

Unmanaged SimpleIO DLL
Documentation

Contents

Unmanaged vs. Managed DLL and Their Requirements ... 3

How to Use Visual Studio to Find Which DLL Your Application Needs ... 3

Sample Code for an Unmanaged Application (C++).. 5

Simple IO API ... 7

Summary: ... 7

1. InitMCP2200 ... 8

2. IsConnected .. 8

3. ConfigureMCP2200 ... 9

4. fnRxLED ... 11

5. fnTxLED ... 11

6. fnHardwareFlowControl ... 12

7. fnULoad ... 13

8. fnSuspend ... 14

9. fnInvertUartPol ... 14

10. fnSetBaudRate .. 15

11. ConfigureIO ... 16

12. ConfigureIoDefaultOutput .. 17

13. SetPin .. 18

14. ClearPin ... 18

15. ReadPin ... 19

16. ReadPinValue .. 20

17. WritePort .. 21

18. ReadPort ... 21

19. ReadPortValue .. 22

20. SelectDevice .. 23

21. GetSelectedDevice .. 24

22. GetNoOfDevices .. 25

23. GetDeviceInfo ... 25

24. GetSelectedDeviceInfo .. 26

25. ReadEEPROM .. 27

26. WriteEEPROM ... 28

 Unmanaged vs. Managed DLL and Their Requirements

The SimpleIO DLL comes in two different forms, managed or unmanaged. If the SimpleIO file

has a “-UM” appended to its name, it is unmanaged and if a “-M” is appended, the DLL is managed.

Older versions of this DLL that are named without any suffix are managed versions. The managed DLL

requires that the .NET framework (v2.0 or higher) to be installed in order to work. The unmanaged

version does not have this requirement, but it does require the Microsoft Visual C++ 2008

Redistributable Package to be installed. However, accessing the managed version of the DLL is a more

simple process than accessing the unmanaged version. Before choosing one of these versions, it is

important to know which version is the appropriate one to use for your project. In general, an

unmanaged application uses the unmanaged DLL and vice-versa. This document will cover the use of

the SimpleIO-UM.dll library file. If you are unsure which version you need, you can use the following

section below to determine this.

How to Use Visual Studio to Find Which DLL Your Application Needs

 If you are using Microsoft Visual Studio as your development tool, chances are that your

program is managed by the .NET Framework. And likewise, if your development tool is not Visual

Studio, it is likely your project is unmanaged. Either way, it is wise to be certain. To find out if your

Visual Studio project is managed or unmanaged, left-click on the project in the “Solution Explorer”

window and then click the “Project” menu item and select the “Properties” option.

Once this is done, expand the “Configuration Properties” menu and then click on the general category.

The “Common Language Runtime Support” option should be set to “No Common Language Runtime

Support” if your project is unmanaged. If it is set to any other option then your project is managed. You

should see something similar to what is shown below.

Sample Code for an Unmanaged Application (C++)

/*
 * Microchip End User's License Agreement
 *
 * MICROCHIP SOFTWARE NOTICE AND DISCLAIMER: You may use this software, and any
 * derivatives created by any person or entity by or on your behalf, exclusively
 * with Microchip’s products. Microchip and its licensors retain all ownership
 * and intellectual property rights in the accompanying software and in all
 * derivatives hereto.
 *
 * This software and any accompanying information is for suggestion only.
 * It does not modify Microchip’s standard warranty for its products. You agree
 * that you are solely responsible for testing the software and determining its
 * suitability. Microchip has no obligation to modify, test, certify, or support
 * the software.
 *
 * THIS SOFTWARE IS SUPPLIED BY MICROCHIP "AS IS". NO WARRANTIES, WHETHER EXPRESS,
 * IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
 * NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO
 * THIS SOFTWARE, ITS INTERACTION WITH MICROCHIP’S PRODUCTS, COMBINATION WITH ANY
 * OTHER PRODUCTS, OR USE IN ANY APPLICATION.
 *
 * IN NO EVENT, WILL MICROCHIP BE LIABLE, WHETHER IN CONTRACT, WARRANTY, TORT
 * (INCLUDING NEGLIGENCE OR BREACH OF STATUTORY DUTY), STRICT LIABILITY, INDEMNITY,
 * CONTRIBUTION, OR OTHERWISE, FOR ANY INDIRECT, SPECIAL, PUNITIVE, EXEMPLARY,
 * INCIDENTAL OR CONSEQUENTIAL LOSS, DAMAGE, FOR COST OR EXPENSE OF ANY KIND
 * WHATSOEVER RELATED TO THE SOFTWARE, HOWSOEVER CAUSED, EVEN IF MICROCHIP HAS
 * BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST
 * EXTENT ALLOWABLE BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY
 * RELATED TO THIS SOFTWARE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU
 * HAVE PAID DIRECTLY TO MICROCHIP FOR THIS SOFTWARE.
 *
 * MICROCHIP PROVIDES THIS SOFTWARE CONDITIONALLY UPON YOUR ACCEPTANCE OF THESE TERMS
 *
 */

