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Abstract

We elaborate on the transition from quasi-two-dimensional to three-dimensional Turing patterns in a chemical reaction—
diffusion system confined in gradients of chemicals between two feed boundaries. This transition is observed in open spatial
reactors specially designed to make possible the unfolding of a pattern sequence in one direction of the plane of observation.
In this direction, the confinement of the structure is progressively relaxed. Complementary observations from two reactor
geometries allow the dimensionality of the structure to be elucidated: quasi-two-dimensional and three-dimensional patterns,
respectively, correspond to patterns developing in monolayers and in bilayers. Beyond the now classical hexagonal and stripe
patterns, various new stable planforms are shown to result from the coupling of these two classical pattern modes which

develop in two adjacent layers, with well-defined phase relations between the two pattern modes.

PACS: 05.70.Ln, 47.54.+r; 82.20.Mj; 80.

Keywords: Turing patterns; Reaction—diffusion; Pattern dimensionality; Confined systems; CIMA reaction

1. Introduction

Turing patterns belong to the class of self-
organization phenomena that result from a sponta-
neous symmetry breaking instability in non-linear
dynamical systems maintained at a controlled dis-
tance from thermodynamic equilibrium. These are
stationary concentration patterns of solvated species
that result from the sole interplay of molecular diffu-
sion and chemical reaction. Such chemical reactions
must involve antagonistic activatory and inhibitory
kinetic processes. Turing patterns call for differences
in the diffusion coefficients of species, in particular,
a species controlling the inhibitory process must dif-
fuse faster than species in control of the activatory
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process. The patterns are characterized by an intrinsic
wavelength, that is wavelength is independent of any
geometric dimension of the system. Due to seemingly
contradictory requirements for their formation, the
first unambiguous experimental observation of Tur-
ing patterns [1] occurred nearly 40 years after their
theoretical prediction by Turing in 1952 [2]. Besides
their fundamental interest in physics [3], their pos-
sible implication in certain stages of morphogenesis
made them popular among a community of biologists
and biomathematicians [4-6].

Most of the theoretical works on pattern forma-
tion assume, for mathematical simplicity, that the sys-
tem be uniformly constrained over space. Under these
conditions, it has been analytically determined and
confirmed by numerical simulations that only a small
number of planforms can spontaneously develop. In
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two-dimensional systems, these planforms consist of
hexagonal arrays of dots and parallel stripe patterns
[7-9]. In three-dimensional systems, lamella, hexag-
onal prisms and body centered cubic arrays [10] are
such selected patterns.

It is worth noting that in real chemical systems, it is
impossible to fulfil the uniform constraint conditions.
As we shall see in more detail further on, the experi-
mentally observed Turing patterns develop in systems
that naturally involve parameter gradients. These gra-
dients confine the pattern in a more or less narrow re-
gion of space where appropriate chemical conditions
are met for the Turing instability to develop.

Nonetheless, the effect of parameter gradients in
a chemical one-dimensional system was considered
form a theoretical point of view during 1970’s [11].
It was also theoretically examined in two- or three-
dimensional systems, in the framework of patterning
models for biological systems [12,13]. In this con-
text, Boissonade [14] provided in 1988 a numerical
analysis of a Turing bifurcation in a two-dimensional
rectangular system fed only by diffusion from two
opposite boundaries, a configuration which naturally
leads to gradients of feeding species. These calcula-
tions show that at onset, the Turing instability develops
a dot pattern orthogonally to the parameter gradients.
Our initial experimental observation of sustained Tur-
ing patterns followed this more practical approach [1].

Using the CIMA reaction, we have observed pat-
terns developing in successive rows of spots [1,15,16],
in perfect agreement with Boissonade’s theoretical
results [14,16]. Soon after, with the same reaction
and a reactor more extended in the third direction,
Ouyang and Swinney produced spot and stripe pat-
terns [17,18] analogue to those predicted in extended
two-dimensional systems; these patterns tessellate
planes that extend in the third direction of the re-
actor. Some of our experiments indicated that pat-
tern can be three-dimensional [19]. Ouyang et al.
rather produced apparently two-dimensional patterns
[17,18,20]; then, they also considered the develop-
ment of three-dimensional patterns. Further experi-
mental observations show that different patterns can
develop at different distances to the feed boundaries
[21] and that the dimensionality of patterns may de-

pend on some geometric size of the reactor [22]. More
recently, we have published a preliminary observation
of three-dimensional patterns consisting either of two
contiguous planes tessellated with stationary patterns
or of one plane of stationary patterns and one with
travelling waves [23,24].

Here, we report on experiments performed in
reactors designed to elucidate how two-dimensional
patterns evolve to three-dimensional patterns as the
confinement in the third direction is gradually re-
laxed. We also examine the transition between differ-
ent types of two-dimensional patterns under a slow
parameter ramp. We emphasize that there are no gen-
uine two-dimensional experimental patterns but rather
patterns developing in monolayers and we discuss the
experimental patterns in monolayers in connection
with actually two-dimensional patterns produced by
simulations. The experimental conditions (reactors
and reaction) used for the reported experiments are
indicated in Section 2. We describe in Section 3 the
patterns observed first in the asymptotic state of the
system, then in a transient situation. Finally these
experimental results are discussed in Section 4, in
the light of results of theoretical studies and simu-
lations of such systems, and taking into account the
dimensionality of the patterns.

