PUC ...

Basics of Elasto-Plasticity in Creo Simulate
— Theory and Application —

Presentation for the 4" SAXSIM

TU Chemnitz, Germany, 17.04.2012
Revision 2.1

Dr.-Ing. Roland Jakel




Basics of Elasto-Plasticity

Table of Contents (1)

» Part | — Theoretical Foundations
— Elasto-Plastic Material Basics (5-9)
— Elasto-Plastic Material Laws in Simulate (10-13)
— Defining Elasto-Plastic Material Laws — Curve Fitting (14-19)
— Multi-Axial Plasticity (20-24)
— Examination of Typical Stress States (25-35)
— Hardening Models (36-37)

= Part Il — Applying Simulate to Elasto-Plastic Problems
— Isotropic Hardening (39-40)
— Working with Material Laws in Simulate (41-42)
— Small Strain and Finite Strain Plasticity (43-49)
— Characteristic Measures in Plasticity (46-51)
— Load Stepping and Unloading (52-53)
— Meshing (54)

Basics of Elasto-Plasticity | Dr. R. Jakel | Rev. 2.1




Basics of Elasto-Plasticity

Table of Contents (2)

= Part lll — Application Examples
— AUniaxial Test Specimen with Necking (56-64)
— Flattening of a Tube End (65-67)
— Forming of a Thin Membrane (68-70)

= Part IV — Appendix
— Literature Sources (73-74)

— Technical Dictionary English-German (75)

Acknowledgement
Many thanks to Tad Doxsee and Rich King from Christos Katsis” Simulation
Products R&D, for the continuous support and all information

Basics of Elasto-Plasticity | Dr. R. Jakel | Rev. 2.1




Part |

Theoretical Foundations

Basic Introduction into Elasto-Plasticity

ics of Elasto-Plasticity | Dr. R. Jakel | Rev. 2.1



Elasto-Plastic Material Basics (1) PTC

The elasto-plastic stress-strain curve

* True elastic limit (1):

— The lowest stress at which dislocations move
— Has no practical importance

F/A

a‘:

= Proportionality limit (2):

— Limit until which the stress-strain curve is a straight line

059{? e=lL g
characterized by Young's modulus, E A typical stress-strain curve
for non-ferrous alloys [1]
= Elastic limit, yield strength or yield point (3):

— |s the stress at which a material begins to deform plastically, means non-reversible (this is the
lowest stress at which permanent deformation can be measured)

— Before the yield point, the material deforms only elastically and will return to its original shape

= Offset yield point or proof stress (4):

— Since the true yield strength often cannot be measured easily, the offset yield point is arbitrarily
defined by using the stress value at which we have 0.1 or 0.2 % remaining strain. It is therefore
described with an index, e.g. Ry, for 0.2 % remaining strain like shown in the image
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Elasto-Plastic Material Basics (2)

Engineering and true stress

PlC

. 800
In stress-strain curves, usually the
engineering stress c=F/A, vs.
engineering strain ¢=Al/l, is shown
600 |

If the material shows significant

plastic behavior, the engineering

stress o decreases when the 400 1
specimen shows necking

c [MPa]

The true stress o*=F/A still 200 A elongation elongation
increases. since there is a without necking | with necking
significant local reduction of area
. . . . 0
like shown in the right image 0 | | | k [%]

0 5 10 15 20 25

In many practical applications (up to
~ 5 % elongation), the difference is
negligible
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Stress-strain curve of a typical soft steel
with engineering stress o and true stress o*
VS. engineering strain, modified from [3]



Elasto-Plastic Material Basics (3) PUC

Fracture shapes in uniaxial specimens

= Brittle material (a) shows rupture in
the plane of the maximum principal
stress o,

= Ductile material (b) shows a crater-
shaped shear fracture under 45° to
the maximum principal stress plane
near the specimen surface.

= Within the specimen, a brittle
fracture shape can be observed,
since inside the necked area we
have a multiaxial stress state (c)
with an acc. to [3] approximately a) b) c)
equal aXIa.I’ radial and tafnge.ntlal Fracture shapes and stress state in an
stress, which prevents yielding uniaxial test specimen, modified from [3]
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Elasto-Plastic Material Basics (4)

Typical uniaxial stress-strain curves [3]

Hardened steel,

e.g. for spring applications (1)

Tempered steel (2)
Soft steel (3)
AICuMg, hardened (4)

Gray cast iron GG 18 (5)

Shown is engineering stress
versus engineering strain!
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Elasto-Plastic Material Basics (5)

Comparison of elasto-plastic and hyperelastic material

= Proportionality limit and elastic limit
— Note that for typical elasto-plastic material, there is often not a
big difference between these two limits (points 2/3)

— In opposite, for elastomers, such as rubber which can be
idealized as hyperelastic, there is a big difference between
these points: These have an elastic limit much higher than the
proportionality limit, and an elastic limit is not specially taken into
account in the hyperelastic material formulation

= Compressibility and Poisson effect
— Elastic strains in elasto-plastic materials usually appear with
volume changes, the Poisson ratio is <0.5, e.g. 0.3
— In general, plastic flow of metals occurs without volume change.
Mathematically, this means the Poisson ratio for plastic strains is

0.5 and g, &5, +€,,,~0

— In opposite to this behavior, hyperelastic material does not
change its compressibility during loading, so as Wildfire 4 user
you should never try to “approximate” any elasto-plastic material
curve with the hyperelastic model!
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A typical stress-strain curve for
non-ferrous alloys [1]

A
o

Hyperelastic material
stress-strain curve [2]



Elasto-Plastic Material Laws in Simulate (1) PTC

Implemented Material Laws °
= The material laws are a one dimensional relation o=0,
of stress versus plastic strain o,

= Creo Simulate supports four material laws for
describing plasticity: =
— elastic — perfectly plastic: Above the yield limit the stress

(0,=0,is=Yield stress) is constant independently of the =0, +E, ¢,
plastic strain reached (a special case of the linear hardening
model with E,.=0) %

— ,Linear hardening®: The relation between stress and plastic
strain is constant (,tangent modulus® E_ with slope 0<E_<E)

— Power (Potential) law: 0<E_<E, 0<m=1
. g
— Exponential law: ° \
m>0, Cjimit >0 \ g=g, + E., (Ep)m
Ty+ Ojimit 0=0, + Ojjm[1- €Xp (=mep))

Gy
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Elasto-Plastic Material Laws in Simulate (2) PTC

Coefficient of thermal softening — CTS (1)

= This coefficient takes into account that the yield strength of a material falls
with increasing temperature. It is regarded as a constant material parameter
and allows to take into account temperature influence when analyzing
plasticity. It is valid for all plasticity models supported.

» The coefficient of thermal softening 3 is defined in Simulate as follows:
Y, =Y, '(1_:BAT):Y0 '(1_:B(T1 _To))

= Herein, Y, is the material yield strength entered in the material definition
dialogue (Simulate assumes this is for the reference temperature T,), and (3
(dimension 1/temperature) is the coefficient of thermal softening. Y, is the
yield strength at the model temperature T,.

= Note: In order to prevent a negative yield stress, the condition B*(T, - Ty)<1
must be fulfilled! The engine issues an error and stops if this appears.
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Elasto-Plastic Material Laws in Simulate (3) PTC

Coefficient of thermal softening (2)

In [6], there is a more general formulation of the thermal softening, which is
based on the power (potential) plasticity law and also takes into account the
strain rate (loading speed).

o={A+Bs"fl+Clns* LT T*:[ T —Troon j
TMeIt —T

Room

Herein, we have 5 material parameters A, B, n, C, m.
£* = £/&, is the dimensionless plastic strain rate for &, =1.0s[6].