#include "StdAfx.h”
#include <stdio.h>
#include <stdlib.h>
#include <iostream>
#include <string>
#include <Windows.h> //Must include this header in program.

using namespace std;

int main(int argc, char * argv[])
{
 //Variables
 int userSelection = 0; //User input when requested for main menu
 static unsigned int mcp2200_VID = 0x04D8; //VID for MCP2200

 static unsigned int mcp2200_PID = 0x00DF; //PID for MCP2200
 bool connectedStatus = false; //Connection status of MCP2200
 unsigned int result = 0; //Result of function calls with uint returned

 //STEP 1: Get handle to DLL– Path and name (Ex. C:\\SimpleIO-UM.dll) or just name
 // if in working directory (put this in the quotes)
 HINSTANCE DLL_handle = LoadLibrary(TEXT("SimpleIO-UM.dll"));
 //Print result of LoadLibrary call
 if(DLL_handle == NULL) //If it is null, LoadLibrary call failed
 {
 DWORD error = GetLastError();
 cout << "Loading of the DLL failed\n";
 cout << "The error was: " << error << "\n\n";
 return -1;
 }
 else
 {
 cout << "DLL has been loaded\n\n";
 }

 //STEP 2: Get pointer to the function in the DLL
 FARPROC lpfnGetProcessID0 = GetProcAddress(HMODULE (DLL_handle),"InitMCP2200");
 FARPROC lpfnGetProcessID1 = GetProcAddress(HMODULE (DLL_handle),"IsConnected");

 //STEP 3: Define the Function in the DLL for reuse.
 //(Prototyping the DLL's function) Use "stdcall” calling convention
 typedef void (__stdcall * pICFUNC0)(unsigned int, unsigned int);
 typedef bool (__stdcall * pICFUNC1)();
 //Same step as above.
 pICFUNC0 DLL_InitMCP2200 = pICFUNC0(lpfnGetProcessID0);
 pICFUNC1 DLL_IsConnected = pICFUNC1(lpfnGetProcessID1);

 //STEP 4: Call the DLL function through the prototype name given in step 3
 //Initialize the MCP2200 – NOTE: Must be plugged in when program is ran
 DLL_InitMCP2200(mcp2200_VID, mcp2200_PID);
 cout << "The MCP2200 was successfully initialized.\n";
 //Check connection status.
 connectedStatus = DLL_IsConnected();
 if(connectedStatus == true)
 cout <<"The device is CONNECTED";
 else
 cout << "The device is DISCONNECTED";
 cout << "\n\n";

 //STEP 5: Release the DLL
 FreeLibrary(DLL_handle);

 return 0;
}

Simple IO API

Summary:
void __stdcall SimpleIOClass::InitMCP2200(unsigned int VendorID,

unsigned int ProductID)

bool __stdcall SimpleIOClass::IsConnected()

bool __stdcall SimpleIOClass::ConfigureMCP2200(unsigned char IOMap,

 unsigned long BaudRateParam,

 unsigned int RxLEDMode,

 unsigned int TxLEDMode,

 bool FLOW,

 bool ULOAD,

 bool SSPND,

bool INVERT)

bool __stdcall SimpleIOClass::SetPin(unsigned int pin)

bool __stdcall SimpleIOClass::ClearPin(unsigned int pin)

int __stdcall SimpleIOClass::ReadPinValue(unsigned int pin)

bool __stdcall SimpleIOClass::ReadPin(unsigned int pin,

unsigned int *returnvalue)

bool __stdcall SimpleIOClass::WritePort(unsigned int portValue)

bool __stdcall SimpleIOClass::ReadPort(unsigned int *returnvalue)

int __stdcall SimpleIOClass::ReadPortValue()

