Baccalauréat S Centres étrangers juin 2005

EXERCICE 1 3 points

Commun à tous les candidats

Partie: A Restitution organisée de connaissances

En fait la démonstration n'en n'est pas une puisque tous les éléments de la démonstration sont donnés dans les prérequis.

Partie B

- 1. VRAI: $z^2 = -\frac{1}{2}i$, et $z^4 = (z^2)^2 = -\frac{1}{4} \in \mathbb{R}$.
- **2.** FAUX : si z = a + ib, $\overline{z} = a ib$ et $|z + \overline{z}| = 0 \iff 2a = 0 \iff a = 0$. Donc tous les imaginaires de la forme bi avec $b \neq 0$ vérifient la relation sans être nuls.
- 3. VRAI: $z + \frac{1}{z} = 0 \iff \frac{z^2 + 1}{z} = 0 \iff z^2 + 1 = 0 \ (z \neq 0) \iff (z + i)(z i) = 0 \iff z = -i \text{ ou } z = i.$
- **4.** FAUX: Si z = 1 et $z' = e^{\frac{2i\pi}{3}} = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$, alors $z + z' = \frac{1}{2} + i\frac{\sqrt{3}}{2}$, |z| = 1 et $|z + z'| = \sqrt{\frac{1}{4} + \frac{3}{4}} = \sqrt{1} = 1$ et $z' \neq 0$.

EXERCICE 2 5 points

Réservé aux candidats n'ayant pas choisi l'enseignement de spécialité

1. Si p_1 , p_2 , p_3 et p_4 dans cet ordre, forment une progression arithmétique de raison r, alors $p_2 = p_1 + r$, $p_3 = p_1 + 2r$ et $p_4 = p_1 + 3r$. On a donc :

$$\left\{ \begin{array}{lll} p_4 & = & p_1 + 3r = 0,4 \\ p_1 + p_1 + r + p_1 + 2r + p_1 + 3r & = & 1 \text{ (loi des probabilités totales)} \end{array} \right. \Longleftrightarrow$$

$$\left\{ \begin{array}{lll} p_1+3r & = & 0,4 \\ 4p_1+6r & = & 1 \end{array} \right. \Longleftrightarrow \left\{ \begin{array}{lll} 2p_1+6r & = & 0,8 \\ 4p_1+6r & = & 1 \end{array} \right. \Longrightarrow 2p_1=0,2 \Longleftrightarrow p_1=0,1.$$

On en déduit aussitôt que r = 0, 1 et finalement :

$$p_1 = 0, 1, p_2 = 0, 2, p_3 = 0, 3, p_4 = 0, 4.$$

- **2. a.** La probabilité d'obtenir dans l'ordre 1, 2, 4 est $p_{124}=0,1\times0,2\times0,4=0.008$.
 - **b.** Les tirages donnant trois nombres distincts croissants sont: (1, 2, 3), (1, 2, 4) et (2, 3, 4). La probabilité d'avoir l'un de ces tirages est donc :

$$p_1 \times p_2 \times p_3 + p_1 \times p_2 \times p_4 + p_2 \times p_3 \times p_4 = 0,006 + 0,008 + 0,024 = 0,038.$$

3. a. On a un schéma de Bernouilli avec n = 10 et $p_4 = 0, 4$. On sait que la probabilité d'obtenir i fois le chiffre 4 est (pour $0 \le i \le 10$):

$$p(X=i) = {10 \choose i} 0, 4^{i} (1-0,4)^{10-i} = {10 \choose i} 0, 4^{i} 0, 6^{10-i}.$$

b. On a E(X) =
$$\sum_{i=0}^{10} i \times p(X=i) = \sum_{i=0}^{10} i \times {10 \choose i} 0, 4^i 0, 6^{10-i} = 4.$$

Cela signifie que sur un grand nombre de tirages le 4 sortira en moyenne 4 fois sur 10.