2. Experimental conditions
2.1. Reactor

The core of the reactor is a piece of soft hydrogel
with two opposite faces in contact with solutions of
reagents kept in two reservoirs [ and II (see Fig. 1(a)).
Starting from these faces, reagents diffuse into the
gel where they meet and react. The other sides of
the piece of gel correspond to impermeable bound-
aries. The gel prevents the chemical reacting medium
from any convective fluid motion so that the only
active processes inside the gel are the reaction and
the molecular diffusion of species. Solutions in reser-
voirs I and II are permanently renewed by pumps
and continuously stirred, ensuring constant and uni-
form boundary conditions. Reagents are distributed in
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Fig. 1. Sketches of the open spatial reactors. (a) The basic principle: the piece of gel (L x h x w) is in contact with the contents
of stirred reservoirs I and II; A is the width of the pattern-forming region. Observations are made from above (arrow y) in the thin strip
reactor (with dimensions » < w < L), and perpendicularly to the feed surfaces in the disc reactor (diameter L = h). (b) and (c) The
bevelled thin strip and disc reactors. In the thin strip # = 0.2 mm; in both reactors: Wipax = 3.5mm, Wy, = 1.75mm, L = 25mm:

Arrows y and x indicate the observation directions.

reservoirs I and II in such a way that neither of the so-
lutions is separately reactive and, due to the differences
in their compositions, strong concentration gradients
of chemicals naturally settle in the gel perpendicu-
larly to the feed surfaces, leading to iso-concentration
planes parallel to these surfaces. Generally, the appro-
priate conditions for the development of a reaction—
diffusion instability are only met in a restricted region
of width A between the two feed surfaces: A depends
on such parameters as the concentrations of feed
species and, of course, on the distance w between
the feed surfaces. Depending on how the wavelength
A of the pattern compares with the dimensions A,
L and h of the pattern-forming region (Fig. 1(a)),

one-, two- or three-dimensional spatial patterns can
develop.

Two different geometries of reactors ~ the thin strip
reactor and the disc reactor — have been derived from
the general scheme in Fig. 1(a) as follows.

2.1.1. Thin strip reactor

The thin strip reactor is made of a thin narrow
rectangular piece of gel (L > w > h; typically
h < 1 mm). The gel strip is fed by the two long edges
(L x h). Observations made as above (see arrow y
in Fig. 1(a)) provide a direct view of the area that
extends between the feed surfaces. In particular, the
location and the width A of the pattern-forming region
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can immediately be seen. Pattern develops in rows
of spots or in stripes parallel to the feed boundaries,
that is orthogonal to the initial ramps of chemicals.
The initial observations of Turing patterns were per-
formed in a thin strip reactor {1,15,16]. If the gel strip
is thin enough (h of the order of the wavelength A
of the structure), it approximates a two-dimensional
rectangular system. Then one-dimensional or two-
dimensional patterns can be obtained, depending on
whether they develop on one or more rows.

2.1.2. Disc reactor

The disc reactor is made of a flat disc of gel with
a thickness w. In this geometry, the faces L x h in
Fig. 1(a) are circles with a diameter L = h. The
disc is fed by these two circular faces. Observations
made perpendicularly to the feed surfaces (arrow x in
Fig. 1(a)) give a view of planes parallel to these faces,
that is in a direction perpendicular to that used in the
thin strip reactor. The disc reactor was first used by
Ouyang and Swinney [17,18]. With this geometry of
reactor, patterns made of arrays of spots or of stripes
readily spread over the whole plane of observation. An
obvious advantage of this reactor geometry is to allow
for observation of patterns extended over large planar
areas of uniform parameter values; but it obscures the
pattern development in the third direction (that of the
ramps of chemicals).

Summarizing, pattern in the thin strip reactor usu-
ally appears as rows of spots while it extends over
planes in the disc reactor. Further these rows and
planes are parallel to the feed boundaries in both re-
actor geometries.

2.1.3. Bevelled gel reactors

The reactors in Section 2.1 were slightly modified
for the experiments reported here. The feed surfaces
are no longer parallel but make an angle. Both bev-
elled thin strip and disc reactors (Figs. 1(b) and (c))
were used. In such geometries, w, the distance be-
tween the feed surfaces changes continuously from
1.75 to 3.5mm over a length (or diameter) L of
25mm. Thus, the feed surfaces make an angle of
4°.

