Bonjour, cliquez-ici pour vous inscrire et participer au forum.
  • Login:



+ Répondre à la discussion
Page 7 sur 7 PremièrePremière 7
Affichage des résultats 91 à 105 sur 105

Calcul intégral

  1. ansset

    Date d'inscription
    novembre 2009
    Localisation
    Fresnes
    Âge
    57
    Messages
    23 260

    Re : Calcul intégral

    c'est un peu comme si tu disais ( en oubliant les intégrales ) et en prenant une fonction f continue et dérivable en a que
    si x->a alors f(x)->f(a)
    f(a)-f(a)=0 et
    le "résultat" est un "segment" de hauteur f'(a) !!!!!!!

    -----

    y'a quelque chose qui cloche là dedans, j'y retourne immédiatement !
     


    • Publicité



  2. ansset

    Date d'inscription
    novembre 2009
    Localisation
    Fresnes
    Âge
    57
    Messages
    23 260

    Re : Calcul intégral

    pardon d'y revenir,
    il me semble que tu comprend mal l'intégration tout simplement parce que au départ tu n'as pas compris la dérivation............
    Hors, c'est l'étape obligatoire.

    ps: d'où beaucoup de post peu compréhensibles.
    Dernière modification par ansset ; 14/08/2017 à 10h40.
    y'a quelque chose qui cloche là dedans, j'y retourne immédiatement !
     

  3. BaptisteBaptiste

    Date d'inscription
    février 2017
    Âge
    19
    Messages
    171

    Re : Calcul intégral

    Effectivement, beaucoup de confusion de ma part.

    Et je ne sais pas qui on dérive. C'est bien F(x)= Intégrale de a à x f(t)dt que l'on dérive ?
     

  4. ansset

    Date d'inscription
    novembre 2009
    Localisation
    Fresnes
    Âge
    57
    Messages
    23 260

    Re : Calcul intégral

    Citation Envoyé par BaptisteBaptiste Voir le message
    Effectivement, beaucoup de confusion de ma part.

    Et je ne sais pas qui on dérive. C'est bien F(x)= Intégrale de a à x f(t)dt que l'on dérive ?
    Oui, cela revient indirectement à ça tout simplement.(*)
    enfin si j'ai bien compris ce qui te préoccupes , ce dont je ne suis pas sur.

    (*) que l'on dérive au point d'abscisse a, et sans revenir sur les notations que tu changes à chaque fois.( F est l'intégrale ou une primitive qui te sert de référence ? )
    Dernière modification par ansset ; 14/08/2017 à 11h05.
    y'a quelque chose qui cloche là dedans, j'y retourne immédiatement !
     

  5. BaptisteBaptiste

    Date d'inscription
    février 2017
    Âge
    19
    Messages
    171

    Re : Calcul intégral

    Je reprends juste le cours que j'ai écris plus haut pour les notations
     


    • Publicité



  6. erik

    Date d'inscription
    août 2004
    Messages
    3 604

    Re : Calcul intégral

    C'est bien F(x)= Intégrale de a à x f(t)dt que l'on dérive ?

    Tu as :

    avec F'(x)=f(x)

    Exemple :
    Pour f(x) = 2x+5 que vaut


    Il faut trouver F telle que F'(x)=f(x). On devine facilement que
    F(x)= x²+5x+cst (cst une constante réelle)

    la preuve : F'(x)= 2x+5=f(x)

    Donc :
     

  7. ansset

    Date d'inscription
    novembre 2009
    Localisation
    Fresnes
    Âge
    57
    Messages
    23 260

    Re : Calcul intégral

    Citation Envoyé par BaptisteBaptiste Voir le message
    Je reprends juste le cours que j'ai écris plus haut pour les notations
    ça ne me dérange pas, sauf quand tu changes de notation d'un post à un autre.
    je ne sais déjà pas ce qui te pose pb, alors si en plus tu parles plusieurs langues en même temps, ça n'aide pas ...
    y'a quelque chose qui cloche là dedans, j'y retourne immédiatement !
     

  8. ansset

    Date d'inscription
    novembre 2009
    Localisation
    Fresnes
    Âge
    57
    Messages
    23 260

    Re : Calcul intégral

    merci erik,
    si tu peux prendre le relai, je suis preneur .....
    y'a quelque chose qui cloche là dedans, j'y retourne immédiatement !
     

  9. BaptisteBaptiste

    Date d'inscription
    février 2017
    Âge
    19
    Messages
    171

    Re : Calcul intégral

    Bonjour Erik,

    Votre exemple se situe ou par rapport au cours que j'ai copié ?