T* is the homologous temperature, and o the von Mises flow stress.
Expressed in formula letters more common in this presentation, we obtain

bt (5]

—T,

0 Melt 0
So, the CTS used in Simulate is a linearization of the temperature function
given above, which is good for most cases. The strain rate has to be taken
Into account directly by modifying the material law parameters, if required.

Y, =Y, (1= SAT)=Y, - (1 A(T, - Ty))
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Elasto-Plastic Material Laws in Simulate (4)

Coefficient of thermal softening (3)

* The influence of thermal softening

TRUE TENSHE STRESS tMPa)
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| i
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Is depicted in [6] for various materials
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Defining Elasto-Plastic Material Laws — Curve Fitting (1) P TC

Stress-strain curves for materials beyond the elastic limit can be defined by tests

= Simulate can automatically select the material law from linear least squared
best-fit, if the user enters uniaxial tension test data

Material Definition =]
. . . . MName
[ M I I t / 't bl 't [X2CRTINB18_PLASTIC '
anual selection/iInput 1s possibie, 100 -
Description
| E-Modul reduziert auf 200000 bei ca. 350 * |
Plastic Hardening Law Definition
Test Edit Graph DensityI 7.7e-09 | tonne/mm"3 '|
el QL == | 8 Structural | Th 1| Miscell App u Defined
D Eu %o B @ éﬁ ] E‘ Q @ E & rmal | ous Pl ser in |
- z z Symmetry| Isotropic hd
Test T . . Show Best Fit Material Model Curves
v est1 : Uniaxial T, R
Type . % SUBERL Stress-Strain Response| Elastoplastic '|
} 440,00 % [¥] Linear Hardening 0.00166289 ) S
Plastic Str.. Stress ] Power Law $ 2804260-14 | Poisson's Ratia| 0.3 ' |
248 420.00 ] & (V] Expanential Law NiA Young's Modulus | 200000 [| Pa M
. ¥— || o—
0.002 230 e 400.00 . | o— Coeff. of Thermal ExpansionI 1e-05 I| Ic '|
018 430 A ) )
% i — Select Hardeninglaw ———————————————————— Mechanisms Da al ll sec/mm '|
i 380.00 7 “ Linear Hardening | . " Hardening Law |
i1 i 7 [ ; |
= Y. Linear Hardenin v i
&7 380,00 _ y, g Define ElyTests| Edit |
B / Use Best Fit Coefficients
€ a0.00 / Tensile Yield Stress| 248 [wPa \ | )
g F U — ¥4
C ] / Tangent Modulus| 1005.49 [ mPa \\ [leag=nEhiodukes
320,00 _| fi. of Thermal Softening| 0 [ 1 -
5 ;
= 1 e — Material Limt .
o 300,00 _| 4 . .
£ | Tensile Yield Stress * |
£ b ) )
3 280,00 _| Tensile Ulimate Stress | 428 989 [ mPa v
. / Compressive Ultimate Stress [ I| MPa '|
260.00 — *Required Fields
240.00 — Failure Criterion 1
LN LI DL L L LA L DL L | Distortion Eneray (von Mises) -

0.00 0.02 0,04 0.06 0.08 010012 0.14 016 0.18

- MNominal (Engineering) Plastic Strain
MPa - | None ]

| Cancel | Ok

— Fatigue Y

Cancel |
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Defining Elasto-Plastic Material Laws — Curve Fitting (2) PU1C

Isotropic hardening laws using linear least squared fitting algorithm [4]

» The following slides show what happens behind the Simulate user dialogue
when material test data is input

= |f we have an equation
y =a+bx

then the coefficients a and b can be evaluated from the following equations:
q= y:yi 'yxiz _yxi 'yxiyi
ny X _(Z X )2
_ nyxi Y _yxi 'XYi
ny X _(Z X )2

= Here, n is the number of data points, (x;, y;) is the data pair and the
summation goes from 1 to n

b
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Defining Elasto-Plastic Material Laws — Curve Fitting (3) P1U1C

Application of linear least squared fitting algorithm to isotropic hardening laws [4]
» Linear plasticity
o=0,+E.&,

or. Y=A+BX

Y -A=BX
Here: Y=Y —A ©
a=0 o=0,+E £,
b=B
X:X U'!."




Defining Elasto-Plastic Material Laws — Curve Fitting (4) PU1C

Application of linear least squared fitting algorithm to isotropic hardening laws (cont'd)
= Power (potential) plasticity law
oc=0,+ Em(gp)m

or: Y =A+BX"

Taking logs on either side to the base e:
log. (Y — A)=log, B+mlog, X

g
Here: y=log,(Y —A)
a= |Oge B g=0, + Em (Ep}m
b=m
U‘f
X =log, X
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Defining Elasto-Plastic Material Laws — Curve Fitting (5) PU1C

Application of linear least squared fitting algorithm to isotropic hardening laws (cont'd)
= Exponential plasticity law
o=0,+0,y, (1— exp (— me, ))
or: Y =A+B(l-exp(-mX))
Y-A=B-Be™

Taking derivatives on either side, with respect to X:

dY -A) _ S
dX 5

Taking logs on either side to the base e: K
|Og d (Y — A) = |0ge (m B)— mX Oyt Ojimit 0=0, + Oyl 1- €xp (TME0)]
dX

€
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Defining Elasto-Plastic Material Laws — Curve Fitting (6) PU1C

Application of linear least squared fitting algorithm to isotropic hardening laws (cont'd)

= Then, we obtain:

- Ioge(d(Y — A)j

dX
a=log,(mB)
b=-m
X=X o)

After evaluating m (from b),
we can evaluate B (from a)

- —ME
U,_l,r'l' Ojimit U_Uy + Ulimit[1_ eXp ( F:I)]
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Multi-Axial Plasticity (1) PTC

Yield point and yield surfaces

= The material laws are a one dimensional relation of stress versus plastic
strain. Only uniaxially tension loaded specimens are used for characterizing
the elasto-plastic material behavior, where we have one yield point only.

= |n the three-dimensional space of the principal stresses (0, 0,, 03), an
infinite number of yield points form together the yield surface.

= In real structures, we usually have biaxial stress states at the surface and
— more or less — three-axial stress states within the structure. Hence, we
need a suitable criteria to form an equivalent uniaxial, scalar comparative
stress, called the yielding condition or yield criteria.

= In literature, several different yield criteria can be found for isotropic
materials.

* The subsequent slide shows only the most popular criteria for yielding of
Isotropic, ductile materials.
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Multi-Axial Plasticity (2) PTC

Classical isotropic yield criteria

= Maximum Shear Stress Theory (Tresca yield criterion)
— Yield in ductile materials is usually caused by the slippage of crystal planes along the maximum
shear stress surface.

— The French scientist Henri Tresca assumed that yield occurs when the shear stress exceeds the
uniaxial shear yield strength <,

Ty = 91=% ;(73 <7,
= Distortion Energy Theory (von Mises yield criterion)

— This theory proposes that the total strain energy can be separated into two components: the
volumetric (hydrostatic) strain energy and the shape (distortion or shear) strain energy. It is
assumed that yield occurs when the distortion component exceeds that at the yield point for a
simple tensile test. The hydrostatic strain energy is ignored.