The slant between the feed surfaces introduces a
slow continuous change in control parameters along
the plane of observation. Indeed, the gradient in w
produces a gradual change in the concentration ramps
across the gel, which results in a gradual change in
A, the width of the patternforming region. As a con-
sequence, the number of rows (or planes) of patterns
gradually changes from one end to the other of the
bevelled piece of gel. In addition, since the chemical
processes within the gel are non-linear, the chemical
composition along one row (or plane) will also grad-
ually change. In such conditions, we can expect dif-
ferent types of patterns to develop in the direction of
the slope.

Images were acquired with a black and white video
CCD camera fitted with macrolens and attached to a
personal computer. Subsequently, a picture processor
was used to enhance the grey level contrasts.

2.2. Gel

Experiments were performed in a polyacrylamide
gel loaded with thiodéne [1]. Thiodene is an iodine
colour indicator from Prolabo, containing 7% soluble
starch [25], the excipient is washed out of the gel prior
to use. The pieces of gel were made with a solution
of the following composition per 100 ml: 2 g of acry-
lamide, 0.46 g of N, N’-methylenebisacrylamide, both
from Aldrich and 3 g of thiodéne. Polymerization oc-
curs in about 10 mm at 0°C.

2.3. Reaction

Experiments were conducted with the chlorite—-
iodine—malonic acid oscillating reaction [26] currently
referred as the “CIMA” reaction. Based on a skeleton
kinetic mechanism of the reaction, it was proposed
[27] that iodide (I™) and chlorite (C1O; ) play, respec-
tively, the roles of the activator and of the inhibitor
species. It was also proposed [27-29] that starch, a
macromolecule immobilized in the gel network (or
any immobilie functional site of the gel), that makes a
reservible complex with the activator, plays a key role
in the formation of Turing patterns. This assumption
was experimentally corroborated [30].
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The reagents were distributed as follows in the
reservoirs: lodide and malonic acid in sulphuric acid
solution were fed on one side. lodate and chlorite in
basic solution were fed on the other side. Note that on
the chlorite side, the reservoir was fed with iodate in-
stead of iodide. Indeed, when fed on this side, iodide
is rapidly oxidized to iodate near the corresponding
feed surface of the gel.

Since the oxidizers, chlorite and iodate, are only
on one side, the oxidation capacity of the chemical
medium inside the gel decreases from that side to the
other. Consequently, near the chlorite side, the iodine
species are oxidized and the gel remains colourless.
Near the malonic acid side, iodine species are present
mostly under their reduced forms I~ and /> which
produce a dark blue complex with starch enclosed in
the gel. Thus, along this side, the gel becomes dark.

The residence time was identical in both reservoirs
and had the same value for both types of reactors.
All feed parameters and bath temperature (4°C) were
identical in reactors of both types in order to enable
us to compare observations.

3. Experimental results
3.1. Global description

Figs. 2 and 3 give an example of the unfolding of
patterns observed in our two types of bevelled reac-
tors for a same set of feed concentrations. The figures
provide a global view of the bevelled gel strip and disc
after 36 h.

As already mentioned, the directions of observa-
tions for the two reactor geometries are orthogonal.
The symmetry breaking pattern in the thin strip reac-
tor appears as rows of spots parallel to the feed edges
of the strip. In the disc reactor, a much wider variety
of patterns tesselating the plane is observed.

Due to the small wavelength of the patterns (about
0.13 mm) and the pixel resolution of the CCD camera,
macrolens were used to obtain pictures of patterns
with enough resolution. Consequently, only a small
part of the reactor is viewed at one time; the images of
the whole bevelled pieces of gel can be reconstructed

by placing side by side several pictures such as those
presented in Figs. 2 and 3. Note that the magnification
of Fig. 2 is greater than that of Fig. 3. In all the cases,
larger magnifications of selected areas are provided
when necessary. Note also that the focal depth of the
optical set-up used in the reported experiments is of
the order of 1 mm.

3.1.1. In bevelled thin strip
The experiment presented in Fig. 2 was performed

with a gel strip 0.2 mm thick. The width of the strip

increases from Fig. 2(a) to Fig. 2(e) and from left to
right in each figure. The figures only show the side of
the strip that bears patterns. Each figure exhibits from
bottom to top: (i) a first dark band that develops next
to the malonic acid fed boundary located along the
bottom of the pictures, followed by (ii) a clear band
parallel to the preceding dark one. and (iii) a second

dark band parallel to the other bands, inside which a

pattern of clear dots develops; the width of this band

increases with the width of the strip; beyond this, (iv)

a clear zone extends over the rest of the strip.

Let us now focus on the second dark band. Typi-
cally, as the width of the gel strip increases, a spot
pattern emerges in that region; the spots organize in
one, then two rows parallel to the feed boundaries:

— In the narrowest part of the strip (Fig. 2(a)), no spot
pattern is observed: in this region of the gel, no
symmetry breaking pattern develops.

— In the following part (Fig. 2(b)), the clear spot pat-
tern breaking the boundary symmetry emerges and
develops over one row. Note that the pattern be-
comes fuzzy at the right end of this figure.

