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Abstract 

We elaborate on the transition from quasi-two-dimensional to three-dimensional Turing patterns in a chemical reaction- 
diffusion system confined in gradients of chemicals between two feed boundaries. This transition is observed in open spatial 
reactors specially designed to make possible the unfolding of a pattern sequence in one direction of the plane of observation. 
In this direction, the confinement of the structure is progressively relaxed. Complementary observations from two reactor 
geometries allow the dimensionality of the structure to be elucidated: quasi-two-dimensional and three-dimensional patterns, 
respectively, correspond to patterns developing in monolayers and in bilayers. Beyond the now classical hexagonal and stripe 
pattems, various new stable planforms are shown to result from the coupling of these two classical pattern modes which 
develop in two adjacent layers, with well-defined phase relations between the two pattern modes. 

PACS: 05.70.Ln, 47.54.+r; 82.20.Mj; 80. 
Keywords: Turing patterns; Reaction~zfiffusion; Pattern dimensionality; Confined systems; CIMA reaction 

I.  Introduct ion 

Turing patterns belong to the class of self- 

organization phenomena that result from a sponta- 

neous symmetry breaking instability in non-linear 

dynamical systems maintained at a controlled dis- 

tance from thermodynamic equilibrium. These are 

stationary concentration patterns of solvated species 

that result from the sole interplay of molecular diffu- 

sion and chemical reaction. Such chemical reactions 

must involve antagonistic activatory and inhibitory 

kinetic processes. Turing patterns call for differences 

in the diffusion coefficients of species, in particular, 

a species controlling the inhibitory process must dif- 

fuse faster than species in control of the activatory 
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process. The patterns are characterized by an intrinsic 

wavelength, that is wavelength is independent of any 

geometric dimension of the system. Due to seemingly 

contradictory requirements for their formation, the 

first unambiguous experimental observation of Tur- 

ing patterns [1] occurred nearly 40 years after their 

theoretical prediction by Turing in 1952 [2]. Besides 

their fundamental interest in physics [3], their pos- 
sible implication in certain stages of morphogenesis 

made them popular among a community of biologists 

and biomathematicians [4-6]. 

Most of the theoretical works on pattern forma- 

tion assume, for mathematical simplicity, that the sys- 
tem be uniformly constrained over space. Under these 

conditions, it has been analytically determined and 
confirmed by numerical simulations that only a small 
number of planforms can spontaneously develop. In 
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two-dimensional systems, these planforms consist of 
hexagonal arrays of dots and parallel stripe patterns 
[7-9]. In three-dimensional systems, lamella, hexag- 
onal prisms and body centered cubic arrays [10] are 

such selected patterns. 
It is worth noting that in real chemical systems, it is 

impossible to fulfil the uniform constraint conditions. 

As we shall see in more detail further on, the experi- 
mentally observed Turing patterns develop in systems 
that naturally involve parameter gradients. These gra- 
dients confine the pattern in a more or less narrow re- 
gion of space where appropriate chemical conditions 
are met for the Turing instability to develop. 

Nonetheless, the effect of parameter gradients in 
a chemical one-dimensional system was considered 
form a theoretical point of view during 1970's [11]. 
It was also theoretically examined in two- or three- 
dimensional systems, in the framework of patterning 
models for biological systems [12,13]. In this con- 
text, Boissonade [14] provided in 1988 a numerical 
analysis of a Turing bifurcation in a two-dimensional 
rectangular system fed only by diffusion from two 
opposite boundaries, a configuration which naturally 
leads to gradients of feeding species. These calcula- 
tions show that at onset, the Turing instability develops 
a dot pattern orthogonally to the parameter gradients. 
Our initial experimental observation of sustained Tur- 
ing patterns followed this more practical approach [1]. 

Using the CIMA reaction, we have observed pat- 
terns developing in successive rows of spots [ 1,15,16], 
in perfect agreement with Boissonade's theoretical 
results [14,16]. Soon after, with the same reaction 
and a reactor more extended in the third direction, 
Ouyang and Swinney produced spot and stripe pat- 
terns [17,18] analogue to those predicted in extended 
two-dimensional systems; these patterns tessellate 
planes that extend in the third direction of the re- 
actor. Some of our experiments indicated that pat- 
tern can be three-dimensional [19]. Ouyang et al. 
rather produced apparently two-dimensional patterns 
[17,18,20]; then, they also considered the develop- 
ment of three-dimensional patterns. Further experi- 
mental observations show that different patterns can 
develop at different distances to the feed boundaries 
[21] and that the dimensionality of patterns may de- 
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pend on some geometric size of the reactor [22]. More 
recently, we have published a preliminary observation 
of three-dimensional patterns consisting either of two 

contiguous planes tessellated with stationary patterns 
or of one plane of stationary patterns and one with 
travelling waves [23,24]. 

