Bonjour, cliquez-ici pour vous inscrire et participer au forum.
  • Login:



+ Répondre à la discussion
Affichage des résultats 1 à 3 sur 3

produit scalaire et identité remarquable

  1. tal

    Date d'inscription
    septembre 2004
    Messages
    9

    produit scalaire et identité remarquable

    Bonjour, j'ai un peu de mal à réaliser ce DM étant donné que je n'ai pas eu de cours.
    Merci à tout ceux qui voudront bien m'aider

    1-1
    montrez que, quels que soient les vecteurs u et v,
    a) (u+v)²=u²+2u.v+v² [1].
    b) (u-v)²=u²-2u.v+v² [2]
    c) (u+v)²+(u-v)²=2(u²+v²) [3]
    d) (u+v).(u-v)=u²-v² [4]

    1-2
    a) en utilisant l'identité [4] du paragraphe 1-1, démontrez le résultat suivant déjà connu:
    ABCD est un parallélogramme.
    Dire que ABCD est un losange équivaut à dire que ses diagonales (AC) et (BD) sont perpendiculaires
    ( sur la figure AB=vecteur u et AD=vecteur v, AC=u+v et DB=u-v)

    j'ai mis que étant donné que AC=u+v et DB=u-v alors (u+v).(u-v)=u²-v²
    =AC.DB=u²-v²
    =(AB+AD)(AB-AD)=AB²-AD²
    d'où AB²-AD²=AB²-AD²
    donc AC=vecteur nul et DB=vecteur nul
    ils sont orthogonaux

    b) En utilisant l'une des identités remarquables, montrez que dans un parallélogramme ABCD, la somme des carrés des diagonales est égale à la somme des carrés des quatre côtés, c'est-à-dire montrez que :
    AC²+BD²=2(AD²+AB²)=AD²+BC²+AB² +DC²

    j'ai mis :
    (u+v)²+(u-v)²=2(u²+v²)
    étant donné que AC²=(u+v)² alors AC²=(AB+AD)²
    et sachant que DB²=(u-v)² alors DB²=(AB-AD)²
    donc AC²+BD²=(AB+AD)²+(AB+AD)²
    =2(AB²+AD²)

    Calculez la diagonale BD d'un parallélogramme ABCD tel que AD=3 AB=7 et AC=9

    là j'ai essayer plusieurs petites choses mais je ne trouve pas

    c) ABCD est un rectangle, AB=a AD=b et a>b
    (sur la figure AB=vecteur u et AD=vecteur v)

    En utilisant une identité remarquable du paragraphe 1.1, montrez que DB.AC=a²-b²

    j'ai mis u+v.u-v=a²-b²
    =(a+b)(a-b)=a²-b²

    H est le projeté orthogonal de B sur (AC) et K le projeté orthogonal de D sur (AC).
    Justifiez l'égalité HK.AC=DB.AC=a²-b²
    Déduisez-en que HK=a²-b²/a²+b²

    je ne trouve rien non plus....merci de m'aider

    d) I est le milieu d'un segment [AB], M est un point quelconque.
    Justifiez les égalités MA.MB=(MI+IA)(MI-IA)=MI²-IA²

    je ne trouve pas non plus

    D&duisez en le résultat suivant, déjà connu :
    MAB est un triangle, I est le milieu de [AB].
    Dire que MAB est rectangle équivaut à dire que MI=IA=IB

    je ne sais pas.


    Merci à tous ceux qui voudront bien m'aider


     


    • Publicité



  2. Topov

    Date d'inscription
    décembre 2004
    Localisation
    Paris
    Messages
    81

    Re : produit scalaire et identité remarquable

    Citation Envoyé par tal
    étant donné que je n'ai pas eu de cours.
    Le prof a oublié de les donner ?

    Tu as fait quoi dans ton dm ?

    Bonne journée
     

  3. shokin

    Date d'inscription
    mars 2004
    Localisation
    Suisse
    Âge
    30
    Messages
    8 556

    Re : produit scalaire et identité remarquable

    Pour le 1-1, il te suffit d'effectuer, de tirer parti de l'addition et de la multiplication et de leurs propriétés (associativité, commutativité), ainsi que des identités remarquables que tu connais.

    1-2 Pythagore peut t'aider, avec son fameux théorème. N'oublie pas que : "A est un quadrilatère parallélogramme." et *Les diagonales du quadrilatère A se coupent en leur milieu." sont deux propositions équivalentes.

    Calculez la diagonale BD d'un parallélogramme ABCD tel que AD=3 AB=7 et AC=9
    En vertu du théorème que tu viens de démontrer, tu es capable de trouver la mesure de l'autre diagonale. [NB: dans un quadrilatère parallélogramme, chaque côté est égal et parallèle au côté opposé]

    H est le projeté orthogonal de B sur (AC) et K le projeté orthogonal de D sur (AC).
    Justifiez l'égalité HK.AC=DB.AC=a²-b²
    Déduisez-en que HK=a²-b²/a²+b²
    Donc HB est perpendiculaire à AC, et comme Pythagore est à tes côtés !

    NB: je ne pense pas que HK égale DB. Normalement n'as-tu pas une formule pour calculer le projeté ? n'oublie pas les définitions de sinus, cosinus, tangente dans un triangle rectangle. N'oublie pas non plus que le produit de deux vecteurs divisé par le produit de leurs normes égale le cosinus de l'angle entre ces deux vecteurs. Un vecteur au carré (dans le plan) égale sa norme au carré. Songe que les triangles GHB et GBA sont semblables (amgles égaux), or tu connais -AG-> égal à (-AB->+-AD->)/2.

    Shokin
    Nous sommes libres. Wir sind frei. We are free. Somos libres. Siamo liberi.
     


    • Publicité




Poursuivez votre recherche :




Sur le même thème :




 

Discussions similaires

  1. Matrice de Pauli et Identité remarquable
    Par isozv dans le forum Physique
    Réponses: 14
    Dernier message: 15/10/2007, 21h58
  2. Identité remarquable
    Par humanino dans le forum Physique
    Réponses: 2
    Dernier message: 11/01/2007, 18h59
  3. identité remarquable
    Par pépé DU CHAMPAGNE dans le forum Mathématiques du collège et du lycée
    Réponses: 6
    Dernier message: 19/04/2006, 22h26
  4. identité remarquable
    Par svp dans le forum Mathématiques du supérieur
    Réponses: 2
    Dernier message: 23/02/2006, 11h46
  5. Produit scalaire
    Par snyfir dans le forum Mathématiques du supérieur
    Réponses: 33
    Dernier message: 30/11/2005, 16h50

Les tags pour cette discussion