septembre 2007 ∾

EXERCICE 1 5 points

1. Restitution organisée de connaissances

P est vraie : il suffit de reprendre la définition du nombre dérivé de la fonction x^n en un point x_0 . L'application du dévoppement de $(x_0 + h)^n$ par la formule du binôme permet de montrer que $f'(x_0) = nx_0^{n-1}$.

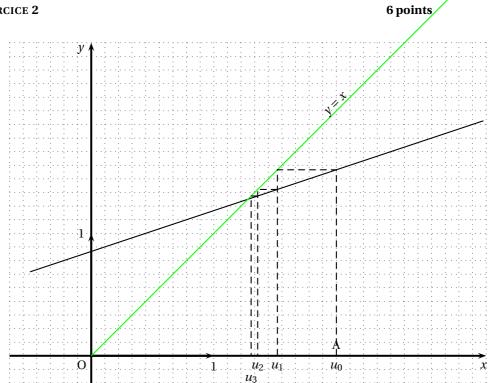
Q est fausse : on a ici la dérivée d'une fonction composée et $f'(x) = nu'u^{n-1}$.

2. **a.** Avec
$$h(x) = g(\cos x)$$
, $h'(x) = (\cos x)'g'(\cos x) = -\sin x \times \frac{1}{\sqrt{1 - \cos^2 x}} = \frac{-\sin x}{\sqrt{\sin^2 x}}$.

Comme $x \in]-\pi$; 0[, $\sin x < 0$, donc $\sqrt{\sin^2 x} = -\sin x$. Finalement $h'(x) = \frac{-\sin x}{-\sin x} = 1$.

b.
$$h'(x) = 1$$
 implique $h(x) = x + k$, avec $k \in \mathbb{R}$. $h\left(-\frac{\pi}{2}\right) = g\left(\cos\left(-\frac{\pi}{2}\right)\right) = g(0) = 0$. Donc $0 = -\frac{\pi}{2} + k \iff k = \frac{\pi}{2}$. Conclusion: sur $]-\pi$; $0[, h(x) = x + \frac{\pi}{2}]$.

EXERCICE 2



2. Si la suite est convergente, alors $\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} u_{n+1} = \ell$. La relation $u_{n+1} = \frac{1}{3}u_n + \frac{23}{27}$ donne par passage à la limite $\ell = \frac{1}{3}\ell + \frac{23}{27} \iff \frac{2}{3}\ell = \frac{23}{27} \iff \ell = \frac{23}{18}$.

3. Par récurrence :

- Initialisation : $u_0 = 2 = \frac{36}{18} \geqslant \frac{23}{18}$. - Hérédité : supposons que $u_n \geqslant \frac{23}{18}$; alors $\frac{1}{3}u_n \geqslant \frac{1}{3} \times \frac{23}{18}$ soit $\frac{1}{3}u_n \geqslant \frac{23}{54}$. Puis $\frac{1}{3}u_n + \frac{23}{27} \geqslant \frac{23}{54} + \frac{23}{27} \iff u_{n+1} \geqslant \frac{3 \times 23}{3 \times 18} \iff u_{n+1} \geqslant \frac{23}{18}$. On a donc bien démontré que pour tout naturel n, $u_n \geqslant \frac{23}{18}$.

4. Monotonie :