Here, we report on experiments performed in 

reactors designed to elucidate how two-dimensional 
patterns evolve to three-dimensional patterns as the 

confinement in the third direction is gradually re- 
laxed. We also examine the transition between differ- 
ent types of two-dimensional patterns under a slow 
parameter ramp. We emphasize that there are no gen- 
uine two-dimensional experimental patterns but rather 
patterns developing in monolayers and we discuss the 
experimental patterns in monolayers in connection 
with actually two-dimensional patterns produced by 
simulations. The experimental conditions (reactors 
and reaction) used for the reported experiments are 
indicated in Section 2. We describe in Section 3 the 
patterns observed first in the asymptotic state of the 
system, then in a transient situation. Finally these 
experimental results are discussed in Section 4, in 
the light of results of theoretical studies and simu- 
lations of such systems, and taking into account the 
dimensionality of the patterns. 

2. Experimental conditions 

2.1. R e a c t o r  

The core of the reactor is a piece of soft hydrogel 
with two opposite faces in contact with solutions of 
reagents kept in two reservoirs I and II (see Fig. 1 (a)). 
Starting from these faces, reagents diffuse into the 
gel where they meet and react. The other sides of 
the piece of gel correspond to impermeable bound- 
aries. The gel prevents the chemical reacting medium 
from any convective fluid motion so that the only 
active processes inside the gel are the reaction and 
the molecular diffusion of species. Solutions in reser- 
voirs I and II are permanently renewed by pumps 
and continuously stirred, ensuring constant and uni- 
form boundary conditions. Reagents are distributed in 
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Fig. 1. Sketches of the open spatial reactors. (a) The basic principle: the piece of gel (L × h x w) is in contact with the contents 
of stirred reservoirs I and II; A is the width of the pattern-forming region. Observations are made from above (arrow y) in the thin strip 
reactor (with dimensions h < w < L), and perpendicularly to the feed surfaces in the disc reactor (diameter L = h). (b) and (c) The 
bevelled thin strip and disc reactors. In the thin strip h = 0.2 mm; in both reactors: Wma x = 3.5 mm, Wmi n = 1,75 mm, L = 25 mm: 
Arrows y and x indicate the observation directions. 

reservoirs I and II in such a way that neither of  the so- 

lutions is separately reactive and, due to the differences 

in their compositions, strong concentration gradients 

of  chemicals naturally settle in the gel perpendicu- 

larly to the feed surfaces, leading to iso-concentration 

planes parallel to these surfaces. Generally, the appro- 

priate conditions for the development of a reaction- 

diffusion instability are only met in a restricted region 

of  width ,4 between the two feed surfaces: A depends 

on such parameters as the concentrations of  feed 
species and, of  course, on the distance w between 
the feed surfaces. Depending on how the wavelength 

,~ of  the pattern compares with the dimensions `6, 
L and h of  the pattern-forming region (Fig. l(a)), 

one-, two- or three-dimensional spatial patterns can 

develop. 

Two different geometries of  reactors - the thin strip 

reactor and the disc reactor - have been derived from 

the general scheme in Fig. l(a) as follows. 

2.1.1. Thin strip reactor 

The thin strip reactor is made of  a thin narrow 

rectangular piece of gel (L >> w > h; typically 
h < 1 mm). The gel strip is fed by the two long edges 
(L x h). Observations made as above (see arrow y 
in Fig. l(a)) provide a direct view of  the area that 

extends between the feed surfaces. In particular, the 
location and the width ,6 of  the pattern-forming region 
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can immediately be seen. Pattern develops in rows 

of spots or in stripes parallel to the feed boundaries, 
that is orthogonal to the initial ramps of chemicals. 

The initial observations of Turing patterns were per- 

formed in a thin strip reactor [ 1,15,16]. If the gel strip 

is thin enough (h of the order of the wavelength ~. 

of the structure), it approximates a two-dimensional 

rectangular system. Then one-dimensional or two- 

dimensional patterns can be obtained, depending on 

whether they develop on one or more rows. 

2.1.2. Disc reactor 

The disc reactor is made of a flat disc of gel with 
a thickness w. In this geometry, the faces L × h in 

Fig. l(a) are circles with a diameter L = h. The 

disc is fed by these two circular faces. Observations 

made perpendicularly to the feed surfaces (arrow x in 
Fig. 1 (a)) give a view of planes parallel to these faces, 

that is in a direction perpendicular to that used in the 

thin strip reactor. The disc reactor was first used by 

Ouyang and Swinney [17,18]. With this geometry of 

reactor, patterns made of arrays of spots or of stripes 
readily spread over the whole plane of observation. An 

obvious advantage of this reactor geometry is to allow 
for observation of patterns extended over large planar 
areas of uniform parameter values; but it obscures the 

pattern development in the third direction (that of the 

ramps of chemicals). 
Summarizing, pattern in the thin strip reactor usu- 

ally appears as rows of spots while it extends over 

planes in the disc reactor. Further these rows and 
planes are parallel to the feed boundaries in both re- 

actor geometries. 