1 2 2 2 ?
E[(Q_Gz) "'(0_2_03) +(O-3_O-1) ]ZGV

— Based on a different theoretical derivation it is also referred to as “octahedral shear stress theory”

— Simulate supports this yield criteria only, since it is most commonly used and often fits with
experimental data of very ductile material
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Multi-Axial Plasticity (3)

Graphical representation of classical criteria

= |n the three-dimensional space of
the principal stresses (o,, 0,, 03), an
Infinite number of yield points form
together the yield surface. If the
stress state is within this surface, no
yielding appears.

= The most popular criteria, Tresca

and von Mises,

O, — O
Tmax: - BSZ-s
2 y

1 2 2 2 ?
E[(O'l_o'z) +(0'2_0-3) +(O-3_O-1) ]:O-y

look like shown right

* The von Mises yield surface is

PTC

Yield criteria for plane stress (c5=0, top)

therefore called the “yield cylinder” and any three-axial stress state (bottom)

Basics of Elasto-Plasticity | Dr. R. Jakel | Rev. 2.1
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Multi-Axial Plasticity (4) PTC

Other Isotropic yield criteria

= Generalized Isotropic Yield Criterion (Hosford)

1/
((71_02)”"'(0_2_(73)”+(O_3_01)n ”:O-
2 y

— Experimental and theoretical data on yielding under combined stresses can be described by a
single parameter, n, with 1 <n < oo
— For n=2, this equals the von Mises criterion

— This criterion was proposed in 1972 by W. F. Hosford, Department of Materials and Metallurgical
Engineering, The University of Michigan, Ann Arbor, Mich [7]

= More criteria and deeper information can be found e.g. in [8] and [9]
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Multi-Axial Plasticity (5) PUC

Graphical representation of some other isotropic yield criteria

= Comparison of different popular criteria [9]
1.5+

Tresca

—— von Mises

e —&— Hosford72
W —A— Hill48

—4— Hill90
—»— Hill93
® Ex. data

(a) (b) (c)

a. |F-steel
b. LC-steel
c. Aluminum alloy
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Examination of Typical Stress States (1) PTC

Von Mises Stress and Principal Stresses

= Note the von Mises yielding condition must always be satisfied:

2O-yieldz = (O-l _0-2)2 "'(O-z _0'3)2 +(O-3 _0'1)2

= This has some consequences, e.g.:
— In a uniaxial stress state, the yield stress and the maximum principal stress will always be the
same — the maximum principal stress can never by greater than the von Mises stress!

— In a biaxial stress state, it may happen that one or more principal stresses may well be above or
below the uniaxial yield stress, so do not be surprised!

— In equi-triaxial tension, yielding will never appear, since the principal stress differences are zero.
The material will break if the principal stress reaches ultimate stress, while the von Mises stress
will still be zero. A ductile material will behave brittle in this case, that means rupture appears
suddenly without previous yielding!

= In the following slides, we will examine some characteristic stress states
with a small demonstration model for better understanding
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Examination of Typical Stress States (2) PTC

Demonstration model

» \WWe use a unit volume with symmetry

constraints
— Loads can be applied with forces or enforced
displacements in all principal directions
— The mesh consists of one p-brick only
— We have created measures for stress (true and
engineering) and strain (log and engineering), equivalent
plastic strain, reaction forces and absolute volume

= Note:

— Simulate uses exactly v=0.5 for plastic (incompressible)
strains, not 0.4995 like for incompressible hyperelastic
material

— In hyperelasticity, 0.5 can lead to “dilatational locking”,
where the mesh acts too stiff for numerical reasons, and
0.4995 fixes that. This problem does not occur in
plasticity.
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Examination of Typical Stress States (3) PTC

Material model used

= Simple linear hardening and perfect plasticity

model used Test! : Uniaxial
— Very soft model steel with 200.00 r
« E=200000 MPa <1500 ] /!
* Yield strength = 100 MPa Z 180,00 _|
* Elastic Poisson ratio = 0.3 Z110.00
« Tangent modulus (linear hardening only) = 2000 MPa ** is6.00 ] /
— Atits yield strength, the strain should be 150,00 _ y
g =lal =0.0005 = 0.05% Rty //
E 13000 _| //
— The lateral strains are: 12000 /
¢,=&,=—2 o, =-0.00015 = —0.015% R VA
E 100 00
. . U_DIICIUI | é.olm! | E:-.-:lenl | tIJ_DIBEI! I -:%_Ul_dnl | [E).GSU
— At the yield strength, the unit volume of V,=1 mm3 Pla80 ¢ STrals
increases to Note:
V, = (1+¢&)1+&,)A+¢,) ~1.0002 mm? Log strain LDA results are translated into

engineering strains with computed

— All'subsequent analyses performed in LDA measures, e.g. (e"strain_XX)-1
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Examination of Typical Stress States (4)

Uniaxial Tension s

= Perfect plasticity results |
— Axial stress stays constant at 100 MPa after yielding I_G T~
— Volume does not further increase when material yields, like expected '

Q{E %_K}{

train’ XX _engineering

"Window 1" - enf_x_finestepyield_idealp - enf_x_finestepyield_idealp
10000

T L= o o £

000 = GraphTool
] ﬂ strain_X_engineering: 0.0005

§ 6000 stress_J0( 99.955
U'.II —
© 4000 _ oK
W

2000 _

o I L L L L

0.000 0001 0002 0003 0004 0005
strain_XX_engineering
stress WK

WVolum _ .
strain g(X_engmeenng

“Windoaw 1" - enf < _finestepyield_idealp - enf_¥_finestepyield_idealp
1.00025

1.00020 _| G A . . .
O 100015 —_ GraphTool
E | ﬂ strain_ﬁTuepng;p$:aﬂrérag2: 0.0005
£1.00010 -
| 0K
1.00005 _|
1.00000

i
0000 0001 0002 0003 0004 0005
strain_xX_enginesering
Yolume
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Examination of Typical Stress States (5) PTC

Uniaxial Tension

» Linear hardening results
— Axial stress = 15t principal stress increases with factor 100 reduced slope after yielding

— Volume further increases when material yields: Elastic strain increases because stress

increases during yielding, too! (Note: Analysis was performed in LDA, since SDA cannot

capture this volume change very accurately)

tl"e_)S HOK Yolym
ai strain
Q%/r‘ains]_m -
"Window1" - enf_X_finestepyield - enf_*_finestepyield
“Window 1" - enf X finestepyield - enf X finestepyield ISR LA UEIE = EILAIMESEbS
1.0004 _
20000 _
175.00 l
150,00 _] 1.0003 _
125.00 @ 7]
100,00 ] GraphTool %1.0[][]2_
o ] strain_)o¢ 0.000499875 z -
£ 75.00 B o o oo0ss - i B e
50.00 _F 1.0001 _F
] 0K b OK
2500 _| |
0.00 1.0000
L L L L L L L
000 001 002 003 004 005 000 001 002 003 004 005
strain_xx strain_#x
o stress KX o Yeolume
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Examination of Typical Stress States (6)

Pure Torque (1) o,
= We load the volume with the uniaxial yield limit
strength: o, =—0o, =Y, » < —
— Von Mises stress vs. equivalent plastic strain reflects the o \\@%y 1
uniaxial linear hardening material input curve, like expected <~ g b\fg\\

