EXERCICE 1 4,5 points

Commun à tous les candidats

Dans tout l'exercice on considère 20 boules indiscernables au toucher (10 noires et 10 blanches) et deux urnes A et B dans chacune desquelles on placera 10 boules suivant un mode qui sera précisé dans chaque question.

- 1. On choisit dix boules au hasard et on les met dans l'urne A. On place les dix autres boules dans l'urne B.
 - **a.** Quelle est la probabilité pour que les deux urnes ne contiennent chacune que des boules de même couleur ?
 - **b.** Quelle est la probabilité pour que les deux urnes contiennent chacune 5 boules blanches et 5 boules noires ?
- **2.** Soit x un entier tel que $0 \le x \le 10$. On place maintenant x boules blanches et 10 x boules noires dans l'urne A et les 10 x boules blanches et x boules noires restantes dans l'urne B. On procède à l'expérience E:

On tire au hasard une boule de A et on la met dans B, puis on tire au hasard une boule de B et on la met dans A.

On désigne par M l'évènement « chacune des deux urnes a la même composition avant et après l'expérience ».

- **a.** Pour cette question **a.**, on prend x = 6. Quelle est la probabilité de l'évènement M?
- b. Montrer que la probabilité de l'évènement M est égale à :

$$\frac{1}{55} \left(-x^2 + 10x + 5\right).$$

c. Pour quelles valeurs de x l'évènement M est-il plus probable que l'évènement contraire \overline{M} ?

EXERCICE 2 5,5 points

Enseignement obligatoire

Le plan complexe est rapporté à un repère orthonormal direct $(O, \overrightarrow{u}, \overrightarrow{v})$. Pour tout point P, on convient de noter z_P son affixe.

- 1. On considère dans l'ensemble des complexes l'équation (E) : $z^3 + 8 = 0$.
 - **a.** Déterminer les nombres réels a, b, c tels que $z^3 + 8 = (z+2)(az^2 + bz + c)$ pour tout complexe z.
 - **b.** Résoudre l'équation (E) (on donnera les solutions sous la forme x + yi, avec x et y réels).
 - **c.** Écrire ces solutions sous la forme $re^{i\theta}$, où r est un réel positif.
- 2. On considère les points A, B, C d'affixes respectives 2, 1 $i\sqrt{3}$ et 1 + $i\sqrt{3}$, le point D milieu de [OB] et la rotation R de centre O et d'angle $\frac{2\pi}{3}$.
 - **a.** Montrer que R(A) = B, R(B) = C et R(C) = A. En déduire que le triangle ABC est équilatèral.

Placer A, B, C, D dans le plan.

b. On considère le point L défini par $\overrightarrow{AL} = \overrightarrow{OD}$. Déterminer son affixe z_L . Déterminer un argument de $\frac{z_L}{z_D}$.

En déduire que le vecteur \overrightarrow{OL} est orthogonal au vecteur \overrightarrow{OD} et au vecteur \overrightarrow{AL}

Montrer que L est sur le cercle de diamètre [AO].

Placer L sur la figure.

EXERCICE 2 5,5 points

Enseignement de spécialité

Le plan est muni d'un repère orthonormal direct $(0, \vec{t}, \vec{j})$.

On donne le point A(6; 0) et le point A'(0; 2).

À tout point M de l'axe des abscisses différent de A on associe le point M' tel que :

$$AM = A'M'$$
 et $(\overrightarrow{AM}, \overrightarrow{A'M'}) = \frac{\pi}{2} \mod 2\pi$.

On admet l'existence et l'unicité de M'.

On réalisera une figure avec, pour unité graphique 0.5 cm et pour cette figure, on prendra -4 pour abscisse de M.

- 1. Soit M un point de l'axe des abscisses différent de A.
 - **a.** Placer le point M' sur la figure.
 - **b.** Pour cette question on pourra donner une démonstration purement géométrique ou utiliser les nombres complexes. Démontrer qu'il existe une unique rotation, dont on précisera le centre, noté I et l'angle, qui transforme A en A' et M en M'. Placer I sur la figure.
 - **c.** Démontrer que la médiatrice de [MM'] passe par I.
- **2.** On veut déterminer et construire les couples de points (M, M') vérifiant la condition supplémentaire MM' = 20.
 - **a.** Calculer IM et démontrer qu'il existe deux couples solutions : (M_1, M'_1) et (M_2, M'_2) .
 - **b.** Placer ces quatre points sur la figure.

PROBLÈME 10 points

Commun à tous les candidats Étude d'une fonction et résolution d'une équation liée à cette fonction.