2.1.3. Bevelled gel reactors 

The reactors in Section 2.1 were slightly modified 
for the experiments reported here. The feed surfaces 
are no longer parallel but make an angle. Both bev- 
elled thin strip and disc reactors (Figs. l(b) and (c)) 
were used. In such geometries, w, the distance be- 
tween the feed surfaces changes continuously from 
1.75 to 3.5mm over a length (or diameter) L of 
25 mm. Thus, the feed surfaces make an angle of 
4 °" 

The slant between the feed surfaces introduces a 

slow continuous change in control parameters along 
the plane of observation. Indeed, the gradient in w 

produces a gradual change in the concentration ramps 

across the gel, which results in a gradual change in 

A, the width of the patternforming region. As a con- 
sequence, the number of rows (or planes) of patterns 

gradually changes from one end to the other of the 

bevelled piece of gel. In addition, since the chemical 
processes within the gel are non-linear, the chemical 

composition along one row (or plane) will also grad- 
ually change. In such conditions, we can expect dif- 

ferent types of patterns to develop in the direction of 

the slope. 
Images were acquired with a black and white video 

CCD camera fitted with macrolens and attached to a 

personal computer. Subsequently, a picture processor 
was used to enhance the grey level contrasts. 

2.2. Gel 

Experiments were performed in a polyacrylamide 

gel loaded with thiodrne [1]. Thiod~ne is an iodine 
colour indicator from Prolabo, containing 7% soluble 
starch [25], the excipient is washed out of the gel prior 

to use. The pieces of gel were made with a solution 

of the following composition per 100 mh 2 g of acry- 
lamide, 0.46 g of N, N'-methylenebisacrylamide, both 

from Aldrich and 3 g of thiod~ne. Polymerization oc- 

curs in about 10mm at 0°C. 

2.3. Reaction 

Experiments were conducted with the chlorite- 
iodine-malonic acid oscillating reaction [26] currently 

referred as the "CIMA" reaction. Based on a skeleton 
kinetic mechanism of the reaction, it was proposed 
[27] that iodide ( I - )  and chlorite (C10 2) play, respec- 
tively, the roles of the activator and of the inhibitor 
species. It was also proposed [27-29] that starch, a 
macromolecule immobilized in the gel network (or 
any immobilie functional site of the gel), that makes a 
reservible complex with the activator, plays a key role 
in the formation of Turing patterns. This assumption 
was experimentally corroborated [30]. 
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The reagents were distributed as follows in the 

reservoirs: Iodide and malonic acid in sulphuric acid 
solution were fed on one side. Iodate and chlorite in 
basic solution were fed on the other side. Note that on 

the chlorite side, the reservoir was fed with iodate in- 

stead of iodide. Indeed, when fed on this side, iodide 
is rapidly oxidized to iodate near the corresponding 

feed surface of the gel. 

Since the oxidizers, chlorite and iodate, are only 

on one side, the oxidation capacity of the chemical 

medium inside the gel decreases from that side to the 
other. Consequently, near the chlorite side, the iodine 

species are oxidized and the gel remains colourless. 
Near the malonic acid side, iodine species are present 

mostly under their reduced forms I -  and /2 which 

produce a dark blue complex with starch enclosed in 

the gel. Thus, along this side, the gel becomes dark. 
The residence time was identical in both reservoirs 

and had the same value for both types of reactors. 
All teed parameters and bath temperature (4°C) were 

identical in reactors of both types in order to enable 
us to compare observations. 

3 .  E x p e r i m e n t a l  r e s u l t s  

3.1. Global description 

Figs. 2 and 3 give an example of the unfolding of 

patterns observed in our two types of bevelled reac- 
tors for a same set of feed concentrations. The figures 

provide a global view of the bevelled gel strip and disc 

after 36 h. 

As already mentioned, the directions of observa- 
tions for the two reactor geometries are orthogonal. 
The symmetry breaking pattern in the thin strip reac- 

tor appears as rows of spots parallel to the feed edges 
of the strip. In the disc reactor, a much wider variety 

of patterns tesselating the plane is observed. 
Due to the small wavelength of the patterns (about 

O. 13 ram) and the pixel resolution of the CCD camera, 
macrolens were used to obtain pictures of patterns 
with enough resolution, Consequently, only a small 
part of the reactor is viewed at one time; the images of 
the whole bevelled pieces of gel can be reconstructed 

D 98 (1996) 53-66 57 

by placing side by side several pictures such as those 

presented in Figs. 2 and 3. Note that the magnification 
of Fig. 2 is greater than that of Fig. 3. In all the cases, 

larger magnifications of selected areas are provided 

when necessary. Note also that the focal depth of the 
optical set-up used in the reported experiments is of 

the order of 1 mm. 

