C Compiler Reference Manual
Version 4
January 2007

This manual documents software version 4.
Review the readme.txt file in the product directory for changes
made since this version.

Copyright © 1994, 2007 Custom Computer Services, Inc.

All rights reserved worldwide. No part of this work may be reproduced or copied in any
form or by any means- electronic, graphic, or mechanical, including photocopying,
recording, taping, or information retrieval systems without prior permission.

Table Of Contents

OVBIVIBW .. ettt et e ettt e e e ettt e e e e e e et e eeee e e e et e s e e e e e e s s taa e e eeeeeasbaa e eaeeeesstaa e aeeaeesesesrannns
PCB, PCM and PCH Overview....
XSy =11 E= 1 o] o IS
Technical Support
Directoriesccccoeeeeeeeeeevivnennnn..

LTSI T Y 4 =1 £ TR
Invoking the Command Line COMPIIETuuiiiiiiii it 3
PCW Overview

PrOgram SYNTAXooeiiiiiiiiiiiiiiiii ettt ettt ettt ettt ettt ettt ettt et et et et e e rnrne
OVETAI STTUCTUIE ittt ettt e e e e e e e e e e e e e e e et e e e e e e e staa e e eeeessaraannns
comment.........ccooiiiiiiinee
Trigraph Sequences................

Multiple Filescccooiiiiienennn.
Multiple Compilation Units
Example ..o

SEALEIMENTS Luuutiiititititititieat e

o oL LET=T (o] -SSP EPP RPN
Operators
(O] 01T = 0o] g md g=ToT=To [=To Y ot - P RP PO PPPPRRR
REFEIENCE PAraQmMELEIS ..ovveiiieeeeeeee et ettt e e e ettt e e e e e e e e e e e e e e e e aeeaes
Variable Parameters................

Default Parameters..................
Overloaded Functions

Data Definitionscccccceveeeiinns

Basic and Special types

Declarations.......ccccoeeeevvvvvnnnnnn..

Non-RAM Data Definitions

Using Program Memory for Data
Functional Overviews

CCP2, CCP3, CCP4, CCP5, CCP6
Configuration Memory
Data EEPROM.........ccccooovennienne
External Memorycccoeeene
Internal LCD....covvivviiiieiieeee
Internal Oscillator...........c........
INLErTUPLS coveiiiiiic e
LOW VOITAGE DEEECTeieiei ettt e e e et e e e e e et e e e e e e nnaaee s
POWET PWIM ...
Program EEPROM
ST TP PP UPRUPRRUPRTPN

C Compiler Reference Manual

VOIAGE REFEIBNCEottt e e e e et e e e e e e e e aneeeeeas

WDT or Watch Dog Timer
e o e oY o=t o T g B L f=Toa €Y= N
HASIM, HENDASMcooiiiiiiiiieeeeee ettt ettt ettt ettt e e et e e e e ea e e et ee et et aeeaeaeaessaesasssssnsnsnsssesesesnnnnnns
#ENDASM

#EXPORT (0ptions)ccceeeeeen.
FILE
_ _FILENAME__ ..
#FILL_ROM
#FUSES ...
HHEXCOMMENT ..ottt ettt s bt e st e et e st e e st e e e sne e e

#ID CHECKSUM
£ | D I 11 1Y o= U = PPUPPORSRUSPRR
FID NUIMDBDET 16 oottt ettt e e e e e et e e e e e e e e et eeeeeeeastb e e aeeesrssaaaeaaeeaes
#ID number, number, number, number
#IF exp, #ELSE, #ELIF, #ENDIF
#IFDEF, #IFNDEF, #ELSE, #ELIF, #ENDIF ...
#IGNORE_WARNINGS
#IMPORT (options)......cccceee.....
#INCLUDE

Table Of Contents

S N SRR
#USE FIXED_1O
= O e 12 R
U Y e =S4 3 RO
#USE RTOS
e U]] = RSP PR PRSPPI
#USE STANDARD_10
#ZERO RAM......c.cooiviiiiene,
Built-in-Functions

C

Vi

Compiler Reference Manual

DELAY _IMS () ittt ettt ettt 131
DELAY _US() tttetttteittt ettt ettt 132
DISABLE_INTERRUPTS() tteiutteittieittieitiie sttt ettt 133
DIV(1), LDIV() 1ttt ettt ettt ettt 134
ENABLE_INTERRUPTS() cetiittteittieititeiiti ettt sttt 135
ERASE_PROGRAM_EEPROM() .ieittiiittieiitieitit ettt ettt 136
)G () TSP PP PRSP 137
EXT _INT _EDGE() e tttettteeitite sttt ettt ettt ettt ekt e et ettt et et eene e 138
FAB S() ettt ettt ettt 138
G E T G)ttt ettt b et 139
[] = ST () PO PP T PP TPV PPTRUPP PP 139
FLOOR()+ttt ettt ettt a4kt b ettt ene s 139
FIMIOD () -ttt ettt ettt ekttt b R e bbbt bt e e 140
[R I T TP TPV PP PP PP 140
[O O G PRSP UPP PP 140
[O ST (O PP PP PP 141
FREE() ettt ettt 141
FREXP () 1ttt b et 142
GET_TIMERX() +tt ettt ettt ettt ettt e e e e et eene e 143
GET _TRISX() «vttttuteeeutte ettt ettt ettt et et et et e e 144
GETC(), GETCH(), GETCHAR(), FGETC() «ettteiutteitiieaiieesiiie sttt ettt 145
GETCHAR() ittt ettt etttk ekt bbbkt ekt ekt ekt b bt e bt e bt e e bt nnb e 146
(1o I N AV T TP URPUPRRUPRPPRPN 146
(€1 o S T 1 = R T () IO P PP PUPTPRPPRTR 148
GOTO_ADDRESS() .etttiutteiitit ittt sttt sttt ettt 149
[2C ISR _STATE() ttteeutieiiit ettt ettt ettt e 150
[2C P OLL() etttettte ettt ettt E ettt 151
[2C READ() t.tttettte ittt ettt h ke h e E ettt 152
OS] I V2= o Lo () SO UPURRN 153
D O SN Y = I () T PP OP R PPPRPRN 154
D O S WO = () PP P TP PPR PP 155
DA ORIV o I = () PP PPPRPR 156
INPUT () 1ottt et ekttt ekt bt bt et e s 157
INPUT _STATE() ettt ettt ettt ettt e e 158
INPUT X) ettt ettt ettt ettt et ekttt ettt e be e ees 158
INTERRUPT_ACTIVE() +ettttetutteittt ettt ettt 159
ISALNUM(char), ISALPHA(char), ISDIGIT(char), ISLOWER(char), ISSPACE(char),
ISUPPER(char), ISXDIGIT(char), ISCNTRL(x), ISGRAPH(x), ISPRINT(x), ISPUNCT(X) 160
ISAMOUNGI()+ttt ettt ettt ettt et e skt e e bt e skt e ettt et e bt ekt e et et e e ne e e 161
[O AN G PRSP PPSPPTRTO 161
JUMP_TO_ISR .ttt ettt h et h e bbbt e bt ab e e bt e e bt e e nbb e nteennne s 162
KB HIT () 1ttt ettt ettt bbbttt 163
LABEL_ADDRESS() 1ttt ittt sttt ettt 164
LAB S) ettt ettt ettt ettt E e bttt 164
LCD_LOAD() ettt ettt ettt ettt ettt 165
LCD_SYMBOL{) tttttttettteittte sttt ettt ettt ettt ettt b ettt 166
LDEXP ()t ettt b £t b et b e bbbt bt ne e 167
[1 (TP U PRSPPI 167

Table Of Contents

LOGLO() cvorveeveeeeeeeeee e e e
LONGJIMP()
MAKES()

MAKE16()

MAKE32()

MALLOC() veoveveeeeeeeeeeesrenes
MEMCPY (), MEMMOVE()....eoveoeeeeeeeeee e eeeeeeeeseeeeeeeeeeeeeeeseesseeeeee e s eeseee e
MEMSET()
MODF()
_MUL()
OFFSETOF(), OFFSETOFBIT()
OFFSETOFBIT()
(oYU 1 =108 Y NSO
OUTPUT_B, OUTPUT_C, OUTPUT_D, OUTPUT_E, OUTPUT_F, OUTPUT_ G, OUTPUT H,
OUTPUT_J, OUTPUT K
OUTPUT BIT() wovvvererreereennen.

OUTPUT_DRIVE() cevvoeveereaen.

OUTPUT_FLOAT() cvvovveeveen.

OUTPUT _HIGH() cvovveeveernen.

(o101 =108 Sl)/ TP
(oYU 1 =108 sl foTcTcT I =1 TR
PERROR()
PORT A _PULLUPS ().t ieeeeeeeeeee e eeee e seeeeeee s eeessee s eseee s
PORT_B_PULLUPS()
POW(), PWR() cvvovveererreirenes
PRINTF(), FPRINTF()
PSP_OUTPUT FULL(), PSP_INPUT_FULL(), PSP_OVERFLOW()
PSP_INPUT FULL()vooveiveemeeeeeeeeeesooeeeeee s,
PSP_OVERFLOW() .o,

PUTC(), PUTCHAR(), FPUTC()
PUTCHAR() vt
PUTS(), FPUTS()
(0110 =3 1 (J U RO
RAND() vvoveoeeeeee oo e
READ_ADC()
READ_BANK() cvvoveoeeoeeeeeeeeeee oo eeee e
READ_CALIBRATION() ...vvoveoiveieeseee oo
READ_EEPROM() ..o,

READ_PROGRAM_EEPROM() w...cvvvoeenn....

READ_PROGRAM_MEMORY/()....covvovvven.n..

