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Recent results on muonic hydrogen [1] and the ones compiled by CODATA on ordinary hydrogen
and ep-scattering [2] are 5σ away from each other. Two reasons justify a further look at this
subject: 1) One of the approximations used in [1] is not valid for muonic hydrogen. This amounts
to a shift of the proton’s radius by 3 of the standard deviations of [1], in the “right” direction of
data-reconciliation. In field-theory terms, the error is a mismatch of renormalization scales. Once
corrected, the proton radius “runs”, much as the QCD coupling “constant” does. 2) The result of
[1] requires a choice of the “third Zemach moment”. Its published independent determination is
based on an analysis with a p-value –the probability of obtaining data with equal or lesser agreement
with the adopted (fit form-factor) hypothesis– of 3.92 × 10−12. In this sense, this quantity is not
empirically known. Its value would regulate the level of “tension” between muonic- and ordinary-
hydrogen results, currently at most ∼ 4σ. There is no tension between the results of [1] and the
proton radius determined with help of the analyticity of its form factors.

PACS numbers: 31.30.jr, 12.20.-m, 32.30.-r, 21.10.Ft

I. INTRODUCTION

The results of a measurement by Pohl et al. [1] of the
Lamb shift in muonic hydrogen and those compiled by
CODATA on ordinary hydrogen and ep-scattering [2] are
∼ 5σ away from each other. The authors of [1] conclude
“Our result implies that either the Rydberg constant has
to be shifted by 2110 kHz/c (4.9 standard deviations), or
the calculations of the QED effects in atomic hydrogen or
muonic hydrogen atoms are insufficient.” I discuss why
the second option is part of the resolution of the apparent
conundrum, but not all of it.

It is intrepid [3] to use a model of the proton –in [1],
a dipole form-factor– to challenge very well established
physics –such as QED [1, 4]. But this is not the only
bone of contention:

One of the approximations used in the theory of or-
dinary or muonic hydrogen involves the lepton’s wave
function at the origin. The approximation is sufficiently
good for the former atom, but not the latter. The re-
quired correction can be rephrased by having an rp that
runs, in the same sense as αs –the fine structure constant
of QCD– does. The modification results in a ∼ 3σ(µH)
shift of the extracted central value of rp, in the direction
of reducing the “tension” between experimental results.
This correction depends on the model of the proton’s
charge distribution, but the model-dependence is a small
correction to a moderate correction. These issues are
discussed in detail in Sections III and IV.

The current way to extract rp from ep scattering
data involves an extrapolation to a momentum trans-
fer q2 = 0, the point from which 〈r2p〉 is inferred. This
extrapolation covers a two-orders of magnitude larger
hiatus than the one relevant to muonic hydrogen; the

model-dependence is correspondingly larger. The extrap-
olated object is a form-factor fit to data gathered above
|q2| = O(m2

π), a domain where there is still “structure”,
relative to, e.g. a dipole form factor [5].

The extraction of rp from ep data has severe statis-
tical problems, mentioned in the abstract and discussed
in Section V. One way to reappraise this issue is to take
new, very precise data [5], see also Section V. The diffi-
culties associated with these analyses are shared by the
measurement of the other relevant quantity: the “third
Zemach moment”, as discussed in Section VI and VII.

Sections VIII is a discussion of the experimental and
theoretical results. Section IX contains my conclusions.

II. THE ISSUE

Former precise measurements of rp had two origins.
One is mainly based on the theory [6] and observations
[7] of hydrogen. The result, compiled in CODATA [2], is

√
〈r2p〉(CODATA) = 0.8768± 0.0069 fm. (1)

The second type of measurement is based on the theory
and observations [8, 9] of very low-energy electron-proton
scattering. An analysis of the world data as of a few years
ago yielded [8]:

√
〈r2p〉(ep) = 0.895± 0.018 fm (2)

A recent ep-scattering experiment [5] results in:

√
〈r2p〉(A1) = 0.879(5)stat(4)syst(2)model(4)group fm, (3)
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whose various subindices will be clarified anon.
The proton’s charge distribution, ρp(r), is related to

the non-relativistic limit of the electric form-factor, GE ,
by the Fourier transformation