Dans tout le problème, on considère la fonction réelle f de la variable réelle x définie sur]0; $+\infty[$ par :

 $f(x) = \ln\left(1 + \frac{1}{x}\right).$

On note $\mathscr C$ sa courbe représentative dans le plan rapporté à un repère orthonormal $\left(0, \overrightarrow{i}, \overrightarrow{j}\right)$ (unité graphique : 4 cm).

Partie A

Étude du sens de variation de la fonction f

- **1. a.** Calculer f'(x) et étudier son signe sur] 0; $+\infty$ [. En déduire le sens de variation de f sur] 0; $+\infty$ [.
 - **b.** Déterminer les limites de f en $+\infty$ et en 0.
 - **c.** Dresser le tableau de variations de f.
- **2.** Montrer que, pour tout x élément de l'intervalle $I = [0,7; 0,9], \ f(x)$ est aussi élément de I et que $|f'(x)| \le 0,9$.

Partie B

On se propose dans cette partie de montrer que l'équation f(x) = x a une solution unique dans l'intervalle]0; $+\infty[$ et de donner une valeur approchée de cette solution à l'aide d'une suite.

1. On considère la fonction g définie sur]0; $+\infty$ [par :

$$g(x) = \ln\left(1 + \frac{1}{x}\right) - x.$$

- **a.** Déterminer les limites de g en $+\infty$ et en 0.
- **b.** Montrer que g est une fonction strictement décroissante sur]0; $+\infty[$.
- **c.** Montrer que l'équation g(x) = 0 admet une solution unique, que l'on notera α , appartenant à l'intervalle I = [0,7;0,9]. Montrer que cette équation n'a pas d'autre solution dans $]0;+\infty[$.
- **d.** Que peut-on en déduire pour l'équation f(x) = x? Sur le graphique joint en annexe, que l'on rendra avec la copie, figure la partie de la courbe $\mathscr C$ dont les points ont une abscisse comprise entre 0,7 et 0,9 et le segment [AB], où A et B sont les points de coordonnées respectives (0,7;0,7) et (0,9;0,9). Que représente le point de coordonnées $(\alpha;f(\alpha))$ pour la courbe $\mathscr C$ et le segment [AB] ? Placer ce point sur le graphique joint en annexe.
- **2.** On considère la suite réelle (a_n) définie par $a_0 = 0,7$ et $a_{n+1} = f(a_n)$ pour tout entier naturel n.
 - **a.** Montrer que, pour tout entier naturel n, a_n est élément de I.
 - **b.** Construire sur le graphique joint en annexe les éléments de (a_n) pour n = 1, 2, 3, 4. Justifier que la suite n'est pas monotone.
 - c. Démontrer, en utilisant l'inégalité des accroissements finis, que

$$|a_{n+1} - \alpha| \leq 0.9 |a_n - \alpha|$$
 pour tout entier n .

d. Démontrer, en utilisant un raisonnement par récurrence, que

3

$$|a_n - \alpha| \leq (0,9)^n \times 0.2$$
 pour tout entier n .

En déduire que la suite (a_n) converge vers α .

- **3. a.** Montrer que si $x < \alpha$ alors $f(x) > \alpha$ et que si $x > \alpha$ alors $f(x) < \alpha$. On admet que, pour tout entier naturel n pair, $a_n < \alpha$ et que pour tout entier naturel n impair, $a_n > \alpha$.
 - **b.** Le tableau de valeurs suivant a été écrit par un élève ayant recopié les résultats donnés par un logiciel informatique pour le calcul des valeurs approchées des termes de la suite (a_n) , en ne retenant que les 5 premières décimales. Or, une valeur a été incorrectement recopiée.

Quelle est la plus petite valeur de l'entier n pour laquelle on est sûr que la valeur approchée écrite de a_n est incorrecte?

Pourquoi ? Soit p cette valeur. Calculer à la calculatrice une valeur approchée de a_p et vérifier la valeur approchée de a_{p+1} écrit dans le tableau. Peut-on affirmer à l'aide de ce tableau que $0,806\,40 < \alpha < 0,806\,51$?

n =	a_n	n =	a_n
0	0,70000	12	0,80523
1	0,88730	13	0,80731
2	0,75471	14	0,80588
3	0,84371	15	0,80686
4	0,78172	16	0,80619
5	0,82383	17	0,80665
6	0,79472	18	0,80633
7	0,81461	19	0,80655
8	0,80091	20	0,80640
9	0,81029	21	0,80650
10	0,80884	22	0,80643
11	0,80826		

Annexe 1

Partie de la courbe $\mathscr C$ dont les points ont une abscisse comprise entre 0,69 et 0,91 et le segment [AB], où A et B sont les points de coordonnées respectives (0,7;0,7) et (0,9;0,9).