int __stdcall SimpleIOClass::SelectDevice(unsigned int uiDeviceNo)

int __stdcall SimpleIOClass::GetSelectedDevice()

unsigned int __stdcall SimpleIOClass::GetNoOfDevices()

void __stdcall SimpleIOClass::GetDeviceInfo(unsigned int uiDeviceNo,

LPSTR strOutput)

void __stdcall SimpleIOClass::GetSelectedDeviceInfo(LPSTR strOutput)

int __stdcall SimpleIOClass::ReadEEPROM(unsigned int uiEEPAddress)

int __stdcall SimpleIOClass::WriteEEPROM(unsigned int uiEEPAddress,

unsigned char ucValue)

While ConfigureMCP2200() configures the device with one call, it may also be configured one parameter

at a time:
bool __stdcall SimpleIOClass::fnRxLED(unsigned int mode)

bool __stdcall SimpleIOClass::fnTxLED(unsigned int mode)

bool __stdcall SimpleIOClass::fnHardwareFlowControl(unsigned int onOff)

bool __stdcall SimpleIOClass::fnULoad(unsigned int onOff)

bool __stdcall SimpleIOClass::fnSuspend(unsigned int onOff)

bool __stdcall SimpleIOClass::fnInvertUartPol(unsigned int onOff)

bool __stdcall SimpleIOClass::fnSetBaudRate(unsigned long BaudRateParam)

bool __stdcall SimpleIOClass::ConfigureIO(unsigned char IOMap)

bool __stdcall SimpleIOClass::ConfigureIoDefaultOutput(unsigned char ucIoMap,

unsigned char ucDefValue)

Constants:

const unsigned int OFF = 0;

const unsigned int ON = 1;

const unsigned int TOGGLE = 3;

const unsigned int BLINKSLOW = 4;

const unsigned int BLINKFAST = 5;

1. InitMCP2200

Function:

void __stdcall SimpleIOClass::InitMCP2200 (unsigned int VendorID,

unsigned int ProductID)

Summary:

Configures the Simple IO class for a specific Vendor and product ID.

Description:

Sets the Vendor and Product ID used for the project.

Precondition:

None

Parameters:

Vendor ID - Assigned by USB IF (www.usb.org)

Product ID - Assigned by the Vendor ID Holder

Returns:

none

Example:

InitMCP2200 (0x4D8, 0x00DF);

Remarks:

Call this function before any other calls to set the Vendor and Product

IDs.

2. IsConnected

 Function:

 bool __stdcall SimpleIOClass::IsConnected()

 Summary:

 Checks with the OS to see if the current VID/PID device is connected

 Description:

 Checks if a MCP2200 is connected to the computer and if so it returns

 true, otherwise the result will be false

 Precondition:

 VID & PID must have been previously set via a call to InitMCP2200(VID,

 PID)

 Parameters:

 none

 Returns:

 true if the device is connected to the host.

 false if the device is not connected to the host.

 Example:

 <code>

 unsigned int rv;

 if (IsConnected ())

 {

 lblStatusBar->Text = "Device connected";

 }

 else

 lblStatusBar->Text = "Device Disconnected";

 </code>

 Remarks:

 No actual communication with the end device is conducted. The function

 inquiries the OS to see if the specified VID/PID has enumerated.

3. ConfigureMCP2200

Function:

bool __stdcall SimpleIOClass::ConfigureMCP2200 (unsigned char IOMap,

 unsigned long BaudRateParam,

unsigned int RxLEDMode,

 int TxLEDMode,

 bool FLOW,

 bool ULOAD,

 bool SSPND,

bool INVERT)

 Summary:

 Configures the device.

 Description:

Sets the default GPIO designation, baud rate, TX/RX Led modes,

flow control

 Precondition:

The Vendor and Product ID must have been specified by

SimpleIOInit.

 Parameters:

IOMap - A byte which represents the input/output state of the

pins (each bit may be either a 1 for input, and 0 for output.