GE(−q2) =

∫
d3r ρp(r) e−i ~q ~r ' 1− q2

6
〈r2p〉+ ... , (4)

which also serves to define 〈r2p〉 in proportion to the q2-

derivative of the form factor at q2 = 0.
The most precise relevant measurement to date is that

of the 2PF=2
3/2 → 2SF=1

1/2 Lamb shift in the µp atom, [1]:

Lexp = 206.2949± 0.0032 meV. (5)

In meV units for energy and fermi units for the radii, the
predicted value [10] is of the form

Lth
[
〈r2p〉, 〈r3p〉(2)

]
=

209.9779(49) − 5.2262 〈r2p〉+ 0.00913 〈r3p〉(2) (6)

The first two coefficients are best estimates of many con-
tributions while the third stems from the n = 2 value of
an addend [6, 11]

∆E3(n, l) =
α5

3n3
m4
r δl0 〈r3p〉(2), (7)

proportional to the third Zemach moment

〈r3p〉(2) ≡
∫
d3r1d

3r2 ρ(r1)ρ(r2)|r1 − r2|3 (8)

For a specific model of ρp(r) or its corresponding
GE(−q2), the two r-moments in Eq. (6) are related. For
instance, for a dipole form factor

[
〈r3〉(2)

]2
= (3675/256)

[
〈r2〉

]3
(9)

while for a single pole
[
〈r3〉(2)

]2
= (50/3)

[
〈r2〉

]3
.

The authors of [1] use the dipole relation of Eq. (9) in
Eq. (6) to convert Eq. (5), into an impressively accurate

√
〈r2p〉(µH) = 0.84184± 0.00067 fm (10)

The value of rp(µH) in Eq. (10) differs by ∼ 3σ(ep)
from Eq. (2), 5.0σ(CODATA) from Eq. (1), and a bit
more from Eq. (3). The standard deviations of these
last three rp determinations are much bigger than the
ones in Eq. (10). Thus, they essentially determine the
significance of the “distance” to the latter result.

III. INSUFFICIENTLY-GOOD
APPROXIMATIONS

Let ` stand for e, µ and let mr ≡ m`mp/(m`+mp) be
the reduced mass. In an `p atom the dominant contribu-
tion (99.45% of the total for ` = µ) to the coefficient of
the 〈r2p〉 term in Eq. (6) is the familiar:

−∆EFS
{n=2; l=0} =

2πα

3
〈r2p〉|Ψ2,0(0)|2 =

α4

12
m3
r〈r2p〉 (11)

Recall that, in writing Eq. (11), the Fourier transform
(V = −4π α/q2) of a Coulomb potential (V = −α/r)
has been modified by the expression in the rhs of Eq. (4)
to obtain an additive term, ∝ δ(~r), resulting in the “0”
in the argument of the atom’s wave function Ψ.

Even for ` = µ, the Bohr radius aB = 1/(αmr) is
orders of magnitude larger than rp, apparently justify-
ing the consuetudinary approximation used in the last
paragraph, which results in the Ψ(0) factor. But the
precision of the measurement in Eq. (5) and its allegedly
consequent Eq. (10) is so unprecedented, that the ap-
proximation must be revisited, as I proceed to do.

Reconsider, for the nonce, a single-pole form-factor
GE(−q2) ≡ m2/(m2 + q2), for which m2 = 6/〈r2p〉. Re-
peat the analysis leading to Eq. (11), this time without
making the approximation of Eq. (4). The result is

−∆EFS
{n=2; l=0} =

α

4 aB

1 + 2m2 a2B
(1 +maB)4

=

α4

12
m3
r〈r2p〉

(
1− 4mr α

√
〈r2p〉

6
+O

[
1

(maB)2

])
(12)

Naturally, the leading term coincides with Eq. (11). The
first order correction to rp, estimated by entering the r2p
value of Eq. (10) amounts to 0.48%. This may look tiny.
But it increases the value of rp, extracted as in Eq. (10),
by 3σ(µH). This modification of the central value of rp,
though also insufficient by itself, is in the right direction
of reconciling the body of experimental results.

It is also instructive to consider a dipole form-factor
GE(−q4) ≡ m4

d/(m
2
d + q2)2, for which m2

d = 12/〈r2p〉.
The result of the exercise is

−∆EFS
{n=2; l=0} =

α

4 aB

1 + 3md aB + 4m3
d a

3
B

(1 +maB)5
=

α4

12
m3
r〈r2p〉

(
1− 5αmr

√
〈r2p〉
12

+O
[

1

(md aB)2

])
(13)

The first order correction amounts to 0.42%, or
2.7σ(µH). Substitute mµ for me to conclude the obvi-
ous: for ordinary hydrogen and the precision of the cor-
responding observations, the corrections of Eqs. (12,13)
are negligible.