- **c.** On a $p(X \ge 1) = 1 p(X = 0)$. Or $p(X = 0) = 0,6^{10}$. Donc $p(X \ge 1) = 1 0,6^{10} \approx 0,993 \ 9 \approx 0,994$, soit à peu près 994 chances sur 1 000 d'obtenir au moins une fois le 4 en 10 tirages.
- **4. a.** La probabilité d'obtenir n-1 fois un autre chiffre que le 4 et ensuite le 4 au n^e tirage est :

$$U_n = 0.6^{n-1} \times 0.4.$$

Cette suite est une suite géométrique de premier terme $U_1 = 0.4$ et de raison 0,6. Comme -1 < 0.6 < 1, cette suite converge vers 0.

- **b.** $S_n = 0.4 \times 0.6^0 + 0.4 \times 0.6^1 + \dots + 0.4 \times 0.6^{n-1} = 0.4 \times \frac{1 0.6^n}{1 0.6} = 1 0.6^n$. On a de même $\lim_{n \to +\infty} 0.6^n = 0$, donc $\lim_{n \to +\infty} S_n = 1$.
- **c.** On a $S_n > 0.999 \iff 1 0.6^n > 0.999 \iff 0.6^n < 0.001 \iff n \ln 0.6 < \ln 0.001$ par croissance de la fonction $\ln \iff n > \frac{\ln 0.001}{\ln 0.6}$ car $\ln 0.6 < 0$. Comme $\frac{\ln 0.001}{\ln 0.6} \approx 13.5$, il faut donc faire 14 tirages.

EXERCICE 2 5 points

Réservé aux candidats ayant choisi l'enseignement de spécialité

Partie A. Quelques exemples

- 1. $4 \equiv 1 \mod 3$, donc $4^n \equiv 1^n \mod 3$ et finalement $4^n \equiv 1 \mod 3$.
- 2. 4 est premier avec 29 (29 est premier). Donc d'après le petit théorème de Fermat $4^{29-1} 1 \equiv 0 \mod 29$ ou encore $4^{28} 1$ est divisible par 28.
- **3.** $4 = 0 \times 17 + 4$;
 - $4^2 = 0 \times 17 + 16$;
 - $4^3 = 3 \times 17 + 13$:
 - $4^4 = 15 \times 17 + 1$.

La dernière égalité montre que $4^4 \equiv 1 \mod 17$, d'où $\left(4^4\right)^k \equiv 1^k \mod 17$ soit $4^{4k} \equiv 1 \mod 17$ ou encore $4^{4k} - 1 \equiv 0 \mod 17$.

Conclusion: $4^{4k} - 1$ est divisible par 17.

4. On a $4^2 = 16 = 3 \times 5 + 1$ ou $4^2 \equiv 1 \mod 5$ d'où il résulte que $4^{2k} \equiv 1 \mod 5$ ou encore $4^{2k} - 1 \equiv 0 \mod 5$.

Conclusion : $4^n - 1$ est divisible par 5 si n est pair.

Par contre : de $4 \equiv 4 \mod 5$ et $4^{2k} \equiv 1 \mod 5$ il résulte par produit que $4^{2k+1} \equiv 4 \mod 5$.

Conclusion : $4^n - 1$ est divisible par 5 si et seulement si n est pair.

5. Diviseurs premiers de $4^{28} - 1$: la question 2 a déjà donné le nombre 29; la question 3 a donné le diviseur premier 17; la question 4 a donné le diviseur 5. D'autre part, $4 \equiv 1 \mod 3$ entraîne $4^n \equiv 1 \mod 3$ ou encore $4^n - 1$ est divisible par 3 qui est premier. Il y a également 5, 43 ...

Partie B. Divisibilité par un nombre premier

- **1.** $4 = 2^2$; si p est premier différent de 2, il est premier avec 4, donc d'après le petit théorème de Fermat $4^{p-1} 1 \equiv 0 \mod p$ ou $4^{p-1} \equiv 1 \mod p$. Le premier premier différent de 2 est 3, donc $n = p 1 \geqslant 1$.
- **2. a.** On a donc : $4^n \equiv 1 \mod p$, $4^b \equiv 1 \mod p$ et n = bq + r avec r < b. On déduit de la seconde congruence que $4^{bq} \equiv 1 \mod p$ et par quotient avec $4^{bq+r} \equiv 1 \mod p$ que $4^r \equiv 1 \mod p$. Or b étant le plus petit naturel vérifiant $4^b \equiv 1 \mod p$, il en résulte que $4^r = 1$ ou encore r = 0.

b. On vient démontrer dans la question précédente que si $4^n \equiv 1 \mod p$, alors n est multiple de b, b étant le plus naturel positif tel que $4^b \equiv 1 \mod p$.