3.1.1. In bevelled thin strip 

The experiment presented in Fig. 2 was performed 

with a gel strip 0.2 mm thick. The width of the strip 
increases from Fig. 2(a) to Fig. 2(e) and from left to 

right in each figure. The figures only show the side of 
the strip that bears patterns. Each figure exhibits from 

bottom to top: (i) a first dark band that develops next 

to the malonic acid fed boundary located along the 

bottom of the pictures, followed by (ii) a clear band 

parallel to the preceding dark one, and (iii) a second 

dark band parallel to the other bands, inside which a 
pattern of clear dots develops; the width of this band 

increases with the width of the strip; beyond this, (iv) 
a clear zone extends over the rest of the strip. 

Let us now focus on the second dark band. Typi- 
cally, as the width of the gel strip increases, a spot 

pattern emerges in that region; the spots organize in 
one, then two rows parallel to the feed boundaries: 

- In the narrowest part of the strip (Fig. 2(a)), no spot 
pattern is observed: in this region of the gel, no 

symmetry breaking pattern develops. 
- In the following part (Fig. 2(b)), the clear spot pat- 

tern breaking the boundary symmetry emerges and 

develops over one row. Note that the pattern be- 
comes fuzzy at the right end of this figure. 
In the widest parts of the strip (Fig. 2(d) and (e)), the 
width of the region of symmetry breaking pattern 
has increased and the pattern is essentially made 

of two rows of spots. However, at some locations, 
the amplitude of the spot modulation decreases or 
even disappears (right end of Fig. 2(d), left end of 
Fig. 2(e)), giving place to a more or less uniform 
clear band. At the very end of the gel strip (right 
end of Fig. 2(e)), the two rows can fuse back into 
one. Indeed, the parts holding up the gel at each end 
may introduce defects of feed in the first and last 
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Fig. 2. Patterns in the bevelled thin strip. (a)-(e) are the binarized images of five successive portions of the strip. The whole pattern 
sequence can be reconstructed by placing side by side the five successive images. Pairs of vertical dotted lines (1 and I t, 2 and 
2 r, etc.) indicate the same location along the strip. The bar inside (a) corresponds to l mm. (a) no symmetry breading pattern; 
(b) no symmetry breaking pattern and symmetry breaking pattern forming one row of spots; (c) transition region between one and 
two rows; (d) and (e) symmetry breaking pattern forming two rows of spots. Experimental conditions: concentrations of reagents 
in reservoir I:[NaCIO2] = 0.0475M, [NaOH] = 1.2 x 10-2M, [KIO3] = 2 × 10-3M; in reservoir II:[AM] = 1.3 × 10-2M, 
[H2SO4] = 10 - 2  M; [KI] = 2 × 10 - 3  M, [Na2SO4] = 3 x 10 - 3  M; temperature ---- 4°C; residence time of reservoirs = 6 rain. 

5% along the length of  the strip (see also the left 

end of  Fig. 2(a)). 

- The transition between one and two rows can be 

seen in Fig. 2(c). A magnification of such a tran- 

sition region is given in Fig. 4. At the approach of  

the transition region, the modulation of  the light in- 

tensity in the single row rapidly decreases: spots al- 

most disappear. Then, as this fuzzy region becomes 

wider, a new clear spot pattern gains consistency. 

These spots elongate before separating in two spots 

of  unequal sizes. The resulting pairs of spots first 

arrange obliquely in the pattern band. Then, as spots 

in the pairs become more equal in size and inten- 

sity, the pairs tilt in the direction of  the feed gradi- 

ent, giving rise to the appearance of  a second row 

of  spots. Progressively, a shift appears which then 

increases between the two spots of  each pair. The fi- 

nal arrangement in two rows of perfectly staggered 

spots is reached at the right end of  Fig. 4(b) (and in 

the middle part of  Fig. 2(c)). 

Thus, the emergence of  the second row of  spots 

as the width of  the pattern region increases, is very 

progressive. It proceeds through some sort of  spot 

division followed by the separation of  the second 
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Fig. 3. Sequence of pattern in the bevelled disc. The whole 
sequence can be reconstructed by juxtaposing (a) and (b) and 
superposing the dotted lines at the top of (a) and at the bottom 
of (b). The various patterns extend over parallel bands. The 
vertical arrows delimit their successive domains: 1. uniform 
state (truncated at the bottom of the figure); 2. hexagonal array 
of spots; 3. stripes; 4. mixture of stripes and spots; 5. asymmetric 
stripes; 6. "non-standard" planforms. Experimental conditions 
as in Fig. 2(a) and (b): view size 6.9 mm z 6.9 mm. 

row from the first one and by a progressive increase 

of the phase shift between spots in the two rows. 

