Bonjour, cliquez-ici pour vous inscrire et participer au forum.
  • Login:



+ Répondre à la discussion
Affichage des résultats 1 à 12 sur 12

Equation différentielle non linéaire (~ Bernoulli)

  1. Anduriel

    Date d'inscription
    janvier 2006
    Messages
    618

    Equation différentielle non linéaire (~ Bernoulli)

    Bonjour,

    J'ai ce type d'équation que je souhaiterais résoudre:



    où a et b sont constants.
    Le terme constant m'embête je ne vois pas comment procéder, avez vous une méthode?

    Merci

    -----

     


    • Publicité



  2. gg0

    Date d'inscription
    avril 2012
    Âge
    68
    Messages
    21 129

    Re : Equation différentielle non linéaire (~ Bernoulli)

    Bonjour.

    C'est une équation à variables séparables :


    Cordialement.
     

  3. Anduriel

    Date d'inscription
    janvier 2006
    Messages
    618

    Re : Equation différentielle non linéaire (~ Bernoulli)

    Merci pour l'astuce !
    J'ai trouvé l'équation:



    Le souci... c'est pour isoler h(t)...
    Je ne pense pas que le DL du ln() soit bon étant donné que le terme n'est pas petit...
    Avez-vous une solution?

    Merci
     

  4. gg0

    Date d'inscription
    avril 2012
    Âge
    68
    Messages
    21 129

    Re : Equation différentielle non linéaire (~ Bernoulli)

    A priori, c'est -t+C où C est une constante quelconque.

    Effectivement, c'est une équation peu réjouissante. Au mieux on pourra utiliser la fonction W de Lambert.
    Pourquoi as-tu besoin de résoudre ça ?
     

  5. Anduriel

    Date d'inscription
    janvier 2006
    Messages
    618

    Re : Equation différentielle non linéaire (~ Bernoulli)

    Merci pour cette autre référence je regarderai.
    Je tente de résoudre un problème dans lequel je remplis une bassine percée avec un débit De. Je tente de trouver la hauteur h de l'eau dans la bassine en fonction du temps.
    Mais en traçant le temps en fonction de la hauteur, ça me dira peut être au bout de quel temps ma hauteur h (valeur finale qui a convergé) est atteinte. J'aurais peut être une forme similaire à une caractéristique de diode.
     


    • Publicité



  6. Anduriel

    Date d'inscription
    janvier 2006
    Messages
    618

    Re : Equation différentielle non linéaire (~ Bernoulli)

    Faux, le tracé ne donne rien de normal (temps négatif...).
    Peut-être que mon problème est mal posé...
    J'ai considéré qu'une variation de hauteur était due à une variation de hauteur due au débit sortie (bassine percée) + une variation de hauteur due au début entrant:



    D'après le principe de Bernoulli, j'ai:



    Avec S les sections appropriées et D le débit.
    D'où la forme (aux signes prêts dans a et b) :



    Ai-je fait une erreur?
    Merci
     

  7. shezone

    Date d'inscription
    avril 2015
    Localisation
    Nice
    Âge
    20
    Messages
    240

    Re : Equation différentielle non linéaire (~ Bernoulli)

    L'équation que tu viens de donner est différente du premier message .

    cdt
     

  8. Anduriel

    Date d'inscription
    janvier 2006
    Messages
    618

    Re : Equation différentielle non linéaire (~ Bernoulli)

    C'est là que je précisais que a et b étaient définis au +/- (je ne pense pas que ça change le résultat).
    En revanche, je viens de voir que j'ai une erreur d'homogénéité (il ne faut pas multiplier par Se)
    Mais encore une fois il s'agit de constante je vérifierai que ça ne change pas la conclusion...
     

