Bonjour, cliquez-ici pour vous inscrire et participer au forum.
  • Login:



+ Répondre à la discussion
Affichage des résultats 1 à 12 sur 12

Espace métrique discret

  1. MiMoiMolette

    Date d'inscription
    septembre 2007
    Localisation
    Au bout d'une paire d'écouteurs
    Âge
    26
    Messages
    4 597

    Espace métrique discret

    Plop !

    Quelqu'un m'a parlé d'un espace métrique discret, c'est-à-dire :


    Alors voilà, je me demande quelles informations/propriétés intéressantes peuvent être tirées d'un tel espace ? Dans quels cas peut-il être utile d'y faire appel ?

    Mici de m'éclairer de vos connaissances sur la question !


    - Je peux pas, j'ai cours
    - Vous n'êtes pas un peu vieux ?
    - Je suis le prof
     


    • Publicité



  2. Gwyddon

    Date d'inscription
    octobre 2004
    Localisation
    Karlsruhe (Allemagne)
    Âge
    29
    Messages
    18 716

    Re : Espace métrique discret

    Bonjour,

    Dans cette topologie les ouverts sont aussi les fermés

    Sinon une application pratique c'est pour l'informatique et la théorie des graphes. On peut étudier différentes classes de graphes avec ce genre de topologie (en la modifiant légèrement) par exemples dans les algorithmes d'optimisation 2-opt, 3-opt, etc...
    gg --> H --> gamma gamma => Nobel !
     

  3. MiMoiMolette

    Date d'inscription
    septembre 2007
    Localisation
    Au bout d'une paire d'écouteurs
    Âge
    26
    Messages
    4 597

    Re : Espace métrique discret

    Citation Envoyé par Gwyddon Voir le message
    Bonjour,

    Dans cette topologie les ouverts sont aussi les fermés
    Arf, j'ai du mal à le voir ça !

    Dans un espace métrique, on sait que les ouverts sont les boules ouvertes.
    Donc toutes les
    Si , cela revient aux singletons
    Si , cela correspond à l'ensemble E tout entier !

    Hmmm désolée pour la question stupide, mais les complémentaires sont les ensembles é ou les boules ouvertes ? Ou est-ce équivalent ?

    Ch'uis paumée

    Sinon une application pratique c'est pour l'informatique et la théorie des graphes. On peut étudier différentes classes de graphes avec ce genre de topologie (en la modifiant légèrement) par exemples dans les algorithmes d'optimisation 2-opt, 3-opt, etc...
    erm... va falloir que j'aille lire des trucs sur ça alors

    Merci pour ta réponse !
    - Je peux pas, j'ai cours
    - Vous n'êtes pas un peu vieux ?
    - Je suis le prof
     

  4. God's Breath

    Date d'inscription
    décembre 2007
    Messages
    8 864

    Re : Espace métrique discret

    Bonjour,

    Citation Envoyé par MiMoiMolette Voir le message
    Dans un espace métrique, on sait que les ouverts sont les boules ouvertes.
    C'est plutôt : dans un espace métrique, on sait que les boules ouvertes sont des ouverts.

    Citation Envoyé par MiMoiMolette Voir le message
    Donc toutes les
    Si , cela revient aux singletons
    Effectivement, du fait que , tout singleton est ouvert.
    Donc les unions de singletons, c'est-à-dire toutes les parties de sont ouvertes.
    Par passage au complémentaires, toutes les parties de sont fermées.
    Et Dieu, dans sa colère, pour punir les humains, envoya sur la Terre les mathématiciens.
     

  5. MiMoiMolette

    Date d'inscription
    septembre 2007
    Localisation
    Au bout d'une paire d'écouteurs
    Âge
    26
    Messages
    4 597

    Re : Espace métrique discret

    Citation Envoyé par God's Breath Voir le message
    Bonjour,



    C'est plutôt : dans un espace métrique, on sait que les boules ouvertes sont des ouverts.



    Effectivement, du fait que , tout singleton est ouvert.
    Donc les unions de singletons, c'est-à-dire toutes les parties de sont ouvertes.
    Par passage au complémentaires, toutes les parties de sont fermées.
    Génial !!

    Merci !
    - Je peux pas, j'ai cours
    - Vous n'êtes pas un peu vieux ?
    - Je suis le prof
     


    • Publicité



  6. MMu

    Date d'inscription
    octobre 2006
    Messages
    753

    Re : Espace métrique discret

    Soit l'ensemble muni de la métrique discrète.
    Toute fonction est continue , quelque soit la topologie de .
     

  7. MiMoiMolette

    Date d'inscription
    septembre 2007
    Localisation
    Au bout d'une paire d'écouteurs
    Âge
    26
    Messages
    4 597

    Re : Espace métrique discret

    Oki, je range ma molette, prends mon papier, mon stylo et j'étudie ça

    Merci encore !