Inversement si n = kb, de $4^b \equiv 1 \mod p$, on déduit que $(4^b)^k \equiv 1^k \mod p$ soit $4^n \equiv 1 \mod p$. L'équivalence est donc démontrée.

c. D'après la question B. $1 ext{ } 4^{p-1} \equiv 1 \mod p$ et soit b le plus petit entier tel que $4^b \equiv 1 \mod p$. D'après la question 2. b. il en résulte que p-1 est multiple de b ou encore b (non nul) divise p-1.

EXERCICE 3 6 points

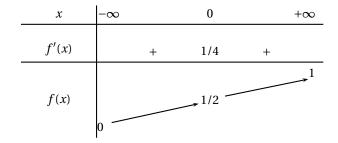
Commun à tous les candidats

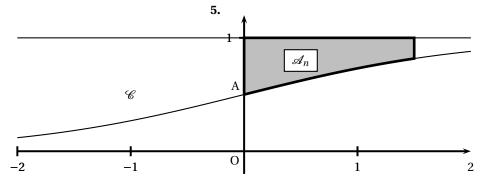
Partie A Étude de la fonction f

- 1. On sait que $e^x \ne 0$, quel que soit le réel x; $f(x) = \frac{e^x}{e^x} \times \frac{1}{1 + e^{-x}} = \frac{e^x}{e^x + 1}$.
- **2.** On a $\lim_{x \to -\infty} e^x = 0$, donc $\lim_{x \to -\infty} f(x) = 0$. Interprétation graphique : l'axe des abscisses est asymptote horizontale au voisinage de moins l'infini à \mathscr{C} . De même $\lim_{x \to +\infty} e^{-x} = 0$, donc $\lim_{x \to +\infty} f(x) = 1$. Interprétation graphique : la droite d'équation y = 1 est asymptote horizontale au voisinage de plus l'infini à \mathscr{C} .
- 3. f est dérivable comme quotient de fonctions dérivables, le dénominateur ne s'annulant pas sur \mathbb{R} .

 $\forall x \in \mathbb{R}, f'(x) = -\frac{(-e^{-x})}{(1+e^{-x})^2} = \frac{e^{-x}}{(1+e^{-x})^2}$. Comme $e^x > 0$ pour tout réel x, f'(x) > 0 sur \mathbb{R} . Donc la fonction f est croissante sur \mathbb{R} (de 0 à 1).

4. Il en résulte le tableau de variations suivant :





Partie B

1. Quel que soit le réel x, en utilisant A. 1.

$$f(x) + f(-x) = \frac{e^x}{e^x + 1} + \frac{1}{e^x + 1} = \frac{e^x + 1}{e^x + 1} = 1.$$

Centres étrangers

Le milieu du segment[MM'] est donc le point A de coordonnées $\left(0; \frac{1}{2}\right)$, et ce point est un centre de symétrie pour la courbe \mathscr{C} .

- **2. a.** Soit $n \in \mathbb{N}$; on sait d'après la partie A que f(x) > 0. Donc, l'aire de la surface comprise entre l'axe des abscisses, la courbe \mathscr{C} et les droites d'équations x = 0 et x = n est l'intégrale $\int_0^n f(x) \, dx$. Donc par différence avec l'aire du rectangle de côtés 1 et x = n, $\mathscr{A}_n = \int_0^n (1 f(x)) \, dx = \int_0^n \left(1 \frac{1}{1 + e^x}\right) = \int_0^n \frac{e^x}{e^x + 1} \, dx = \left[\ln\left(1 + e^x\right)\right]_{-n}^0 = \ln 2 \ln\left(1 + e^{-n}\right)$, en utilisant les questions A. 1 et B. 1 (symétrie autour de A).
 - **b.** On sait que $\lim_{n \to +\infty} \mathrm{e}^{-n} = 0$ donc par continuité de la fonction ln, $\lim_{n \to +\infty} \ln \left(1 + \mathrm{e}^{-n} \right) = 0$. Ainsi $\lim_{n \to +\infty} \mathcal{A}_n = \ln 2$.