We have learned that, at the level of accuracy of the
µp experiment, the evaluation of the 〈r2p〉 term in Eq. (5)
is not only delicate; it is also model-dependent. This is
because of the inevitable extrapolation to q2 = 0, where
the radius is defined. We shall see that in the extraction
of information from ep experiments, for which the ex-
trapolation covers a two-orders of magnitude larger gap,
the model-dependence is correspondingly larger.

IV. A RUNNING 〈r2p〉

The “atomic” subtleties discussed in the previous sec-
tion are very familiar in QCD. To discuss the simplest
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analogy, consider the total cross section for e+e− anni-
hilation into hadrons, above or in-between quark thresh-
olds. It is of the form σ(Q2) ∝ (1/Q2)(1 + αs/π + ...).
For the approximation to be correct at all Q2, αs must
“run”, that is, be Q2-dependent in a specific way.

In the next simplest example, the n-th moment of
a (non-singlet) proton structure function –analogous
to 〈rnp 〉– if evaluated at two Q2 values, differs by
a multiplicative factor: to leading order, the ratio
αs(Q

2)/αs(Q
′2) to a specific anomalous dimension, dn.

In a field theory, an expression like Eq. (11), contain-
ing a Ψ(r) and an 〈r2p〉 referring to two different scales,
would be a “mistmatch of renormalization points”. To
correct it, one must evaluate Ψ at the correct distance
scale (as in the previous paragraph) or let 〈r2p〉 run. For
a chosen form-factor this statement can be made precise,
e.g. even the “4” in Eq. (12) has some meaning. The pro-
ton is not probed by the orbiting muon at r = 0, or by
momenta with equal weights in the range (0,∞) in the
Fourier transform of δ(~r). It is only probed by momenta
ranging from |q| = O(αmr) up to |q| ∼ m/4, the proper
“ultraviolet” scale. That is

〈r2p〉|(0,∞) '
〈r2p〉|(αmr,m)

1− 4αmr

√
〈r2p〉|(αmr,m)/6

, (14)

very reminiscent of the expression for αs in QCD. It is
the lhs of Eq. (14) that is needed to extract the slope of
the form factor at q2 = 0, as in the rhs of Eq. (4).

The dipole form factor is not foreign to QCD. The un-
derstanding of the relatively high-Q2 physics summarized
by a dipole approximation, and the deviations thereof
[12, 13] –as well as the related first measurement of ΛQCD

[12]– were discussed immediately after the discovery of
QCD’s asymptotic freedom [14].

V. THE EXTRACTION OF 〈r2p〉 FROM ep
SCATTERING DATA

The Lyman-shift result quoted in Eq. (10) is ∼3σ(ep)
away from the ep-scattering result of Eq. (2) . This is
not a severe problem. A look at the data, reproduced
in Fig. 1, on which the latter result is based, indicates
that the problem if even less severe. What is shown in
the figure are data available in 2003, normalized to a 5-
parameter continued-fraction expansion of GE(−q2) [8].
The fit’s result is χ2/ndof ' 1.652, or, more explicitly,
χ2 ' 512 for ndof =310 degrees of freedom.

It may be useful to recall that the p-value of a data-
set relative to a given assumption or fit –in this case
the specified continued fraction– is the probability of ob-
taining data at least as incompatible with the hypothesis
as the data actually observed. Let f(χ2, ndof) be the χ2

probability distribution function. Let Γ(a, b) [Γ(b)] be the
incomplete [ordinary] gamma function. Then

p(χ2, ndof) =

∫ ∞

χ2

f(z, ndof) dz =
Γ(ndof/2, χ

2/2)

Γ(ndof/2)
(15)

FIG. 1: Low-|q| data, compiled and analysed in [8, 11].

and p(512, 310)'3.92×10−12, i.e. the quality of the fit in
[8] is not “quite good”. It is possible [8] to reduce this be-
hemoth disagreement by adding quadratically 3% to the
Stanford error bars (to obtain p(370, 310)'0.011), or by
a norm change of 1% of [15]... [which] would decrease χ2

by 60 (resulting in p(452, 310)'2.38× 10−7). Modifying
the data is not necessarily a universally accepted proce-
dure, or so would the corrected experimentalists opine.