READ_EXTERNAL_MEMORY()
REALLOC()
RESET_CPU()....
RESTART_CAUSE()
RESTART_WDT()vovveivireans

ROTATE_LEFT() ervvoveeeeeeeeeeee e e e e esee e e e ee e
ROTATE_RIGHT() ceoveoveeee e eeee oo seee e eeee e se e
SET_ADC_CHANNEL().-veeveeeeeeeeeee e eee e e

C Compiler Reference Manual

SET_PWMIL_DUTY () v 203
SET_PWM2_DUTY, SET_PWM3_DUTY, SET_PWM4 DUTY, SET_PWM5_DUTY............. 204
SET_POWER_PWMX_DUTY() rvoeveeeeeeeeeeee e eeeeee e 204
SET_POWER_PWM_OVERRIDE()eoveiveieeeeseeseeeeeeeeeeeese e 205
SET _RTCC() vttt 206
SET_TIMERO(), SET_TIMER1(), SET_TIMER2(), SET_TIMER3(), SET_TIMERA4(),
SET_TIMERS().t ee e 206
SET_TRIS_A() cveeeeeeeeeeeeeeeeeee et ee et e e 207
SET_TRIS_B(), SET_TRIS_C(), SET_TRIS_D(), SET_TRIS_E(), SET_TRIS_F(),
SET_TRIS_G(), SET_TRIS_H(), SET_TRIS_J(), SET_TRIS_K() evvrevrrrrerrrrorssresrirrrrree. 208
SET _UART _SPEED() .vocveooveeeeeeeeeeeeoeee et ee e 208
SETIMP) ettt 209
SETUP_ADC(MOGE). ..o ee e ee e 209
SETUP_ADC_PORTS()..vevveeeeeeeeeeee e e e e esee e e e 210
SETUP_CCPL() vttt 211
SETUP_CCP2(), SETUP_CCP3(), SETUP_CCP4(), SETUP_CCP5()...cvvervverrrerrrrrerrrerne. 213
SETUP_COMPARATOR()
SETUP_COUNTERS()..oovvvorveeeeeseeeeeeeeeeseeeeeeees s e
SETUP_EXTERNAL_MEMORY ()...voveeeeoieeeeeeeeeeeeseeeeee e eee e 216
SETUP_LCD() cvevvemmeeeeeeeeeeeeeeee et 217
SETUP_LOW _VOLT DETECT()-veveieeeeeeeeeeeeeeeseeeeeeeeeeseeeeeees e eeee e 218
SETUP_OSCILLATOR()-veveeveeeeeeee e esee e e s e e e e 219
SETUP_OPAMPL() oot 220
SETUP_OPAMP2().t 220
SETUP_POWER_PWM()..c.ovooeveeeeeeeeeeeee e 221
SETUP_POWER_PWNM_PINS() co..oevoeveeeeeeeeeseeeseeseseeeseese s sseess e 222
SETUP_PSP().t eeeeee e 223
SETUP_SPI(), SETUP_SPI2() ...ovoeveieeeeeeeeeeeeeeeeee e 223
SETUP_TIMER _0() vvooeeeeeeeeeeeee oo eeee e ee e ee e eeee e 224
SETUP_TIMER _L() veeveeeeeeeeeeee oo ee e ee e 225
SETUP_TIMER _2()veeveeteeeeeeeee oo ee e 226
SETUP_TIMER _3() veeveeteeeeeeeeeeeee e eeee e ee e ee e 227
SETUP_TIMER _A()rvoevoeeoeeeeeeeeeeeee oo 227
SETUP_TIMER _5() .veorvoveeeeeeeeeeeeeeeeee e ee e s en e 228
SETUP_UART() v 229
SETUP_VREF() oo 230
SETUP_WDT()-veveeeeeeeeeeeeseeeee oo ee e ee e 231
1= = = YT 232
SHIFT _RIGHT() oo 233
SIN(), COS(), TAN(), ASIN(), ACOS(), ATAN(), SINH(), COSH(), TANH(), ATAN2()............ 234
SINH() v et e e ee ettt 235
ES == = TP 236
SLEEP_ULPWU() oo 236
SPI_DATA_IS_IN(), SPI_DATA_IS_IN2() ceroeveeeeeieeeeeeeeeeeeeeseeeee e 237
SPI_READ(), SPI_READZ().\ oo 238
SPI_WRITE(), SPILWRITEZ() cv.oveeveeeeeee oo 239
SPI_XFER() covvveem oo ee e eeee e e et 240
SPRINTE() vttt 241

viii

Table Of Contents

510 = 8 () T PP O PP ORP PP
SRAND() oottt e,
STANDARD STRING FUNCTIONS()
MEMCHR(), MEMCMP(), STRCAT(), STRCHR(), STRCMP(), STRCOLL(), STRCSPN(),
STRICMP(), STRLEN(), STRLWR(), STRNCAT(), STRNCMP(), STRNCPY(), STRPBRK(),
STRRCHR(), STRSPN(), STRSTR(), STRXFRM() ... et 244
STRCAT(), STRCHR(), STRCMP(), STRCOLL() ctveeurveeerereeereeeeeeeeeeseseeeeeeeeeeeneneeeeeen 245
STRCPY(), STRCOPY()it eeieeeeeetee e ee ettt en st ne et an s e 246
STRCSPN(), STRLEN(), STRLWR(), STRNCAT(), STRNCMP(), STRNCPY(),
STRPBRK(), STRRCHR(), STRSPN(). .t ttieeeeeeeeeeeeeeeeeeeeeeeeeee e ee oot 247
STRTOD()
STRTOK()
STRTOL()
STRTOUL() ettt ettt ettt
STRXFRM()
5710 I—
TAN() TANH()
TOLOWER(), TOUPPER()
WRITE_BANK() ..eovooeeieieeeeeeeeeseseeeeeenn
WRITE_CONFIGURATION_MEMORY()
WRITE_EEPROM().ttt
WRITE_EXTERNAL_MEMORY()
WRITE_PROGRAM_EEPROM() ...ooovieieeeeeeeeee e enen s
WRITE_PROGRAM_MEMORY()..ecvrvieeeeieeeeeseeeeeeeeeeesesee e ene e s s s en e esnnaneas
Standard C Include Files

limits.h................
locale.h...............
setimp.h
stddef.h
stdio.h ...ocovee
SEAIID LN e

ETTOT IMESSAQES ..ttt ettt b ettt

Compiler Warning Messages.........cccccoevvuvvnnnn.

COMMON QUESTIONS AND ANSWERS
How are type conversions Nandled?o 277
How can a constant data table be placed in ROM?..........cccociiieieniis 278
How can | pass a variable to functions like OUTPUT_HIGH()?
How can | use two or more RS-232 ports on one PIC®?c.ceeee
How can the RB interrupt be used to detect a button press?..............
How do [do aprintf to @ StriNg? ...
How do I directly read/write to internal registers?...........
How do | get getc() to timeout after a specified time?
How do | make a pointer to a function?cccovveeeeenn.
How do | put a NOP at location 0 for the ICD? ... 283
How do | write variables to EEPROM that are not a byte? ... 284
How does one map a variable to an /O POIt?.......coiiiiiiiiiiieiieie e 284

iX

C Compiler Reference Manual

How does the compiler determine TRUE and FALSE on expressions?........ccccccveeeeeeivnnnen. 286
How does the PIC® cONNECt t0 @ PC? ...ccciiiiiiiiiciiieniie e 287
How does the PIC® connect to an 12C device? 288
How much time do math operations take? 289
Instead of 800, the compiler calls 0. Why?ccccceeeeeen. 290
Instead of AO, the compiler is using register 20. Why? .. 290
What can be done about an OUT OF RAM €ITOM?.....ciiiiiiiiiiiieiiieee e 290
What is an easy way for two or more PICS® to COmMMUNICAte?oevveeeiiiiiiiiiieee e, 291
What is the format of floating point numbers?...........ccceeviieeiiiinnnenn. 292
Why does the .LST file 100K 0ut Of OFder? ...ccooiiiiiiiiiii e 293
Why does the compiler show less RAM than there really iS? ..o 294
Why does the compiler use the obsolete TRIS? ..., 295
Why is the RS-232 N0t WOrking right? ... 295
EXAMPLE PROGRAMS ..ottt ettt e e ettt e e e et e e e sttt e e e st e e e amaeeeeanseeeeaanteeeeanneeeeanaeeenn 297
SOFTWARE LICENSE AGREEMENTcoiitiiiitiititiieitie sttt ettt ettt nina e 321

OVERVIEW

r o
W

C Compiler

PCB, PCM and PCH Overview

The PCB, PCM, and PCH are separate compilers. PCB is for 12-bit opcodes, PCM is for 14-bit
opcodes, and PCH is for 16-bit opcode PIC® microcontrollers. Due to many similarities, all three
compilers are covered in this reference manual. Features and limitations that apply to only specific
microcontrollers are indicated within. These compilers are specifically designed to meet the unique
needs of the PIC® microcontroller. This allows developers to quickly design applications software
in a more readable, high-level language.

When compared to a more traditional C compiler, PCB, PCM, and PCH have some limitations. As
an example of the limitations, function recursion is not allowed. This is due to the fact that the
PIC® has no stack to push variables onto, and also because of the way the compilers optimize the
code. The compilers can efficiently implement normal C constructs, input/output operations, and bit
twiddling operations. All normal C data types are supported along with pointers to constant arrays,
fixed point decimal, and arrays of bits.

Installation

. __|
PCB, PCM, and PCH Installation:

Insert the CD ROM and from Windows Start|Run type:

D:SETUP

PCW and PCWH Installation:
Insert the CD ROM, select each of the programs you wish to install and follow the on-screen
instructions.

Technical Support

. __|]
Compiler, software, and driver updates are available to download at:
http://www.ccsinfo.com/downloads

=

C Compiler Reference Manual

Compilers come with 30 or 60 days of download rights with the initial purchase. One year
maintenance plans may be purchased for access to updates as released. The intent of new
releases is to provide up-to-date support with greater ease of use and minimal, if any, transition
difficulty.

To ensure any problem that may occur is corrected quickly and diligently, it is recommended to
send an email to support@ccsinfo.com or use the Technical Support Wizard in PCW. Include the
version of the compiler, an outline of the problem and attach any files with the email request. CCS
strives to answer technical support timely and thoroughly.

Technical Support is available by phone during business hours for urgent needs or if email
responses are not adequate. Please call 262-522-6500 x32.

Directories

. __|
The compiler will search the following directories for Include files.

e Directories listed on the command line

e Directories specified in the .PJT file

e The same directory as the source file

By default, the compiler files are put in C:\Program Files\PICC and the example programs and all
Include files are in C:\Program Files\PICC\EXAMPLES.

The compiler itself is a DLL file. The DLL files are in a DLL directory by default in C:\Program
Files\PICC\DLL. Old compiler versions may be kept by renaming this directory.

Compiler Version 4 and above can tolerate two compilers of different versions in the same
directory. Install an older version (4.xx) and rename the devices4.dat file to devices4X.dat where
Xis B for PCB, M is for PCM, and H is for PCH. Install the newer compiler and do the same
rename of the devices4.dat file.

File Formats

. __|
The compiler can output 8-bit hex, 16-bit hex, and binary files. Three listing formats are available:
1) Standard format resembles the Microchip tools, and may be required by other Third-Party tools.
2) Simple format is generated by compiler and is easier to read. 3) Symbolic format uses names
versus addresses for registers. The debug files may be output as Microchip .COD file, Advanced
Transdata .MAP file, expanded .COD file for CCS debugging or MPLAB 7.xx .COF file. All file
formats and extensions may be selected via Options File Associations option in Windows IDE.

.C This is the source file containing user C source code.

PIT

.LST

.SYM

STA

.TRE

.HEX

.COF

.COD

.RTF

.RVF

.DGR

.ESYM

.OSYM

Overview

These are standard or custom header files used to define pins, register, register bits,
functions and preprocessor directives.

This is the project file which contains information related to the project.

This is the listing file which shows each C source line and the associated assembly code
generated for that line.

This is the symbol map which shows each register location and what program variables are
stored in each location.

The statistics file shows the RAM, ROM, and STACK usage. It provides information on the
source codes structural and textual complexities using Halstead and McCabe metrics.

The tree file shows the call tree. it details each function and what functions it calls along with
the ROM and RAM usage for each function.

The compiler generates standard HEX files that are compatible with all programmers.
This is a binary containing machine code and debugging information.
This is a binary file containing debug information.

The output of the Documentation Generator is exported in a Rich Text File format which can
be viewed using the RTF editor or wordpad.

The Rich View Format is used by the RTF Editor within the IDE to view the Rich Text File.
The .DGR file is the output of the flowchart maker.

This file is generated for the IDE users. The file contains Identifiers and Comment
information. This data can be used for automatic documentation generation and for the IDE
helpers.