PlC

astress_vm
é”aﬂ”—? SE a0
ca . +
Loac?aet: ummec(]]LoadSet

%aé stress wm
=)
S:[gglln_%l{}{DODE+ il
Loac?set:'gummegLoadSet

180.00
160.00
140.00 _

“Window 1" - pure_torgque - pure_ftorgue

5

“Window 1" - pure_torgue - pure_torgue

180.00
160.00

0.01

ot
0.02

strain_eq plastic

max_stress_vm

0.03

200,00
= 19000 _]
=
% .
= 180,00 ]
110,00 _]
= i
150,00 ]
150,00 ]
140,00 ]
130,00 _]
120,00 _]
119,06 ]

190,00

Testl

ClUnraxial

I U
0.000  0.010  ©.020  ©0.030  0.040 _ 0.050
a Ic ramn

Plostic §t

140.00 _]
£ 120,00
9100 .00 _]
80.00

' 6000 _]
4000 ]
20.00 _7
0.00 ]

Masx_stre

0.00

il

L
0.02

0.03
strain_ 2K
max_stress_vm

b
0.04
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Examination of Typical Stress States (7)

Pure Torque (2)

— The max. and min. principal stresses (= x and y-stress)
show yielding much below the uniaxial yield strength of

100 MPa!
stress prin %tressgrin
;[\:/Elﬁbi@{m% ( érailj_%l{}{GDDE il
: + cale 1. +
ngc%et: ummegLoadSet Loac?aet: ummedLoad
“Window 1" - pure_torque - pure_torgue "Window 1"
12000 0.00 _
- -10.00
19000 — -20.00 3
= - £ 2000 3
5 80.00 4 =
N % 4000 ]
= iy
@ 60.00 _ & 5000
EI & -60.00 7
é 4000 _| E -0.00
2000 | -50.00
a -90.00
0.00 -"l[][].GD" | e —— : |
DL L D L B B B T E TRt et

0000 000 Q020 0030 0040
strain_ 2%
max_stress prin

=t
Ry

0000 0010 0020 0030 0040

- sfrain_xx
min_stress_ porin

=t
Ry
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Examination of Typical Stress States (8) PTC

Pure Torque (3)

— The volume should not change for this loading state, just
small numerical disturbances

— Strain energy increases dramatically after von Mises stress
reaches yield limit of 100 MPa

Ra’tr:rlgurqﬂ ﬁfm'n_energy
%calle—’l LO00E+Q0 stress wm (WPa)
Loadset SummedLoad>et Scatl? ’l.gDGI]E+ i
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p —_— q p —_— q Ilwndgwalll_p
1.000100 _
i 6.00__
1.000075 _| |
1000050 _ 9.00—=
1.000025 _] =4 00
= T _
%W-GGGGGG oS %IS.GG_
>0.999975 _] = s
i 2200 ]
0999950 _ i ]
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Examination of Typical Stress States (9)

Biaxial tension ratio: 5,=1.2Y, 5,=0.5Y,; .=0 o2
1 0 Y2~ 0 Y3 oy %
AN /‘/ I
— This biaxial, plane stress state allows to load the material SNl B
well above the uniaxial yield limit without yielding! | / R e
. . -0, N o, ©
— Just above &, = 5, = 115 MPa yielding takes place, e
15 % above the unixial limit X+
O-Y
tress Hx 5 i
U NET
Loadset SummedlLoadSet Loadaet SummedLoad=et
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Examination of Typical Stress States (10)

Biaxial tension ratio: 6,=1.2Y,; 6,=0.5Y; 55=0

— The graph Y-Stress vs. Y-strain shows a sharp bend, since

negative incompressible Y-strain prevails after yielding!

— The von Mises stress vs. X-strain shows the uniaxial
material behavior, like expected
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Examination of Typical Stress States (11) PTC

Equitriaxial tension

= We load all directions, e.g. o, =0, =0, =10Y,
— Yielding never appears, since all principal stress differences are zero
— In equitriaxial tension, the ductile material will suddenly break brittle
when ultimate strength is reached, without previous yielding
— Under hydrostatic pressure, yielding or even rupture in general will not
appear under practical achievable pressures

rﬂ/% Stress_prin tress von_mises
gtraiﬁb{){ Q}?E@ K,
Loadset SummedLoadSet Loadset SummedLoadSet
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Hardening Models (1) PTC

Basics of material hardening ;
4

= Bauschinger effect z
— If a metallic material is loaded above its yield strength and Ty

the load is reversed, its yield strength in the reversed
direction becomes reduced

— This effect was described by Johann Bauschinger
(1834-1893, Prof. for engineering mechanics at the
Munich Polytechnikum) o,

— The analogous model for this effect is shown right below: /
It consists of a spring K, representing the elastic material
behavior. In serial connection to K, , there is a friction
element F and another spring K, (usually K, << K,) in
parallel connection

el |
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Hardening Models (2)

Basics of material hardening

= Kinematic hardening (Bauschinger effect)
— |deal kinematic hardening means that the yield surface of
the yield law is just offset, its size remains unchanged
— The yield limit is constant, just the midpoint “m” of the yield
locus changes

= |sotropic hardening
— For ideal isotropic hardening, the direction of the loading
does not influence the yield limit
— Here, the yield surface simply expands if the material is
loaded above yield

= |sotropic kinematic hardening
— In reality, usually both models have to be combined to
describe the material behavior.

— The Bauschinger number describes the relation of kinematic
and isotropic hardening
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Part |l

Applying Simulate to Elasto-Plastic Problems

Opportunities & Limitations
Tips & Tricks




Isotropic Hardening (1) PTC

Application in Creo Simulate (1) i

train’_d

"Window 1" - enf_X_cyclic - enf_¥_cyclic

= |sotropic hardening 00 _
— Creo Simulate supports isotropic 15000 ] /
hardening only, therefore currently the K000 ]

Bauschinger effect cannot be described

stre
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i
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— Simple linear hardening material used
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i
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Isotropic Hardening (2)

Application in Creo Simulate (2)

= Cyclic Loading

— Since currently only isotropic hardening is supported,
cyclic loading especially with the linear hardening or | 3
Power law is not realistic, because the material will

“harden until infinity”.

» Preferred Material Model t
— Inthis case, approximate with perfect plasticity or i
exponential hardening law (both have an upper limit).
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Working with Material Laws in Simulate (1) PTC

What do | have to take care about when | use a material law within Simulate?

= Plastic material laws and test data

— When entering the elasto-plastic material/test data into the data dialogue, note that you have to
enter engineering stress vs. engineering plastic strain for SDA and true stress vs. logarithmic
plastic strain for LDA. Subtract the elastic strain from the total strain to get the plastic strain
required for input. Note the curves start with the yield limit stress, not at zero!

— For all material laws except of perfect plasticity, the entered stress must be a strictly monotonic
function of the engineering strain. A decrease of engineering stress at higher strains cannot be
described in a SDA (see example 1 of part |l for further details).

— Only the exponential plasticity law allows to define an upper limit of plastic stress, which is
approached asymptotic!

— The material laws do not allow to calculate (accidently) necking under high loads in the plastic
domain, if there is no imperfection in the model; so they do not allow to predict where failure will
really appear (see again example 1 of part lll for further details).