It is also possible to draw sensible-looking curves
through the data that, in their slope at q2 = 0, differ
from a straight horizontal line in Fig. 1 by one or more
of the σ’s in Eq. (2). The fact that the data points are
very scattered is an unavoidable problem. One way to
reconsider the issue is to take new and very precise data.

Such data exist [5] and are partially reproduced in
Fig. 2. The paper contains many relevant commentaries.
One of them is: “The structure at small Q2 seen in GE
and GM corresponds to the scale of the pion of about
Q2 ≈ m2

π ≈ 0.02 (GeV/c2) and may be indicative of the
influence of the pion clowd.” The most apposite remarks
in [5] concern the extraction of the results:

Two types of “flexible” models are considered in [5]:
fits to polynomials and spline fits. The GE results are

√
〈r2p〉(spline) = 0.875(5)stat(4)syst(2)model fm,

√
〈r2p〉(polynom) = 0.883(5)stat(5)syst(3)model fm (16)

“Despite detailed studies the cause of the difference could
not be found. Therefore, we give as the final result the av-
erage of the two values with an additional uncertainty of
half of the difference”[5]: the outcome quoted in Eq. (3).
Whether the fits’ uncertainties are thus correctly esti-
mated is debatable, but this is not the main point.

The crux of the matter is that the procedure in [5] illus-
trates how, even for sets of “flexible” fits, the result is sig-
nificantly set-dependent. The reason is simple: two ana-
lytic (or piece-wise analytic) functions arbitrarily close to
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Q2 (GeV/c)2

q=1 f−1 q=2 f−1

↓ ↓

FIG. 2: The lowest-energy Mainz data [5]. The dark trumpet
encompasses estimated theoretical and systematic uncertain-
ties and ±1σ statistical errors. Barred points are results of
other experiments. The dotted lines are by-eye fits to data in
the domain ∆Q2 = (∼ 0.06, 0.2) (GeV/c)2, for each of the sets
of data. Their arrowy continuations are meant to illustrate
how difficult it may be to extract from such an extrapolation
the slope at the lowest-Q2 measured point.

each other in a given interval, say ∆Q2 = (Q2
min,∞), can

be arbitrarily different in their continuation to another
interval, such as ∆Q2 = (0, Q2

min).
The data itself could be used to study the model-

dependence of the extracted value of 〈r2p〉. Suppose that

one fits the data in the interval ∆Q2 = (∼ 0.06, 0.2)
GeV2 of Fig. 2 and extrapolates to the lowest-q2 point
at which there is still data and the GE slope is measured.
This is analogous to extrapolating to q2 = 0, except in
that the answer is known. A look at Fig. 2 suffices to con-
clude that the result is likely to be significantly wrong.

The “less flexible” models used to analyse the Mainz
data have χ2/ndof ≈ 1.16 to 1.29 for ndof ≈ 1400 [5].
The corresponding p-values range from 2.69 × 10−5 to
9.07×10−13. The most flexible ones have χ2/ndof ≈ 1.14,
or p = 1.88×10−4, that is, they are far from being flexible
enough to describe the data. There seems to be a general
tendency to forget that the quality of a fit is a function
of two variables, not of their ratio, and that for large
fixed ndof the dependence of the fit’s quality on χ2 is an
inordinately sharp function around χ2 = ndof , suffice it
to plot Eq. (15) to convince oneself.

VI. THE EXTRACTION OF 〈r3p〉(2) FROM ep
SCATTERING DATA

The result for the third Zemach moment is [11]

[〈r3p〉(2)]1/3 = (1.394± 0.022) fm, (17)

based on the data in Fig. 1. Based on the same data, the
result for 〈r2p〉 is that of Eq. (2). To discuss the “third”
moment, it is useful to write it in an alternative form:

〈r3p〉(2) u
∫ ∞

0

d|q| I(q2)

I(q2) ≡ 48

π q4

[
G2
E(q2)− 1 +

q2

3
〈r2p〉

]
(18)

Notice that I(q2) tends to a constant as q2 → 0.
The usual dipole form factor (m2

d = 0.71 GeV2) is a
good-enough approximation for the forthcoming discus-
sion. The shape of I(q2) is shown in Fig. 3. Normalized
to the total integral, the fractions of the integral in vari-
ous relevant intervals ∆q = (a, b) fm−1 are the following:

