Pompe à engrenages externes

Compression adiabatique :
$P_{1} \cdot d V_{1}^{\frac{7}{5}}=P_{0} \cdot d V_{0}^{\frac{7}{5}}$
$d V_{1}=\frac{P_{0}^{5 / 7}}{P_{1}^{5 / 7}} \cdot d V_{0}$

Débit :

$S=$ surface pérpendiculaire d'une dent
$Q_{0}=\frac{d V_{0}}{d t}=S \cdot r \cdot \omega \cdot k$
$Q_{1}=\frac{d V_{1}}{d t}=S \cdot r \cdot \omega \cdot k \cdot \frac{P_{0}^{5 / 7}}{P_{1}^{5 / 7}}$

k rapport entre : le volume entre les dents et le volume total
$Q_{j}:$ Débit $\left[\mathrm{m}^{3} / \mathrm{s}\right]$

P_{j} : Pression $[P a]$
T_{j} : Température $[K]$
ω : Vitesse angulaire $[\mathrm{rad} / \mathrm{s}]$
M : Couple [Nm]

Relation entre le couple et la pression :

$$
\| P_{1}=\frac{M}{S \cdot r}
$$

Variation de la température :
$T_{1}=d V_{1} \cdot \frac{P_{1}}{n \cdot R}=\frac{P_{0}^{5 / 7}}{P_{1}^{5 / 7}} \cdot d V_{0} \cdot \frac{P_{1}}{n \cdot R}=\frac{P_{0}^{5 / 7}}{P_{1}^{5 / 7}} \cdot \frac{n \cdot R \cdot T_{0}}{P_{0}} \cdot \frac{P_{1}}{n \cdot R}=\frac{P_{0}^{2 / 7}}{P_{1}^{2 / 7}} \cdot T_{0}$
Rendement:

$$
P_{1} \cdot Q_{1}=S \cdot r \cdot \omega \cdot k \cdot \frac{P_{0}^{5 / 7}}{P_{1}^{5 / 7}} \cdot \frac{M}{S \cdot r}=M \cdot \omega \cdot k \cdot \frac{P_{0}^{5 / 7}}{P_{1}^{5 / 7}}
$$

$$
\eta=k \cdot \frac{P_{0}^{5 / 7}}{P_{1}^{5 / 7}}
$$

