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Abstract

We modify in this paper the Schrödinger equation, as a result of
the delinearization non local and non commutative hidden variables
are added to quantum mechanics.
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1) Introduction
The success of standard quantum mechanics (QM) for decades and in

many fields of physics is indisputable. However, we believe that numbers of
paradoxes and many problems engendered by the conventionnal theory mo-
tivate the search for alternate issues. More investigation has to be done on
the foundations which must have to undergo a profound revision. The first
physicists to suggest that QM is incomplete was Einstein and De Broglie[1].
Since then more and more people of the community are attempting to find
the correct modifications [2] . It is a worthwhile task to achieve the goal of
constructing a complete and satisfactory non-local hidden variables theory ,
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but as we all know it is not easy to fulfil such a program. The main efforts
made in this paper are based on Einstein idea, which consist in introducing
in a suitable fashion the sources (and sinks) of the field inside the evolution
equation. Our modification of Schrödinger equation has for natural conse-
quence, as we will see in the process of delinearization, that non local and
non commutative variables are automatically added. Unfortunately the the-
ory we are left with is not background independant. This lack of background
independance is a weakness of our approch. The plan of our work is as fol-
lows. First we will show how to find, from the associated classical problem,
the expression of the sources (and sinks). Next, in section 3, we manage to
introduce new terms inside the classical Kamiltonian, finally we proceed to
the quantization of the theory.

Let’s start from standard QM, Schrödinger equation is

i�
d

dt
|Ψ(t)〉 = H

q
(t) |Ψ(t)〉 (1)

+ Boundary conditions, Cauchy’s data...

with

d

dt
〈Ψ(t) |Ψ(t)〉 = 0 (2)

In the continuous base {|r1, ..., rn〉} equation (1) read

i�
∂

∂t
ψ (r1, ..., rn; t) = H

0
ψ (r1, ..., rn; t) (3)

In this work we are going to consider that this linear equation is wrong.
We shall simply reject the validity of (1) while keeping most principles and
postulates of QM.

2) Taking account of sources and sinks
2-a) Conservation relation
Let’s introduce the closure relation

∫
···
∫

$

|r1, ..., rn〉 〈r1,..., rn| d
3r1...d

3rn =

1 in (2), we get
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d

dt

∫
· · ·

∫

$

|ψ (r1, ..., rn, t)|
2
d3r1...d

3rn = 0 (4)

This means that we can interpret (4) according to the associated classical
problem by saying that the integral in (4) is a constant of the movement. On
the other hand we have the continuity equation

∫
· · ·

∫

$

∂

∂t
|ψ (r1, ..., rn, t)|

2
d3r1...d

3rn+

∫
· · ·

∫

$

→

▽ψ .
→

Jψ d
3r1...d

3rn = 0

(5)

where
→

▽ψ .
→

Jψ is for the n particles fluid

→

▽ψ .
→

Jψ:=
n∑

k=1

→

∇k .
(
|ψ (r1, ..., rn, t)|

2 →

V k

)
(6)

where
→

V k being the speed vector for particle k. That is, for any boundary
$ , the measures d3r1...d

3rn being continous and positive we can write

∂

∂t
|ψ (r1, ..., rn, t)|

2+
n∑

k=1

→

∇k .
(
|ψ (r1, ..., rn, t)|

2 →

V k

)
= 0 (7)

In the associated classical problem, the classical hamiltonianH
0 class

(r1, ..., rn,p1, ...,pnt)

being the one from which the quantum hamiltonian H
0

appearing in (3) is

constructed, the density function must then satisfy to

d
dt
|ψ (r1, ..., rn, t)|

2 − { H
0 class

(r1, ..., rn,p1, ...,pn, t) ,

|ψ (r1, ..., rn, t)|
2 }

r,p =
∂
∂t
|ψ (r1, ..., rn, t)|

2
(8)

So, if we put σψ :=
∂
∂t
|ψ (r1, ..., rn, t)|

2+
n∑

k=1

→

∇k .
(
|ψ (r1, ..., rn, t)|

2 →

V k

)

as sources (and sinks) terms, then (7) becomes
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σψ :=
d
dt
|ψ (r1, ..., rn, t)|

2 −

{
H
0 class

(r1, ..., rn,p1, ...,pn, t) , |ψ (r1, ..., rn, t)|
2

}

r,p

+

n∑

k=1

→

∇k .
(
|ψ (r1, ..., rn, t)|

2 →

V k

)
= 0

(9)
What we can say now is that simply in the case of the Schrödinger equa-

tion the sources (and sinks) terms are null, so to generalise the Schrödinger
equation we must take account of the case in which those terms are not
zero. Now how to introduce them inside the evolution equation? In the next
sections we will see how to overcome this difficulty.

2-b) Kamiltonian with sources and sinks

Our classical hamiltonian H
0 class

from which the quantum equation (3) is

constructed, is defined with the use of the lagrangian as

H
0 class

(r1, ..., rn,p1, ...,pn, t) =
n∑

α=1

pα
.
rα −

L
o class

(
r1, ..., rn,

.
r1, ...,

.
rn, t

) (10)

If we transform canonically H
0 class

with some change of the canonical co-

ordinates, say

Qα = µα (rα + δrα)
Pα = να (pα + δpα)

(11)

then according to Hamilton’s principle the Kamiltonian

Kclass (Qα, Pα, t) =
n∑

α=1

Pα
.