 BaudRateParam - the default communication baud rate

RxLEDMode - can take one of the constant values (OFF, ON, TOGGLE,

BLINKSLOW, BLINKFAST)

 in order to define the behavior of the RX Led

 OFF = 0;

 ON = 1;

 TOGGLE = 3;

 BLINKSLOW = 4;

 BLINKFAST = 5;

TxLEDMode - can take one of the defined values (OFF, ON, TOGGLE,

BLINKSLOW, BLINKFAST) in order to define the behavior of the TX

Led

FLOW - this parameter establishes the default flow control method

(false - no HW flow control, true - RTS/CTS flow control)

ULOAD - enables/disables the GP1 pin as a USB configuration

status indicator

 SSPND - enables/disables the GP0 pin as a USB suspend status pin

 INVERT - enables/disables the UART lines states:

 - Normal – Tx/Rx idle high; CTS/RTS active low

 - Inverted – Tx/Rx idle low; CTS/RTS active high

 Returns:

 Function returns true if the transmission is successful

 returns False if there the transmission fails.

 Example:

 <code>

if (ConfigureMCP2200(0x43, 9600, BLINKSLOW, BLINKFAST, false,

false, false, false) == SUCCESS)

 lblStatusBar->Text = "Success";

 else

 lblStatusBar->Text = "Invalid command";

 </code>

 Remarks:

 None

4. fnRxLED

Function:

bool __stdcall SimpleIOClass::fnRxLED (unsigned int mode)

Summary:

Configures the Rx LED mode. Rx LED configuration will be stored in

NVRAM.

Description:

Sets the Rx Led mode to one of the possible values and it also sets the

remaining of the relavant parameters (GPIO designation, baudrate, flow

control, Tx Led) with the default values as they're assigned either at

the call to the ConfigureMCP2200()or with the default values read back

from the device itself

Precondition:

The Vendor and Product ID must have been specified by InitMCP2200().

Parameters:

mode (constant): OFF, TOGGLE, BLINKSLOW, BLINKFAST

Returns:

returns False if the transmission fails.

Example:

if (fnRxLED (BLINKFAST) == SUCCESS)

lblStatusBar->Text = "Success";

else

lblStatusBar->Text = "Invalid command " + GetLastError();

Remarks:

Error code is returned in GetLastError()

5. fnTxLED

Function:

bool __stdcall SimpleIOClass::fnTxLED (unsigned int onOff,

unsigned int mode)

Summary:

Configures the Tx LED mode. Tx LED configuration will be stored NVRAM.

Description:

 Sets the Tx Led mode to one of the possible values and it also sets the

remaining of the relavant parameters (GPIO designation, baudrate, flow

control, Tx Led) with the default values as they're assigned either at

the call to the ConfigureMCP2200()or with the default values read back

from the device itself

Precondition:

The Vendor and Product ID must have been specified by InitMCP2200().

Parameters:

mode (constant): OFF, TOGGLE, BLINKSLOW, BLINKFAST

Returns:

Function returns true if the transmission is successful returns False

if the transmission fails.

Example:

if (fnTxLED (BLINKSLOW) == SUCCESS)

lblStatusBar->Text = "Success";

else

lblStatusBar->Text = "Invalid command " + GetLastError();

Remarks:

Error code is returned in GetLastError()

6. fnHardwareFlowControl

Function:

bool __stdcall SimpleIOClass::fnHardwareFlowControl (

unsigned int onOff)

Summary:

Configures the flow control of the MCP2200. The flow control

configuration will be stored in NVRAM

Description:

Sets the flow control to HW flow control (RTS/CTS) or No flow control

Precondition:

The Vendor and Product ID must have been specified by InitMCP2200()

Parameters:

onOff - 1 - if Hw flow control needed

0 - if No flow control needed

Returns:

Function returns true if the transmission is successful returns False

if the transmission fails.

Example:

 if (fnHardwareFlowControl(1) == SUCCESS)

 lblStatusBar->Text = "Success";

 else

lblStatusBar->Text = "Invalid command " + GetLastError();

Remarks:

Error code is returned in GetLastError()

7. fnULoad

Function:

bool __stdcall SimpleIOClass::fnULoad(unsigned int onOff)

Summary:

Configures the GP1 pin of the MCP2200 to show the status of the USB

configuration

Description:

When the GP1 is designated to show the USB configuration status, the

pin will start low (during power-up or after reset) and it will go high

after the MCP2200 is successfully configured by the host

Precondition:

The Vendor and Product ID must have been specified by InitMCP2200()

Parameters:

onOff - 1 - GP1 will reflect the USB configuration status

0 - GP1 will not reflect the USB configuration status (can

be used as GPIO)

Returns:

Function returns true if the transmission is successful returns False

if the transmission fails.