This file is generated when the compiler is set to export a relocatable object file. This file
contains a list of symbols for that object.

Invoking the Command Line Compiler

C Compiler Reference Manual

I
The command line compiler is invoked with the following command:
CCSC options cfilename

Valid options:

+FB Select PCB (12 bit) -D Do not create debug file
+FM Select PCM (14 bit) +DS Standard .COD format debug file
+FH Select PCH (PIC18XXX) +DM .MAP format debug file
+FS Select SXC (SX) +DC Expanded .COD format debug file
+ES Standard error file +EO Old error file format
+T Create call tree (.TRE) -T Do not generate a tree file
+A Create stats file (.STA) -A Do not create stats file (.STA)
+EW Show warning messages -EW Suppress warnings (use with +EA)
+EA Show all error messages and -E Only show first error

all warnings
+YX Optimization level x (0-9) +DF Enables the output of a

OFF debug file.

The xxx in the following are optional. If included it sets the file extension:

+LNXXX Normal list file +08xxxX 8 bit Intel HEX output file
+L SxxX MPASM format list file +OWxxXX 16 bit Intel HEX output file
+L OXXxX Old MPASM list file +OBXxXx Binary output file
+LYXXX Symbolic list file -O Do not create object file

-L Do not create list file

+P Keep compile status window up after compile

+Pxx Keep status window up for xx seconds after compile

+PN Keep status window up only if there are no errors

+PE Keep status window up only if there are errors

+Z Keep scratch files on disk after compile

+DF COFF Debug file

[+="..." Same as |="..." Except the path list is appended to the current list

=".." Set include directory search path, for example:
I="c:\picc\examples;c:\picc\myincludes"
If no I= appears on the command line the .PJT file will be used to supply the
include file paths.

-P Close compile window after compile is complete

+M Generate a symbol file (.SYM)

-M Do not create symbol file

+J Create a project file (.PJT)

-J Do not create PJT file

+ICD Compile for use with an ICD

#xxx="yyy" Set a global #define for id xxx with a value of yyy, example:

#debug="true"
+Gxxx="yyy" Same as #xxx="yyy"

4

Overview

+? Brings up a help file

-? Same as +?

+STDOUT Outputs errors to STDOUT (for use with third party editors)
+SETUP Install CCSC into MPLAB (no compile is done)

+V Show compiler version (no compile is done)

+Q Show all valid devices in database (no compile is done)

A/ character may be used in place of a + character. The default options are as follows:
+FM +ES +J +DC +Y9 -T -A +M +LNIst +O8hex -P -Z

If @filename appears on the CCSC command line, command line options will be read from the
specified file. Parameters may appear on multiple lines in the file.

If the file CCSC.INI exists in the same directory as CCSC.EXE, then command line parameters are
read from that file before they are processed on the command line.

Examples:

CCSC +FM C:\PICSTUFF\TEST.C
CCSC +FM +P +T TEST.C

PCW Overview

Begining in version 4. XXX of PCW, the menus and toolbars are set-up in specially organized
Ribbons. Each Ribbon relates to a specific type of activity and is only shown when selected. CCS
has included a "User Toolbar" Ribbon that allows the user to customize the Ribbon for

individual needs.

(D_ File Menu

Click on this icon for the following items:

New Creates a new File

Open Opens a file to the editor. Includes options for Source, Project, Output,
RTF, Flow Chart, Hex or Text. Ctrl+O is the shortcut.

Close Closes the file currently open for editing. Note, that while a file is open in
PCW for editing, no other program may access the file. Shift+F11 is the
shortcut.

Close All Closes all files open in the PCW.

Save Saves the file currently selected for editing. Crtl+S is the shortcut.

Save As Prompts for a file name to save the currently selected file.

Save All All open files are saved.

C Compiler Reference Manual

Encrypt Creates an encrypted include file. The standard compiler #include directive
will accept files with this extension and decrypt them when read. This
allows include files to be distributed without releasing the source code.

Print Prints the currently selected file.
Recent Files The right-side of the menu has a Recent Files list for commonly used files.
Exit The bottom of the menu has an icon to terminate PCW.
®-‘ Project| Edit Search Options Compile View Tools Debug Document UserToolBar @'
=l _i‘l
Project : PICWizard Create oEmﬁles dosaProjec D0d tetin

project
Project Options

Project Menu Ribbon

Project Open an existing project (.PJT) file as specified and the main source file is
loaded.
PIC Wizard This command is a fast way to start a new project. It will bring up a screen

with fill-in-the-blanks to create a new project. When items such as RS232
1/0, i2C, timers, interrupts, A/D options, drivers and pin name are specified
by the user, the Wizard will select required pins and pins that may have
combined use. After all selections are made, the initial .c and .h files are
created with #defines, #includes and initialization commands required for
the project.

Create Create a new project with the ability to add/remove source files, include
files, global defines and specify output files.

Open All Files Open all files in a project so that all include files become known for
compilation.

Close Project Close all files associated with project.

Find Text in Project Ability to search all files for specific text string.

2 A
@-‘ Project | Edit Search Options Compile View Tools Debug Document UserToolBar @ &

3 ; e a o =t - m) Record

SIS 4 e N e

- L Loa
PR Unindent Indent Copyfrom e
Undo Reda Cut Copy Paste letion | Selschge Seleceal e Pastetofile Playback ghsave
Edk Macro

Edit Menu Ribbon

6

Overview

Undo Undoes the last deletion

Redo Re-does the last undo

Cut Moves the selected text from the file to the clipboard.
Copy Copies the selected text to the clipboard.

Paste Applies the clipboard contents to the cursor location.

Unindent Selection Selected area of code will not be indented.

Indent Selection Selected area of code will be properly indented.
Select All Highlighting of all text.
Copy from File Copies the contents of a file to the cursor location.
Paste to File Applies the selected text to a file.
Macros Macros for recording, saving and loading keystrokes and mouse-strokes.
@' Project Edit | Search | Options Compile View Tools Debug Document UserToolBar @'
Eind o8 v ,,“_Ejndtm o =
Find Next = [Fllgnore Case | seqrch Farward v ‘Qgeir\:j:eq Find ?;, Goto Line... Tog}:lle il G‘:))
Search Bookmarks

Search Menu Ribbon

Find Locate text in file.

Find Text in Project Searches all files in project for specific text string.

Find Next
Word at Cursor Locates the next occurrence of the text selected in the file.
Goto Line Cursor will move to the user specified line number.

Toggle Bookmark Set/Remove bookmark (0-9) at the cursor location.

Goto Bookmark Move cursor to the specified bookmark (0-9).

© pew

®-‘ Project Edit Search | Options| Compile View Tools Debug Document UserToolBar @'

= 3 o~ I
Project Options @Eﬂﬁurl’mp:meﬁ_ .A'—QTUQH ":FﬂeAsswcialium

=
Software Updates . -
roperen . pgPterses [E]moba Ogeototovser || [[P (] 000

Options

Options Menu Ribbon
Project Options Add/remove files, include files, global defines and output files.

Editor Properties Allows user to define the set-up of editor properties for Windows options.

C Compiler Reference Manual

Tools Window display of User Defined Tools and options to add and apply.

Software Updates Ability for user to select which software to update, frequency to remind

Properties user and where to archive files.

Printer Setup Set the printer port and paper and other properties for printing.

Toolbar Setup Customize the toolbar properties to add/remove icons and keyboard
commands.

File Associations Customize the settings for files according to software being used.

[& Err & = 7 -qu e 6
- program N b £ i s X
Compile Build Loakup Part = Cgip Debug C/ASM List SymbolMap CallTree Statistis DebugFile

Compile Target Chip Wiew Output Files

Compile Menu Ribbon

Compile Compiles the current project in status bar using the current compiler.

Build Compiles one or more files within a project.

Compiler Pull-down menu to choose the compiler needed.

Lookup Part Choose a device and the compiler needed will automatically be selected.

Program Chip Lists the options of CCS ICD or Mach X programmers and will connect to
SIOW program.

Debug Allows for input of .hex and will output .asm for debugging.

C/ASM List Opens listing file in read-only mode. Will show each C source line code and

the associated assembly code generated.

Symbol Map Opens the symbol file in read-only mode. Symbol map shows each register

location and what program variable are saved in each location.

Call Tree Opens the tree file in read-only mode. The call tree shows each function
and what functions it calls along with the ROM and RAM usage for each.

Statistics Opens the statistics file in read-only mode. The statistics file shows each
function, the ROM and RAM usage by file, segment and name.

Debug File Opens the debug file in read-only mode. The listing file shows each C
source line code and the associated assembly code generated.

Overview

©.pcw EEX
@-‘ Project Edit Search Options Compile |View Tools Debug Document UserToolBar @/ =
— -
RE\ 1= [output Project Files ; Dack Editor
i window
valid ValidFuses Dista Sheet RS:gE.:g!s [#lidentifier List [#]Project List New Edit

Interrupts
View

Window
windows

View Menu Ribbon

Valid Interrupts

Valid Fuses

Data Sheets

Part Errata

Special Registers
New Edit Window
Dock Editor

Window
Project Files
Project List

Output

Identifier List

This displays a list of valid interrupts used with the #INT_keyword for the
chip used in the current project. The interrupts for other chips can be viewed
using the drop down menu.

This displays a list of valid FUSE used with the #FUSES directive
associated with the chip used in the current project. The fuses for other
chips can be viewed using the drop down menu.

This tool is used to view the Manufacturer data sheets for all the Microchip
parts supported by the compiler.

This allows user to view the errata database to see what errata is
associated with a part and if the compiler has compensated for the problem.

This displays the special function registers associated with the part.
This will open a new edit window which can be tiled to view files side by side.

Selecting this checkbox will dock the editor window into the IDE.

When this checkbox is selected, the Project files slide out tab is displayed.
This will allow quicker access to all the project source files and output files.

Selecting this checkbox displays the Project slide out tab. The Project slide
out tab displays all the recent project files.

Selecting this checkbox will enable the display of warning and error
messages generated by the compiler.

Selecting this checkbox displays the Identifier slide out tab. It allows quick
access to project identifiers like functions, types, variables and defines.

© PCW Q@@
@-‘ Project Edit Search Options Compile View |Tools| Debug Document UserToolBar @/V

Daviee

DeviesEditor 0

File Compare

'i‘_-’ £) @
¥ 1
wov £ MACHK 0

Numeric Serial Port ber Convetdata Extract Cal
Converter Monitor ~BooscMOE g ¢ Data

Tools

Tools Menu Ribbon

C Compiler Reference Manual

Device Editor This tool is used to edit the device database used by the compiler to control
compilations. The user can edit the chip memory, interrupts, fuses and other
peripheral settings for all the supported devices.

Device Selector This tool uses the device database to allow for parametric selection of
devices. The tool displays all eligible devices based on the selection criteria.

File Compare This utility is used to compare two files. Source or text files can be
compared line by line and list files can be compared by ignoring the
RAM/ROM addresses to make the comparisons more meaningful.

Numeric Converter This utility can be used to convert data between different formats. The user
can simultaneously view data in various formats like binary, hex, IEEE,
signhed and unsigned.

Serial Port Monitor This tool is an easy way of connecting a PIC to a serial port. Data can be
viewed in ASCII or hex format. An entire hex file can be transmitted to the
PIC which is useful for bootloading application.