Qα − L
Kclass

(
Qα,

.

Qα, t
)
, (12)

is connected to H
0 class

by

µανα

(
n∑

α=1

pα
.
rα − H

0 class
(rα,pα, t)

)
=

n∑

α=1

Pα
.

Qα −

Kclass (Qα, Pα, t) +
d
dt
Fµανα

(13)

where µα and να are two parameters of scale transformations (see[3]). Such
transformations are known to be the ”Extended Canonical Transformations”.
Since Fµανα is an arbitrary function we shall assume it to be
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Fµανα = µανα

(
n∑

α=1

rαPα + εG (rα, Pα, t)

)

(14)

where G is again any generating function of infinitesimal canonical trans-
formations. The infinitesimal parameter appearing in (14) is always ε �= 0 .
As all calculations must be carried out up to first-order, G turns out to be a
function of (rα,pα, t) only and the infinitesimals are just the same as those
given by Goldstein in his book

δpα = −ε
∂
∂rα
G (rα,pα, t) ,

δrα ≃ ε
∂
∂pα
G (rα,pα, t)

(15)

By using these we can establish an expression for d
dt
Fµανα which makes

us reach the general form of our kamiltonian

Kclass (Qα, Pα, t) := Kclass (rα,pα, t) =

µανα

(
H
0 class

(rα,pα, t) + ε
∂
∂t
G (rα,pα, t) +O (ε

2)

)
(16)

Notice that if we need to find again our H
0 class

of the beginning, with this

E.I.C.T (for extended infinitesimal canonical transformation), we must set
µανα = 1 and

ε
∂

∂t
G (rα,pα, t) +O

(
ε2
)
= 0 (17)

in (16), which is the same as applying the identity transformations to

H
0 class

.

3) Nonlinear equation of evolution
Now let’s drop the α subscript and return to the old variables.We first

multiply equation (9) by any integrable well-ordered function in the
sense of Schrödinger (see[4]), say Φ (r1, ..., rk,p1, ...,pn, G, �, c, kb, e, t)with
appropriate physical dimension (involving length only) for reason of homo-
geneity (here k ≤ n ), and where G, �, c, are the fundamental constants of
nature and kb the Boltzmann constant.We have also introduced the quantum
of charge e, thus the mass of particles can be quantified with the help of e.
Now let’s define the function: Φε := εΦ (r1, ..., rk,p1, ...,pn, G,�, c, kb, e, t) ,
this function will represent a membrane in several dimensions, we will con-
sider it as one of the parameters of our theory. If we suppose that we have
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ξ (with ξ ≤ n) point source in our system of particles, that are located at
positions {rz, ...., rs} , we then may integrate 3ξ times over the domain $ (or
over infinity) to avoid singular interaction (anomalies and divergencies) from
appearing, and also over time, we will have

∫
· · ·

∫
Φε σψ d

3rz...d
3rsdt = 0 (18)

If we dont represent any of the particle as a mathematical point there is
no need to integrate and we may just leave the expression of σψ as it is. Now
to take account for σψ in the Kamiltonian we use relation (9) and replace

∫
···
∫
Φε(

d
dt
|ψ|2 − { H

0 class
, |ψ|2 }

r,p+
n∑

k=1

→

∇k .
(
|ψ (r1, ..., rn, t)|

2 →

V k

)
)d3rz...d

3rsdt = 0
(19)

Since G appearing in the Kamiltonian is any function of the generalised
coordinate and momenta we can match equation (18) and (17), as a result
the terms of second order in the Kamiltonian disappear and we are left with

µ−1Kclass := ν ( H
0 class

+
∫
···
∫
Φε(

d
dt
|ψ|2 −

{
H
0 class

, |ψ|2
}

r,p

+

n∑

k=1

→

∇k .
(
|ψ (r1, ..., rn, t)|

2 →

V k

)
)d3rz...d

3rsdt)
(20)

That’s it, we have finally managed to introduce the sources (and sinks)
in the Kamiltonian. We must now etablish the expression of the quantum
equation, that mean we have to quantize the theory. However, we will not
give in this paper any commutation rules.

Proposition 2:

The non linear evolution equation for n particles is

i�
ˆ
µ d

dt
|Ψ(t)〉 =

1
2
{
ˆ
ν,

ˆ

H
q
(t)+

1
2

∫
···
∫ { ˜

Φε,
ˆ

Sψµν

}
d3

ˆ

Rz ...d
3
ˆ

Rs dt} |Ψ(t)〉

(21)

+ Boundary conditions, Cauchy’s data ...

6



where
˜

Φεis a parameter.