= Stress and strain output
— Note that Simulate will output engineering stress and strain in plasticity only if “calculate large
displacements” (=LDA) is not activated. If an LDA is performed, since Creo 1.0 Simulate outputs
logarithmic strain and true stress (until Wildfire 5, output is Almansi (Eulerian) strain).
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Working with Material Laws in Simulate (2)

Graphical representation of different strains [2]:

PTC

3

—gngineering strain

strain

2.5

—|ogarithmic strain

——@Green-Lagrange strain

2 ——Eulerian (Almansi) strain /
1.5

Reported until Wildfire 5 in LDA: Almansi Strain

0,5 0.6 09 1 1.1 1.2 13 1.4

16 1.7 1.8 19 2 21 22 23 24 25

-0.5 / V4

Reported since Creo Simulate in LDA: Logarithmic strain

stretch A=l,/l,

1 \///-\~8L=In(|1/|0)=|,n;L

2 2
I1 _Io
2

I~

1
€E:§

Il

-1 - (also called “natural”, “true”, or “Hencky” strain),

|
obtained by integrating the incremental strain: agl_ = 8_| — IagL = 18_' =g = In I_l =InA
, o 1, l,
L2 2 3 4
& & &
e =hl+g)=e——+——-——+-...
2 3 4
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Small Strain and Finite Strain Plasticity (1)

PTC

Small and finite strain plasticity

= Literature separates between “small strain”

and “finite strain” plasticity

— In small strain plasticity, just small deformations are .
allowed and the total deformations as well as the
deformation increments are additively split into an
elastic and plastic part, €= g.te,. This assumption is
valid for strains up to a few percent, then it becomes
inaccurate

— Infinite strain plasticity theory, the deformation
gradient is split multiplicatively into an elastic and a
plastic part. This allows to treat problems with very
large deformations, like forging processes.

— The mathematical methods especially of finite strain
plasticity are very ambitious and far beyond the
scope of this presentation.
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Small Strain and Finite Strain Plasticity (2) PTC

Mechanica WF 5.0 and Creo Simulate differ in plasticity models

»= Creo Elements / Pro Mechanica WF 5.0 supports small strain plasticity
— Here, the relation between total strain and displacement is linear: Strains are output as
engineering values.
— Plasticity is limited to SDA (small displacement analysis) only, LDA (large displacement
analysis) therefore is not supported in this release

»= Creo Simulate 1.0 and 2.0 also support finite strain plasticity:

— Finite strain is implemented for 3D models if LDA is activated.

— In this case, the plastic (and elastic) strain is output as logarithmic strain: Simulate computes
incremental strain at each load step and then integrates it to get total strain. This ends up with
strain being logarithmic (see slide 42).

— For 2D models (plane stress, strain & axial symmetric), still just small strain plasticity is
supported. So if LDA is used with these model types even though, e.g. in combination with a
contact analysis, hyperelastic material, or nonlinear spring, Simulate issues a warning if the
strain becomes > 10 %

— Internally, the engine still uses large displacement calculations in this case, but the strain
calculations in the 2D elasto-plastic elements themselves are small strain.
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Small Strain and Finite Strain Plasticity (3) PTC

Performing finite strain analyses

= What can | do if a need finite strain calculations, but have a 2D problem?
— In these cases (plane stress, plane strain or axial symmetric models), built up your model as
3D segment with a small angle or thin slice using appropriate constraints and mesh controls

— Example: An axial symmetric problem as 2D axial symmetric and as 3D segment model:

— Plane strain models can be set up by using just one layer of elements over the constant “slice”
thickness and use mirror symmetry constraints at the slice cutting surfaces, see [10].
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Characteristic Measures in Plasticity (1) PTC

Equivalent plastic strain

= How is the “equivalent plastic strain” being computed?
— The computation uses the following variables:
“effectiveStressPredictor”: current von Mises Stress
“flowStress”: yield stress based on current plastic strain and strain-hardening curve
“ShearModulus”: elastic shear modulus = E/(2*(1+nu)) where nu is the elastic Poisson’s ratio
“‘dep”: incrememental equivalent plastic strain
“‘dStress”: the slope of the work hardening curve
— At each load increment, the incremental plastic strain “dep” is given by:
dep=0
Loop until ddep stops changing:
{
yieldFunction = effectiveStressPredictor - flowStress - 3.0*ShearModulus*dep
denominator = 3.0*ShearModulus + dStress;
ddep = yieldFunction/denominator;
dep = dep +ddep;
}
— After this loop, the equivalent plastic strain “ep”, is incremented by “dep”. Note ep is logarithmic
strain, like all strain quantities in LDA since Creo Simulate 1.0.
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Characteristic Measures in Plasticity (2)

Von Mises Stress and Strain

= \on Mises Stress
— Von Mises stress is derived under the assumption that
distortion energy of any arbitrary loading state drives
the damage of the material:

1 2 2 2
Oum :\/E{(Jl_o'z) +(O'2_03) +(O_3_01) }

— Per definition, in an uniaxial tension test case with just
o, >0 and o, = 55=0 we obtain for the von Mises
Stress:

R YA S

2
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Characteristic Measures in Plasticity (3) PTC

Von Mises Stress and Strain

= \/on Mises Strain in Simulate

— Simulate currently uses this equation for von Mises Measure Definition x
A Mame
Stral n. strain_von_mises > Details
1 2 2 2 Cluantity
Ewm :\/E{(gl_gz) +(‘92_53) +(53_51) } Strain -
Component
— This equation is used in formal analogy to the von :B i
Mises stress only for computational reasons (same Equivalent Plastic Strain s
. . o Max Principal
subroutine as for stress) and simplicity. i Princial
— This strain will be analyzed on demand as measure P
KK

output only for certain locations or over certain T
references. It is calculated at the end only and not used | *”

YE

for any other result output. -
— Note that this von Mises strain definition cannot be Beam Tensile

. . . . . . Beam Bending
used directly for comparison with the longitudinal strain | |seamorsien

in an uniaxial test. It must be modified, e.g. with help of | =7 Vst anigner assemoy eve,
a computed measure, like shown in the subsequent OK | Cancel

slides.
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Characteristic Measures in Plasticity (4) PTC

Von Mises Strain modification

= VVon Mises Strain
— Inanalogy to the von Mises stress, for comparing any three dimensional loading state with the
state of uniaxial loading the von Mises strain definition in Simulate must be corrected: An
additional factor 1/(1+v") should be taken into account, like e.g. used in [5]:
Em = 1:-‘/, \/% {(‘91 - 52)2 + (‘92 - ‘93)2 + (53 - 51)2}
— Herein, v’ is the effective Poisson’s ratio, which is 0.5 for plastic strains (incompressible) or the
material Poisson’s ratio for elastic and thermal strains
— The following slides show that this equation reflects a scalar comparative strain for comparison
with the longitudinal strain in a uniaxial test

= Difficulties in von Mises strain correction
— If the loading state of the material is just in the elastic domain, this correction can be easily
applied, since the elastic Poisson’s ratio is known

— If the loading state is far in the plastic domain, the elastic deformation can be neglected and v’
becomes ~0.5

— The problem is the domain with small plastic deformations, since here it is not known which
strain type prevails, so which fraction of the deformation is plastic and which is elastic
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Characteristic Measures in Plasticity (5) PTC

Von Mises Strain definition in the uniaxial case

* Hooke's law
— Hooke's law for isotropic material expressed in principal stresses and strains:

1
& =E{O'1—V(O'2 +O'3)}

1
&, :E{O'z _V(O-l +O—3)}

1
&3 :E{O's_v(0'1+0'2)}

— In an uniaxial tensile test, we have just one positive principal stress o4,
resulting in a three-dimensional strain state:
o, =F/A
c,=0,=0
1

E
E

— The von Mises comparative strain equation should deliver the same strain like the axial strain €,

Basics of Elasto-Plasticity | Dr. R. Jakel | Rev. 2.1 50



Characteristic Measures in Plasticity (6) PTC

Von Mises Strain definition in the uniaxial case

= \/on Mises Strain

— Let’s examine if the corrected von Mises Strain definition works correct for uniaxial loading,
where we have:
o=FIA oc,=0,=0
1

& =—0,, & =&=—

E

| 4
— O

1
E

— Putting this into the von Mises Strain equation, we obtain with v =v':

SR S 1 (SR A Y (AR 200 O (I SO |
M sy 2\ET E Y E' E! E*' E !

