ). En effet, Démocrite considérait que les corps les plus divers
étaient produits par la combinaison de particules matérielles indivisibles et
éternelles, et en mouvement perpétuel.

La différence avec le primaryon est que celui-ci ne peut étre considéré que

comme étant un point (sans dimension), et non une particule (une particule
possede une épaisseur).
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22.2 Conséquences

22.2.1 A propos de la vitesse

Pour un primaryon (tel que nous venons de le définir), la seule possibilité
est de parcourir une distantce minimum et un temps minimum, ce qui est
le maximum autorisé pour une vitesse, mais ce qui constitue aussi la seule
vitesse possible pour un primaryon.

Pour 9,,;, = 1 le minimum de distance indivisible qu’un primaryon peut
parcourir, et pour ¢,,;, = 1 le minimum de temps indivisible, la vitesse V,,
d’un primaryon est donc :

Avec V,, = 1 étant la seule vitesse possible pour un primaryon.

Remarque :

Si nous envisagions qu’un primaryon puisse avoir une vitesse nulle (méme
temporairement), cela reviendrait également a envisager qu'il puisse avoir
(temporairement) une fréquence angulaire wy,,, = 2.a.7 (avec a € N tel que
a > 1). En effet, dans ce cas, ce primaryon donnerait aussi I'impression
d’étre resté au méme point, ce qui est a exclure (comme nous 'avons déja vu
en sous-partie “Application D(7T) pour les phénomeénes périodiques”,
page 468).
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22.2.2 A propos de la quantité

Pour un ensemble de @ primaryons, I'application D(Q) correspondant a la
formule D(N) lorsque N = @ (Q représente ici la quantité) nous donne la
décomposition d’un ensemble de primaryons en sous-ensembles fondamentaux.
La formule D(Q) n’étant définie que pour @) € N tel que ) > 2, nous pouvons
déduire qu'un sous-ensemble fondamental de primaryons se constitue au
minimum de 2 primaryons (notons @, = 2). Ce qui nécessite une unité de
mesure indivisible de la quantité de primaryons contenue dans un ensemble.
Ceci implique également quun primaryon (notamment pour ’ensemble con-
tenant i, = 2 primaryons) ne peut étre au méme point en méme temps,
puisque dans ce cas il serait impossible de les dissocier (la quantité Q,,, = 2
ne serait plus respectée en ce point et a cet instant).

Par contre, pour un ensemble de primaryons, il n'y a pas de limite de
quantité maximum. Ce qui permettrait d’émettre une hypothese concernant
la quantité de primaryon (et donc de matiere) contenue dans 'univers : la
quantité ) peut tendre vers 'infini. En fait, considérer qu’il existerait une
limite a ) pour le nombre de primaryons reviendrait également a considérer
qu’il existerait un nombre () maximum décomposable en produit de facteurs
premiers. Or, ce n’est pas le cas, la quantité de primaryons ) doit donc étre
en nombre infini.

Partage d’un point de vue personnel :

De ce fait, en considérant que 2 points ne peuvent pas étre situés dans la
méme position au méme instant, j’ai plutot tendance a concevoir la dualité
onde-particule comme un ensemble de points capables de se situer a différentes
positions, ce qui engendre naturellement un phénomene cyclique a partir de
I'intéraction entre ces points. J’ai donc plutét tendance a penser que les
phénomenes cycliques sont diis a des interactions entre ces points élémentaires,
tous identiques, et donc a ramener ces point a des constituants fondamentaux
(disons méme a des constituants identiques, ce qui est une condition nécessaire
pour qu’un observateur ne puisse pas faire la différence dans un cas comme
celui évoqué en partie “Représentation géométrique correspondant a
la variable U”, page 486) de la matiere ou méme des photons. Cette
vision des choses n’engage que moi, mais elle me parait plus naturelle et
plus intuitive que de concevoir de maniere directe la dualité onde-particule.
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Cette vision des choses permettrait de donner une représentation géométrique
(spatio-temporelle) au phénomene vibratoire d’un photon.

Considérer les primaryons comme des constituants fondamentaux dénom-
brables de toutes forme de matiere, et permettant la manifestation de phéno-
menes cycliques et vibratoires, permet de percevoir la dualité onde-particule
de la matiere comme une conséquence.

Un ensemble fondamental se composant au minimum de 2 primaryions per-
mettrait de donner une raison aux phénomenes cycliques.
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22.2.3 A propos de 'amplitude

L’ensemble fondamental minimum est constitué¢ de @,,;, = 2 primaryons.
Comme la cohérence impose que ces 2 primaryons ne puissent pas étre
confondus, nous déduisons qu’il existe un minimum d’amplitude A entre ces
primaryons. Cette amplitude est une longueur mesurable dans un espace.
Pour 'instant, nous ne disposons pas de suffisamment d’informations pour
dire si cette amplitude a un minimum indivisible ou non.

- Remarque :

Toutes ces indications limitent déja les possibilités de représentations des
phénomenes de 1'univers.

SUITE EN COURS
DE REALISATION !
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22.3 Mouvements des primaryons dans un ensemble
“photon”

Nous allons voir qu’un photon peut étre considéré comme étant formé d’un
ensemble de primaryons.

SUITE EN COURS
DE REALISATION !
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22.4 Mouvements des photons dans un ensemble
“particule”

Nous allons voir qu'une particule “complexe” (capable d’absorber et d’émettre
des photons) peut étre considérée comme étant formé d'un ensemble de
photons.