(0, 0.4)→ 0.09 ; (0.6, 1.6)→ 0.20 ;

(1.6, 4)→ 0.29 ; (4,∞)→ 0.38 . (19)

0 1 2 3 4
0.1

0.2

0.3

0.4

0.5

I
(q

2
)

q (fm−1)

9 
%

20 %
29 %

38 %

FIG. 3: The third Zemach integrand of Eq. (18), illustrated
for the usual dipole and shown in the same domain as that of
Fig. (1). The shaded band is at ∆q = 1.1±0.5 fm−1. Data in
the dashed extrapolation do not exist. The contributions to
the moment from various intervals are discussed in the text.

It is stated in [11] that “Sensitivity studies have shown
that the main contribution to the integral comes from
the region ∆q = (0.6, 1.6) fm−1 where the data base for
electron-proton scattering is very good.” But the con-
tribution is significantly larger in the range ∆q × fm =
(1.6, 4) where the data are particularly bad, see Fig. 1.
The contribution if the range (4,∞) is even larger. The
contribution in the range (0,∼ 0.4), where there are sim-
ply no data, is not at all negligible. In other words, given
the results in Eq. (19), the quoted statement must refer
to the error estimate, not to the central value. And the
basis for the deduced central value on 〈r3p〉(2) is still the
fit in Fig. 1, whose p-value I have quoted.

It is concluded in another study [16] of I(q2) that “a
large third Zemach moment can only occur if 〈r4p〉 is also
large”. This is unobjectionable, though “large” means
relative to the expectation from a dipole form-factor.
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VII. HOW TO EXTRACT rp MOMENTS FROM
ep SCATTERING DATA?

We have seen that the values and errors obtained in
the literature for 〈r2p〉 and 〈r3p〉(2) are not credible. Since
the various moments are highly correlated, another perti-
nent question is: how to draw, in the (〈r2p〉, 〈r3p〉(2)) plane,
trustable, model-independent contour plots of given sig-
nificance? A procedure might be the following:
(1) Normalize the data to a fixed model, as in Figs. 1,2.
(2) Study modifications, relative to the model, with
a complete set of orthogonal functions, e.g. a discrete
Fourier basis for the complete data interval, a function
of a variable, such as logq2, chosen to emphasize the
most relevant, low-q2, domain.
(3) Let the results fix the needed flexibility, i.e. cut the
Fourier series at the term for which χ2 6 ndof (p 6 0.5).
(4) Sidestep an extrapolation to q → 0, which is un-
avoidably problematic. That is, use the data only where
they exist. For this, one would have to Fourier transform
GE(q) into ρ(r) and study its moments. This is probably
the only way of facing their unavoidable correlations.
(5) Show the correlated results as (〈r2p〉, 〈r3p〉(2)) contour
plots for fixed acceptable values of p.

Such a procedure is very different from the usual. It
may well lead to significantly different conclusions. Doing
this analysis –in contrast to the simpler choice of verbally
discussing it– is well beyond the scope of this paper.

VIII. DISCUSSION

The result of Eq. (1) is not only based on measure-
ments including ordinary-hydrogen levels, but also on the
ep-scattering result of Eq. (2), discussed in Section V.
The elimination of this input from the CODATA fit to
78 (more or less) fundamental constants results in [2]:

√
〈r2p〉(ep) = 0.8737± 0.0075 fm (20)

This result is shown as the shaded band in Fig. 4, dis-
playing the rms radius versus the cubic root of the third
Zemach moment. To facilitate the coming discussion,
I have added the −2σ and −3σ lines corresponding to
Eq. (20). Also shown in the figure are the two results,
Eqs. (16), of the Mainz experiment [5].