— In the widest parts of the strip (Fig. 2(d) and (e)), the
width of the region of symmetry breaking pattern
has increased and the pattern is essentially made
of two rows of spots. However, at some locations,
the amplitude of the spot modulation decreases or
even disappears (right end of Fig. 2(d), left end of
Fig. 2(e)), giving place to a more or less uniform
clear band. At the very end of the gel strip (right
end of Fig. 2(e)), the two rows can fuse back into
one. Indeed, the parts holding up the gel at each end
may introduce defects of feed in the first and last
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Fig. 2. Patterns in the bevelled thin strip. (a)—(e) are the binarized images of five successive portions of the sirip. The whole pattern
sequence can be reconstructed by placing side by side the five successive images. Pairs of vertical dotted lines (1 and 1’, 2 and
2’, etc.) indicate the same location along the strip. The bar inside (a) corresponds to I mm. (a) no symmetry breading pattern;
(b) no symmetry breaking pattern and symmetry breaking pattern forming one row of spots; (c) transition region between one and
two rows; (d) and (¢) symmetry breaking pattern forming two rows of spots. Experimental conditions: concentrations of reagents
in reservoir I: [NaClOs] = 0.0475M, [NaOH] = 1.2 x 1072 M, [KIO3] = 2 x 1073 M; in reservoir I:[AM] = 1.3 x 1072 M,
[H2SO4] = 1072 M; [KI] =2 x 1073 M, [NayS04] =3 x 1073 M; temperature = 4°C; residence time of reservoirs = 6 min.

5% along the length of the strip (see also the left
end of Fig. 2(a)).

The transition between one and two rows can be
seen in Fig. 2(c). A magnification of such a tran-
sition region is given in Fig. 4. At the approach of
the transition region, the modulation of the light in-
tensity in the single row rapidly decreases: spots al-
most disappear. Then, as this fuzzy region becomes
wider, a new clear spot pattern gains consistency.
These spots elongate before separating in two spots
of unequal sizes. The resuiting pairs of spots first
arrange obliquely in the pattern band. Then, as spots

in the pairs become more equal in size and inten-
sity, the pairs tilt in the direction of the feed gradi-
ent, giving rise to the appearance of a second row
of spots. Progressively, a shift appears which then
increases between the two spots of each pair. The fi-
nal arrangement in two rows of perfectly staggered
spots is reached at the right end of Fig. 4(b) (and in
the middle part of Fig. 2(c)).

Thus, the emergence of the second row of spots
as the width of the pattern region increases, is very
progressive. It proceeds through some sort of spot
division followed by the separation of the second
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Fig. 3. Sequence of pattern in the bevelled disc. The whole
sequence can be reconstructed by juxtaposing (a) and (b) and
superposing the dotted lines at the top of (a) and at the bottom
of (b). The various patterns extend over parallel bands. The
vertical arrows delimit their successive domains: 1. uniform
state (truncated at the bottom of the figure); 2. hexagonal array
of spots; 3. stripes; 4. mixture of stripes and spots; 5. asymmetric
stripes; 6. “non-standard” planforms. Experimental conditions
as in Fig. 2(a) and (b): view size 6.9 mm x 6.9 mm.

row from the first one and by a progressive increase
of the phase shift between spots in the two rows.

3.1.2. In bevelled disc

Each picture in Fig. 3 gives a view of about half
the height of the disc in the median region; the lateral
parts not shown bear the same types of patterns. The

e RSN SR

Fig. 4. The transition region between domains with one and
two rows of spots, in the bevelled strip. The whole sequence
can be reconstructed by placing side by side images (a) and (b).
The vertical dotted lines indicate the same location along the
strip. Form left to right in each figure: (a) fuzzy pattern with a
few clear spots, spots of large size, spots splitting in two spots
obliquely arranged; (b) pairs of spots arranged more or less
perpendicularly to the feed boundary, two rows of staggered
spots.

thickness of the disc progressively increases from the
bottom of Fig. 3(b) to the top of Fig. 3(a). Patterns of
different types extend over successive regions (num-
bered on the figure). These regions are almost parallel
and organize as follows with the increasing thickness

of the disc:
| —a narrow uniform (structureless) region;

2 —a region of clear spots exhibiting a hexagonal

arrangement;

3 —a wide domain of stripes;

4 —a region of complex organization exhibiting an

intricate mixture of spots and stripes;

5 —a region of less contrasted, asymmetric stripes;

6-a region of very intricate planform, located at

the top of the disc.

The global organization can hold for days without
significant modification of the general pattern. The
area covered with patterns as well as the relative ex-
tent of the domain of each type of planform depend on
the feed concentrations. The pictures of Fig. 3 were
obtained with a chlorite concentration ([NaClO;]) of
0.0475M in the reservoir. In this case, the structure-
less region | extended over one eighth of the height
of the disc. When [NaClO;] was increased by 30%,
the extent of region 1 increased by a factor of 6. Con-
versely, a decrease of 5% of [NaClO;] resulted in the
total disappearence of the uniform region; then the
whole disc surgace was covered with patterns.
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Fig. 5. Transient situation in the bevelled thin strip. The whole sequence can be reconstructed by placing side by side images (a)
and (b). The vertical dotted lines indicate the same location along the strip. Note that the symmetry breaking pattern has disappeared
over large lumps of the reactor. Picture taken 2 h after a 10% increase in the chlorite concentration. All other experimental conditions

as in Fig. 2.