SUITE EN COURS
DE REALISATION !
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Remarque :

En considérant que la vitesse de la lumiere soit indépassable mais aussi
I'unique vitesse disponible pour les photons, pour une particule formée exclu-
sivement d’un ensemble de photons en rotation dans cette particule, toute
autre mesure de vitesse ne correspondrait alors qu’a une vitesse résultante.

Toutes ces particules correspondraient a la configuration de I’ensemble des
photons qui la composent :

- Au repos par rapport a un observateur, ’ensemble de la particule a une
vitesse nulle, alors que les photons qui la composent seraient tous en mouve-
ment de rotation dans cette particule (un vecteur vitesse peut représenter
cela). La vitesse des photons en rotation (dans la particule) par rapport a
cet observateur doit d’ailleurs étre exactement la vitesse de la lumiere.

- En mouvement de translation linéaire dans I’espace par rapport a un obser-
vateur (par exemple), l’ensemble de la particule a une vitesse supérieure
a 0. Ceci a pour effet que si la vitesse de la particule augmente, alors le
mouvement de rotation interne des photons dans la particule doit se réduire.

Pour un observateur, I’observation de cette particule en translation linéaire
dans I'espace (par rapport a cet observateur) doit 'améner a constater cette
réduction du mouvement interne dans la particule (en conformité avec la
théorie de la relativité d’EINSTEIN) [1 1], bien que la mesure de la vitesse
des photons par rapport a l'observateur (et non par rapport a la particule
observée) soit toujours la vitesse de la lumiere.

- Ce principe exclu naturellement que la vitesse globale de la particule puisse
dépasser la vitesse des photons qui la composent, d’ou I'impossibilité pour
les particules composées de photons de dépasser la vitesse de la lumiere.
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23

Représentation géométrique
correspondant a la variable U

23.1 Introduction

Cette partie se propose de donner une représenation géométrique du phéno-
mene étudié dans la partie “14 Preuve de la liberté” du Chapitre V,
dans les limites de ce qui est permis par la formule D(N) et notamment par
son domaine de définition NV € N tel que N > 2, et dans les limites des regles
que nous avons établi précédemment.

Nous allons aborder ce phénomene au caractere fondamentalement
“indéterministe” en soulignant que la représentation graphique qui va étre
proposée n’est peut-étre pas la meilleure ou l'unique, bien qu’elle semble
fidelement représenter un tel phénomene.
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23.2 Etude du cas limite w,,,, =7

A propos du cas de w,,q, = 7 radian par unité de temps, celui-ci est intéressant
car il va nous donner un autre renseignement et méme nous permettre de faire
une comparaison avec la variable U. Dans ce cas limite (correspondant a la
représentation graphique suivante), pour un phénomene cyclique, un point
situé en A se retouve en B (ce qui revient a effectuer une rotation d’angle
rad) apres une unité de temps :

Dans ce cas, il devient impossible de savoir si ce point a effecté la trajectoire
correspondant a la demie-circonférence du cercle (en bleu) ou au diametre D
du cercle (en rouge). Sila trajectoire était celle du diametre, la vitesse de ce
point ne pouvant dépasser la vitesse de la lumiere ¢ = 1 unité de longueur
par unité de temps, cela signifierait que ce diametre ne mesure qu’une unité
de longueur. Et donc le diametre minimum dans ce cas serait D,,;, = 1.

Il est possible a partir de cette hypothese de concevoir un nouveau cas
particulier, notamment la mise en présence de 2 de ces points nommés 1 et 2
et parcourant les trajectoires correspondantes 1 et 2 sur les représentations
graphiques suivantes :
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En considérant un point situé en A en rotation dont la fréquence angulaire
est au maximum (w,,,, = 7 radian par unité de temps). Pour un point seul
nous sommes dans la méme situation que précédemment : le point se trouve
en B apres une unité de temps puis revient a nouveau en A apres une unité
de temps, et ainsi de suite.

En considérant 4 positions possibles en A, B, C' et D aux sommets d’un carré
ou les longueurs sont données par :

AB=BC=CD=DA=1

En mettant en présence un 2%™¢ un point identique (ce qui est une condition
nécessaire pour obtenir ce qui va suivre) situé en C' et dont la fréquence
angulaire est la méme (W = 7), la situation devient immédiatement plus
délicate, car il devient impossible de savoir quel trajectoire a été suivie par
chacun des points. Comme le montrent les 3 représentations graphiques de
droite, la trajectoire du point 1 peut passer par A, D, revenir a A alors que
le point 2 peut passer par B, C, revenir a B. Mais pour un observateur, il
est impossible de savoir si le point 1 a effectué le trajet de A vers D ou le
trajet de A vers B. Idem pour le point 2 par rapport au trajet de C' vers B
ou le trajet de C vers D.

En effet, pour un observateur (qui observe en vue de dessus ou méme en vue
de dessous), a chaque instant, seules 2 possibilités peuvent étre clairement
dissociées : soit les points sont en position A et ', soit il sont en position B
et D. Mais dans ce cas, il devient impossible de définir le trajet effectué par
un seul des 2 points de maniere exacte. Il n’est possible d’exprimer ce trajet
que dans le cadre des probabilités. Il est ici impossible de définir précisément
dans quel sens les 2 points se déplacent. Ceci étant valable a tout instant,
seulement des probabilités peuvent exprimer les chances que chaque point a
de passer par un trajet a tout instant. Sur une durée infiniment longue, il
existe une infinité de combinaisons de trajet possibles.