Disassembler This tool will take an input hex file and output an ASM.

Convert Datato C This utility will input data from a text file and generate code is form of a
#ROM or CONST statement.

Extract Calibration This tool will input a hex file and extract the calibration data to a C include
file. This feature is useful for saving calibration data stored at top of program
memory from certain PIC chips.

Mach-X This will call the Mach-X.exe program and will download the hex file for the
current project onto the chip.
ICD This will call the ICD.exe program and will download the hex file for the
current project onto the chip.
®-‘ Project Edit Search Options Compile View Tools | Debug | Document UserToolBar (‘;'
T @ ¥ 4w 5, O

Disable Resst SingleStep Run Step Over Runtocursor Snapshot Run Seript

Debugger Control Windows

Debug Menu Ribbon
Enable Debugger Enables the debugger. Opens the debugger window, downloads the code
and on-chip debugger and resets the target into the debugger.

Reset This will reset the target into the debugger.

Single Step Executes one source code line at a time. A single line of C source code or
ASM code is executed depending on whether the source code or the list file
tab in the editor is active.

Step Over This steps over the target code. It is useful for stepping over function calls.

10

Overview

Run to Cursor Runs the target code to the cursor. Place the cursor at the desired location
in the code and click on this button to execute the code till that address.

Snapshot This allows users to record various debugging information. Debug
information like watches, ram values, data eeprom values, rom values ,
peripheral status can be conveniently logged. This log can be saved,
printed, overwritten or appended.

Run script This tool allows the IDE's integrated debugger to execute a C-style script.
The functions and variable of the program can be accesses and the
debugger creates a report of the results.

Debug Windows This drop down menu allows viewing of a particular debug tab. Click on the
tab name in the drop down list which you want to view and it will bring up
that tab in the debugger window.

C pPCwW. Q@
®' Projet Edit Search Options Compile View Tools Debug | Document| UserToolBar @ =
e = y
5 .= A = ¥ ¥ D
Generate i b

Format Source Quotes Comments Print Allfiles

Documentation o
Oocurment Spel Check Print

Document Tab Ribbon
Format source This utility formats the source file for indenting, color syntax highlighting,
and other formatting options.

Generate Document This will call the document generator program which uses a user generated
template in .RTF format to merge with comment from the source code to
produce an output file in .RTF format as source code documentation.

RTF editor Open the RTF editor program which is a fully featured RTF editor to make
integration of documentation into your project easier.

Flow Chart Opens a flow chart program for quick and easy charting. This tool can be
used to generate simple graphics including schematics.

Quotes Performs a spell check on all the words within quotes.
Comments Performs a spell check on all the comments in your source code.
Print all files Print all the files of the current project.

Help Menu

()

11

C Compiler Reference Manual

Contents
Index

Keyword at Cursor

Debugger Help
Editor

Data Types
Operators
Statements

Preprocessor
Commands

Built-in Functions
Technical Support
Check for

Software Updates

Internet

About

12

Help File table of contents
Help File index

Index search in Help File for the keyword at the cursor location. Press F1 to
use this feature.

Help File specific to debugger functionality.

Lists the Editor Keys available for use in PCW. Shft+F12 will also call this
function help file page for quick review.

Specific Help File page for basic data types.
Specific Help File page for table of operators that may be used in PCW.
Specific Help File page for table of commonly used statements.

Specific Help File page for listing of commonly used preprocessor
commands.

Specific Help File page for listing of commonly used built-in functions
provided by the compiler.

Technical Support wizard to directly contact Technical Support via email
and the ability to attach files.

Automatically invokes Download Manager to view local and current versions
of software.

Direct links to specific CCS website pages for additional information.

Shows the version of compiler(s) and IDE installed.

PROGRAM SYNTAX

r o
W

C Compiler

Overall Structure

A program is made up of the following four elements in a file:
Comment
Pre-Processor Directive
Data Definition
Function Definition

Every C program must contain a main function which is the starting point of the program execution.
The program can be split into multiple functions according to the their purpose and the functions
could be called from main or the subfunctions. In a large project functions can also be placed in
different C files or header files that can be included in the main C file to group the related functions
by their category. CCS C also requires to include the appropriate device file using #include
directive to include the device specific functionality. There are also some preprocessor directives
like #fuses to specify the fuses for the chip and #use delay to specify the clock speed. The
functions contain the data declarations,definitions,statements and expressions. The compiler also
provides a large number of standard C libraries as well as other device drivers that can be included
and used in the programs. CCS also provides a large number of built-in functions to access the
various peripherals included in the PIC microcontroller.

Comment

. __|
Comments — Standard Comments

A comment may appear anywhere within a file except within a quoted string. Characters between /*
and */ are ignored. Characters after a // up to the end of the line are ignored.

Comments for Documentation Generator-

The compiler recognizes comments in the source code based on certain markups. The compiler
recognizes these special types of comments that can be later exported for use in the
documentation generator. The documentation generator utility uses a user selectable template to
export these comments and create a formatted output document in Rich Text File Format. This
utility is only available in the IDE version of the compiler. The source code markups are as follows.

C Compiler Reference Manual

Global Comments — These are named comments that appear at the top of your source code. The
comment names are case sensitive and they must match the case used in the documentation
template.

For example:

/I*PURPOSE This program implements a Bootloader.

/*AUTHOR John Doe

A''/I' followed by an * will tell the compiler that the keyword which follows it will be the named
comment. The actual comment that follows it will be exported as a paragraph to the documentation
generator.

Multiple line comments can be specified by adding a : after the *, so the compiler will not
concatenate the comments that follow. For example:
/**:CHANGES
05/16/06 Added PWM loop
05/27.06 Fixed Flashing problem
*/
Variable Comments — A variable comment is a comment that appears immediately after a variable
declaration. For example:
int seconds; // Number of seconds since last entry

long day, // Current day of the month
month, /* Current Month */
year; [/l Year
Function Comments — A function comment is a comment that appears just before a function
declaration. For example:
/I The following function initializes outputs
void function_foo()

{
}

Function Named Comments — The named comments can be used for functions in a similar manner
to the Global Comments. These comments appear before the function, and the names are
exported as-is to the documentation generator.
For example:
/I*PURPOSE This function displays data in BCD format
void display_BCD(byte n)
{

init_outputs();

display_routine();

14

Program Syntax

Trigraph Sequences

The compiler accepts three character sequences instead of some special characters not available
on all keyboards as follows:

Sequence Same as Sequence Same as
??= # ?? A
?2?2([?27< {
22/ \ ??! |
??)] 27> }
??- ~

Multiple Files

When there are multiple files in a project they can all be included using the #include in the main file
or the subfiles to use the automatic linker included in the compiler. All the header files, standard
libraries and driver files can be included using this method to automatically link them.

For eg: if you have main.c, x.c, x.h, y.c,y.h and z.c and z.h files in your project, you can say in:

main.c #include <device #include <x.c> #include <y.c> #include
header file> <z.c>

X.C #include <x.h>

y.C #include <y.h>

z.Cc #include <z.h>

Multiple Compilation Units

. __|
Traditionally the CCS C compilers used only one compilation unit. Multiple files are implemented
with #include files. When using multiple compilation units care must be given that preprocessor
commands that control the compilation are compatible across all units. It is recommended
directives such as #fuses, #use and the device header file all be put in an include file included by
all units. When a unit is compiled it will output a relocatable object file (.0) and symbol file (.osym).

Example
. __|

Here is a sample program with explanation using CCS C to read adc samples over rs232:

C Compiler Reference Manual

L11777777777777777777777777777777//7/7/////7777777///777/
/// This program displays the min and max of 30, ///
/// comments that explains what the program does, ///

/// and A/D samples over the RS-232 interface. ///
L11777777777777777777/777777777777////////777777/7//777/
#if defined(__PCM_) // preprocessor directive that
chooses the compiler
#include <16F877.h> // preprocessor directive that
selects the chip PIC16F877
#fuses HS,NOWDT,NOPROTECT,NOLVP // preprocessor directive that
defines fuses for the chip
#use delay(clock=20000000) // preprocessor directive that

specifies the clock speed

#use rs232(baud=9600, xmit=PIN_C6, rcv=PIN_C7) // preprocessor directive that
includes the rs232 libraries

#elif defined(__PCH_) // same as above but for the
PCH compiler and PIC18F452

#include <18F452_h>

#fuses HS,NOWDT,NOPROTECT,NOLVP

#use delay(clock=20000000)

#use rs232(baud=9600, xmit=PIN_C6, rcv=PIN_C7)

#endif
void main() { // main function
int i, value, min, max; // local variable declaration
printf('Sampling:™); // printf function included in
the RS232 library
setup_port_a(ALL_ANALOG); // A/D setup functions- built-
in
setup_adc(ADC_CLOCK_INTERNAL); // A/D setup functions- built-
in
set_adc_channel(0); // A/D setup functions- built-
in
do { // do while statement
min=255; // expression
max=0;
for(i=0; i<=30; ++i) { // for statement
delay_ms(100); // delay built-in function
call
value = Read_ADC(Q); // A/D read functions- built-
in
if(value<min) // if statement
min=value;
if(value>max) // if statement

max=value;
¥
printfC\n\rMin: %2X Max: %2X\n\r'',min,max);

} while (TRUE);
}

16

STATEMENTS

F ol of :
-’ C Compiler
Statements
STATEMENT
if (expr) stmt; [else stmt;] if (x==25)
X=1;
else
X=xX+1;
while (expr) stmt; while (get_rtcc()!=0)
putc(“n”);
do stmt while (expr); do {

putc(c=getc());
} while (c!'=0);

for (exprl;expr2;expr3) stmt;

for (i=1;i<=10;++i)
printfF(““%u\r\n”,i);

switch (expr) {
case cexpr: stmt; //one or more case

switch (cmd) {
case 0: printf(*“cmd 07);

Zero or more

[default:stmt] break:
-} case 1: printf(“cmd 17);
break;
default: printf(“bad cmd™);
break; }
return [expr]; return (5);
goto label; goto loop;
label: stmt; loop: I++;
break; break;
continue; continue;
expr; i=1;
{[stmt]} {a=1;
b=1;}

Note: Itemsin [] are optional

C Compiler Reference Manual

EXPRESSIONS

r o
W

C Compiler

Expressions

Constants:
123

0123

0x123
0b010010

v

\010'

\XA5’

o

"abcdef"

Identifiers:
ABCDE Up to 32 characters beginning with a non-numeric. Valid characters are
A-Z, 0-9 and _ (underscore).
ID[X] Single Subscript
ID[X][X] Multiple Subscripts
ID.ID Structure or union reference
ID->ID Structure or union reference

Operators

+ Addition Operator
+= Addition assignment operator, x+=y, is the same as x=x+y
&= Bitwise and assignment operator, x&=y, is the same as x=x&y

Expressions

& Address operator

& Bitwise and operator

A= Bitwise exclusive or assignment operator, x"=y, is the same as x=x"y
N Bitwise exclusive or operator

I= Bitwise inclusive or assignment operator, xI=y, is the same as x=xly
| Bitwise inclusive or operator