    Encore une fois, il n'y a pas marqué cela dans mon cours. Je parle pour l'instant de F(x)= intégrale de a à x de f(t)dt.

    Ma question va etre simple: Pourriez-vous me dériver: F(x)= intégrale de a à x de f(t)dt. C'est ce que vous faites Erik ?
    Dernière modification par BaptisteBaptiste ; 14/08/2017 à 11h19.
     

  10. ansset

    Date d'inscription
    novembre 2009
    Localisation
    Fresnes
    Âge
    57
    Messages
    23 260

    Re : Calcul intégral

    Citation Envoyé par BaptisteBaptiste Voir le message
    Encore une fois, il n'y a pas marqué cela dans mon cours. Je parle pour l'instant de F(x)= intégrale de a à x de f(t)dt.

    Ma question va etre simple: Pourriez-vous me dériver: F(x)= intégrale de a à x de f(t)dt. C'est ce que vous faites Erik ?
    il me semble avoir déjà répondu à cela et d'autres aussi peut être.
    pardonnes moi de revenir à mes notations soit F une primitive de f.

    maintenant j'appelle x=a+h d'où

    vaut

    et sa limite quand h->0 vaut

    car d'une part :
    F étant la primitive de f la limite en question est la simple définition de la dérivée de F en a.
    d'autre part :
    la continuité de f permet de conclure que l'équivalent quand h->0 de
    vaut
    h*f(a) ( h étant la largeur infinitésimale ) et que dans cet intervalle f(x) ->f(a) ( par continuité )
    donc avec cette autre approche
    Dernière modification par ansset ; 14/08/2017 à 11h35.
    y'a quelque chose qui cloche là dedans, j'y retourne immédiatement !
     

  11. BaptisteBaptiste

    Date d'inscription
    février 2017
    Âge
    19
    Messages
    171

    Re : Calcul intégral

    Ok.

    Et si je reprends mes notations, cela permet de calculer l'aire entre x0 et x0+h que de dériver I(x) que je note dans mes notation F(x).
     

  12. BaptisteBaptiste

    Date d'inscription
    février 2017
    Âge
    19
    Messages
    171

    Re : Calcul intégral

    F(x0+h)-F(x0)/h= 1/h(Intégrale de a à x0+h f(t)dt - Intégrale de a à x0 f(t)dt) = Intégrale de a à x0+h f(t)dt - Intégrale de a à x0 f(t)dt)/h = Intégrale de x0 à x0+h f(t)dt/h
     

  13. ansset

    Date d'inscription
    novembre 2009
    Localisation
    Fresnes
    Âge
    57
    Messages
    23 260

    Re : Calcul intégral

    je t'invite à relire mon post #100 ( pile ), car je n'irai pas plus loin.

    ps: inutile de répéter ad vitam ce que tu as déjà écrit.
    y'a quelque chose qui cloche là dedans, j'y retourne immédiatement !
     

  14. erik

    Date d'inscription
    août 2004
    Messages
    3 604

    Re : Calcul intégral

    Ben oui mais je vois pas pourquoi tu te fait des nœuds au cerveau.

    Par définition



    Avec F'(x)=f(x)

    En divisant par h les deux membres de l'égalité on a immédiatement :





    EDIT : ah tiens ansset avait déja dis la même chose post #100, effectivement
    Dernière modification par erik ; 14/08/2017 à 11h51.
     

  15. BaptisteBaptiste

    Date d'inscription
    février 2017
    Âge
    19
    Messages
    171

    Re : Calcul intégral

    Ca y est, je pense avoir compris d'ou vient mes difficultés: Les "h" ont été supprimé car on a divisé des deux membres de l'égalité par "h" ?
     


    • Publicité







Sur le même thème :





 

Discussions similaires

  1. Calcul d'intégral
    Par showmann dans le forum Mathématiques du supérieur
    Réponses: 3
    Dernier message: 24/04/2013, 09h36
  2. Calcul d'intégral
    Par cipso dans le forum Mathématiques du supérieur
    Réponses: 2
    Dernier message: 20/03/2013, 18h22
  3. Calcul intégral
    Par SebMC12 dans le forum Mathématiques du collège et du lycée
    Réponses: 4
    Dernier message: 03/05/2009, 15h49
  4. Calcul d'integral
    Par Sarora dans le forum Mathématiques du collège et du lycée
    Réponses: 7
    Dernier message: 04/08/2008, 17h56
  5. Calcul integral
    Par mehdi_128 dans le forum Mathématiques du supérieur
    Réponses: 8
    Dernier message: 29/12/2007, 12h45