Partie C

- 1. Si pour tout x réel $\frac{e^{2x}}{(e^x + 1)^2} = \frac{ae^x}{e^x + 1} + \frac{be^x}{(e^x + 1)^2}$, alors $\frac{e^{2x}}{(e^x + 1)^2} \frac{ae^x}{e^x = 1} + \frac{be^x}{(e^x + 1)^2} \iff \frac{e^{2x} be^x}{(e^x + 1)^2} = \frac{ae^x}{e^x + 1} \iff \frac{e^x (e^x b)}{(e^x + 1)^2} = \frac{ae^x}{e^x + 1} \implies a = 1 \text{ et } b = -1.$
- 2. On a pour tout λ positif, $\mathcal{V}(\lambda) = \int_{-\lambda}^{0} \pi \frac{e^{2x}}{(e^{x}+1)^{2}} dx = \pi \int_{-\lambda}^{0} \frac{e^{x}}{e^{x}+1} dx \pi \int_{-\lambda}^{0} \frac{e^{x}}{(e^{x}+1)^{2}} dx = \pi \left[\ln \left(1 + e^{x}\right) + \frac{1}{e^{x}+1} \right]_{-\lambda}^{0} = \pi \left[\ln 2 + \frac{1}{2} \ln \left(1 + e^{-\lambda}\right) \frac{1}{1 + e^{-\lambda}} \right].$
- 3. On a toujours $\lim_{n \to +\infty} e^{-n} = 0$ et par continuité de la fonction ln, $\lim_{n \to +\infty} \ln(1 + e^{-n}) = 0$.

 Donc $\lim_{n \to +\infty} \mathcal{V}(\lambda) = \pi \left(\ln 2 \frac{1}{2}\right)$.

EXERCICE 4 6 points

Partie A

- 1. Les faces du cube d'arête 1 sont des carrés de côté 1, dont les diagonales ont pour longueur $\sqrt{2}$. En particulier BD = DE = ED = $\sqrt{2}$. Le triangle BDE est équilatéral
- **2. a.** I est le centre de gravité du triangle BDE ou l'isobarycentre des points B, D et E. Les coordonnées de I sont de la forme $\frac{1}{3}(a_{\rm B}+a_{\rm D}+a_{\rm D})$. Avec le repère choisi on a B(1;0;0), D(0;1;0) et E(0;0;1). On obtient donc I $\left(\frac{1}{3};\frac{1}{3};\frac{1}{3};\frac{1}{3}\right)$.
 - **b.** On a dans le repère choisi G(1;1;1), donc le vecteur $\overrightarrow{\frac{1}{3}AG}$ et le vecteur \overrightarrow{AI} ont les mêmes coordonnées.

Autre démonstration : on sait que $\overrightarrow{IB} + \overrightarrow{ID} + \overrightarrow{IE} = \overrightarrow{0} \iff$ $3\overrightarrow{IA} + \overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{AE} = \overrightarrow{0} \iff 3\overrightarrow{IA} + \overrightarrow{AG} = \overrightarrow{0} \iff \overrightarrow{IA} = \frac{1}{3}\overrightarrow{AG}$.

La relation vectorielle $\overrightarrow{IA} = \frac{1}{3}\overrightarrow{AG}$ signifie que les points A, I et G sont alignés, et encore plus précisement que le point I appartient à la droite (AG), ce point ayant l'abscisse $\frac{1}{3}$ si le repère choisi sur cette droite est le repère (A, G).