?: Conditional Expression operator

-- Decrement

/= Division assignment operator, x/=y, is the same as x=x/y

/ Division operator

== Equality

> Greater than operator

>= Greater than or equal to operator

++ Increment

* Indirection operator

1= Inequality

<<= Left shift assignment operator, x<<=y, is the same as x=x<<y
< Less than operator

<< Left Shift operator

<= Less than or equal to operator

&& Logical AND operator

! Logical negation operator

I Logical OR operator

%= Modules assignment operator x%-=y, is the same as x=x%y
% Modules operator

= Multiplication assignment operator, x=y, is the same as x=x*y
* Multiplication operator

~ One's complement operator

>>= Right shift assignment, x>>=y, is the same as x=x>>y

>> Right shift operator

-> Structure Pointer operation

-= Subtraction assignment operator

- Subtraction operator

sizeof Determines size in bytes of operand

19

C Compiler Reference Manual

Operator Precedence

IN DESCENDING PRECEDENCE

(expr)

lexpr ~expr ++expr expr++ - -expr expr - -
(type)expr *expr &value sizeof(type)
exprrexpr expr/expr expr%expr

expr+expr expr-expr

expr<<expr expr>>expr

expr<expr expr<=expr expr>expr expr>=expr
expr==expr exprl=expr

expr&expr

expriexpr

expr | expr

expr&& expr

expr || expr

expr ? expr: expr

Ivalue = expr Ivalue+=expr Ivalue-=expr

Ivalue*=expr Ivalue/=expr Ivalue%=expr

Ivalue>>=expr Ivalue<<=expr Ivalue&=expr

Ivalue™=expr Ivalue|=expr expr, expr

Reference Parameters

. __|
The compiler has limited support for reference parameters. This increases the readability of code
and the efficiency of some inline procedures. The following two procedures are the same. The one
with reference parameters will be implemented with greater efficiency when it is inline.
funct_a(int*x, int*y){
/*Traditional*/
if(*x!1=5)
*y=*x+3;
}
funct_a(&a,&b);
funct_b(inté&x, int&y){
/*Reference params*/
if(x1=5)
y=x+3;
}

funct_b(a,b);

20

Expressions

Variable Parameters

The compiler supports a variable number of parameters. This works like the ANSI requirements
except that it does not require at least one fixed parameter as ANSI does. The function can be
passed any number of variables and any data types. The access functions are VA_START,
VA_ARG, and VA_END. To view the number of arguments passed, the NARGS function can be
used.

/*

stdarg.h holds the macros and va_list data type needed for variable
number of parameters.

*/

#include <stdarg.h>

A function with variable number of parameters requires two things. First, it requires the ellipsis (...),
which must be the last parameter of the function. The ellipsis represents the variable argument list.
Second, it requires one more variable before the ellipsis (...). Usually you will use this variable as a
method for determining how many variables have been pushed onto the ellipsis.

Here is a function that calculates and returns the sum of all variables:

int Sum(int count, ...)
{
//a pointer to the argument list
va_list al;
int x, sum=0;
//start the argument list
//count is the first variable before the ellipsis
va_start(al, count);
while(count--) {
//get an int from the list
X = var_arg(al, int);
sum += X;

//stop using the list

va_end(al);
return(sum);

Some examples of using this new function:

x=Sum(5, 10, 20, 30, 40, 50);
y=Sum(3, a, b, ¢);

21

C Compiler Reference Manual

Default Parameters

Default parameters allows a function to have default values if nothing is passed to it when called.
int mygetc(char *c, int n=100){

This function waits n milliseconds for a character over RS232. If a character is received, it saves it
to the pointer ¢ and returns TRUE. If there was a timeout it returns FALSE.

//gets a char, waits 100ms for timeout
mygetc(&c);

//gets a char, waits 200ms for a timeout
mygetc(&c, 200);

Overloaded Functions

. __|
Overloaded functions allow the user to have multiple functions with the same name, but they must
accept different parameters. The return types must remain the same.

Here is an example of function overloading: Two functions have the same name but differ in the
types of parameters. The compiler determines which data type is being passed as a paremter and
calls the proper function.

void FindSquareRoot(long *n){
}

This function finds the square root of a long integer variable (from the pointer), saves result back to
pointer.

void FindSquareRoot(float *n){
}

This function finds the square root of a float variable (from the pointer), saves result back to pointer.

FindSquareRoot is now called. If variable is of long type, it will call the first FindSquareRoot()
example. If variable is of float type, it will call the second FindSquareRoot() example.

FindSquareRoot(&variable);

22

DATA DEFINITIONS

r o
W

C Compiler

Basic and Special types

This section describes what the basic data types and specifiers are and how variables can be
declared using those types. In CCS C all the variables should be declared before it is used. They
can be defined inside a function (local) or outside all functions (global). This would affect the
visibility and life of the variables.

Basic Types
Type-Specifier
intl Defines a 1 bit number
int8 Defines an 8 bit number
intl6 Defines a 16 bit number
int32 Defines a 32 bit number
char Defines a 8 bit character
float Defines a 32 bit floating point number
short By default the same as intl
Int By default the same as int8
long By default the same as int16
void Indicates no specific type

Note: All types, except float, by default are unsigned; however, maybe preceded by unsigned or
signed. Short and long may have the keyword INT following them with no effect. Also see #TYPE
to change the default size.

SHORT is a special type used to generate very efficient code for bit operations and 1/0. Arrays of
bits (INT1 or SHORT) in RAM are now supported. Pointers to bits are not permitted.

Type-Qualifier
static Variable is globally active and initialized to 0. Only accessible from
this compilation unit.

auto Variable exists only while the procedure is active. This is the default
and AUTO need not be used.

double Is a reserved word but is not a supported data type.

extern External variable used with multiple compilation units. No storage is

C Compiler Reference Manual

allocated. Is used to make otherwise out of scope data accessible.
there must be a non-extern definition at the global level in some
compilation unit.

register Is allowed as a qualifier however, has no effect.

_fixed(n) Creates a fixed point decimal number where n is how many decimal
places to round to.

| [Special types | |

Enum enumeration type: creates a list of integer constants.
enum [id] {[id [=cexpr]] }

One or more comma separated
The id after ENUM is created as a type large enough to the largest constant in the list. The ids in
the list are each created as a constant. By default the first id is set to zero and they increment by
one. If a =cexpr follows an id that id will have the value of the constant expression and the

following list will increment by one.

Fore.g.:
enum colors{red, green=2,blue}; // red will be 0, green will be 2 and
blue will be 3

Struct structure type: creates a collection of one or more variables, possibly of different types,
grouped together as a single unit.

struct [*1[id] { [type-qualifier [[*] [*]id cexpr [cexpr] 1]}

One or more semi- Zero or more
colon separated

Fore.g.:
struct data_record {
int a [2];

int b : 2; /*2 bits */

int c : 3; /*3 bits*/

int d;

}; // data_record is a structure type

24

Data Definitions

Union union type: holds objects of different types and sizes, with the compiler keeping track of
size and alignment requirements. They provide a way to manipulate different kinds of data in a
single area of storage.

union [*1[id] { [type-qualifier [[*] [*]id cexpr [cexpr] 11}

One or more semi- Zero or more
colon separated

Fore.g.:

union u_tag {

int ival;

long lval;

float fval;

}; // u_tag is a union type that can hold
a float

If typedef is used with any of the basic or special types it creates a new type name that can be
used in declarations. The identifier does not allocate space but rather may be used as a type
specifier in other data definitions.

typedef [type-qualifier] [type-specifier] [declarator];
For eg:
typedef int mybyte; // mybyte can be used in declaration to
specify the int type
typedef short mybit; // mybyte can be used in declaration to
specify the int type
typedef enum // colors can be used to declare variables of

this enum type
{red, green=2,blue}colors;

__ADDRESS__: A predefined symbol __ ADDRESS__ may be used to indicate a type that must
hold a program memory address.

For eg:
ADDRESS _ testa = 0x1000 //will allocate 16 bits for testa and
initialize to 0x1000

25

C Compiler Reference Manual

Declarations

. __|
A declaration specifies a type qualifier and a type specifier, and is followed by a list of one or more
variables of that type.
Fore.g.:

int a,b,c,d;

mybit e,f;

mybyte g[3]1[2];

char *h;

colors j;

struct data_record data[10];

static int i;

extern long j;

Variables can also be declared along with the definitions of the special types.

For eg:
enum colors{red, green=2,blue}i,j,k; // colors is the enum type and
i,j.k are variables of that type

Non-RAM Data Definitions

. __|
CCS C compiler also provides a custom qualifier addressmod which can be used to define a
memory region that can be RAM, program eeprom, data eeprom or external memory. Addressmod
replaces the older typemod (with a different syntax).

The usage is :

addressmod (name,read_function,write_function,start_address,end_address);

Where the read_function and write_function should be blank for RAM, or for other memory should
be the following prototype:

// read procedure for reading n bytes from the memory starting at location
addr
void read_function(int32 addr,int8 *ram, int nbytes){

}

//write procedure for writing n bytes to the memory starting at location addr

void write_function(int32 addr,int8 *ram, int nbytes){

}

26

Data Definitions

Example:
void DataEE_Read(int32 addr, int8 * ram, int bytes) {
int i;
for(i=0; i<=bytes; i++,ram++,addr++)
*ram=read_eeprom(addr) ;

}
void DataEE Write(int32 addr, int8 * ram, int bytes) {
int i;
for(i=0;i<=bytes;i++,ram++,addr++)
write_eeprom(addr,*ram);

}
addressmod (DataEE,DataEEread,DataEE_write,5,0xffF); // would define a region
// called DataEE between
//0x5 and Oxff in the
//chip data EEprom.
void main(void)
{
int DataEE test;
int x,y;
x=12;
test=x; // writes x to the

Data EEPROM
y=test; // Reads the Data

EEPROM
}

Note: If the area is defined in RAM then read and write functions are not required, the variables
assigned in the memory region defined by the addressmod can be treated as a regular variable in
all valid expressions. Any structure or data type can be used with an addressmod. Pointers can
also be made to an addressmod data type. The #type directive can be used to make this memory
region as default for variable allocations.

The syntax is :

#type default=addressmodname // all the variable declarations that
// follow will use this memory region

#type default= // goes back to the default mode

For eg:

Type default=emi //emi is the addressmod name defined

char buffer[8192];
#include <memoryhog.h>
#type default=

27

C Compiler Reference Manual

Using Program Memory for Data

. __|
CCS C Compiler provides a few different ways to use program memory for data. The different ways
are discussed below:

Constant Data:

The const qualifier will place the variables into program memory. The syntax is const type specifier
id [cexpr] ={value}
If the keyword CONST is used before the identifier, the identifier is treated as a constant.
Constants should be initialized and may not be changed at run-time. This is an easy way to create
lookup tables.
Fore.g.:
const int table[16]={0,1,2...15}
For placing a string into ROM
const char cstaring[6]={"hello"}
You can also create pointers to constants
const char *cptr;
cptr = string;
The #org preprocessor can be used to place the constant to specified address
blocks.
For eg:
#ORG 0x1C00, Ox1COF
CONST CHAR ID[10]= {"123456789"};
This ID will be at 1C00.

Note: some extra code will proceed the 123456789.

A new method allows the use of pointers to ROM. The new keyword for compilation modes CCS4
and ANSI is ROM and for other modes it is _ROM. This method does not contain extra code at the
start of the structure.