3.2. Transient situation

Asymptotic states as those presented above, in
Figs. 2 and 3, are reached after about 10h. Before
this time, some remarkable transient situations can be
observed, either when a new experiment is started or
after a jump in the value of some chemical constraint
during a series of experiments. In the latter case, the
initial symmetry breaking patterns are erased over
more or less extended parts of the gel reactors. In
Sections 3.2.1 and 3.2.2, we shall examine transient
situations observed after a 10% increase in the chlo-
rite concentration.

3.2.1. In bevelled thin strip

Fig. 5 shows a transient situation in the bevelled
gel strip. The symmetry breaking pattern was com-
pletely erased (see right end of Fig. 5(a) and left end
of Fig. 5(b)) over a large extent comprised between
the region with one row of spots (Fig. 5(a)) and the
transition region (right end of Fig. 5(b)). At both ends
of this now uniform clear band, patterns are similar
to those observed in the initial asymptotic state. After
this transient situation, the system evolves towards a
new asymptotic state: spots slowly reinvade this tem-
porally featureless band while, at the other end of the
row, spots disappear and the region without symmetry
breaking pattern gains in extension in the narrowest
parts of the bevelled strip.

3.2.2. In bevelled disc

An equivalent transient situation is observed in the
bevelled disc reactor, Fig. 6. The patterns in regions
3 and 4 are transiently erased. Then during the evolu-

tion towards the new steady state, stripes progressively
reinvade this temporary uniform region. However, the
expanding stripe region is preceded by a region tesse-
lated with hexagonal arrays of dark spots. This remark-
able new hexagonal patterns could never be stabilized
in any of the tested asymptotic states. Note that these
patterns are relatively long-lived since they have been
observed for about 8 h. Ultimately, the stripe structure
spreads over the whole area, and a pattern sequence
similar to that of Fig. 3 is recovered.

4. Discussion

It is worth noting that, in the thin strip reactor, es-
sentially one type of symmetry breaking pattern is
observed, i.e. spots arranged in rows parallel to the
feed boundaries. However, in the transition region be-
tween one and two rows, there can be different sta-
tionary phase relations between the peaks in two rows.
As already mentioned, in a very thin strip (A < A),
one row of spots can be thought as the experimen-
tal approximation of a one-dimensional Turing pat-
tern. In a genuine uniformly constrained (theoretical)
one-dimensional reaction — diffusion system, the only
possible stationary symmetry breaking pattern is a pe-
riodic longitudinal amplitude modulation. In an ideally
thin two-dimensional system with a strong parame-
ter gradient in one direction, theoretical simulations
show that the Turing pattern emerges as a single row
of spots perpendicular to the gradient. This pattern is
shown to have the same bifurcation properties as a one-
dimensional system [9]. Our experiments are usually
performed in gel strips with a thickness comparable to
the wavelength of the pattern (4 = A). The observed
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Fig. 6. Transient pattern sequence in the bevelled disc. Note
that, as in Fig. 5, the pattern has disappeared over large extents;
see the region of homogeneous state located in the upper parts
of the figure; see also the black hexagons at the borders of
this region. Picture taken 2 h after 10% increase in the chlorite
concentration. All other experimental conditions as in Fig. 3.

“quasi-one-dimensional” pattern can actually be made
either of short columns perpendicular to the observa-
tion plane or of beads, and no distinction can be made
between a column and a bead pattern. However, as
we have mentioned, in the widest parts of the bev-

elled gel strip, at some places, spots inside one row
become fuzzy or even disappear, giving place to seg-
ments of clear bands. Such segments can be under-
stood as columns layed parallel to the impermeable
boundaries. Another possibility is that, due to a dif-
ficult rearrangement of a number of spots emerging
in a limited space inside the row, the corresponding
zone in the pattern region exhibits a vanishing ampli-
tude modulation. Such segments can be considered as
defects of the pattern. The capability of the system to
eliminate such defects seems very limited since these
clear segments held unchanged for about two days,
the usual duration of an experiment.

The diversity of patterns observed in the bevelled
disc reactor will be better understood when compar-
ing these observations with those made in the bevelled
strip reactor at locations with comparable distances
between the feed boundaries. We thus compare in the
two reactors, locations with the same width of pattern-
forming region. However, if the gel strip reactor pro-
vides information on the number of separated pattern
layers, in any case it can provide information on the
type of pattern selected in the layers that develop in
the disc reactor.