3.1.2. In beve l led  disc  

Each picture in Fig. 3 gives a view of about half 

the height of the disc in the median region; the lateral 

parts not shown bear the same types of patterns. The 

Fig. 4. The transition region between domains with one and 
two rows of spots, in the bevelled strip. The whole sequence 
can be reconstructed by placing side by side images (a) and (b). 
The vertical dotted lines indicate the same location along the 
strip. Form left to right in each figure: (a) fuzzy pattern with a 
few clear spots, spots of large size, spots splitting in two spots 
obliquely arranged; (b) pairs of spots arranged more or less 
perpendicularly to the feed boundary, two rows of staggered 
spots. 

thickness of the disc progressively increases from the 

bottom of Fig. 3(b) to the top of Fig. 3(a). Patterns of 

different types extend over successive regions (num- 

bered on the figure). These regions are almost parallel 

and organize as follows with the increasing thickness 

of the disc: 
1 - a  narrow uniform (structureless) region; 

2 - a  region of clear spots exhibiting a hexagonal 

arrangement; 

3 - a wide domain of stripes; 

4 -  a region of complex organization exhibiting an 

intricate mixture of spots and stripes; 

5 - a region of less contrasted, asymmetric stripes; 

6 - a  region of very intricate planform, located at 

the top of the disc. 
The global organization can hold lbr days without 

significant modification of the general pattern. The 

area covered with patterns as well as the relative ex- 

tent of the domain of each type of planform depend on 

the feed concentrations. The pictures of Fig. 3 were 

obtained with a chlorite concentration ([NaC102]) of 

0.0475 M in the reservoir. In this case, the structure- 

less region I extended over one eighth of the height 

of the disc. When [NaC102] was increased by 30%, 

the extent of region 1 increased by a factor of 6. Con- 

versely, a decrease of 5% of [NaCIO2] resulted in the 

total disappearence of the uniform region; then the 

whole disc surgace was covered with patterns. 
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Fig. 5. Transient situation in the bevelled thin strip. The whole sequence can be reconstructed by placing side by side images (a) 
and (b). The vertical dotted lines indicate the same location along the strip. Note that the symmetry breaking pattern has disappeared 
over large lumps of the reactor. Picture taken 2 h after a 10% increase in the chlorite concentration. All other experimental conditions 
as in Fig. 2. 

3.2. Transient situation 

Asymptotic states as those presented above, in 

Figs. 2 and 3, are reached after about 10h. Before 

this time, some remarkable transient situations can be 

observed, either when a new experiment is started or 

after a jump in the value of  some chemical constraint 

during a series of  experiments. In the latter case, the 

initial symmetry breaking patterns are erased over 

more or less extended parts of  the gel reactors. In 

Sections 3.2.1 and 3.2.2, we shall examine transient 

situations observed after a 10% increase in the chlo- 

rite concentration. 

tion towards the new steady state, stripes progressively 

reinvade this temporary uniform region. However, the 

expanding stripe region is preceded by a region tesse- 

lated with hexagonal arrays of  dark spots. This remark- 

able new hexagonal patterns could never be stabilized 

in any of  the tested asymptotic states. Note that these 

patterns are relatively long-lived since they have been 

observed for about 8 h. Ultimately, the stripe structure 

spreads over the whole area, and a pattern sequence 

similar to that of  Fig. 3 is recovered. 

4. Discussion 

3.2.1. In bevelled thin strip 

Fig. 5 shows a transient situation in the bevelled 

gel strip. The symmetry breaking pattern was com- 

pletely erased (see right end of  Fig. 5(a) and left end 

of  Fig. 5(b)) over a large extent comprised between 

the region with one row of spots (Fig. 5(a)) and the 

transition region (right end of  Fig. 5(b)). At both ends 

of  this now uniform clear band, patterns are similar 

to those observed in the initial asymptotic state. After 

this transient situation, the system evolves towards a 

new asymptotic state: spots slowly reinvade this tem- 

porally featureless band while, at the other end of  the 
row, spots disappear and the region without symmetry 
breaking pattern gains in extension in the narrowest 
parts of  the bevelled strip. 

3.2.2. In bevelled disc 

An equivalent transient situation is observed in the 
bevelled disc reactor, Fig. 6. The patterns in regions 
3 and 4 are transiently erased. Then during the evolu- 

It is worth noting that, in the thin strip reactor, es- 

sentially one type of  symmetry breaking pattern is 

observed, i.e. spots arranged in rows parallel to the 

feed boundaries. However, in the transition region be- 

tween one and two rows, there can be different sta- 

tionary phase relations between the peaks in two rows. 