Nous pouvons méme clairement exprimer ces probabilités dans un cas comme
celui-ci. A partir d’un instant initial £ = 0, il devient méme possible d’établir
un lien entre les probabilités et une durée, ce qui permet d’exprimer une
probabilité par unité de temps (pour les trajets de chaque point).
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Soit un “trajet” le segment par lequel le point A peut passer (un segment
tel que AB, BC, CD ou DA). Soit P la probabilité que le point 1 soit dans
une des positions A, B, C' ou D d’un instant a 'instant suivant. Soit C}
le nombre de combinaisons de positions possibles par lesquels peut passer le
point 1 depuis ¢ = 0, et donc soit P, la probabilité que le point 1 a d’étre
passer par une suite de positions depuis ¢ = 0.

Etant donné que le point 1 a une chance sur 2 de prendre une position ou une
autre d'un instant ¢ a I'instant ¢+ 1, nous avons dans tous les cas : P = 1/2.

- A l'instant t =0 :
lesten A (c’est-a-dire dans la position initial)

Les positions que 1 a pu occuper depuis ¢ = 0 sont :

-Alinstant t =1 :
lesten BoulD

Les positions que 1 a pu occuper depuis t = 0 sont :

A-B
A-D

Ci=2
P =1/2
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- Alinstant t =2 :

Silétaiten Bat=1:1esten AouC
Silétaiten Dat=1:1esten AouC (également)

Les positions que 1 a pu occuper depuis t = 0 sont :

AB — A
AB - C
AD — A
AD —C
Cy=4
Py=1/4

- A linstant t =3 :

Silétaiten Aat=2:1lesten BoulD
SilétaitenCat=2:1lesten BoulD

Les positions que 1 a pu occuper depuis t = 0 sont :

ABA- B
ABA—D
ABC - B
ABC — D
ADA - B
ADA— D
ADC — B
ADC — D

Cs5 =8

Py=1/8
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- Alinstant t =4 :

Silétaiten Bat=3:1lesten AouC
Silétaiten Dat=3:1esten AouC

Les positions que 1 a pu occuper depuis ¢t = 0 sont (& lire par colonne) :

ABAB — A
ABAB - C
ABAD — A
ABAD - C

C, =16
P, =1/16

ABCB — A
ABCB -C
ABCD — A
ABCD —-C

- Alinstant t =5 :

ADAB — A
ADAB - C
ADAD — A
ADAD - C

Silétaiten Aat=4:1lesten BoulD
SilétaitenCat=4:1lesten BoulD

ADCB — A
ADCB - C
ADCD — A
ADCD - C

Les positions que 1 a pu occuper depuis ¢ = 0 sont (a lire par colonne) :

ABABA—-B
ABABA—-D
ABABC — B
ABABC — D
ABADA - B
ABADA - D
ABADC - B
ABADC — D

Cy = 32
Py =1/32

(nous pourions continuer comme ceci a l'infini)

ABCBA - B
ABCBA—-D
ABCBC - B
ABCBC — D
ABCDA - B
ABCDA - D
ABCDC — B
ABCDC — D

ADABA - B
ADABA - D
ADABC — B
ADABC — D
ADADA - B
ADADA - D
ADADC — B
ADADC — D

ADCBA - B
ADCBA—-D
ADCBC — B
ADCBC — D
ADCDA - B
ADCDA - D
ADCDC - B
ADCDC — D
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GENERALISATION :

e Si nous prenons en considération la globalité du systeme (c’est-a-dire
I'ensemble {point 1;point 2} comme un ensemble indivisible, d’ou 'on ne
peut séparer ces 2 points), nous pouvons savoir de maniére exacte que :

- A linstant t =0 :
Les points 1 et 2 sont en A et C.

- A linstant t = 2.a — 1 (avec a € N tel que a > 1) :
Les points 1 et 2 sont en B et D.

- A l'instant t = 2.a :
Les points 1 et 2 sont en A et C.

e Si nous ne prenons en considération que le trajet d’un seul des 2 points
(par exemple, le point 1, comme vu précédemment) :

D’un instant a l'instant suivant, le point 1 a une chance sur 2 d’occuper la
prochaine position : P =1/2.

- A linstant t =0 :

lesten A
- A linstant t = 2.a — 1 (avec a € N tel que a > 1) :

1 est en B ou D (Que 1 aie étéen AouC at=2a—1))

C; = 2" (est le nombre de positions que 1 a pu occuper depuis ¢ = 0)

P, = 1/C; (est le nombre de chance que 1 a eu de passer par un des trajets)
- A linstant t = 2.a :

lesten AouC (Que 1 aie été en Bou D at=2.a—1)

C; = 2" (est le nombre de positions que 1 a pu occuper depuis ¢ = 0)

P, =1/C; (est le nombre de chance que 1 a eu de passer par un des
trajets)
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Suite du ratsonnement :

Si nous ne prenons en considération que le trajet d’un seul des 2 points, d'un
point de vue des probabilités, nous pouvons alors ramener cette situation a
la superposition de toutes les situations possibles, sans que cela ne pose de
probleme a son déroulement.