2
Ewm _t A 2 lGl+lo'1 +0° -1 l61+10'1 :loli(lﬂ/)
1+v\2| \E E 1+v\E E E "1+v

1

Ewm = Eal =g (ed.

— S0, per definition now the von Mises Strain equation delivers the uniaxial tensile strain g, for the
uniaxial loading state
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Load Stepping and Unloading (1) PTC

What do | have to take care about if | want to load my structure? |.. .. .=

LETENCEE.

{ree Graph

= Loading e s

— Creo Simulate offers a powerful time history functionality e 310
using “dummy time” steps. ?“.ZZT?;’”“L
— Load stepping is available in two ways: e e &

« The user can use default or self-defined functions, e.g. as E‘“ B a0 v g o P
tabular values. In this case, output steps should be kept Comis | s /-\
“automatic”, then for all tabular time values a result will be gw foom \
computed L e o -

Load Set / Component

« Output steps can also be set to “User defined”, with automatic CIIETTONEWERE e

]| Fz # UNIT_VOLUME_CREO2

Time Dependence
JtE ramp

fix) | ramp

Or manual time Stepping_ 1] DeltaT / UNIT VOLUME CREOZ
— Simulate has a built-in automatic load step refinement in | COMTO | OO0 s
case of too big increments, but this should not be 5 e —

overstressed! ) e

mteps
— A good user |Oad e s Sl < Automatic Steps within Range
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Number of Master Steps g 0

stepping can —
v e . 1. |0 [»f Fullresutts | % ® Automatic

significantly increase || , as o Ful resuts

performance! 3. | Auto E‘ Full results

4,
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4

User-defined Steps () User-defined
Space Equally !

[] Include unloading
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Load Stepping and Unloading (2) PTC

What do | have to take care about if | want to unload my structure?

= Unloading
— Unloading can be achieved by simply activating the button | 225
“include unloading”.

Use idealplastic material for this

[W Noninear / Use Load Histories nertia Relief

— Alternatively, since Creo 1 unloading can be achieved by J Cotel LageDnfortions
using the new load history function just described. } w

— In addition, Creo 2.0 offers an engine command line option
for advanced users called “Ida_gradual_unloading” ot oy T OSPEREnS
(unsupported for testing by advanced users only). This T e ’
assures that unloading with the button “include unloading” Trmomegr [l
is done not in one single, but a series of 10 consecutive — . pwm—
steps. S

— The reason for this command line option is that unloading oo s [2
the structure in one single step may lead in some cases to
inaccurate results. Usually, this can be clearly detected by | " — i
checking the von Mises stress distribution: It will look noisy, T gl R
having many randomly located “hot spots” that are e M B

H 6. |Auto Full resutts | v o o—

obviously not reasonable. (E— L e
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Meshing PTC

When using elasto-plastic materials, what do | have to take care regarding meshing?

= Mesh controls
— A good mesh in a nonlinear material analysis is much more
important than in a linear analysis, because it helps the analysis
to run faster or more accurate within the same time.

— Especially problems with very large strains take benefit of a
smooth, undistorted mesh with bricks and wedges instead of tets.

— The new mesh controls for regular meshing should therefore be
used whenever possible.

E Control =

%] Maximum Element Size
% 1Edge Length By Curvature
"] Minimum Edge Length

“i1 Isolate for Exclusion

£ Hard Point
" Hard Curve
'ved Edge Distribution

&P Prismatic Elements
eFl Thin Solid 3

&7 Mapped Mesh I},
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Part Ill

Application Examples
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A Uniaxial Test Specimen with Necking (1) PTC

Study of a tensile test specimen with taking into account necking

= Goals of the study:
— Understand why a uniaxial tension test specimen made of
ductile material breaks in the necked area under 45° at the
outer surface and brittle in its center (see slide 7 or [3])

— Understand differences of SDA and LDA in plasticity

— Understand the influence of necking in the true and
engineering stress-strain curves

= Remark: o

— The material laws in Simulate do not directly allow to
simulate necking in a perfect specimen with regular mesh,
which appears in reality at an accidental weak location of
the tensile test specimen.

— Therefore, we use a second cylindrical specimen in the
LDA with a small imperfection modeled into the geometry
like shown right: The cylinder radius is just locally 5/100 mm
smaller than the nominal radius of 10 mm

— We will analyze the perfect specimen in both SDA and LDA
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A Uniaxial Test Specimen with Necking (2) PTC

Study of a tensile test specimen with taking into account necking e T—

N:jreue >> Details
= Model setup: cunty
. omputed KMeasure v
— We use mapped meshing for the Exoression

Available Function Components...

90° symmetry section to obtain a
regular mesh just using bricks (and
wedges only at the rotation axis).

pit(10+dY _necked)"2

Valid for Analyzis Types

Measure Definition x
— From the reaction forces at the __ Measure Dofinite e 2> Details
constraints, we analyze nominal — LS | [Foree o o
engineering and true stress in the | name || Quantty Expresion
H H dv_necked * Detalls TS ¥ N Available Function Components...
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Displacement i p— Forcel/{{pi*(10+dY _necked)"2 4}
computed measures. Commenent = —
alid for Analysis Types
—_ Englneerlng Straln (nOt Output |n C\:minate System ’ Cuurdinﬂt:: SFyst&m
LDA) is computed by the specimen | X =-rc Ve | e s s
elongation divided by its initial Atpont v || constranss e
length (computed measure). [ rer—— k| constrint
— We use an enforced displacement | 0 rmereasencyeua o =
to apply the |Oad, for better V;;j;;::;::’;ir;:s “ Visible at higher assembly I;el
. e ' . Static Analysis hd
nlumerlcall stabll!ty inthe region of |\ =70 e e fp—
high plastic strains. ok || cancel
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A Uniaxial Test Specimen with Necking (3) PTC

Study of a tensile test specimen with taking into account necking

= Used material:
— We use steel (E=200 GPa, v=0.27) with exponential material law (m=10)

— Yield limit is 210 MPa, ultimate limit is 330 MPa (engineering stress)
— Note that the material input data is interpreted as engineering stress vs. engineering strain in
SDA and true stress vs. log (true) strain in LDA!