Example:

if (fnULoad(1) == SUCCESS)

lblStatusBar->Text = "Success";

else

lblStatusBar->Text = "Invalid command " + GetLastError();

Remarks:

Error code is returned in GetLastError()

8. fnSuspend

Function:

bool __stdcall SimpleIOClass::fnSuspend(unsigned int onOff)

Summary:

Configures the GP0 pin of the MCP2200 to show the status of

Suspend/Resume USB states

Description:

When the GP0 is designated to show the USB Suspend/Resume states, the

pin will go low when the Suspend state is issued or will go high when

the Resume state is on

Precondition:

The Vendor and Product ID must have been specified by InitMCP2200()

Parameters:

onOff - 1 - GP0 will reflect the USB Suspend/Resume states

0 - GP0 will not reflect the USB Suspend/Resume states (can

be used as GPIO)

Returns:

Function returns true if the transmission is successful returns False

if the transmission fails.

Example:

if (fnSuspend(1) == SUCCESS)

lblStatusBar->Text = "Success";

else

lblStatusBar->Text = "Invalid command " + GetLastError();

Remarks:

Error code is returned in GetLastError()

9. fnInvertUartPol

 Function:

 bool SimpleIOClass::fnInvertUartPol(unsigned int onOff)

 Summary:

 Configures the MCP2200 to invert the UART polarity or not

 Description:

 Enables/disables the UART lines states:

 - Normal – Tx/Rx idle high; CTS/RTS active low

 - Inverted – Tx/Rx idle low; CTS/RTS active high

 Precondition:

 The Vendor and Product ID must have been specified by InitMCP2200()

 Parameters:

 onOff - 1 - Invert the UART polarity

 0 - Leave UART polarity in normal state

 Returns:

 Function returns true if the transmission is successful

 returns False if there the transmission fails.

 Example:

 <code>

 if (SimpleIOClass::fnInvertUartPol(1) == SUCCESS)

 lblStatusBar->Text = "Success";

 else

lblStatusBar->Text = "Invalid command " +

SimpleIOClass::LastError;

 </code>

 Remarks:

 Error code is returned in LastError

10. fnSetBaudRate

Function:

bool __stdcall SimpleIOClass::fnSetBaudRate (

unsigned long BaudRateParam)

Summary:

Configures the device's default baudrate. The baudrate value will be

stored in NVRAM.

Description:

Sets the desired baudrate and it will store it into device's NVRAM.

Precondition:

The Vendor and Product ID must have been specified by InitMCP2200.

Parameters:

BaudRateParam - the desired baudrate value

Returns:

Function returns true if the transmission is successful and returns

false if the transmission fails.

Example:

if (fnSetBaudRate(9600) == SUCCESS)

lblStatusBar->Text = "Success";

else

lblStatusBar->Text = "Invalid command " + GetLastError();

Remarks:

Error code is returned in GetLastError()

11. ConfigureIO

Function:

bool __stdcall SimpleIOClass::ConfigureIO (unsigned char IOMap)

Summary:

Configures the GPIO pins for Digital Input, Digital Output

Description:

GPIO Pins can be configured as Digital Input, Digital Output

Precondition:

The Vendor and Product ID must have been specified by InitMCP2200.

Parameters:

IOMap - a byte which represents a bitmap of the GPIO configuration

 a bit set to '1' will be a digital input

 a bit set to '0' will be a digital output

 MSB - - - - - - LSB

 GP7 GP6 GP5 GP4 GP3 GP2 GP1 GP0

Returns:

Function returns true if the transmission is successful and returns

false if the transmission fails.

Example:

 if (ConfigureIO(0xA5) == SUCCESS)

 lblStatusBar->Text = "Success";

 else

 lblStatusBar->Text = "Invalid command " + GetLastError();

Remarks:

Error code is returned in GetLastError()

12. ConfigureIoDefaultOutput

Function:

bool __stdcall SimpleIOClass::ConfigureIoDefaultOutput(

unsigned char ucIoMap,

unsigned char ucDefValue)

Summary:

Configures the IO pins for Digital Input, Digital Output and also the

default output latch value

Description:

IO Pins can be configured as Digital Input, Digital Output

The default output latch value is received as a parameter

Precondition:

The Vendor and Product ID must have been specified by InitMCP2200.