Précisons en outre que la représentation graphique précédente était une
possibilité, d’autres représentations ou la situation est équivalente sont po-
ssibles (il est encore trop tot pour savoir laquelle serait la meilleure, ou
méme si plusieurs représentations seraient possibles). En effet, pour cacun
des points 1 et 2, nous avions choisi de représenter les positions disponibles
A, B, C et D aux sommets d’un carré, mais nous aurions pu aussi choisir
que ces positions soient aux sommets d’un losange. Comme l'indique la
représentation graphique suivante :

LY
AN

LY
d
£,

AVAVAVAVA

hYd

AVAVAVAVA
VAVAVAVAY

FAAS

| |

VAVAVAVAY

AVAVAVAYA
VAVAVAVAY

e
-~

-~
ot

Pour un losange dont les sommets sont A, B, C' et D, parmi un ensemble de
triangles équilatéraux joints les uns aux autres, et pour des longueurs tels que :

AB=BC=CD=DA=)=1 et
EFEF=FB=FG=FG=GH=FEI=FI=1]J=)=1
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Pour les points 1 et 2 précédemment cités, nous nous retrouvons exactement
dans la méme situation, en supposant que ces points sont en position A et C'
et que leur fréquence angulaire est également w,,q.. = 7.

En effet, nous avons vu précédemment que lorsque les points 1 et 2 sont
en position A et C, 'ensemble des 2 points {point 1;point 2} se retrouvent
I'instant suivant exactement en position B et D, sans que nous ne puissions
savoir par lequel des 2 trajets possibles ces points sont passés (pour le point
1 en position A, ce trajet peut étre indifféremment AB ou AD). Cela a
pour conséquence que, d’un instant a l'instant suivant, il est possible de
considérer indifféremment que ’ensemble des points 1 et 2 a “tourné” dans
le sens trigonométrique ou dans le sens inverse.

Ce cas va devenir encore plus intéressant en introduisant un 3%*™¢ point
identique (nommé 3) en position F, car il va permettre de faire comprendre
sur quel norme pourrait se concevoir un systeme “libre” (ou contenant une
part de hasard, en référence au Chapitre V), en passant par une représen-
tation graphique (parmi d’autres possibles). Pour simplifier I’exemple, nous
n’allons étudier que le cas ou nous pouvons indifféremment considérer que
I’ensemble des points 1 et 2 peut tourner exclusivement dans le sens
trigonométrique (c’est-a-dire sans retour en arriere) ou exclusivement dans
le sens contraire.

Remarque :

Bien que 'on considere que I'ensemble {point 1; point 2} est en rotation
uniquement dans un des 2 sens, il est encore possible d’attribuer une
période a cet ensemble. Il est donc également possible de concevoir que
I'ensemble {point 1;point 2} constitue un phénomene périodique.

Considérons le cas ou le point 3 est situé en position E et qu’il se déplace
en position F. Ajoutons la condition qu’'un point ne peut prendre la méme
position qu'un autre, et qu’il se déplace d’une longueur \g apres une durée
To (il ne peut pas avoir une vitesse nulle). Etablissons une chronologie de
I'évolution des points pour chaque instant (pour plus de clarté), avec t = 0
I'instant initial de notre étude :

(voir page suivante)
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-Cas 1:

L’observateur considere que I’ensemble {point 1; point 2} tourne exclusivement,
dans le sens trigonométrique :

V4
FaY
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s
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pour t =0 : 1 est en B, 2esten D, 3 est en F.
pourt=1: 1 est en A, 2 est en C, 3 est en F.
pour t =2 : lesten D, 2 est en B, 3 est en G.
pour t =3 : 1esten C, 2 esten A, 3esten H.

Ici, le point 3 a été ejecté en G par 'ensemble de points en rotation dans le
sens trigonométrique. L’éjection est nécessaire car sinon, il serait possible
de considérer que 2 des points sont confondus. En effet, nous aurions :

pour t =0 : 1l est en B, 2esten D, 3 est en F.
pourt =1": 1 est en A, 2 est en C, 3esten F.
pourt =2: 1l esten D, 2 est en B, 3 est en B.

Et donc pour ¢ = 2, nous aurions les points 2 et 3 en B.
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- Cas 2 :

L’observateur considere que I’ensemble {point 1; point 2} tourne exclusivement,
dans le sens contraire a celui du sens trigonométrique :

FaY

\WAVA
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AVAVAVAVA
VAVAVAVAY
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pour t =0 : 1 est en B, 2esten D, 3 est en F.
pourt=1: 1l esten C, 2 est en A, 3 est en F.
pour t =2 : 1lesten D, 2 est en B, 3 esten [.
pour t =3 : 1 est en A, 2 est en C, 3 est en J.

Ici, le point 3 a été ejecté en I par I’ensemble de points en rotation dans le
sens contraire du sens trigonométrique. Pour les mémes raisons que pour le
Cas 1, I’éjection est nécessaire ici aussi.

- Synthese des Cas 1 et 2 :

Dans cet exemple de représentations graphiques (d’autres sont peut-étre
possibles), nous obtenons donc 2 trajets différents simplement en considérant
que la rotation s’effectue dans un sens ou dans un autre.
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Ce qui permet que le trajet suivi soit indéfinissable. Il peut s’agir indiffé-
remment du trajet aboutissant a la position G ou du trajet aboutissant en
position 1.