As already mentioned, in a very thin strip (h _< ~,), 

one row of spots can be thought as the experimen- 

tal approximation of  a one-dimensional Turing pat- 

tern. In a genuine uniformly constrained (theoretical) 

one-dimensional reaction - diffusion system, the only 

possible stationary symmetry breaking pattern is a pe- 

riodic longitudinal amplitude modulation. In an ideally 
thin two-dimensional system with a strong parame- 
ter gradient in one direction, theoretical simulations 
show that the Turing pattern emerges as a single row 

of spots perpendicular to the gradient. This pattern is 
shown to have the same bifurcation properties as a one- 

dimensional system [9]. Our experiments are usually 
performed in gel strips with a thickness comparable to 
the wavelength of the pattern (h ~ ~,). The observed 
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Fig. 6. Transient pattern sequence in the bevelled disc. Note 
that, as in Fig. 5, the pattern has disappeared over large extents; 
see the region of homogeneous state located in the upper parts 
of the figure; see also the black hexagons at the borders of 
this region. Picture taken 2 h after 10% increase in the chlorite 
concentration. All other experimental conditions as in Fig. 3. 

"quasi-one-dimensional" pattern can actually be made 
either of short columns perpendicular to the observa- 

tion plane or of  beads, and no distinction can be made 
between a column and a bead pattern. However, as 

we have mentioned, in the widest parts of the bev- 

elled gel strip, at some places, spots inside one row 

become fuzzy or even disappear, giving place to seg- 

ments of  clear bands. Such segments can be under- 

stood as columns layed parallel to the impermeable 

boundaries. Another possibility is that, due to a dif- 

ficult rearrangement of a number of spots emerging 

in a limited space inside the row, the corresponding 

zone in the pattern region exhibits a vanishing ampli- 

tude modulation. Such segments can be considered as 

defects of  the pattern. The capability of  the system to 

eliminate such defects seems very limited since these 

clear segments held unchanged for about two days, 

the usual duration of  an experiment. 

The diversity of patterns observed in the bevelled 

disc reactor will be better understood when compar- 

ing these observations with those made in the bevelled 

strip reactor at locations with comparable distances 

between the feed boundaries. We thus compare in the 

two reactors, locations with the same width of  pattern- 

forming region. However, if the gel strip reactor pro- 

vides information on the number of  separated pattern 

layers, in any case it can provide information on the 

type of  pattern selected in the layers that develop in 

the disc reactor. 

In the thinnest region of the disc as in the narrowest 

part of the strip, no symmetry breaking pattern devel- 

ops. The region of  the gel strip where pattern is made 

of  one row of spots fits regions 2 and 3 in the disc 

over which hexagonal arrays of  clear spots and stripe 

patterns can be seen. Thus, these patterns correspond 

to genuine monolayer patterns. In these monolayers, 

the spot and stripe patterns actually correspond, re- 

spectively, to bead and column structures. Note that 

these columns are seldom straight but generally bent 

columns. In the following, they will be simply re- 
ferred as "columns". The spot and stripe patterns in 

regions 2 and 3 of  the disc are characterized by their 

relative sharpness. Such hexagon and stripe patterns 

have initially been observed by Ouyang and Swinney 

[17,18] and later by others [23] and thought as effec- 
tive quasi-two-dimensional patterns. It has been shown 
theoretically that, at onset, monolayers of Turing pat- 

terns have the same qualitative bifurcation diagram 
and pattern selection properties than two-dimensional 
systems [7,9]. The hexagonal mode is generally the 
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Fig. 7. The transition between the domains of uniform state and 
hexagon pattern. Magnification of a small region. 

first stable mode and appears subcritically; the stripe 

mode becomes stable only at some distance from onset 

while hexagons loose their stability. The stability do- 
mains of  these two modes overlap over some range of 

bifurcation parameter values. However, there is an im- 
portant difference between genuine two-dimensional 

systems and monolayers: in the latter, the hexago- 
nal mode is generically restabilized at some distance 

from onset [7,9]. Note that the sequence uni form- 
hexagons-stripes experimentally observed in the bev- 
elled disc, follows exactly the stability order predicted 
by the linear stability analysis. In the asymptotic state 

we usually observe a very sharp transition between the 
uniform state and the hexagon pattern, i.e. the ampli- 
tude suddenly damps within a wavelength (see Fig. 7) 
which is consistent with the subcritical nature of the 
bifurcation to hexagons. However, we have never ob- 
served any obvious hysteresis in the position of this 
transition front as a function of feed parameters. Such 
hysteresis could be expected as a result of  a front pin- 
ning due to non-variational effects. The same sharp 
transition is observed between hexagon (region 2) and 
stripe (region 3) patterns (see Fig. 8). No mixed state 
is observed at this front. This is consistent with the dis- 