For e.g:
char rom commands[] = {“put]get|status]|shutdown™};

The function label_address can be used to get the address of the constant. The constant variable
can be accessed in the code. This is a great way of storing constant data in large programs.
Variable length constant strings can be stored into program memory.

For PIC18 parts the compiler allows a non-standard c feature to implement a constant array of
variable length strings. The syntax is:
const char id[n] [*] = { "strint", "string" ...};

Where n is optional and id is the table identifier. For example:
const char colors[] [*] = { "Red", "Green", "Blue'"};

28

Data Definitions

#ROM directive:

Another method is to use #rom to assign data to program memory, the usage is #rom address
={data, data,..,data}.
For eg:
#rom 0x1000={1,2,3,4,5} //will place 1,2,3,4,5 to rom addresses
starting at 0x1000
This can be used for strings #rom address={"hello"} // the string will be null
terminated. This method can only be used to initialize the program memory.

Built-in-Functions:

The compiler also provides built-in functions to place data in program memory, they are:

e write_program_eeprom(address,data)- writes 16 bit data to program memory

e write_program_memory(address, dataptr, count); writes count bytes of data from dataptr

to address in program memory.

Please refer to the help of these functions to get more details on their usage and limitations
regarding erase procedures. These functions can be used only on chips that allow writes to
program memory. The compiler uses the flash memory erase and write routines to implement the
functionality.

The data placed in program memory using all the three methods above can be read form user
code using:
e read_program_eeprom(address)- reads 16 bits data from the address in program
memory.
e read_program_memory((address, dataptr, count) -Reads count bytes from program
memory at address to RAM at dataptr.
These functions can be used only on chips that allow reads from program memory. The compiler
uses the flash memory read routines to implement the functionality.

29

C Compiler Reference Manual

FUNCTIONAL OVERVIEWS

r o
W

12C

C Compiler

I°C: These options lets the user configure the hardware to communicate with other devices over the
I°C interface. All devices do not have hardware I°C. Software I°C can be used for these devices.

Relevant Functions:

i’c_start() Issues a start command when in the I°C master mode.
i’c_write(data) Sends a single byte over the I°C interface.

i’c_read() Reads a byte over the I°C interface.

i’c_stop() Issues a stop command when in the I°C master mode.

i’c_poll() Returns a TRUE if the hardware has received a byte in the buffer.

Relevant Preprocessor:
#use i’c Configures the device as a Master or a Slave and assigns the SDA
and SCL pins used for the interface.

Relevant Interrupts:

#INT_SSP I°C or SPI activity

#INT_BUSCOL Bus Collision

#INT_I°C I°C Interrupt (Only on 14000)

#INT_BUSCOL2 Bus Collision (Only supported on some PIC18's)
#INT_SSP2 I°C or SPI activity (Only supported on some PIC18's)

Relevant Include Files:
None, all functions built-in

Relevant getenv() Parameters:
I’C_SLAVE Returns a 1 if the device has I°C slave H/W
I’C_MASTER Returns a 1 if the device has a I’C master H/W

Example Code:

#define Device_SDA PIN_C3 // Pin defines

#define Device_SLC PIN_C4

#use i’c(master, sda=Device_SDA, scl=Device_SCL) // Configure Device as Master

BYTE data; // Data to be transmitted

i’c_start(); /I Issues a start command when in the I°C master mode.
i’c_write(data); /' Sends a single byte over the I°C interface.

i’c_stop(); /llssues a stop command when in the I°C master mode.

30

Functional Overviews

ADC

. __|
These options lets the user configure and use the analog to digital converter module. They are only
available with devices with the a/d hardware. The options for the functions and directives vary
depending on the chip and is listed in the device header file.

Relevant Functions:

setup_adc(mode) Sets up the a/d mode like off, the adc clock etc.
setup_adc_ports(value) Sets the available adc pins to be analog or digital.
set_adc_channel(channel) Specifies the channel to be use for the a/d call.
read_adc(mode) Starts the conversion and reads the value. The mode can also

control the functionality.

Relevant Preprocessor:

#DEVICE ADC=xx Configures the read_adc return size. For example, using a PIC
with a 10 bit A/D you can use 8 or 10 for xx- 8 will return the most
significant byte, 10 will return the full A/D reading of 10 bits.

Relevant Interrupts :
INT_AD Interrupt fires when a/d conversion is complete
INT_ADOF Interrupt fires when a/d conversion has timed out

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters:
ADC_CHANNELS Number of A/D channels
ADC_RESOLUTION Number of bits returned by read_adc

Example Code:
#DEVICE ADC=10

long value;
setup_adc(ADC_CLOCK_INTERNAL);//enables the a/d module

/land sets the clock to internal adc clock
setup_adc_ports(ALL_ANALOG); /Isets all the adc pins to analog

set_adc_channel(0); /lthe next read_adc call will read channel 0

delay_us(10); /la small delay is required after setting the channel
/land before read

value=read_adc(); /Istarts the conversion and reads the result

/land store it in value
read_adc(ADC_START_ONLY); /lonly starts the conversion
value=read_adc(ADC_READ_ONLY);//reads the result of the last conversion and store it in value
If the device had a 10bit ADC module, value will range
between 0-3FF. #DEVICE ADC=8 will yield 0-FF and
#DEVICE ADC=16 will yield 0-FFCO

31

C Compiler Reference Manual

Analog Comparator

. __|
These functions sets up the analog comparator module. Only available in some devices.

Relevant Functions:
setup_comparator(mode) Enables and sets the analog comparator module. The options vary
depending on the chip, please refer to the header file for details.

Relevant Preprocessor:
None

Relevant Interrupts:
INT_COMP Interrupt fires on comparator detect. Some chips have more than
one comparator unit, and hence more interrupts.

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters:
COMP Returns 1 if the device has comparator

Example Code:
For eg:
For PIC12F675
setup_adc_ports(NO_ANALOGS); // all pins digital
setup_comparator(A0O_A1 _OUT_ON_A2);//a0 and al are analog comparator inputs and a2 is the
// output if(C1OUT) //true when comparator output is
high output_low(pin_a4); else output_high(pin_a4);

CAN Bus

. __|
These functions allow easy access to the Controller Area Network (CAN) features included with the
MCP2515 CAN interface chip and the PIC18 MCU. These functions will only work with the
MCP2515 CAN interface chip and PIC microcontroller units containing either a CAN or an ECAN
module. Some functions are only available for the ECAN module and are specified by the work
ECAN at the end of the description. The listed interrupts are no available to the MCP2515 interface
chip.

Relevant Functions:

can_init(void); Initializes the CAN module to 125k baud and clears all the filters and
masks so that all messages can be received from any ID.

32

can_set_baud;
(void)

can_set_mode

(CAN_OP_MODE mode);

can_set_functional_mode
(CAN_FUN_OP_MODE mode);

can_set_id

(int* addr, int32 id, intl ext);
can_get_id(int * addr, intl ext);
can_putd

(int32 id, int * data, int len,

int priority, intl ext, intl rtr);
can_getd

(int32 & id, int * data, int & len,
struct rx_stat & stat);
can_enable_rtr
(PROG_BUFFER b);
can_disable_rtr
(PROG_BUFFER b);
can_load_rtr
(PROG_BUFFER b,

int * data, int len);

can_enable_filter(long filter);

can_disable_filter(long filter);

can_associate_filter_to_buffer

(CAN_FILTER_ASSOCIATION_BUFFERS buffer,
CAN_FILTER_ASSOCIATION filter);

Functional Overviews

Initializes the baud rate of the CAN bus to 125kHz. Itis called
inside the can_init() function so there is no need to call it.

Allows the mode of the CAN module to be changed to
configuration mode, listen mode, loop back mode,
disabled mode, or normal mode.

Allows the functional mode of ECAN modules to be changed
to legacy mode, enhanced legacy mode, or first in first out (fifo)
mode. Only available on chips with ECAN modules.

Can be used to set the filter and mask ID's to the value specified
by addr. Itis also used to set the ID of the message to be sent.

Returns the ID of a received message.
Constructs a CAN packet using the given arguments and places

it in one of the available transmit buffers.

Retrieves a received message from one of the CAN buffers
and stores the relevant data in the referenced function
parameters.

Enables the automatic response feature which automatically
sends a user created packet when a specified ID is received.
ECAN

Disables the automatic response feature. ECAN

Creates and loads the packet that will automatically transmitted
when the triggering ID is received. ECAN

Enables one of the extra filters included in the ECAN
module. ECAN

Disables one of the extra filters included in the ECAN
module. ECAN

Used to associate a filter to a specific buffer.

This allows only specific buffers to be filtered
and is available in the ECAN module. ECAN

33

C Compiler Reference Manual

can_associate_filter_to_mask Used to associate a mask to a specific buffer. This

(CAN_MASK_FILTER_ASSOCIATE mask, allows only specific buffer to have this mask

CAN_FILTER_ASSOCIATION filter); applied. This feature is available in the ECAN
module. ECAN

can_fifo_getd(int32 & id,int * data,int &len, Retrieves the next buffer in the fifo buffer.
struct rx_stat & stat); Only available in the ECON module while operating
in fifo mode. ECAN

Relevant Preprocessor:
None

Relevant Interrupts:

#int_canirx This interrupt is triggered when an invalid packet is received on the CAN.
#int_canwake This interrupt is triggered when the PIC is woken up by activity on the CAN.
#int_canerr This interrupt is triggered when there is an error in the CAN module.
#int_cantx0 This interrupt is triggered when transmission from buffer 0 has completed.
#int_cantx1 This interrupt is triggered when transmission from buffer 1 has completed.
#int_cantx2 This interrupt is triggered when transmission from buffer 2 has completed.
#int_canrx0 This interrupt is triggered when a message is received in buffer 0.
#int_canrx1 This interrupt is triggered when a message is received in buffer 1.

Relevant Include Files:

can-mcp2510.c Drivers for the MCP2510 and MCP2515 interface chips
can-18xxx8.c Drivers for the built in CAN module

can-18F4580.c Drivers for the build in ECAN module

Relevant getenv() Parameters:
none

Example Code:

can_init(); /I initializes the CAN bus

can_putd(0x300,data,8,3, TRUE,FALSE); // places a message on the CAN buss with
/I 1D = 0x300 and eight bytes of data pointed to by
/I “data”, the TRUE creates an extended ID, the
/l FALSE creates

can_getd(ID,data,len,stat); I/ retrieves a message from the CAN bus storing the
// 1D in the ID variable, the data at the array pointed
/lto by “data’, the number of data bytes in len, and
/Istatistics about the data in the stat structure.

34

Functional Overviews

CCP1

. __|
These options allow for configuration and use of the CCP module. There might be multiple CCP
modules for a device. These functions are only available on devices with CCP hardware. They
operate in 3 modes: capture, compare and PWM. The source in capture/compare mode can be
timerl or timer3 and in PWM can be timer2 or timer4. The options available are different for
different devices and are listed in the device header file. In capture mode the value of the timer is
copied to the CCP_X register when the input pin event occurs. In compare mode it will trigger an
action when timer and CCP_x values are equal and in PWM mode it will generate a square wave.

Relevant Functions:
setup_ccpl(mode) Sets the mode to capture, compare or PWM. For capture
set_pwm1_duty(value) The value is written to the pwml to set the duty.