Les 2 trajets étant de probabilité égale puisque la probabilité que ’ensemble
de points soit en rotation dans le sens trigonométrique ou dans le sens
contraire est la méme (on peut indifféremment considérer que 1’ensemble
tourne dans un sens ou dans le sens contraire), et cela méme a chaque instant.
Dans notre exemple, nous avons simplifié les choses en considérant que la
rotation ne se faisait qu’exclusivement dans un sens ou qu’exclusivement dans
le sens contraire. Si nous revenons au cas plus complexe ou a tout instant, il
est indifféremment possible de considérer que la rotation s’effectue dans un
sens ou dans le sens contraire, nous obtenons exactement le méme résultat
quant a la trajectoire possibles des points 1, 2 et 3. le seul changement étant
que nous ne pouvons savoir vers laquelle des 2 positions possibles G ou [ le
point 3 est éjecté.

Complément de réflexion :

Il m’a semblé intéressant de signaler cette représentation géométrique car elle
présente des analogies avec la variable de valeur de vérité indéfinissable U
par rapport a I’énoncé Ej (voir la sous-partie “Justification de la variable
binaire U de valeur de vérité indéfinissable” du Chapitre V).
Effectivement, dans cette représentation aussi nous ne pouvons jamais avoir
suffisamment d’informations, notamment pour savoir quel trajet a suivi chacun
des points 1 et 2 (il serait méme incohérent d’avoir ces informations, puisque
chaque trajet est équivalent). Chacun des 2 points peut indifféremment
passer par un trajet ou un autre (lorsque un des points est en position A,
un observateur peut indifféremment considérer que ce point se trouve en
B ou en D linstant suivant), ce qui donne un aspect “binaire” au nombre
de possiblités (2 possiblités) a chaque instant. Pour finir, cela correspond
a ce que l'on attend d’une représentation de la variable U. C’est-a-dire
qu'une telle variable binaire (et donc lapparition du niveau binaire) ne
doit “apparaitre” qu’a la suite d'un traitement sur les ondes (car toutes
les propositions du calcul propositionnel “classique” peuvent étre formées a
partir de la formule J(M) et donc a partir d’'un traitement sur les ondes
ou méme sur les cycles), ce qui est bien le cas étant donné que nous avions
remarqué qu’il était aussi possible de considérer que le systeme
{point 1;point 2} constituait un phénomene périodique.
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Pour faire une curieuse analogie avec le langage, nous pouvons faire la synthese
de tout cela en comparant les 2 situations :

» Pour I'énoncé E3 = U :

peu importe le sens (vrai ou faux), aucun raisonnement cohérent ne
peut produire Fj et lui atttribuer une unique valeur de vérité (et donc
un sens unique).

» Pour 'ensemble des points 1 et 2 :

peu importe le sens (de rotation : trigonométrique ou contraire), aucune
théorie exclusivement déterministe ne peut produire le systeme
{point 1;point 2} et lui atttribuer un sens unique de rotation.

Tout ceci ne signifie pas pour autant que cette représentation graphique
soit la meilleure ou 'unique représentation de U possible * (voir suite “Autre
représentation graphique possible”). Bien que I'hypotheése d'un élément
ponctuel identique avec d’autres permette de mettre en avant un phénomene
remarquable (ce qui en fait tout de méme une hypothese forte).

Remarque 1 :

Restreindre le sens de rotation du point 1 par rapport au point 2 (comme vu
sur le 1% schéma au tout début de cette partie “23.2 Etude du cas limite
Wmae = 7™ page 487), permet toujours l'apparition de ce phénomene. Par
exemple, en supposant que le point 1 se rend de A vers B dans un sens de
rotation donné mais pour lequel w,,.. = 7, nous pouvons restreindre le sens
de rotation du point 2 qui se rend de C' vers D en supposant qu’il est opposé
a celui du point 1. Pour la suite du raisonnement, méme en supposant que le
sens de rotation du point 1 (permettant le déplacement d’une position a une
autre) et le sens de rotation du point 2 sont contraires, nous aboutissons au
méme constat concerant les combinaisons que I’ensemble des 2 points peuvent
adopter. En introduisant le 3%™¢ point, les 2 trajets possibles apparaissent
donc toujours.

De plus, considérer que tous photons puissent étre constitués exclusivement
de primaryons permet de nous amener a penser que ce phénomene corres-
pondant a la variable U pourrait étre tres répandu, et peut-étre méme présent
dans chaque photon. Cela pourrait peut-étre permettre d’expliquer le phéno-
mene d’intrication quantique.
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* Autre représentation graphique possible :

Nous allons donner un autre exemple de représentation graphique qui permette
de faire le lien avec la variable binaire U de valeur de vérité indéfinissable.
Ici aussi, nous aboutirons a 2 trajets équiprobables. Reprenons la méme
structure de triangles équilatéraux que précédemment, nous avons :

AB=BC=CD=DA=)=1 et
EF=FB=AG=GH=ClI=1]J=X=1

- Cas 3 :

L’observateur considere que ’ensemble {point 1;point 2} dans le losange
ABCD (le méme que pour le “Cas 17) est en rotation exclusivement dans
le sens trigonométrique :
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pour t =0 : 1 est en B, 2esten D, 3 est en F.
pourt=1: 1 est en A, 2 est en C, 3 est en F.
pour t =2 : 1l esten D, 2esten I, 3 est en B.
pour t =3 : 1esten C, 2 esten J, 3 est en A.
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Ici, le point 2 a été ejecté en I et remplacé par le point 3 dans I'ensemble des
points en rotation. L’éjection est nécessaire car sinon, il serait possible
de considérer que 2 des points sont confondus (notamment a ¢t = 2, les points
2 et 3 auraient été confondus au point B).