Parameters:

ucIoMap - a byte containing a bit-map used to set the GPIOs as either

input or output

1 - GPIO configured as input

0 - GPIO configured as output

MSB - - - - - - LSB

GP7 GP6 GP5 GP4 GP3 GP2 GP1 GP0

ucDefValue - the default value that will be loaded to the output latch

(effect only on the pins configured as outputs)

Returns:

Function returns true if the transmission is successful and returns

false if the transmission fails.

Example:

 if (ConfigureIoDefaultOutput(IoMap, DefValue) == SUCCESS)

 lblStatusBar->Text = "Success";

 else

 lblStatusBar->Text = "Invalid command " + GetLastError();

Remarks:

Error code is returned in GetLastError()

13. SetPin

Function:

bool __stdcall SimpleIOClass::SetPin(unsigned int pin)

Summary:

Sets the specified pin.

Description:

Sets the specified pin to logic '1'.

Precondition:

Must have previously been configured as an output via a ConfigureIO or

ConfigureIoDefaultOutput call.

Parameters:

pin - The pin number to set (0-7)

Returns:

Function returns true if the transmission is successful and returns

false if the transmission fails.

Example:

 if (SetPin (2))

 lblStatusBar->Text = "Success";

 else

 lblStatusBar->Text = "Invalid command " + GetLastError();

Remarks:

Error code is returned in GetLastError()

14. ClearPin

Function:

bool __stdcall SimpleIOClass::ClearPin(unsigned int pin)

Summary:

Clears the specified pin.

Description:

Clears the specified pin to logic '0'.

Precondition:

Must have previously been configured as an output via a ConfigureIO or

ConfigureIoDefaultOutput call.

Parameters:

pin - The pin number to set (0-7)

Returns:

Function returns true if the transmission is successful returns False

if the transmission fails.

Example:

 if (ClearPin (2))

 lblStatusBar->Text = "Success";

 else

 lblStatusBar->Text = "Invalid command " + GetLastError();

Remarks:

Error code is returned in GetLastError()

15. ReadPin

Function:

bool __stdcall SimpleIOClass::ReadPin(unsigned int pin,

unsigned int *returnvalue)

Summary:

Reads the specified pin.

Description:

Reads the specified pin and returns the value in returnvalue. If the

pin has been configured as Digital Input, the return value will be

either 0 or 1.

Precondition:

Must have previously been configured as an input via a ConfigureIO or

ConfigureIoDefaultOutput call.

Parameters:

pin - The pin number to set (0-7)

returnvalue - the value read on the pin (0 or 1)

Returns:

Function returns true if the transmission is successful

returns False if the transmission fails.

Example:

unsigned int rv;

 if (ReadPin (0, &rv))

 lblStatusBar->Text = "Success";

 else

 lblStatusBar->Text = "Invalid command " + GetLastError();

Remarks:

Error code is returned in GetLastError()

16. ReadPinValue

Function:

int __stdcall SimpleIOClass::ReadPinValue(unsigned int pin)

Summary:

Reads the specified pin.

Description:

Reads the specified pin and returns the value as the return value. If

the pin has been configured as Digital Input, the return value will be

either 0 or 1.

if an error occurs, the function will return a value of 0x8000

Precondition:

Must have previously been configured as an input via a ConfigureIO or

ConfigureIoDefaultOutput call.

Parameters:

pin - The pin number to set (0-7)

Returns:

Function returns the read value of the pin and returns a value of

0x8000 if an error occurs.

Example:

unsigned int rv;

 if (ReadPinValue(0) != 0x8000)

 lblStatusBar->Text = "Success";

 else

 lblStatusBar->Text = "Invalid command " + GetLastError();

Remarks:

Error code is returned in GetLastError().

17. WritePort

Function:

bool __stdcall SimpleIOClass::WritePort(unsigned int portValue)

Summary:

Writes a value to the GPIO port.

Description:

Writes the GPIO port. This provides a means to write all pins at once

instead of one-at-a-time.

Precondition:

Must have previously been configured as an input via a ConfigureIO or

ConfigureIoDefaultOutput call.

Parameters:

portValue - Byte value to set on the port.

Returns:

Function returns true if the transmission is successful returns False

if the transmission fails.

Example:

 if (WritePort (0x5A))

 lblStatusBar->Text = "Success";

 else

 lblStatusBar->Text = "Invalid command " + GetLastError();

Remarks:

Pins configured for output returns the current state of the port.

Pins configured as input read as one.