  9. Anduriel

    Date d'inscription
    janvier 2006
    Messages
    618

    Re : Equation différentielle non linéaire (~ Bernoulli)

    Merci gg0 j'ai regardé la fonction W de Lambert.
    Cependant, dans la partie "Utilisation, exemple 6" de la page wiki, il semble ne pouvoir y avoir que 2 solutions (au mieux!)
    Je trouve ça étrange car ma fonction serait défini pour tout temps t (infinité de solutions).. il y a surement quelque chose que je n'ai pas compris ?
     

  10. Tryss2

    Date d'inscription
    août 2015
    Messages
    1 321

    Re : Equation différentielle non linéaire (~ Bernoulli)

    Il y a au plus deux solutions à t fixé (et une seule pour chaque t > 0)
     

  11. Anduriel

    Date d'inscription
    janvier 2006
    Messages
    618

    Re : Equation différentielle non linéaire (~ Bernoulli)

    Bonjour,
    Effectivement c'est plus clair...
    J'ai revérifié les équations, et j'ai finalement:



    Je suis allé regarder côté Wikipedia sur la fonction de Lambert (exemple 6, cas de ).
    J'ai reposé les équations et calculé le déterminant selon la formule:


    Le calcul en posant mes équations, et en posant:
    Donne:



    Coup de chance, je suis dans le cas où j'ai toujours 2 solutions réelles car t >= 0.

    Pour déterminer les solutions, je l'ai fait sous MATLAB, en considérant les formes de solutions données sur wikipedia:

    Code:
    section_bac = 0.1*0.1; % rectangle 10cm*10cm
    section_sortie = 0.01*0.1; % rectangle 1cm*10cm
    debit_entree = 10^-3; % 1L/s = 0.001m^3/s
    g = 10; % gravité
    
    a = section_sortie*sqrt(2*g)/section_bac;
    b = -debit_entree/section_bac;
    
    t = 0:1:30; % sec
    
    ap = -2*b/a^2;
    bp = 2*b/a^2;
    cp = t - 2*b/a^2;
    
    delta = -exp(-g*section_sortie^2.*t/(debit_entree*section_bac))/exp(1);
    x1 = (b/a*(exp(-lambertw(delta)-cp/ap)-1)).^2;
    x2 = (b/a*(exp(-lambertw(-1, delta)-cp/ap)-1)).^2;
    
    hold all
    plot(t,x1)
    hold all
    plot(t,x2)
    Mon x1 donne une réponse d'ordre 1 (pourquoi pas) mais mon x2 n'est pas du tout du même ordre de grandeur.
    Je m'emmêle peut être sur la fonction.

    Si quelqu'un est assez intéressé par le problème pour me relire et voir où j'aurais pu faire une erreur, je suis preneur !

    Merci
     

  12. Anduriel

    Date d'inscription
    janvier 2006
    Messages
    618

    Re : Equation différentielle non linéaire (~ Bernoulli)

    Je pense que je n'étais pas loin !
    J'ai confirmé par ici: http://www.wolframalpha.com/input/?i...h)%2Fb))+for+h

    Pas de double solutions, seulement une avec une réponse en premier ordre... à confirmer en pratique !
     


    • Publicité







Sur le même thème :





 

Discussions similaires

  1. équation différentielle de Bernoulli
    Par milaC dans le forum Mathématiques du supérieur
    Réponses: 2
    Dernier message: 22/04/2016, 19h28
  2. Equation différentielle de Bernoulli
    Par kevin313 dans le forum Mathématiques du supérieur
    Réponses: 2
    Dernier message: 30/12/2011, 17h22
  3. Equation Différentielle, linéaire, non linéaire, explicite ?
    Par Polox17 dans le forum Mathématiques du supérieur
    Réponses: 4
    Dernier message: 01/11/2011, 17h55
  4. Equation différentielle (non linéaire)
    Par R0m12 dans le forum Mathématiques du supérieur
    Réponses: 3
    Dernier message: 23/12/2010, 11h59
  5. resolution des equation differentielle lineaire et n-lineaire
    Par TToufik dans le forum Mathématiques du supérieur
    Réponses: 3
    Dernier message: 10/08/2004, 15h02