Relevant Preprocessor:
None

Relevant Interrupts :
INT_CCP1 Interrupt fires when capture or compare on CCP1

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters:

CCP1 Returns 1 if the device has CCP1
Example Code:
#int_ccpl
void isr()
rise = CCP_1; /ICCP_1 is the time the pulse went high
fall= CCP_2; /ICCP_2 is the time the pulse went low
pulse_width = fall - rise; /Ipulse width
}
..setup_ccpl(CCP_CAPTURE_RE); /I Configure CCP1 to capture rise
setup_ccp2(CCP_CAPTURE_FE); /I Configure CCP2 to capture fall
setup_timer_1(T1_INTERNAL); /I Start timer 1

Some chips also have fuses which allows to multiplex the ccp/pwm on different pins. Be sure to
check the fuses to see which pin is set by default. Also fuses to enable/disable pwm outputs.

35

C Compiler Reference Manual

CCP2, CCP3, CCP4, CCP5, CCP6

Similar to CCP1

Configuration Memory

. __|
On all PIC18 MCUs, the configuration memory is readable and writable. This functionality is not

available on 14-bit MCUs.

Relevant Functions:
write_configuration_memory
(ramaddress, count)

or

write_configuration_memory
(offset,ramaddress, count)

read_configuration_memory
(ramaddress,count)

Relevant Preprocessor:
None

Relevant Interrupts :
None

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters:

None

Example Code:
For P1C18f452
int16 data=0xc32;

Writes count bytes, no erase needed

Writes count bytes, no erase needed starting at byte address
offset

Read count bytes of configuration memory

write_configuration_memory(data,2);//writes 2 bytes to the configuration memory

Functional Overviews

Data EEPROM

. __|
The data eeprom memory is readable and writable in some chips. These options lets the user read
and write to the data eeprom memory. These functions are only available in flash chips.

Relevant Functions:
read_eeprom(address) Reads the data eeprom memory location(8 bit or 16 bit depending
on the device).

write_eeprom(address, value) Erases and writes value(8 bit) to data eeprom location address.

Relevant Preprocessor:

#ROM address={list} Can also be used to put data eeprom memory data into the hex
file.

Relevant Interrupts :
INT_EEPROM Interrupt fires when eeprom write is complete

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters:
DATA_EEPROM Size of data eeprom memory.

Example Code:
For eg: For 18F452

#rom 0xf00000={1,2,3,4,5} //inserts this data into the hex file. The data eeprom address differs
[lfor different family of chips. Please refer to the programming
/Ispecs to find the right value for the device.

write_eeprom(0x0,0x12); //writes Ox12 to data eeprom location O
value=read_eeprom(0x0); //reads data eeprom location 0x0 returns 0x12

37

C Compiler Reference Manual

External Memory

. __|
Some PIC 18 MCUs have the external memory functionality where the external memory can be
mapped to external memory devices like(Flash, EEPROM or RAM). These functions are available
only on devices that support external memory bus.

Relevant Functions:

setup_external_memory(mode) Sets the mode of the external memory bus refer to the
device header file for available constants.

read_external_memory

(address, dataptr,count) Reads count bytes to dataptr form address.

write_external_memory
(address_dataptr,count) Writes count bytes from dataptr to address

These functions do not use any Flash/EEPROM write algorithm. The data is only copied to/from
register data address space to/from program memory address space.

Relevant Preprocessor:
None

Relevant Interrupts :
None

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters:
None

Example Code:
write_external_memory(0x20000,data,2); //writes2 bytes form data to 0x20000(starting
I/l address of external memory)

read_external_memory(0x20000,value,2) //reads 2 bytes from 0x20000 to value

38

Functional Overviews

Internal LCD

. __|
Some families of PIC® microcontrollers can drive an LCD glass directly, without the need of an LCD
controller. For example, the PIC16C926, PIC16F916 and the PIC18F8490 have an internal LCD
controller.

Relevant Functions:

setup_lcd Configures the LCD module to use the specified segments

(mode, prescale, segments) specified mode and specified timer prescalar. For more
information on valid modes see the setup_lcd() manual page
and the .H header file for your PICmicro controller.

lcd_symbol The specified symbol is placed on the desired segments.
(symbol, segment_b7 For example, if bit0 of symbol is set, then segment_b0 is set.
.. segment_b0) Segment_b7 to segment_bO0 represent the SEGXX pin on the

PICmicro. In this example, if bitO of symbol is set and segment_b0
is 15, then SEG15 would be set.

Icd_load(ptr, offset, len) Writes len bytes of data from ptr directly to the LCD segment
memory, starting with offset.

Relevant Preprocessor:
None

Relevant Interrupts:
#int_lcd LCD frame is complete, all pixels displayed

Relevant Inlcude Files:
None, all functions built-in to the compiler.

Relevant getenv() Parameters:
LCD Returns TRUE if the device has an internal LCD controller.

Example Program:
/Ihow each segment is set (on or off) for ascii digits 0 to 9.
byte CONST DIGIT_MAP[10]={0X90,0XB7,0X19,0X36,0X54,0X50,0XB5,0X24};

/ldefine the segment information for the 1st digit of the glass LCD.
/lin this example the first segment uses the second seg signal on COMO
#define DIGIT_1_CONFIG COMO0+2,COM0+4,COM0+5,COM2+4,COM2+1, COM1+4,COM1+5

/[display digits 1 to 9 on the first digit of the LCD

for(i=1; i<=9; ++i) {
LCD_SYMBOL(DIGIT_MAPIi],DIGIT_1_CONFIG);
delay_ms(1000);

39

C Compiler Reference Manual

Internal Oscillator

. __|
Many chips have an internal oscillator. There are different ways to configure the internal oscillator.
Some chips have a constant 4 Mhz factory calibrated internal oscillator. The value is stored in
some location (usually the highest program memory) and the compiler moves it to the osccal
register on startup. The programmers save and restore this value but if this is lost they need to be
programmed before the oscillator is functioning properly. Some chips have a factory calibrated
internal oscillator that offers a software selectable frequency range(from 31Kz to 8 Mhz). They have
a default value and can be switched to a higher/lower value in software, as well as software
tunable. Some chips also provide the PLL option for the internal oscillator.

Relevant Functions:
setup_oscillator Sets the value of the internal oscillator and also tunes it. The options
(mode, finetune) vary depending on the chip and are listed in the device header files.

Relevant Preprocessor:
None

Relevant Interrupts:
INT_OSC_FAIL or Interrupt fires when the system oscillator fails and the processor
INT_OSCF switches to the internal oscillator.

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters:
None

Example Code:

For PIC18F8722

setup_oscillator(OSC_32MHZ);//sets the internal oscillator to 32MHz (PLL enabled)

If the internal oscillator fuse option is specified in the #fuses and a valid clock is specified in the
#use delay(clock=xxx) directive the compiler automatically sets up the oscillator. The #use delay
statements should be used to tell the compiler about the oscillator speed.

40

Functional Overviews

Interrupts

The following functions allow for the control of the interrupt subsystem of the microcontroller. With
these functions, interrupts can be enable, disabled, and cleared. With the preprocessor directives,
a default function can be called for any interrupt that does not have an associated isr, and a global
function can replace the compiler generated interrupt dispatcher.

Relevant Functions:

disable_interrupts() Disables the specified interrupt.
enable_interrupts() Enables the specified interrupt.
ext_int_edge() Enables the edge on which the edge interrupt should trigger. This

can be either rising or falling edge.

clear_interrupt() This function will the specified interrupt flag. This can be used if a
global isr is used, or to prevent an interrupt from being serviced.

Relevant Preprocessor:
#device high_ints= This directive tells the compiler to generate code for high priority interrupts.

#int_xxx fast This directive tells the compiler that the specified interrupt should be treated as a high
priority interrupt.

Relevant Interrupts:

#int_default This directive specifies that the following function should be called if an interrupt is
triggered but no routine is associated with that interrupt.

#int_global This directive specifies that the following function should be called whenever an
interrupt is triggered. This function will replace the complier generated interrupt dispatcher.

#int_xxx This directive specifies that the following function should be called whenever the xxx
interrupt is triggered. If the compiler generated interrupt dispatcher is used, the compiler will take
care of clearing the interrupt flag bits.

Relevant Include Files:
none, all functions built in.

Relevant getenv() Parameters:
none

Example Code:

#int_timer0

void timerQinterrupt() /I #int_timer associates the following function with the
I/l interrupt service routine that should be called

enable_interrupts(TIMERO); // enables the timer0 interrupt

disable_interrtups(TIMERO); /I disables the timer0 interrupt

clear_interrupt(TIMERO); /I clears the timerO interrupt flag

41

C Compiler Reference Manual

Low Voltage Detect

. __|
These functions configure the high/low voltage detect module. Functions available on the chips that
have the low voltage detect hardware.

Relevant Functions:

setup_low_volt_detect(mode) Sets the voltage trigger levels and also the mode(below or
above in case of the high/low voltage detect module). The
options vary depending on the chip and are listed in the
device header files.

Relevant Preprocessor:
None

Relevant Interrupts :
INT_LOWVOLT Interrupt fires on low voltage detect

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters:
None

Example Code:

For PIC18F8722

setup_low_volt_detect(LVD_36|LVD_TRIGGER_ABOVE); /Isets the trigger level as 3.6 volts
/land trigger direction as above.
/[The interrupt if enabled is fired
/lwhen the voltage is above 3.6
IIvolts.

42

Functional Overviews

Power PWM

. __|
These options lets the user configure the Pulse Width Modulation (PWM) pins. They are only
available on devices equipped with PWM. The options for these functions vary depending on the
chip and are listed in the device header file.

Relevant Functions:

setup_power_pwm(config) Sets up the PWM clock, period, dead time etc.
setup_power_pwm_pins Configure the pins of the PWM to be in Complimentary,
(module x) ON or OFF mode.

set_power_pwmx_duty(duty) Stores the value of the duty cycle in the PDCXL/H register. This
duty cycle value is the time for which the PWM is in active state.

set_power_pwm_override This function determines whether the OVDCONS or the PDC
(pwm,override,value) registers determine the PWM output .

Relevant Preprocessor:
None.

Relevant Interrupts:
#INT_PWMTB PWM Timebase Interrupt (Only available on PIC18XX31)

Relevant getenv() Parameters:
None.

Example Code:
iaﬁg duty_cycle, period;

/I Configures PWM pins to be ON,OFF or in Complimentary mode.
setup_power_pwm_pins(PWM_COMPLEMENTARY ,PWM_OFF, PWM_OFF, PWM_OFF);

//Sets up PWM clock , postscale and period. Here period is used to set the

/IPWM Frequency as follows:

/IFrequency = Fosc / (4 * (period+1) *postscale)
setup_power_pwm(PWM_CLOCK_DIV_4|PWM_FREE_RUN,1,0,period,0,1,0);

set_power_pwmO_duty(duty_cycle)); // Sets the duty cycle of the PWM 0,1 in
//[Complementary mode

43

C Compiler Reference Manual

Program EEPROM

. __|
The Flash program memory is readable and writable in some chips and is just readable in some.
These options lets the user read and write to the Flash program memory. These functions are only

available in Flash chips.