Proof
Since the variables that appear in (23) are simply functions of gener-

alised coordinates and momenta with scalar factors, there will be an exact
compatibility during the transition from the classical theory to the quan-
tum theory by usual process of quantization (see[5][6]). First, the function
|ψ (r1, ..., rn, t)|

2become in the quantization process a function of the posi-
tion operators, say

|ψ (r1, ..., rn, t)|
2
⇆

ˆ

Fψ

(
ˆ

R1, ...,
ˆ

Rn, t

)
(22)

Then the process of quantization of
n∑

k=1

→

∇k .
(
|ψ (r1, ..., rn, t)|

2 →

V k

)
will be

univocal, for that we will have to match
ˆ

Pk and i�
→

∇k . Let’s write
ˆ

Jψ (t) the
operator resulting from that quantification process. So with the help of the
principle of correspondance and symetrization postulate we transform finally
the sources (and sinks) as follows

( d
dt
|ψ|2 −

{
H
0 class

, |ψ|2
}

r,p

+
→

▽ψ .
→

Jψ )⇆

1
2

{
d
dt
,
ˆ

Fψ

(
ˆ

R1, ...,
ˆ

Rn, t

)}
+

i
�



 ˆ

H
q
(t),

ˆ

FΨ

(
ˆ

R1, ...,
ˆ

Rn, t

)

 +
ˆ

Jψ (t) =
ˆ

Sψµν

(23)

where we have matched H
0 class

and
ˆ

H
q
(t) to preserve the isomorphism be-

tween the Hilbert space of kets and the L2 space. Henceforward brackets[, ]
and {, } in the expressions stand for commutator and anticommutator. Since
we can choose the well-ordered function Φε we can always construct one in
such a way that finally the process of quantization will be univocal .Write this

unique corresponding operator
˜

Φε

(
ˆ

R1, ...,
ˆ

Rk,
ˆ

P1, ...,
ˆ

Pn, ε, G, �, c, kb, t

)
, the

product Φε ×”sources and sinks” in the Kamiltonian must be symetrized, so
we will have

7



Φε(
d

dt
|ψ|2 −

{
H
0 class

, |ψ|2
}

r,p

+
→

▽ψ .
→

Jψ )⇆
1

2

{
˜

Φε,
ˆ

Sψµν

}
(24)

Let’s call
ˆ
µ and

ˆ
ν the matrices corresponding to the parameters µ−1α and

να , symetrizing again we find the quantum Kamiltonian

{
ˆ
µ,

ˆ

K
q

}
=

{
ˆ
ν,

ˆ

H
q
(t) + 1

2

∫
···
∫ { ˜

Φε,
ˆ

Sψµν

}
d3

ˆ

Rz ...d
3
ˆ

Rs dt

} (25)

The
ˆ
µ and

ˆ
ν operators appearing above are just matrices related to the

scale factors µ−1 and ν. Since the elements of those matrices can be complex
numbers we are consequently allowed to compose any kind of isometries
(which can be connected with Killing vectors for Riemannian backgrounds).
Finally, asking again for a principle of correspondence, we match Kclass ⇆

i� d
dt

and let this act on the ket |Ψ(t)〉 . We can remark that the
ˆ
µ matrix

will automatically commute with the diagonal matrix
˜

Id (i�
d
dt
) where

˜

Id is
the identity.

4) Conclusion & Acknowledgments

Let’s summarize what we have done in this paper. Our first step was to
show that there’s a quantity that is a constant of the movement. From that
we have found that there’s a global conservation law for the system which
represent the sources (and sinks) of the field, the second step was to introduce
them in the kamiltonian, then we have proceeded to the quantization of the
theory.The hidden variables that have emerged are obviously non commuta-
tive and the interaction is non local. The first question is: are those hidden
variables the good ones? To answer that question study about the relation
between our theory and Bell’s theorem[7] has to be done. Since we are left
with a non linear equation with a small nonlinearity we must seek for soli-
tonic solutions of equation (21) and see if the masses found are those of real
elementary particles in nature. Such solutions, if found to be in good accor-
dance with accelerator’s data, may be an evidence for that the old problem of

duality wave/particle has no more meaning. The parameter
˜

Φε can be con-
structed with the help of the Vashy-Buckingham theorem. We are aware that
the canonical transformations we have used will leed to deterministic motion

8



without presence of a brownian noise arround the trajectories. If we wish to
take account of stochastic formulation in our theory we should use another
type of small changes in the coordinates. Now, what about gravitation ? we
are of course not allowed to say that this is a step toward quantum gravity
unless we prove that the graviton field is a possible solution of equation (21).
If so, Einstein equations (probably a modified version of them) could then
be derived from (21) (see [8]). But first further study should be done on the
relativistic invariance, anyway, if there is any violation of Lorentz invariance
this can’t exeed infinitesimal spacetime regions. However, the theory does
not exhibit background independance, so it is certainly not the good theory
we are searching for, we may just use it as a toy model.

We are still indebted to many autors on the arXiv for the share out of
their work, to Beswick J.A., Meier C., Bouchène A., (IRSAMC /UPS III
Toulouse), Lochak G., (Fondation Louis de Broglie, Paris), a french philoso-
pher of science, Mc Mahon D., (Sandia Laboratories) and many other peoples
for valuable help.
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