Plastic Hardening Law Definition x
Test Edit Graph
DE B E %R G000 2
Testi R . . Show Best Fit Material Model Curves
. Testl o Unioxial S
i 240,00 R [ | Linear Hardening N
Plastic Strain Stress Power Lav N/A
0 — T T x Exponential Lav M/
Zar0.00 _ / ]
= o— o—
- T / Select Hardening Law
g 300,00 Exponential Law -
: Exponential Law
- |
["] Use Best Fit Coefficients
— 280, a0 o
z" Tensike Yield Stress| 210 MPa
: — Hardening Limit| 120 MPa
260 a0 _| Exponent| 10
=
= |
=
240,90 /
= .
=
=220.00
=)
=
200,00
et i L
9.00 0.05 0.10 0,15 0.20 0.23 0.30 9.35 0.49 0.45 0.50
Ea Mominal (Engineering) Plastic Strain
0OK Cancel
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A Uniaxial Test Specimen with Necking (4)

Study of a tensile test specimen with taking into account necking

PlC

* Imperfect specimen showing equivalent plastic strain with 1:1 deformations

045 _
0.40

035

o
[
=1
[

o [
b [N
[=] (53]
| ]

enginearing_strain

=
o
]

ngineering_strain
e

"Windowd" - irp_specimen_30_eigth_QC - irmp_specimen_3D_eigth_QC

GraphTool

ﬂ Time: 1
engineering_strain: 0.00105

0K

&
i
1 ' 1 1 71 1 1 "1 17711

000 500 1000 1500 2000 2500 30.00 35.00 40,00 45.00

3399e-04
3.187e-04
287 4e-04
2762e-04
2549e-04
2337e-04
2125e-04
191204

Equivalent Plastic Strain (WCS)
Deformed

Scale 1.0000E+00

Step 2, Time 1.0000E+00

1.700e-04
1.457e-04
1.275e-04
1.062e-04
5.498e-05
637 4e-05
4249205
2.125e-05
0000e+00

elasticity limit
engineering strain: 0.1 %

0.11455
011285
011114
0.10944
010773
010602
010432
0.10261
0.10030
0.09920
008749
003579
0093408
009237
0023057
008856
006725

Equivalent Plastic Strain (WCS)
Defarmed

Scale 1.0000E+00

Step 12, Time 1.1000E401

engineering strain: 10 %
log strain: 9.53 %

017013

engineering strain: 20 %
log strain: 18.23 %

"Window3" - imp_specimen_30_ref - irmp_specimen_30_ref

022722

engineering strain: 30 %
&Iog strain: 26.24 %

"Window3" - imp_specirmen_30_ref - irmp_specimen_30_raf

Tirme
- engineering_strain "Window3" - imp_specimen_3D_ref- imp_specimen_3D_ref "Window3" - imp_specimen_30_ref - imp_specimen_30_ref
Equivalent Plastic Strain (WCS) 022256 Equiralent Plastic Strain (WCS) 041558 Equiialent Plastic Strain (WCS) 166730
Deformed 021926 Deformed 040650 Deformed 1.59661
021801 039492 150531
Scale 1.0000E+00 021273 Scale 1.0000E+00 038254 Scale 1.0000E+00 141402
Step 22, Time 2.1000E+401 020845 Step 32, Tirme 3.1000E+401 037096 Step 42, Time 4.1000E+401 1.32273
020615 035858 123144
020290 034700 1.14014
019962 033503 1.04585
019635 032305 095756
0.19307 031107 056627
015573 029209 077497
0.18R52 025711 0 RE365
015324 027513 058239
0175995 026315 50110
0.17B6Y 025117 0.40980
017341 023920 0.31851

022722

engineering strain: 40 %
N log strain: 33.65 %

"Window3" - imp_specimen_30_ref - imp_specimen_30_ref
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LDA results,
shown is log
strain.

Note:

Axial strain is
not constant
along the
specimen, the
engineering
and
equivalent log
strain values
are an
average!
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A Uniaxial Test Specimen with Necking (5) PTC

Study of a tensile test specimen with taking into account necking

= Equivalent plastic strain and von Mises stress results animations

Step 2, Time 1.0000E+00 1.68790

Equivalent Plastic Strain (WCS) 1.68241
Delormed 1.47691
Sonle;"1.0000E+00 137142
1.26583

b\ 16043

—— 1.05494

0.84844
; 0.84385
. 0.73846

L oeazes

0.62747
0.42188
0.31648
0.21099
010549
0.00000

Step 2, Time 1.0000E+00
Stress von Miges (WCS)
{MPa)

Deformed

Scale 1.0000E+00

"Window1" - imp_specimen_3D_ref - imp_specimen_30_ref

"Window1" - imp_specimen_3D_ref -imp_specimen_30D_ref

Basics of Elasto-Plasticity | Dr. R. Jakel | Rev. 2.1 60



A Uniaxial Test Specimen with Necking (6)

Study of a tensile test specimen with taking into account necking

* Principal stress vector results at  sesapnws

(MPa)

max. engineering strain in the DT ocaton: Sufaces
necked cross section center
— In the center of the necked region, a
triaxial tensile stress state appears
— In our example, the three principal
stresses are not the same like stated in
[3], but in the specimen center radial
and circumferential stress have similar
size and are approximately 60 % of the
axial principal stress
— Triaxial tension leads to brittle rupture in Triaxial tension
the specimen, whereas at the specimen (Quick check results only)!
surface we just have a two-axial stress 01 = O~ 886 Mpa
state (radial stress=0): There, we have 02 Cg = 540 Mpa
ductile behavior.
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A Uniaxial Test Specimen with Necking (7)

Study of a tensile test specimen with taking into account necking
* True and engineering stress vs. engineering strain in SDA and LDA

PTC

Stress (engineering / true) [MPa]

elongation without necking < starts

necking

—> necking becomes visible

Due to SDA theory simplifications, 4
7
450 the volume change (lateral con- A
traction) is overestimated, and the —~_ A
100 true stress becomes too high at s %
strains >10% —— P . _
- Inflection point of true stress-
/ - . .
350 / strain curve: Necking starts!
300 Note for shown curves:
1) Eng strain is calculated
B O —— O — 8 . .
- ot H—'—O—.—?—H_._‘HW_H_A by specimen elongation
| | = O S Al / initial qugth |
s cntered material law (input data): stress vs. eng plastic strain 2) _True stress in t‘he .
‘. imperfect specimen is an
200 [0 entered material law (+elastic strain): stress vs. eng total strain ® average value and
) ) ) ‘e analyzed by reaction
—=—SDA: engineering stress vs. eng total strain - force / actual necked
150 —&— SDA: "true” stress vs. eng total strain s cross seqtion area
& . 3) Engineering stress in the
SDA: true stress calculated from eng stress by analytical formula » imperfect specimen is
- - onsineer k : e analyzed by reaction
100 =— | DA: engineering stress vs. eng total strain (perfect specimen) force / initial Cross
= LDA: true stress vs. eng total strain (perfect specimen) section area
. . o . 4)  The material input curve
50 — @& LDA:engineering stress vs. eng total strain (imperfect specimen) for true stress vs. log
— ‘A= LDA:true stress vs. eng total strain (imperfect specimen) strain -translated to eng
strain- is not shown, but
0 B ! ! ! ! virtually the same like the
5 10 15 20 25 30 35 a0 shown green stress vs.

Engineering Strain [%]

eng. strain curve
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A Uniaxial Test Specimen with Necking (8) PTC

Study of a tensile test specimen with taking into account necking

= Conclusions:

— The subtraction of elastic strain from the measured curve is just a small correction.

— Note that you may need different material data sets for SDA and LDA.

— For small strains, it is sufficient to measure engineering stress vs. engineering strain and run
an SDA analysis.