In the thinnest region of the disc as in the narrowest
part of the strip, no symmetry breaking pattern devel-
ops. The region of the gel strip where pattern is made
of one row of spots fits regions 2 and 3 in the disc
over which hexagonal arrays of clear spots and stripe
patterns can be seen. Thus, these patterns correspond
to genuine monolayer patterns. In these monolayers,
the spot and stripe patterns actually correspond, re-
spectively, to bead and column structures. Note that
these columns are seldom straight but generally bent
columns. In the following, they will be simply re-
ferred as “columns”. The spot and stripe patterns in
regions 2 and 3 of the disc are characterized by their
relative sharpness. Such hexagon and stripe patterns
have initially been observed by Ouyang and Swinney
[17,18] and later by others [23] and thought as effec-
tive quasi-two-dimensional patterns. It has been shown
theoretically that, at onset, monolayers of Turing pat-
terns have the same qualitative bifurcation diagram
and pattern selection properties than two-dimensional
systems [7,9]. The hexagonal mode is generally the
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Fig. 7. The transition between the domains of uniform state and
hexagon pattern. Magnification of a small region.

first stable mode and appears subcritically; the stripe
mode becomes stable only at some distance from onset
while hexagons loose their stability. The stability do-
mains of these two modes overlap over some range of
bifurcation parameter values. However, there is an im-
portant difference between genuine two-dimensional
systems and monolayers: in the latter, the hexago-
nal mode is generically restabilized at some distance
from onset [7,9]. Note that the sequence uniform-
hexagons—stripes experimentally observed in the bev-
elled disc, follows exactly the stability order predicted
by the linear stability analysis. In the asymptotic state
we usually observe a very sharp transition between the
uniform state and the hexagon pattern, i.e. the ampli-
tude suddenly damps within a wavelength (see Fig. 7)
which is consistent with the subcritical nature of the
bifurcation to hexagons. However, we have never ob-
served any obvious hysteresis in the position of this
transition front as a function of feed parameters. Such
hysteresis could be expected as a result of a front pin-
ning due to non-variational effects. The same sharp
transition is observed between hexagon (region 2) and
stripe (region 3) patterns (see Fig. 8). No mixed state
is observed at this front. This is consistent with the dis-

Fig. 8. The transition between the domains of hexagon and
stripe patterns. Magnification of a small region.

continuous nature of the transition between the stable
hexagonal and striped modes. Here again no noticeable
hysteresis is found as a function of constraints, con-
trary to another report [21]. No pinning is observed in
our experimental conditions which infers a weak over-
lap of the stability domains of hexagons and stripes.
The intricate pattern in region 4 is made of mod-
ulated stripes and it is very tempting to think of this
pattern as a mixed mode. However, in the classical
two-dimensional approach, this mixed mode is unsta-
ble [31]. The modulated stripes of region 4 develop
in the continuation of the regular stripes of region 3.
Modulations are regularly spaced along the stripes and
form a hexagonal array of higher light intensity. Re-
gion 4 in the bevelled disc of gel would correspond
to the transition region where a second row of spots
is seen to progressively emerge in the bevelled strip.
This occurs when the width A of the pattern-forming
region exceeds a critical size. Region 4 in the disc
can be understood as a region where a second layer
of pattern is building up; a truely three-dimensional
pattern is unfolding here. Fig. 9 provides a magnifica-
tion of the transition region between regions 3 and 4:
At the frontier with region 3, spots are few and have
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Fig. 9. Detailed view of the transition zone between regions 3 and 4. Note the hexagon-stripe mixed pattern.

a low amplitude. Going upwards, towards region 5,
spots along the stripes become more numerous and
regularly spaced. In the light of our observations in
the gel strip, we conjecture that these spots develop as
outgrowths on the columnar structure of the first pat-
tern layer. Note that the spots stay basically centred
along the clear columns.

Subsequently, with the increased thickness of the
disc of gel, outgrowths would form an extra roll along
the initial columns, so that we can understand the
structure in region 5 as being formed of two layers
of parallel columns. Region 5 in the disc corresponds
in the gel strip to the regions with two rows of spots
either with a slight shift between splitting pairs or
completely staggered spots. Generally, in region 5,
the columns of the second layer do not settle at equal
distance from two neighbour columns in the first layer
but rather stay closer to one of them. The projection
of such a three-dimensional arrangement on the plane
of the picture results in a pattern made of stripes with
poorer constrast than in region 3. A magnification
of such a picture with enhanced constrast is given in
Fig. 10 with the light intensity profile taken along a

line perpendicular to the direction of the stripes. The
profile shows a period made of two peaks with two
unequal heights. This can be understood as the super-
position of two non-harmonic modulations of the light
intensity. Note that non-harmonic modulations are
generally expected far from onset. The non-symmetric
shape of the profile could result either from a phase
shift actually slightly less than half a wavelength be-
tween the columns in the two layers (as suggested
also by the observations in the bevelled strip reactor)
or from a bias in the observation direction of a sym-
metric array of staggered columns. Our observations
in the strip reactor seem to favour the first assumption.