- Cas 4 :

L’observateur considére que ’ensemble {point 1;point 2} dans le losange
ABCD (le méme que pour le “Cas 27) est en rotation exclusivement dans
le sens contraire du sens trigonométrique :
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pour t =0 : 1 est en B, 2esten D, 3 est en F.
pourt=1: 1 esten C, 2 est en A, 3 est en F.
pour t =2 : 1l esten D, 2 est en G, 3 est en B.
pour t = 3 : 1 est en A, 2 est en H, 3est en C.

Ici, le point 2 a été ejecté en G et remplacé par le point 3 dans ’ensemble
des points en rotation. Pour les mémes raisons que le “Cas 3”7, I’éjection
est nécessaire ici aussi.
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- Synthése des Cas 3 et 4 :

Ici aussi, étant donné que nous ne pouvons savoir dans quel sens de rotation
tourne 'ensemble de départ {point 1;point 2}, nous ne pouvons pas savoir
quel trajet va empreinter le point 2 lors de ’éjection. Le point 3 remplace le
point 2 dans l'ensemble {point 1;point 2} pour former un nouvel ensemble
{point 1;point 3} équivalent dans le losange ABCD.

Nous pouvons tout de méme constater une différence entre le “Cas 17 et
le “Cas 3” : malgré le sens de rotation identique au départ de I’ensemble
{point 1;point 2}, le trajet suivi par le point éjecté est opposé et avec un
décalage spatiale. Méme remarque entre le “Cas 2”7 et le “Cas 4.

Remarque 2 :

Le “Cas 17 et le “Cas 2”7 forment une représentation graphique possible, le
“Cas 3”7 et le “Cas 4” forment une autre représentation graphique possible,
Il serait préférable de pouvoir trancher en faveur de I'une ou 'autre, voire en
faveur d’'une nouvelle représentation s’il s’avérait que celles-ci n’étaient pas
les meilleures.
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SUITE EN COURS
DE REALISATION !

Page 502 sur 514



24

Possibilité de codage des
actions d’un systeme libre

Supposons qu’un systeme soit partiellement constituer d’'un “assemblage de
matiere” pouvant étre décrit a partir d’'une représentation telle que nous
venons de ’aborder dans la partie précédente. Appelons un tel systeme un
“systeme libre”.

Nous allons simplifier au maximum afin de rendre compréhensible une possibilité
de codage des actions d'un systeme libre.

Pour y parvenir, nous allons attribuer les valeurs des états binaires de I'algebre
de BOOLE [3] (0 ou 1) aux 2 principales situations que nous avons abordé

précédemment.

Reprenons également les mémes notations que dans la partie précédente (&
propos des points 1, 2 et 3).
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- Premiere sittuation :

En considérant que ’ensemble {point 1;point 2} tourne exclusivement dans
le sens trigonométrique, le point 3 démarre en E et fini par étre éjecté en H.

Attribuons la valeur 0 & cette situation.

LY
LA

LY
£,

Lvd
PN

hY
FAAS

\VAVAVAV

AVAVAVAVA
VAYAVAVAY
VA VAVAVA

x/

AVAVAVAVA
SN\

FAAN

Y4

Page 504 sur 514



- Seconde situation :

En considérant que ’ensemble {point 1;point 2} tourne exclusivement dans
le sens contraire a celui du sens trigonométrique, le point 3 démarre en E et
fini par étre éjecté en J.

Attribuons la valeur 1 a cette situation.
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- Codages des actions :

En attribuant les valeurs 0 et 1 a chaque situation, il devient possible de
coder les actions d’un tel systeme.

Nous devons pour cela préalablement convenir de regles de syntaxe :

La suite des valeurs consécutives 0110 marque le début et la fin d'un code
d’action. Appelons ce code “ordre”.

Le code binaire attribué a une action correspond a une suite de valeurs
binaires consécutives 0 ou 1, ce code ne peut pas contenir la suite des valeurs
consécutives attribuée au code “ordre” (donné ci-dessus), afin d’éviter qu’il
puisse etre confondu avec un ordre.

Si la suite des valeurs correspond a plusieurs 0 consécutifs entre les marqueurs
de début et de fin (repérés par le code “ordre”), aucun changement n’est
demandé.

- Exemple :
Attribuons des Actions a des suites de valeurs binaires.

La suite de valeurs 00001 est attribuée a I’ Action 1.
La suite de valeurs 00010 est attribuée a I’ Action 2.
La suite de valeurs 00100 est attribuée a 1’ Action 3.
La suite de valeurs 00101 est attribuée a I’ Action 4.
La suite de valeurs 01000 est attribuée a I’ Action 5.
La suite de valeurs 01001 est attribuée a 1’ Action 6.
La suite de valeurs 01010 est attribuée a I’ Action 7.
La suite de valeurs 10000 est attribuée a 1’ Action 8.
La suite de valeurs 10001 est attribuée a I’ Action 9.
La suite de valeurs 10010 est attribuée a 1’ Action 10.
La suite de valeurs 10100 est attribuée a I’ Action 11.
La suite de valeurs 10101 est attribuée a I’ Action 12.
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Poursuivons en associant une tache a chaque action :

I’Action 1 correspond au démarrage de la T'ache 1.
I’Action 2 correspond a 'arrét de la T'ache 1.
I’Action 3 correspond au démarrage de la T'ache 2.
I’ Action 4 correspond a 'arrét de la T'ache 2.
I’Action 5 correspond au démarrage de la T'ache 3.
I’Action 6 correspond a l'arrét de la T'ache 3.
I’Action 7 correspond au démarrage de la T'ache 4.
I’ Action 8 correspond a 'arrét de la T'ache 4.