Fig. 8. The transition between the domains of hexagon and 
stripe patterns. Magnification of a small region. 

continuous nature of  the transition between the stable 

hexagonal and striped modes. Here again no noticeable 
hysteresis is found as a function of constraints, con- 

trary to another report [21 ]. No pinning is observed in 
our experimental conditions which infers a weak over- 

lap of the stability domains of  hexagons and stripes. 
The intricate pattern in region 4 is made of mod- 

ulated stripes and it is very tempting to think of this 

pattern as a mixed mode. However, in the classical 
two-dimensional approach, this mixed mode is unsta- 
ble [31 ]. The modulated stripes of region 4 develop 

in the continuation of the regular stripes of region 3. 
Modulations are regularly spaced along the stripes and 
form a hexagonal array of higher light intensity. Re- 

gion 4 in the bevelled disc of  gel would correspond 
to the transition region where a second row of spots 
is seen to progressively emerge in the bevelled strip. 
This occurs when the width A of the pattern-forming 
region exceeds a critical size. Region 4 in the disc 
can be understood as a region where a second layer 
of pattern is building up; a truely three-dimensional 
pattern is unfolding here. Fig. 9 provides a magnifica- 
tion of the transition region between regions 3 and 4: 
At the frontier with region 3, spots are few and have 
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Fig. 9. Detailed view of the transition zone between regions 3 and 4. Note the hexagon-stripe mixed pattern. 

a low amplitude. Going upwards, towards region 5, 
spots along the stripes become more numerous and 

regularly spaced. In the light of our observations in 
the gel strip, we conjecture that these spots develop as 

outgrowths on the columnar structure of  the first pat- 

tern layer. Note that the spots stay basically centred 
along the clear columns. 

Subsequently, with the increased thickness of  the 

disc of gel, outgrowths would form an extra roll along 
the initial columns, so that we can understand the 
structure in region 5 as being formed of two layers 
of  parallel columns. Region 5 in the disc corresponds 

in the gel strip to the regions with two rows of spots 

either with a slight shift between splitting pairs or 

completely staggered spots. Generally, in region 5, 
the columns of the second layer do not settle at equal 
distance from two neighbour columns in the first layer 
but rather stay closer to one of them. The projection 
of such a three-dimensional arrangement on the plane 
of the picture results in a pattern made of stripes with 
poorer constrast than in region 3. A magnification 
of such a picture with enhanced constrast is given in 
Fig. 10 with the light intensity profile taken along a 

line perpendicular to the direction of the stripes. The 

profile shows a period made of two peaks with two 

unequal heights. This can be understood as the super- 
position of two non-harmonic modulations of the light 
intensity. Note that non-harmonic modulations are 

generally expected far from onset. The non-symmetric 

shape of the profile could result either from a phase 

shift actually slightly less than half a wavelength be- 

tween the columns in the two layers (as suggested 
also by the observations in the bevelled strip reactor) 
or from a bias in the observation direction of a sym- 

metric array of staggered columns. Our observations 
in the strip reactor seem to favour the first assumption. 

Thus, we have observed the emergence of a sec- 
ond layer of pattern which, in region 4, is made of 
a hexagonal array of beads more or less separated 

from the columns of the first pattern layer; these beads 
transform into parallel columns in region 5 and the 
sequence hexagon-stripe experimentally observed for 
the first layer repeats in the second one. This means 
that various layers of  patterns can develop at different 
distances from the feed boundaries, and each layer can 
undergo, somewhat independently, the same pattern 
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Fig. 10. The asymmetric stripes of region 5: (a) a magnification; (b) the light intensity profile along the line ( . . . . . . .  ) drawn in 
picture (a). 

mode sequence as the thickness of the disc reactor 

increases. Moreover, different planforms can be ob- 
served at a given disc thickness, in adjacent layers. 
This is in agreement with preliminary theoretical [24] 
as well as experimental [21 ] results obtained in three- 

dimensional systems in the presence of  parameter gra- 
dients. 

At first glance, region 6 exhibits a wealth of  very 
intricate planforms. However, a closer examination of  

these apparently different planforms brings the con- 

clusion that they are various aspects of  the same basic 
organization. Such patterns typically appear as illus- 
trated in Fig. 1 l. Planforms of  this type are observed 
at the top of  the disc, as in Fig. 3. Such regions of 

the bevelled disc correspond to regions of  the bevelled 
strip where the pattern is made of  two rows of spots; 
so that the planform of Fig. 11 can be considered as 
the projection on the observation plane of  two patterns 
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experiments. It is also remarkable that dark spots were 

never observed in the bevelled strip, even transiently. 