Thus, we have observed the emergence of a sec-
ond layer of pattern which, in region 4, is made of
a hexagonal array of beads more or less separated
from the columns of the first pattern layer; these beads
transform into parallel columns in region 5 and the
sequence hexagon-stripe experimentally observed for
the first layer repeats in the second one. This means
that various layers of patterns can develop at different
distances from the feed boundaries, and each layer can
undergo, somewhat independently, the same pattern
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Fig. 10. The asymmetric stripes of region 5: (a) a magnification; (b) the light intensity profile along the line (------- ) drawn in

picture (a).

mode sequence as the thickness of the disc reactor
increases. Moreover, different planforms can be ob-
served at a given disc thickness, in adjacent layers.
This is in agreement with preliminary theoretical [24]
as well as experimental [21] results obtained in three-
dimensional systems in the presence of parameter gra-
dients.

At first glance, region 6 exhibits a wealth of very
intricate planforms. However, a closer examination of

these apparently different planforms brings the con-
clusion that they are various aspects of the same basic
organization. Such patterns typically appear as illus-
trated in Fig. 11. Planforms of this type are observed
at the top of the disc, as in Fig. 3. Such regions of
the bevelled disc correspond to regions of the bevelled
strip where the pattern is made of two rows of spots;
so that the planform of Fig. 11 can be considered as
the projection on the observation plane of two patterns
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Fig. 11. An example of intricate planform commonly observed
in region 6.

that develop in two adjacent layers. Such non-standard
planforms are rather difficult to elucidate. They can
be understood as moiré images of standard planforms.
Patterns very similar to those of region 6 can be ob-
tained by summing an image of hexagonal array of
clear spots and an image of stripes from regions 2 and
3, with the clear spots superposed to the dark stripes.
Note the necessary phase shift of 7 compared to the
superposition that produces planforms such as those
observed in region 4. This superposition of spots and
stripes in region 6 implies that a spot pattern is resta-
bilized in the top of the disc reactor, Such a restabi-
lization of the hexagonal mode is also found in many
computations and analytical calculations on the Brus-
selator [7,32] and the Schnackenberg [8,9] models.
This phenomen is often referred as reentrance.
Another case of reentrance is obtained in the tran-
sient shown in Fig. 6 which exhibits the sequence
uniform — clear hexagons — stripes — dark hexagons —
uniform. This can be thought as two different Turing
bifurcations from uniform to hexagons, one of them
from uniform to clear hexagons, and the other from
uniform to dark hexagons. This can be theoretically
understood if the quadratic term of the normal form
of the Turing bifurcation changes sign. Note that dark
hexagons have always been observed as transient in

experiments. It is also remarkable that dark spots were
never observed in the bevelled strip, even transiently.

Let us now consider again the uniform state next to
the dark hexagons. This region has to be associated
to the temporary featureless clear band in the strip
reactor (Fig. 5). In the disc reactor, this should then
correspond to a clear sheet which could constitute the
first element of a lamellar structure predicted by the-
ory in three-dimensional systems [10]. As the black
hexagons, this structure is unstable under our experi-
mental conditions.

5. Conclusion

We have used an indirect approach in order to ad-
dress the problem of the actual pattern organization in
three-dimensional systems, in the presence of feed gra-
dients. Indeed, there is a severe technical obstacle to
the direct analysis of three-dimensional structures: the
structures correspond to smooth continuous changes
in concentration of diluted species and the contrast of
patterns decreases with the decrease of the focal depth.
The direct analysis would call for focal depth much
smaller than the wavelength of the pattern, that is of
the order of a few hundredth of millimeter; in these
conditions, contrast would be so low that very low
noise camera and frame average techniques should be
used much in the same way as in confocal microscopy.
Other authors seem to have made a rough measure-
ment of the thickness and position of the pattern-
forming region [33]. However, as mentioned by these
authors, the accuracy of their method heavily depends
on the pattern contrast which can decrease from one
layer to the next, making difficult the actual determi-
nation of the number of layers.

Our innovative approach consisted in designing
reactors that enable to slowly unfold the pattern tran-
sitions along one direction of the reactors. These
reactors can be thought of as the non-linear chem-
istry analogues of the Kofler hot stage used in the
determination of equilibrium phase transitions. In
our reactors, the uniform-hexagon-stripe transition
sequence classically predicted in theoretical studies,
was directly viewed, unfolded in space. The continous
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follow up of pattern evolution allowed us to draw
some conclusions on bilayer patterns. In particular,
we have been able to follow the emergence of a bi-
layer from a monolayer pattern and have shown that
this transition is progressive.

The presence of steep feed gradients seems to make
the three-dimensional pattern selection mechanism re-
sourceful through the coupling of basic patterns. In
our experiments these are the basic two-dimensional
hexagonal and stripe modes. The main question which
is still to be solved is that of the determination of the
possible stable phase relations that can exist between
the patterns in the two layers. Our observations suggest
that several such phase shifts are possible and that the
relative stability of these phase relations may depend
on the constraints and probably on the exact shape of
the confining parameter well. However, the method be-
comes unreliable for more than two patterned planes.