I’ Action n correspond au démarrage de toutes les taches en méme temps.
I’Action (n + 1) correspond a l'arrét de toutes les taches en méme temps
(“arrét d’'urgence”, par exemple).

Ce systeme a donc la possibilité d’exécuter des taches en parallele (parmi
celles qui lui auront été prédéfinies).

Ainsi, ce systeme libre peut intervenir sur l'ordre d’apparition des valeurs
0 et 1. Certaines suites de valeurs pourront correspondre aux marqueurs
de début et de fin d’'un code d’action, d’autres suites de valeurs pourront
correspondre a des actions prédéfinies, et enfin, un autre ensemble de suite
de valeurs ne correspondra a aucune action prédéfinie.

Il devient alors possible d’enchainer une suite de valeurs qui permettront
d’engendrer un enchainement de taches.

Par exemple, et selon les notations précédentes :

Le code : 0110000010110 permet d’exécuter le démarrage de la Tache 1
uniquement.

Le code : 011000001011000000000000110 permet également d’exécuter uni-
quement la T'ache 1.

Le code : 0110000100110 permet d’exécuter I’arrét de la T'ache 1 uniquement.
Le code : 01100000101100010001100000000000000000000110000100110 permet
d’exécuter le démarrage de la T'ache 1, puis de la T'ache 2, puis une pause,
puis I'arret de la T'ache 1.
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- Remarque 1 :

La longueur du code croit avec la quantité d’actions que 1’on souhaite attribuer
a ce systeme.

Cependant, il n’est pas exclu qu'un codage plus simple puisse étre plus
efficace.

- Remarque 2 :

En restreignant volontairement les taches que peut exécuter le systeme, cela
devrait permettre d’éviter d’occasionner une géne sur son environnement.

En effet, il convient d’étre vigilant, étant donné qu’il serait toujours possible
d’imaginer qu'un systeme libre aie un champ d’action plus important, c’est-a-
dire avec des taches définies telles qu’elles pourraient permettre la construction
de nouvelles taches, ce qui permettrait a ce systeme libre d’élargir lui-meéme
son propre champ d’action. Dans ce cas, nous ne saurions anticiper une
tache potentiellement nuisible qu’a partir d’une surveillance importante de
ce systeme.

Un probleme a résoudre est de savoir si la surveillance de ce systeme peut

étre déjouée par ce syteme. Il faut donc étre tres vigilant des le départ, c’est-
a-dire des la définition des taches que pourra accomplir un tel systeme.
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Avis éthique et implication
personnelle

Awis personnel :

Au regard de tout cela, je pense que I'univers est compréhensible de maniere
exacte (méme lorsqu’il s’agit d’utiliser les probabilités puisque nous savons
exactement pourquoi il est inévitable de le faire dans certains cas : voir la
variable de valeur de vérité indéfinissable U du Chapitre V), j'évite donc
si possible toute approximation des formules pour garder cette exactitude
(ou au moins, je garde les formules sous une forme qui pourrait permettre
d’effectuer un développement en série connu, en évitant d’autres approxi-
mations qui feraient perdre des informations au cours d’un raisonnement).

De plus, j’ai maintenant I'intime conviction que les regles (la formule D(N)

entre autres, impliquant la discontinuité du temps et de ’espace, et impliquant
une unité de mesure indivisible) et les “non-regles” (représentées par U)

auxquels obéit notre univers n’auraient pas pu étre différentes, et les constantes
non plus. Dans le fond, tout est tel qu’il doit étre, et cela de maniere

immuable. Dans la forme, la diversité des assemblages de matiere est permise

par l'inévitable indétérminisme qui résulte de la variable U. Autrement

dit, d’autres univers possibles ne pourraient donc étre qu’exclusivement des

univers obéissants aux meémes regles et “non-regles” que le notre, la seule

différence serait que les “non-regles” permettrait une diversité (dans la mesure

du possible) des formes d’assemblage de la matiere (géométrie).
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Dans un cas comme celui-ci, je soutiens donc que les mathématiques appliquées
a la physique, ainsi que la logique permettent de comprendre ’ensemble de
notre univers. Nous pourrions méme dire que mathématiques et logique
s’appliquent d’elles-mémes a notre univers, sans que nous y puissions quoi
que ce soit dans le fond (nos choix interviennent seulement sur la forme,
c’est-a-dire sur la forme d’assemblages de matiére...), et qu'il ne peut en étre
autrement.

Hypotheses et implications personnelles :

Cette théorie peut étre vue comme un point de rencontre avec d’autres
théories physiques qui se sont baties d’apres les expériences physiques, mais
avec une base mathématique (et il est trées important de le signaler).

Elle doit étre percue comme le point de départ le plus fondamentale, qui
permettrait de rejoindre toutes les autres disciplines.