— For bigger strains, e.g. 5% and more, true stress vs. true strain should be input into the
material dialogue. Run an LDA analysis in this case! This is especially important if you want to
do a metal forming analysis, where strains may rapidly become 30% and more.

— True stress results from specimens in the necked region should not be taken into account,
since they will falsify the material data curve. Take care that you input data just from the strain
region without necking (true stress curve has an inflection point when necking starts)!

— When necking appears, the axial strain along the specimen length is not constant any longer
(see the animations on slide 60). A further increase of strain will just take place in the necked
area.

— As a result check, you may run an analysis with your tensile test specimen and compare
material data input curve and analysis result like shown in the example.
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A Uniaxial Test Specimen with Necking (9)

Study of a tensile test specimen with taking into account necking

= Useful equations for uniaxial test data evaluation:
— For translating stress data:  Gyye = Geng (L + &eng)

O-eng = O-true/exp(‘gln)

— For translating strain data:

gn =Inl+&,,,)
— Qfl
Eeng =€" =1
. Oeng
8eng,p| - 8eng - E

O-t
gln,pl = In(1+geng) - Erue

= Summary of required stress/strain input in Simulate:

Material

SDA/LDA

Stress

Strain

hyperelastic

LDA (no hyperelasticity
support in SDA)

nominal (engineering)

nominal (engineering)

elastoplastic

SDA (small strain)

nominal (engineering)

nominal (engineering)

elastoplastic

LDA (finite strain)

true

true (logarithmic)
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Flattening of a Tube End (1)

Model setup

= Geometry:
— Two ideal-elastic plates compress a soft Aluminum
tube (displacement controlled)

— Half symmetry model to increase speed

= Material:
— Power law used for elasto-plastic description

[MPal

gt Stres

Wominal (En

60,00

[wE]
£
=4
=3
&2

5
[
ro
=1
o=
=
[

300,00

I'h

2E0. 00 ]

gineer

26000

240,00

22000 ]

20000

Testl ¢ Unitaxigl

rprrrrtrrrtrrr Tt
0.000.050.100,159.200.250.300.350.40 0,45 0.50
Haminal (Engingering) Flastic Strain
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Flattening of a Tube End (2) PUC

Displacement results animation (quick check only)

deformed shape
*Window1" - half_tube_ssm_QC - half_tuba_asm_QC
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Flattening of a Tube End (3)

Von Mises stress results animation (quick check only)

Step 1, Load Factor 1.0000E+00
Stress von Mises (WCS)

(MPa)

Scale 1.0000E+00

deformed shape with
released forming plates

"Window1" - half_tube_ssm_QC - half_tuba_asm_QC

636.974
450.000
420,000
380.000
360.000

4 330.000

300.000

- 270.000

240.000
210.000

- 180.000
- 150.000

120.000

Basics of Elasto-Plasticity | Dr. R. Jakel | Rev. 2.1

PlC

67



Forming of a Thin Membrane (1)

Model setup

= Geometry:
— Athin flat steel disk is formed to become a
membrane
— The steel disk is guided at the outer diameter with
help of a ring
— The displacement controlled grey piston forms the
wave

= Model:

— For simplicity, the 2D axial symmetric model
formulation is used.

— Note this is just a coarse approximation since we
expect log strains of >30 % and small strain
plasticity is not accurate here. An alternative,
better suitable 3D segment model supporting
finite strain is shown on slide 45.

— LDA is used for better contact modeling, since we
have large deformations at the contacts.
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Forming of a Thin Membrane (2) PUC

Displacement results animation

Step 1, Load Factor 1.0000E+00 3.05918
Displacement Mag (WCS) 3,00000
:J";:Lmd 2.80000
2.60000
Max Disp 2.7254E+00 2.40000
Scale 1.0000E+00 i

deformed shape
"Window 1" - membrane_2Daxi_ref - membrane_2Daxi_ref
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Forming of a Thin Membrane (3) PUC

Equivalent plastic strain results animation

Stap 1, Load Factor 1.0000E+00 0.35008

Equivelent Plastic Strain (WCS) BB
L""“’W 030833

Seala 1.0000E-+00 0.26445

deformed shape with
released piston

"Window 1" - membrane_2Daxi_ref - membrane_20axi_ref
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Thanks for your attention!

prisssssunseeetoss- QU - eeit

Questions?
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Part IV

Appendix

Literature
Technical Dictionary English-German
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Literature Sources (1) PTC

[1] Wikipedia: Yield (engineering)
http://en.wikipedia.org/wiki/Yield (engineering)

[2] R. Jakel: Analysis of Hyperelastic Materials with MECHANICA
— Theory and Application Examples —
Presentation for the 2nd SAXSIM | Technische Universitat Chemnitz
27. April 2010 | Rev. 1.1

[3] W. Domke: Werkstoffkunde und Werkstoffprtfung, 9. Auflage 1981, Verlag
W. Giradet, Essen, ISBN 3-7736-1219-2

[4] John Yang, PTC Mechanica R&D: Handwritten Notes

[5] ANSYS Release 11.0 user documentation,
chapter 2.4. Combined Stresses and Strains,
http.//www.kxcad.net/ansys/ANSY S/ansyshelp/thy str4.html

Basics of Elasto-Plasticity | Dr. R. Jakel | Rev. 2.1 73


http://en.wikipedia.org/wiki/Yield_(engineering)
http://www.kxcad.net/ansys/ANSYS/ansyshelp/thy_str4.html

Literature Sources (2) PTC

[6] Gordon R. Johnson, William H. Cook: A constitutive model and data for
metals subjected to large strains, high strain rates and high temperatures;
Work funded by Contract FO8635-81-C-0179 from the U.S. Air Force and
a Honeywell Independent Development Program, 1983

[7] W.F. Hosford, A Generalized Isotropic Yield Criterion, J. Appl. Mech.,
June 1972, Volume 39, Issue 2, 607
http://dx.doi.org/10.1115/1.3422732

[8] Richard M. Christensen, Prof. Research Emeritus, Aeronautics and
Astronautics Dept., Stanford University, http://www.failurecriteria.com

[9] Yanshan Lou, Hoon Huh: Yield loci evaluation of some famous yield
criteria with experimental data, KSAE09-J0003, 2009

[10] R. Jakel: Pro/ENGINEER Mechanica Wildfire 4.0, Workshop
Fundamentals Il, p. 15 ff, Rev. 2.0.1, 2011 (PTC CER workshop material)
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Technical Dictionary English-German PTC

Used vocabulary in this presentation

— dilatation — Dilatation, Ausdehnung

— dislocation: Gitterfehler, Versetzung

— elastic — perfectly plastic material law: ideal elastisch — ideal plastisches Materialgesetz
— elongation without necking: Gleichmalldehnung

— elongation with necking: Einschnurdehnung

— finite strain plasticity: Theorie der Plastizitat groder Deformationen
— gray cast iron: Grauguss

— hardened steel: geharteter Stahl

— isotropic hardening: Isotrope Verfestigung

— kinematic hardening: Kinematische Verfestigung

— tempered steel: verguteter Stahl

— proof stress: Dehngrenze, Ersatzstreckgrenze

— soft steel: weicher Stahl

— small strain plasticity: Theorie der Plastizitat kleiner Deformationen
— stretch: Streckung (A = 1,/l, = 1+¢)

— vyield limit: FlieRgrenze
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