    (c'est ça la magie de la topo, s'trop bô ! )
    - Je peux pas, j'ai cours
    - Vous n'êtes pas un peu vieux ?
    - Je suis le prof
     

  8. Gwyddon

    Date d'inscription
    octobre 2004
    Localisation
    Karlsruhe (Allemagne)
    Âge
    29
    Messages
    18 716

    Re : Espace métrique discret

    Hello,

    On peut aussi se rendre compte que c'est un espace complètement non-connexe, au sens que toute sous-partie de cet espace est non-connexe pour la topologie induite.
    gg --> H --> gamma gamma => Nobel !
     

  9. MiMoiMolette

    Date d'inscription
    septembre 2007
    Localisation
    Au bout d'une paire d'écouteurs
    Âge
    26
    Messages
    4 597

    Re : Espace métrique discret

    Citation Envoyé par Gwyddon Voir le message
    Hello,

    On peut aussi se rendre compte que c'est un espace complètement non-connexe, au sens que toute sous-partie de cet espace est non-connexe pour la topologie induite.
    Aïe, ça commence à dépasser ce que je connais de la topologie ça
    Mais nul doute qu'un jour je vaincrai ça, grâce à ma bible !

    J'ai déjà dit merci ?
    - Je peux pas, j'ai cours
    - Vous n'êtes pas un peu vieux ?
    - Je suis le prof
     

  10. Gwyddon

    Date d'inscription
    octobre 2004
    Localisation
    Karlsruhe (Allemagne)
    Âge
    29
    Messages
    18 716

    Re : Espace métrique discret

    Hi,

    En fait il y a (à ma connaissance) trois définitions de la connexité, et évidemment là tout de suite je ne me souviens que de l'une d'entre elles

    Celle dont je me souviens est la plus générale (ie valable même si l'espace n'est pas métrique mais seulement topologique).

    On dit d'un espace (E,u) qu'il est connexe si les seuls ouverts et fermés pour la topologie u sont l'ensemble E et l'ensemble vide.

    Du coup ici tu vois bien que cela ne peut être le cas puisque toute sous-partie de E est à la fois ouverte et fermée pour la topologie discrète


    Et il n'y a pas de quoi, le but du forum c'est de partager ses connaissances
    gg --> H --> gamma gamma => Nobel !
     

  11. MiMoiMolette

    Date d'inscription
    septembre 2007
    Localisation
    Au bout d'une paire d'écouteurs
    Âge
    26
    Messages
    4 597

    Re : Espace métrique discret

    Citation Envoyé par Gwyddon Voir le message
    Hi,

    En fait il y a (à ma connaissance) trois définitions de la connexité, et évidemment là tout de suite je ne me souviens que de l'une d'entre elles
    Ça y est, on l'a vue aujourd'hui même en cours... Sur wikipedia j'avais en effet vu trois définitions équivalentes... Mon prof a préféré en donner deux et nous dire "l'espace est connexe si une des deux propriétés est fausse"
    C'est assez perturbant

    Et il n'y a pas de quoi, le but du forum c'est de partager ses connaissances
    - Je peux pas, j'ai cours
    - Vous n'êtes pas un peu vieux ?
    - Je suis le prof
     

  12. safouen1992

    Date d'inscription
    octobre 2013
    Messages
    1

    Re : Espace métrique discret

    Bonjour ,
    Étant donné un espace métrique discret , on peut montrer que toute suite de cauchy de cet espace est stationnaire , et comme toute suite stationnaire est convergente on peut en déduire que toute suite de cauchy de cet espace est convergente ainsi l'espace et complet . c'est une propriété très utile parmi d'autres bien sur )
    Dernière modification par safouen1992 ; 18/10/2013 à 10h20.
     


    • Publicité




Poursuivez votre recherche :




Sur le même thème :




 

Discussions similaires

  1. Espace Métrique Ou Métrisable
    Par christophe_de_Berlin dans le forum Mathématiques du supérieur
    Réponses: 4
    Dernier message: 17/09/2008, 19h08
  2. parties compactes d´un espace métrique
    Par christophe_de_Berlin dans le forum Mathématiques du supérieur
    Réponses: 5
    Dernier message: 16/09/2008, 16h29
  3. Espace metrique flou
    Par young077 dans le forum Mathématiques du supérieur
    Réponses: 5
    Dernier message: 17/09/2007, 16h36
  4. Espace Métrique Séparable
    Par christophe_de_Berlin dans le forum Mathématiques du supérieur
    Réponses: 6
    Dernier message: 30/08/2007, 13h36
  5. Espace métrique
    Par FonKy- dans le forum Mathématiques du supérieur
    Réponses: 8
    Dernier message: 16/08/2007, 11h10

Les tags pour cette discussion