18. ReadPort

Function:

bool __stdcall SimpleIOClass::ReadPort(unsigned int *returnvalue)

Summary:

Reads the GPIO port as digital input.

Description:

Reads the GPIO port and returns the value in returnvalue. This

provides a means to read all pins at once instead of one-at-a-time.

Precondition:

Must have previously been configured as an input via a ConfigureIO or

ConfigureIoDefaultOutput call.

Parameters:

pin - The pin number to set (0-7)

returnvalue - the value read on the pin (0 or 1)

Returns:

Function returns true if the read is successful

returns False if there the transmission fails.

Example:

unsigned int rv;

 if (ReadPort (&rv))

 lblStatusBar->Text = "Success";

 else

 lblStatusBar->Text = "Invalid command " + GetLastError();

Remarks:

Pins configured for output returns the current state of the port.

Pins configured as input read as one.

19. ReadPortValue

Function:

int __stdcall SimpleIOClass::ReadPortValue()

Summary:

Reads the GPIO port as digital input.

Description:

Reads the GPIO port and returns the value of the port. This provides a

mean to read all pins at once instead of one-at-a time. In case of an

error the returned value will be 0x8000

Precondition:

Must have previously been configured as an input via a ConfigureIO or

ConfigureIoDefaultOutput call.

Parameters:

None

Returns:

Function returns true if the read is successful

returns False if the transmission fails.

Example:

int rv;

 rv =ReadPortValue()

 if (rv != 0x8000)

 lblStatusBar->Text = "Success";

 else

 lblStatusBar->Text = "Invalid command " + GetLastError();

Remarks:

Pins configured for output returns the current state of the port.

Pins configured as input read as one.

20. SelectDevice

Function:

 int __stdcall SimpleIOClass::SelectDevice(unsigned int uiDeviceNo)

 Summary:

 Selects one of the active devices in the system

 Description:

 The function is used to select one of the detected devices in the system

 as the "active device"

 Precondition:

 At least one call to the InitMCP2200() is needed in order to have the DLL

 searching for the compatible devices. Also, in order to have the current

 number of devices in the system, call the IsConnected() function in order

 to update the number of connected devices available

 Parameters:

 uiDeviceNo - the ID of the device we want to select (can have a value

 between 0 and (number of devices - 1)

 Returns:

 Function returns 0 in case of selection success, otherwise it will return

 E_WRONG_DEVICE_ID (-1) - for a device ID that is out of range

 E_INACTIVE_DEVICE (-2) - for an inactive device

 Example:

 <code>

 int iResult;

 iResult = SelectDevice(1) //Assuming 2 devices are connected

 if (iResult == 0)

 {

 lblStatusBar->Text = "Success";

 }

 else

 lblStatusBar->Text = "Error selecting device";

 </code>

 Remarks:

 Call the IsConnected() prior to the call of this function

 in order to have the most recent number of devices that are present in

 the system.

21. GetSelectedDevice

 Function:

 int __stdcall SimpleIOClass::GetSelectedDevice(void)

 Summary:

 Returns the ID of the selected device

 Description:

 The function returns the ID of the current selected device.

 Precondition:

 At least one call to the InitMCP2200() is needed in order to have the DLL

 searching for the compatible devices.

 Parameters:

 None

 Returns:

 Function returns the ID of the current selected device. Its value can

 range from 0 to (number of devices - 1)

 Example:

 <code>

 lblStatusBar->Text = GetSelectedDevice();

 </code>

 Remarks:

 None

22. GetNoOfDevices

 Function:

 unsigned int __stdcall SimpleIOClass::GetNoOfDevices(void)

 Summary:

 The function returns the number of available devices present in the

 system

 Description:

 The function returns the number of HID devices that have the given

 VID/PID which are connected in the system.

 Precondition:

 At least one call to the InitMCP2200() is needed in order to have the DLL

 searching for the compatible devices. Also, in order to have the

 current number of devices in the system, call the IsConnected() function

 in order to update the number of connected devices available.