Note that in this series of experiments, we have not
identified patterns that could result from the superpo-
sition of two layers of hexagons. However, triangular
patterns -observed in other experiments {34] suggest
that the superposition of a clear and a dark hexagon
layers is possible. Refined experiments with our bev-
elled reactors are now in progress. Moreover in new
sets of experiments, the spatio-temporal behaviours
[23] that result from the superposition of a temporal
instability (Hopf) in one plane and a spatial instability
(Turing) in another are distinguished from behaviours
that develop in a single stratum of width A compara-
ble to the Turing wavelength A. This will be the sub-
ject of a forthcoming paper.

Acknowledgements

The authors are indebted to Dr. Jacques Boissonade
for stimulating discussions and for sharing the results
of his numerical simulations prior to publication.

References

[11 V. Castets, E. Dulos, J. Boissonade and P. De Kepper,
Phys. Rev. Lett. 64 (1990) 2953.

[2] AM. Turing, Philos. Trans. Roy. Soc. London B 327
(1952) 37.

[3] G. Nicolis and I. Prigogine, Self Organization in
Nonequilibrium Chemical Systems (Wiley, New York,
1977).

[4] 1.D. Murray, Mathematical Biology (Springer, Berlin,
1989).

[5] H. Meinhardt, Models of Biological Pattern Formation
(Academic Press, New York, 1982).

[6] L.G. Harrison, Int. J. Plant Sci. 153 (1992) S76.

[7] P. Borckmans, A. De Wit and G. Dewel, Physica A 188
(1992) 137.

[8] V. Dufiet and J. Boissonade, J. Chem. Phys. 96 (1992) 664.
(91 V. Dufiet and J. Boissonade, Physica A 188 (1992) 158.
[10] A. De Wit, G. Dewel, P. Borckmans and D. Walgraef,

Physica D 61 (1992) 289.

[11] M. Herschkowitz-Kaufman and G. Nicolis, J. Chem. Phys.
56 (1972) 1980; J.F. Auchmuty and G. Nicolis, Bull. Math.
Biol. 37 (1975) 323.

[12] T.C. Lacalli, D.A. Wilkinson and L.G. Harrison,
Development 104 (1988) 105.

[13] A. Hunding and M. Brons, Physica D 44 (1990) 285.

[14] J. Boissonade, J. Physique (France) 49 (1988) 541.

[15] P. De Kepper, V. Castets, E. Dulos and J. Boissonade,
Physica D 49 (1991) 161.

[16] J. Boissonade, V. Castets, E. Dulos and P. De Kepper, Int.
Ser. Num. Math. 97 (1991) 67.

[17] Q. Ouyang and H.L. Swinney, Nature 352 (1991) 610.

[18] Q. Ouyang and H.L. Swinney, Chaos 1 (1991) 411.

[19] 1J. Perraud, K. Agladze, E. Dulos and P. De Kepper,
Physica A 188 (1992) 1.

[20} R.D. Vigil, Q. Ouyang and H.L. Swinney, Physica A 188
(1992) 17.

[21] Q. Ouyang, Z. Noszticzius and H.L. Swinney, J. Chem.
Phys. 96 (1992) 6773.

[22] K.L. Lee, Q. Ouyang, W.D. McCormick and H.L. Swinney,
preprint.

[23] P. De Kepper, 1.J. Perraud, B. Rudovics and E. Dulos, Int.
J. Bif. Chaos 4 (1994) 1215.

[24] J. Boissonade, E. Dulos and P. De Kepper, in: Chemical
Waves and Patterns, eds. R. Kapral and K. Schowalter
(Kluwer Academic Publishers, Dordrecht, 1995) 221.

[25] Z. Noszticzius, Q. Ouyang, W.D. McCormick and H.L.
Swinney, J. Chem. Phys. 96 (1992) 6302.

[26] P. De Kepper, I.R. Epstein, K. Kustin and M. Orbén, J.
Phys. Chem. 86 (1982) 170.

[27] I. Lengyel and LR. Epstein, Science 251 (1990) 650.

[28] I. Lengyel and I.R. Epstein, Proc. Nat. Acad. Sci. USA 89
(1992) 3977.

[29] J.E. Pearson and N.J. Bruno, Chaos 2 (1992) 513.

[30] K. Agladze, E. Dulos and P. De Kepper, J. Phys. Chem.
96 (1992) 2400.

[31] A. De Wit, G. Dewel and P. Borckmans, Phys. Rev. E 48
(1993) R4191.

[32] G. Dewel, P. Borckmans, A. De Wit, B. Rudovics, J.J.
Perraud, E. Dulos, J. Boissonade and P. De Kepper, Physica
A 213 (1995) 181.

[33] L Lengyel, S. Kidddr and L.R. Epstein, Phys. Rev. Lett. 69
(1992) 2729.

[34] B. Rudovics, Ph.D. Thesis, Bordeaux, France (1995).