Cette théorie permet d’établir le lien entre longueurs d’ondes (ou période)
et logique binaire, et de elle permet de considérer que les formules binaires
(comme f(M;z), s(M), I(M), ... utiles a la structure de la formule D(N) )
peuvent étre percues comme des systemes contenant un énoncé et qui attribue
une valeur de vérité (une valeur binaire 0 ou 1) a une variable.

Ce qui permet de ramener le traitement des longueurs d’ondes (ou des périodes)
au traitement d’énoncés, et donc au traitement d’informations. Par extrapo-
lation, ceci doit permettre une traduction dans un langage compréhensible
des informations qui peuvent étre représentées par un ensemble de photons,
et donc un assemblage de matiere.

Ceci pourra permettre de comprendre, par le biais de ce langage de traduction,
les assemblages de matiere tel que les chaines d’ADN. D’ou j’ai bon espoir que
dans le cas de “maladies génétiques” (et méme de maladies en générale), nous
pourrions découvrir les incohérences dans les informations contenues, source
de probleme. Et finalement, par le biais de ce langage, j’ai bon espoir que
cela permette de traduire (dans l'autre sens) un remede exactement adapté a
la maladie sous la forme d’un assemblage de matiere strictement nécessaire.
Ce qui éviterait les effets secondaires dis a la présence de composés chimiques
pouvant contenir des informations incohérentes (ou en tout cas incompatibles).
Ce qui éviterait également d’avoir a se servir de cobayes vivants afin de tester
les effets sur des organismes vivants. J’ai bon espoir que cette théorie soit
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d’abord utile a cette fin. Pour étre claire, 'utiliser ne serait-ce méme que
partiellement a des fins militaires serait a I’exact opposé de la cohérence et
méme en dehors de toute intelligence. Je développe d’ailleurs ce point de vue
par la suite, qui révele meéme 1’évidence de ce propos.

J’ai véritablement conscience de ce que cela implique d’avoir acquis la connai-
ssance d’une formule telle que D(N) et de pouvoir 'appliquer aux longueurs
d’ondes et donc aux expériences physiques, ainsi que la logique liée a la
notion de liberté. En effet, si quelqu'un avait la possibilité d’atteindre
les bases de notre réalité par une théorie, alors que cela n’aurait jamais
été fait, cette personne devient nécessairement la premiere a le faire. Et
dans un cas comme celui-ci, elle devient nécessairement la derniere, puisque
apres ceci, plus personne n’aura besoin de le faire. Ce qui implique la plus
grande responsabilité quant a guider les choix des personnes qui utiliserons
les travaux d’une telle théorie. Car il est toujours possible de faire des choix
cohérents ou des choix incohérents.

C’est pour cette raison que je pense que tout travail, ne serait-ce que supposé
important par la personne qui le produit (la supposition inclu les cas ou il
est possible de s’étre trompé), demande une implication personnelle. Or,
si je pense avoir découvert une telle théorie, je la suppose nécessairement
importante, je dois donc nécessairement m’impliquer en affirmant mes convic-
tions personnelles afin d’éviter une mauvaise exploitation ou une exploitation
détournée. De mon point de vue, c¢’est aussi parce que j’ai ces convictions
que j’ai pu atteindre un tel degré de lucidité me permettant entre autres de
trouver cette formule D(N).

Par conséquent, s’il s’avérait exact que cette théorie puisse étre utile a la
compréhension de tout phénomene physique réel, j’affirme que le traitement
des maladies devrait étre la plus grande priorité. Cette théorie doit étre
percue comme devant rendre service a 'humanité. je n’accorderai donc
strictement aucun crédit (et j'insiste sur ce point) a des travaux qui se
développeraient a partir de cette théorie, mais a des fins néfastes pour le
reste de 'humanité et de la nature (il n’y a qu’a s’intéresser a certaines
périodes I’histoire pour comprendre).

A ce sujet, le choix de chacun implique nécessairement sa propre responsabilité,
méme de maniere strictement individuelle : nous ne sommes jamais obligé
de participer a des choix incohérents, nous pouvons meéme a chaque instant
choisir de ne pas y participer.
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Cette théorie doit étre exclusivement considérée comme un moyen potentiel
d’étre bénéfique a chaque organisme vivant, dans le respect de chaque orga-
nisme vivant, dans le respect de la nature, et dans le respect des choix de
chaque individu. Par hypothese, ceci inclu le respect des choix d’autres
formes de vie consciente, cela va de soi.

L’aboutissement a une telle théorie n’a pu se faire que par le plus grand
respect, elle ne peut donc pas étre réduite a un aspect purement mathé-
matique, elle s’accompagne nécessairement d’une philosophie se rapportant
a 1’écologie (vue dans le Chapitre V). Le respect de toute chose permettant
I’émergence d’une vision juste des choses, seul le respect peut donc permettre
de progresser vers l'optimisation de nos actions. C’est donc de maniere
évidente que je soutiens que le progres ne pourrait plus se faire “en quantité
suffisante” sans étre accompagné d’une pensée écologique : il atteindrait
méme une limite plus rapidement s'il se passait de cette philosophie (car seul
un état d’esprit respectueux peut conduire a comprendre les subtilités de la
réalité).

Pour étre accessible, un tel niveau de connaissance, ou méme un niveau de
connaissance supérieur impose tout cela.

Remarque importante :

Cette partie est indissociable du reste des travaux de la théorie complete
(en 6 chapitres) intitulée :

“THEORIE DE DECOMPOSITION DES PHENOMENES CYCLIQUES”
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