3. On sait déja que I centre de gravité du triangle BDE est dans le plan (BDE).

On sait déja que I centre de gravité du triangle BDE est dans le plan (BDE).

D'autre part
$$\overrightarrow{IA}$$
 $\begin{pmatrix} 1/3 \\ 1/3 \\ 1/3 \end{pmatrix}$ et \overrightarrow{BD} $\begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$. Le produit scalaire $\overrightarrow{IA} \cdot \overrightarrow{BD} = -\frac{1}{3} + \frac{1}{3} = 0$. donc les vecteurs sont orthogonaux

0, donc les vecteurs sont orthogonaux.

De même
$$\overrightarrow{BE}\begin{pmatrix} -1\\0\\1 \end{pmatrix}$$
. Le produit scalaire $\overrightarrow{IA} \cdot \overrightarrow{BE} = -\frac{1}{3} + \frac{1}{3} = 0$, donc les vec-

teurs sont orthogonaux.

Conclusion le vecteur IA orthogonal à deux vecteurs non colinéaires du plan (BDE) est normal à ce plan.

Conclusion : I est le projeté orthogonal de A sur le plan (BDE).

Partie B

Quel que soit le réel k, M_k est le point de la droite (AG), d'abscisse k pour le repère (A, G).

La droite (A M_k) est donc orthogonale au plan (BDE), donc aussi au plan \mathcal{P}_k . Conclusion : le point N_k est le projeté orthogonal de A sur le plan \mathscr{P}_k .

- 1. D'après la partie A, on sait que si $k = \frac{1}{3}$, $M_{\frac{1}{3}} = I$, donc $\mathscr{P}_{\frac{1}{3}} = (BDE)$ et $N_{\frac{1}{3}} = B$
- **a.** Les coordonnées du vecteur $\overline{AM_k}$ sont les coordonnées du point M_k , soit (k; k; k).
 - **b.** On sait qu'une équation du plan \mathcal{P}_k est de la forme kx + ky + kz + d = 0; comme il contient M_k , on a $k^2 + k^2 + d = 0 \iff d = -3k^2$. L'équation du plan \mathcal{P}_k est donc $kx + ky + kz - 3k^2 = 0$ soit pour $k \neq 0$ (cas particulier où *M* est en A) x + y + z - 3k = 0.
 - **c.** La droite (BC) est définie par les équations des deux plans x = 1 et z = 0, donc en remplaçant dans l'équation précédente $1 + y + 0 - 3k = 0 \iff$ v = 3k - 1. Donc $N_k(1; 3k-1; 0)$.
- **3.** M_k et N_k appartiennent au plan \mathscr{P}_k qui est orthogonal aux vecteurs $\overrightarrow{AM_k}$ ou \overrightarrow{AG} . Donc pour tout k réel la droite $(M_k N_k)$ est orthogonale à la droite (\overrightarrow{AG}) ; Les coordonnées de $\overrightarrow{M_kN_k}$ sont (1-k; 2k-1; -k), celles de \overrightarrow{BC} sont (0; 1;

$$\overrightarrow{M_k N_k} \cdot \overrightarrow{BC} = 2k - 1 = 0 \iff k = \frac{1}{2}.$$

4. On a $M_k N_k^2 = (1-k)^2 + (2k-1)^2 + (-k)^2 = 6k^2 - 6k + 2$. La distance est minimale si son carré l'est.

On a à trouver le minimum d'un trinôme :

On a a trouver le minimum d'un trinome :
$$6k^2 - 6k + 2 = 6\left(k^2 - k + \frac{1}{3}\right) = 6\left[\left(k - \frac{1}{2}\right)^2 - \frac{1}{4} + \frac{1}{3}\right].$$
 Cette expression est mini-

male quand le carré est nul soit encore pour $k = \frac{1}{2}$

Non demandé : cette distance est égale à $\sqrt{6\left(-\frac{1}{4} + \frac{1}{3}\right)} = \sqrt{\frac{1}{2}} = \frac{\sqrt{2}}{2}$.

5.

Section du cube par le plan $\mathscr{P}_{\frac{1}{2}}$