 Parameters:

 None

 Returns:

 Function returns the number of HID devices with the given (as parameters

 Of InitMCP2200() function) VID/PID

 Example:

 <code>

 IsConnected(); //call this function to refresh the number

 // of the devices present in the system

 int devCount = GetNoOfDevices();

 </code>

 Remarks:

 Call the IsConnected() prior to the call of this function

 in order to have the most recent number of devices that are present in

 the system

23. GetDeviceInfo

 Function:
 Void __stdcall SimpleIOClass::GetDeviceInfo(unsigned int uiDeviceNo,

 LPSTR strOutput)

 Summary:

 Returns the pathname for one of the connected devices

 Description:

 The function will return the pathname for the given device id

 Precondition:

 At least one call to the InitMCP2200() is needed in order to have the DLL

 searching for the compatible devices

 Parameters:

 uiDeviceNo - The device ID for which we need the path information

 Can have a value between 0 and (number of devices - 1)

 Returns:

 Function returns a string containing the pathname of the given device id.

 In the case the given ID is out of range, the function will return the

 "Device Index Error" string. In the case the device for which we

 need to have the pathname is not connected anymore, the return

 string will be "Device Not Connected".

 Example:

 <code>

 char * result = new char[256];

 GetDeviceInfo(0, result);

 //Output comes through parameter "result"

 string strValue(result);

 lblStatusBar->Text = strValue;

 </code>

 Remarks:

 None

24. GetSelectedDeviceInfo

Function:

 void __stdcall SimpleIOClass::GetSelectedDeviceInfo(LPSTR strOutput)

 Summary:

 Returns the selected device pathname through the parameter “strOutput”.

 Description:

 The function returns a string containing the unique pathname of the

 selected device.

 Precondition:

 At least one call to the InitMCP2200() is needed in order to have the DLL

 searching for the compatible devices.

 Parameters:

 None

 Returns:

 Function returns a string containing the unique pathname of the

 selected device.

 Example:

 <code>

 char * result = new char[256];

 GetSelectedDeviceInfo(result);

 //Output comes through parameter "result"

 string strValue(result);

 lblStatusBar->Text = strValue;

 </code>

 Remarks:

 The default selected device is the first one that the DLL finds. If the

 user wants to retrieve other device's pathname (assuming more than one

 device is present in the system), a call to SelectDevice(deviceNo)

 is needed.

25. ReadEEPROM

Function:

 int __stdcall SimpleIOClass::ReadEEPROM(unsigned int uiEEPAddress)

 Summary:

 Reads a byte from the chip's EEPROM.

 Description:

 Reads a byte from the EEPROM at the given address.

 Precondition:

 At least one call to the InitMCP2200() is needed in order to have the DLL

 searching for the compatible devices.

 Parameters:

 uiEEPAddress - The EEPROM address location we need to write to (must be

 from 0 to 255incl.).

 Returns:

 Function returns any positive value as being the EEPROM's location value

 E_WRONG_ADDRESS (-3) - in case the given EEPROM address is out of range

 E_CANNOT_SEND_DATA (-4) in case the function cannot send the command

 to the device.

 Example:

 <code>

 int iRetValue = ReadEEPROM(0x01, 0xAB);

 if (iRetValue >= 0)

 {

 lblStatusBar->Text = "Success";

 }

 else

 lblStatusBar->Text = "Error reading to EEPROM " + GetLastError();

 </code>

 Remarks:

 None

26. WriteEEPROM

 Function:

 int __stdcall SimpleIOClass::WriteEEPROM(unsigned int uiEEPAddress,

 unsigned char ucValue)

 Summary:

 Writes a byte into the chip's EEPROM.

 Description:

 Writes a byte at the given address into the internal 256 bytes EEPROM.

 Precondition:

 At least one call to the InitMCP2200() is needed in order to have the DLL

 searching for the compatible devices.

 Parameters:

 uiEEPAddress - The EEPROM address location we need to write to (must be

 from 0 to 255incl.)

 ucValue - the byte value we need to write to the given location

 Returns:

 The function returns 0 if the write command was successfully sent to the

 Device.

 E_WRONG_ADDRESS (-3) - in case the given EEPROM address is out of range

 E_CANNOT_SEND_DATA (-4) - in case the function cannot send the command

 to the device

 Example:

 <code>

 int iRetValue = WriteEEPROM(0x01, 0xAB);

 if (iRetValue == 0)

 {

 lblStatusBar->Text = "Success";

 }

 else

 lblStatusBar->Text = "Error writing to EEPROM " + GetLastError();

 </code>

 Remarks:

 The function will send the write EEPROM command but it has no

 confirmation whether the EEPROM location was actually written.

 In order to verify the correctness of EEPROM write, the user can issue a

 ReadEEPROM() and check if the returned value matched the written one.