The lowest (dashed) line in Fig. 4 is Eq. (10), from
the µH Lyman shift [1]. The continuous straight line
above the previous one takes into account the renormal-
ization correction of Eq. (12). Make the same correction
in Eq. (6) to obtain:

Lth
[
〈r2p〉, 〈r3p〉(2)

]
=

209.9779(49) − 5.20123 〈r2p〉+ 0.00913 〈r3p〉(2)(21)

and equate it to the observed value of Eq. (5) to obtain
the “µH” correlation, the continuous curve in Fig. 4.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.84

0.85

0.86

0.87

0.88

0.89
M(poly)

CODATA − 2 σ

CODATA − 3 σ

√
〈r

2 p
〉(

fm
)

[
〈r3

p〉(2)
]1/3

(fm)Friar/Sick

M(spli)

CODATA ± 1 σ band

←µH

FIG. 4: Atomic data for the rms radius versus the third
Zemach moment. The “µH” curve is the correlation between
the rms radius and the third Zemach moment implied by the
observation of Eq. (6) and the theoretical result of Eq. (21).
Also shown are the polynomial and spline results of [5] (meant
to be read as horizontal bands) and the 〈r3p〉(2) of [11].

This correlation –and not a figure for rp– is the outcome
of the theoretical analysis of the measurement [1].

If the value of the third Zemach moment was that of
Eq. (17), indicated by an arrow in Fig. 4, the muonic-
and ordinary-hydrogen results would be more than 3σ
away. If, instead, (〈r3p〉(2))1/3 ∼ 2.1 fm the tension would
diminish to the 3σ-level, marked by a circle in Fig. 4 (the
increase of the moment is more severe than it seems to
be, since the observable is not its cubic root).

The standard deviations of the previous paragraph are
the ones pertinent to a normal data distribution, for
which ±1, ±2 and ±3σ correspond to coverage proba-
bilities of 68.27%, 95.45% and 99.73%. But the data of
CODATA are not normally distributed, meaning that the
bands of the same fixed probability are not the ones in
Fig. 4, and that the conclusions of the previous paragraph
should be correspondingly weakened.

More precisely, 9 out of 135 input data in [2] –related
to the Watt balance, the lattice spacing in various Sili-
con crystals, the molar volume of the same element and
the quotient of Plank’s constant to the neutron mass)
have had their uncertainties increased by a multiplica-
tive factor 1.5 [2]. This choice helps in obtaining a fairly
satisfactory overall p-value, p = 0.221, but it describes
a hypothetical set of experiments, not the actual one.
Moreover, the question of the individual p-values of the
experiments is not reexamined in [2]. We have seen ex-
amples of how misleading this omission may be.



6

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.80

0.82

0.84

0.86

0.88

0.90

√
〈r

2 p
〉(

fm
)

[
〈r3

p〉(2)
]1/3

(fm)

B1

B2
HP1

HP2 HP3

HP4

WLTY

µH

CODATA

FIG. 5: The CODATA result of Eq. (20), the µH correlation
also shown in Fig. 4, and recent “theory-driven” results for
〈r2p〉 (meant to be horizontal bands). B1, B2 cite [17], HP1 to
HP4 cite [18] and WLTY quotes [19].

A solidly-motivated approach to the extraction of 〈r2p〉
from the ep scattering data is based on the use of the
analytical properties of the nucleon’s form factors. Two
recent examples are [17, 18] (it would be helpful to know
the p-values of these fits). Their rp outcomes are shown
in Fig. 5. The result of a first-principle lattice calculation
[19] is also shown. The spread of the theoretical results
may be indicative of the difficulty of reaching a consensus.
Should the spread reflect a level of uncertainty, there is

no “tension” between theory and observations.

IX. CONCLUSIONS

In a paper on the same subject [3], I have contended
that a large third Zemach moment may be the solution to
the clash between the values of the rms radius extracted
from various experiments. In Fig. 4 one can see that, even
after the corrections I have discussed, (〈r3p〉(2))1/3 ∼ 3 fm
would be required to have ordinary and muonic hydrogen
precisely agree. Even if a dipole form factor is only a
very vague description of the data, such a value feels
unexpectedly large, part of the argument in [16].

The Lamb shift measurement provides a correlation
between the two relevant moments: the curve “µH” in
Fig. 4. I have argued that it would be very helpful to
extract the correlation dictated by ep data, to be added
as confidence-level contours to the figure, to decide –with
confidence– what the empirical conclusion is.

A similar inference can be extracted from the com-
parison of theory and data summarized in Fig. 5. Cur-
rently none of these “theory-driven” results are available
in the form of two-dimensional (〈r2p〉, 〈r3p〉(2)) confidence-
level plots. Even barring other putative limitations of
current theory or experimental analyses, the most ex-
treme views on the subject [3, 4] seem to have been
largely exaggerated.
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