Let us now consider again the uniform state next to 

the dark hexagons. This region has to be associated 
to the temporary featureless clear band in the strip 

reactor (Fig. 5). In the disc reactor, this should then 

correspond to a clear sheet which could constitute the 
first element of a lamellar structure predicted by the- 

ory in three-dimensional systems [10]. As the black 
hexagons, this structure is unstable under our experi- 

mental conditions. 

Fig. I 1. An example of intricate planform commonly observed 
in region 6. 

that develop in two adjacent layers. Such non-standard 

planforms are rather difficult to elucidate. They can 

be understood as moir6 images of standard planforms. 

Patterns very similar to those of region 6 can be ob- 
tained by summing an image of hexagonal array of 

clear spots and an image of stripes from regions 2 and 
3, with the clear spots superposed to the dark stripes. 

Note the necessary phase shift of n compared to the 
superposition that produces planforms such as those 

observed in region 4. This superposition of spots and 
stripes in region 6 implies that a spot pattern is resta- 

bilized in the top of the disc reactor, Such a restabi- 

lization of  the hexagonal mode is also found in many 

computations and analytical calculations on the Brus- 

selator [7,32] and the Schnackenberg [8,9] models. 
This phenomen is often referred as reentrance. 

Another case of reentrance is obtained in the tran- 
sient shown in Fig. 6 which exhibits the sequence 
uniform - clear hexagons - stripes - dark hexagons - 
uniform. This can be thought as two different Turing 

bifurcations from uniform to hexagons, one of them 
from uniform to clear hexagons, and the other from 
uniform to dark hexagons. This can be theoretically 
understood if the quadratic term of the normal form 
of the Turing bifurcation changes sign. Note that dark 
hexagons have always been observed as transient in 

5. Conclusion 

We have used an indirect approach in order to ad- 

dress the problem of the actual pattern organization in 

three-dimensional systems, in the presence of feed gra- 
dients. Indeed, there is a severe technical obstacle to 

the direct analysis of three-dimensional structures: the 

structures correspond to smooth continuous changes 

in concentration of diluted species and the contrast of 

patterns decreases with the decrease of the focal depth. 
The direct analysis would call for focal depth much 
smaller than the wavelength of the pattern, that is of 

the order of a few hundredth of millimeter; in these 

conditions, contrast would be so low that very low 
noise camera and frame average techniques should be 

used much in the same way as in confocal microscopy. 
Other authors seem to have made a rough measure- 

ment of the thickness and position of the pattern- 
forming region [33]. However, as mentioned by these 

authors, the accuracy of their method heavily depends 

on the pattern contrast which can decrease from one 
layer to the next, making difficult the actual determi- 
nation of the number of layers. 

Our innovative approach consisted in designing 

reactors that enable to slowly unfold the pattern tran- 
sitions along one direction of the reactors. These 

reactors can be thought of as the non-linear chem- 
istry analogues of the Kofler hot stage used in the 
determination of equilibrium phase transitions. In 
our reactors, the uniform-hexagon-stripe transition 
sequence classically predicted in theoretical studies, 
was directly viewed, unfolded in space. The continous 
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follow up of  pattern evolution allowed us to draw 

some conclusions on bilayer patterns. In particular, 

we have been able to follow the emergence of  a bi- 

layer from a monolayer  pattern and have shown that 

this transition is progressive. 

The presence of  steep feed gradients seems to make 

the three-dimensional pattern selection mechanism re- 

sourceful through the coupling of  basic patterns. In 

our experiments these are the basic two-dimensional 

hexagonal and stripe modes. The main question which 

is still to be solved is that of  the determination of  the 

possible stable phase relations that can exist between 

the patterns in the two layers. Our observations suggest 

that several such phase shifts are possible and that the 

relative stability of  these phase relations may depend 

on the constraints and probably on the exact shape of  

the confining parameter  well. However, the method be- 

comes unreliable for more than two patterned planes. 

Note that in this series of  experiments,  we have not 

identified patterns that could result from the superpo- 

sition of  two layers of  hexagons. However, triangular 

patterns observed in other experiments [34] suggest 

that the superposition of  a clear and a dark hexagon 

layers is possible. Refined experiments with our bev- 

elled reactors are now in progress. Moreover  in new 

sets of  experiments,  the spatio-temporal behaviours 

[23] that result from the superposition of  a temporal 

instability (Hopf) in one plane and a spatial instability 

(Turing) in another are distinguished from behaviours 

that develop in a single stratum of  width A compara-  

ble to the Turing wavelength ~.. This will be the sub- 

ject  of  a forthcoming paper. 
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