Relevant Functions:
read_program_eeprom
(address)

write_program_eeprom
(address, value)

erase_program_eeprom
(address)

write_program_memory
(address,dataptr,count)

read_program_memory
(address,dataptr,count)

Relevant Preprocessor:
#ROM address={list}

#DEVICE
(WRITE_EEPROM=ASYNC)

Relevant Interrupts :
INT_EEPROM

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters

PROGRAM_MEMORY
READ_PROGRAM
FLASH_WRITE_SIZE
FLASH_ERASE_SIZE

44

Reads the program memory location(16 bit or 32 bit depending on
the device).

Writes value to program memory location address.

Erases FLASH_ERASE_SIZE bytes in program memory.

Writes count bytes to program memory from dataptr to address.
When address is a mutiple of FLASH_ERASE_SIZE an erase is
also performed.

Read count bytes from program memory at address to dataptr.

Can be used to put program memory data into the hex file.

Can be used with #DEVICE to prevent the write function from
hanging. When this is used make sure the EEPROM is not written
both inside and outside the ISR.

Interrupt fires when EEPROM write is complete

Size of program memory

Returns 1 if program memory can be read
Smallest number of bytes written in Flash
Smallest number of bytes erased in Flash

Functional Overviews

Example Code:
For 18F452 where the write size is 8 bytes and the erase size is 64 bytes

#rom 0xa00={1,2,3,4,5} /linserts this data into the hex file.
erase_program_eeprom(0x1000); llerases 64 bytes strting at 0x1000
write_program_eeprom(0x1000,0x1234); Ilwrites the data 0x1234 to the address
//0x1000
value=read_program_eeprom(0x1000); /lreads from 0x1000 returns 0x1234
write_program_memory(0x1000,data,8); llerases 64 bytes starting at 0x1000 as

//0x1000 is a multiple of 64 and writes 8 bytes
/[from data to 0x1000

read_program_memory(0x1000,value,8); /lreads 8 bytes to value from 0x1000
erase_program_eeprom(0x1000); /lerases 64 bytes starting at 0x1000
write_program_memory(0x1000,data,8); Ihwrites 8 bytes from data to 0x1000
read_program_memory(0x1000,value,8); /lreads 8 bytes to value from 0x1000

For chips where getenv("FLASH_ERASE_SIZE") > getenv("FLASH_WRITE_SIZE")
WRITE_PROGRAM_EEPROM - Writes 2 bytes, does not erase (use PROGRAM_EEPROM)
WRITE_PROGRAM_MEMORY - Writes any humber of bytes,

will erase a block whenever the first (lowest) byte

in a block is written to. If the first address is

not the start of a block that block is not erased.
ERASE_PROGRAM_EEPROM - Will erase a block. The lowest address bits are not used.

For chips where getenv("FLASH_ERASE_SIZE") = getenv("FLASH_WRITE_SIZE")
WRITE_PROGRAM_EEPROM - Writes 2 bytes, no erase is needed.
WRITE_PROGRAM_MEMORY - Writes any number of bytes, bytes outside the range

of the write block are not changed. No erase is needed.
ERASE_PROGRAM_EEPROM - Not available.

45

C Compiler Reference Manual

PSP

These options allow for configuration and use of the Parallel Slave Port on the supported devices.

Relevant Functions:
setup_psp(mode) Enables/disables the psp port on the chip

psp_output_full() Returns 1 if the output buffer is full(waiting to be read by the external bus)
psp_input_full Returns 1 if the input buffer is full(waiting to read by the cpu)
psp_overflow Returns 1 if a write occurred before the previously written byte was read

Relevant Preprocessor:
None

Relevant Interrupts :
INT_PSP Interrupt fires when PSP data is in

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters:

PSP Returns 1 if the device has PSP
Example Code:
For eg:
while(psp_output_full()); [Iwaits till the output buffer is cleared
psp_data=command, /Iwrites to the port
while(linput_buffer_full()); Ilwaits till input buffer is cleared
if (psp_overflow())
error=true /lif there is an overflow set the error flag
else
data=psp_data; /lif there is no overflow then read the port

46

RS2321/0

Functional Overviews

. __|
These functions and directives can be used for setting up and using RS232 1/O functionality.

Relevant Functions:
GETC() or GETCH
GETCHAR or FGETC

GETS() or FGETS

PUTC or PUTCHAR or
FPUTC

PUTS or FPUTS

PRINTF or FPRINTF

KBHIT

SETUP_UART (baud,[stream])
or SETUP_UART_SPEED
(baud,[stream])

ASSERT (condition)

PERROR(message)

Relevant Preprocessor:
#use rs232(options)

Gets a character on the receive pin(from the specified stream in
case of fgetc, stdin by default). Use KBHIT to check if the
character is available.

Gets a string on the receive pin(from the specified stream in case
of fgets, STDIN by default). Use GETC to receive each character
until return is encountered.

Puts a character over the transmit pin(on the specified stream in
the case of FPUTC, stdout by default)

Puts a string over the transmit pin(on the specified stream in the
case of FPUTC, stdout by default). Uses putc to send each
character.

Prints the formatted string(on the specified stream in the case of
FPRINTF, stdout by default). Refer to the printf help for details on
format string

Return TRUE when a character is received in the buffer in case of
hardware RS232 or when the first bit is sent on the RCV pin in
case of software RS232. Useful for polling without waiting in getc.

Used to change the baud rate of the hardware UART at run-time.
Specifying stream is optional. Refer to the help for more advanced
options

Checks the condition and if FALSE prints the file name and line to
STDERR. Will not generate code if #define NODEBUG is used.

Prints the message and the last system error to STDERR.

This directive tells the compiler the baud rate and other options
like transmit, receive and enable pins. Please refer to the #use
rs232 help for more advanced options. More than one RS232
statements can be used to specify different streams. If stream is
not specified the function will use the last #use rs232.

47

C Compiler Reference Manual

Relevant Interrupts :
INT_RDA Interrupt fires when the receive data available
INT_TBE Interrupt fires when the transmit data empty

Some chips have more than one hardware uart, and hence more interrupts.

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters:
None

Example Code:

For eg:

For PIC16F877

#use rs232(baud=9600, xmit=pin_c6,rcv=pin_c7)
printf(“enter a character”);

if (kbhit())

return getc();

48

RTOS

Functional Overviews

. __|
These functions control the operation of the CCS Real Time Operating System (RTOS). This
operating system is cooperatively multitasking and allows for tasks to be scheduled to run at
specified time intervals. Because the RTOS does not use interrupts, the user must be careful to
make use of the rtos_yield() function in every task so that no one task is allowed to run forever.

Relevant Functions:

rtos_run()

rtos_terminate()

rtos_enable(task)

rtos_disable(task)

rtos_msg_poll()

rtos_msg_read()

rtos_msg_send

(task,byte)

rtos_yield()

rtos_signal(sem)

rtos_wait(sem)

rtos_await(expre)

rtos_overrun(task)

rtos_stats(task,stat)

Begins the operation of the RTOS. All task management tasks are
implemented by this function.

This function terminates the operation of the RTOS and returns operation
to the original program. Works as a return from the rtos_run() function.

Enables one of the RTOS tasks. Once a task is enabled, the rtos_run()
function will call the task when its time occurs. The parameter to this
function is the name of task to be enabled.

Disables one of the RTOS tasks. Once a task is disabled, the rtos_run()
function will not call this task until it is enabled using rtos_enable(). The
parameter to this function is the name of the task to be disabled.
Returns true if there is data in the task's message queue.

Returns the next byte of data contained in the task's message queue.
Sends a byte of data to the specified task. The data is placed in the

receiving task's message queue.

Called with in one of the RTOS tasks and returns control of the program to
the rtos_run() function. All tasks should call this function when finished.

Increments a semaphore which is used to broadcast the availability of a
limited resource.

Waits for the resource associated with the semaphore to become
available and then decrements to semaphore to claim the resource.

Will wait for the given expression to evaluate to true before allowing the task
to continue.

Will return true if the given task over ran its alloted time.
Returns the specified statistic about the specified task. The statistics

include the minimum and maximum times for the task to run and the total
time the task has spent running.

49

C Compiler Reference Manual

Relevant Preprocessor:

#use rtos(options) This directive is used to specify several different RTOS attributes including the
timer to use, the minor cycle time and whether or not statistics should be enabled.

#task(options) This directive tells the compiler that the following function is to be an RTOS task.
#task specifies the rate at which the task should be called, the maximum time the task shall be
allowed to run, and how large it's queue should be.

Relevant Interrupts:
none

Relevant Include Files:
none all functions are built in

Relevant getenv() Parameters:
none

Example Code:
#USE RTOS(timer=0,minor_cycle=20ms) // RTOS will use timer zero, minor cycle will be 20ms

int sem;

#TASK(rate=1s,max=20ms,queue=>5) /I Task will run at a rate of once per second

void task_name(); // with a maximum running time of 20ms and
/l a 5 byte queue

rtos_run(); /l begins the RTOS

rtos_terminate(); // ends the RTOS

rtos_enable(task_name); I/l enables the previously declared task.

rtos_disable(task_name); /I disables the previously declared task

rtos_msg_send(task_name,5); Il places the value 5 in task_names queue.

rtos_yield(); // yields control to the RTOS

rtos_sigal(sem); /I signals that the resource represented by sem is
available.

50

Functional Overviews

SPI

. __|
Most PIC® microcontrollers have an internal Serial Parallel Interface (or SPI) peripheral. SPlisa3
or 4 wire synchronous serial connection. CCS provides built-in functions to control the internal SPI
peripheral.

Relevant Functions:

setup_spi(mode) Configure the hardware SPI to the specified mode. The mode
configures setup_spi2(mode) thing such as master or slave mode,
clock speed and clock/data trigger configuration.

Note: for devices with dual SPI interfaces a second function, setup_spi2(), is provided to configure
the second interface.

spi_data_is_in() Returns TRUE if the SPI receive buffer has a byte of data.
spi_data_is_in2()

spi_write(value) Transmits the value over the SPI interface. This will cause the
spi_write2(value) data to be clocked out on the SDO pin.

spi_read(value) Performs an SPI transaction, where the value is clocked
spi_read2(value) out on the SDO pin and data clocked in on the SDI pin is returned.

If you just want to clock in data then you can use spi_read()
without a parameter.

Relevant Preprocessor:
None

Relevant Interrupts:
#int_sspA Transaction (read or write) has completed on the indicated
#int_ssp2 peripheral.

Relevant Include Files:
None, all functions built-in to the compiler.

Relevant getenv() Parameters:
SPI Returns TRUE if the device has an SPI peripheral

Example Code:
/lconfigure the device to be a master, data transmitted on H-to-L clock transition
setup_spi(SPI_MASTER | SPI_H_TO_L | SPI_CLK_DIV_16);

spi_write(0x80); /lwrite 0x80 to SPI device
value=spi_read(); lIread a value from the SPI device
value=spi_read(0x80); /Iwrite 0x80 to SPI device the same time you are reading a value.

51

C Compiler Reference Manual

TimerO

. __|
These options allow the user configure and use timer0. It is available on all devices and is always
enabled. The clock/counter is 8-bit on PIC16 microcontrollers and 8 or 16-bit on PIC 18 MCUSs. It
counts up and also provides interrupt on overflow. The options available differ and are listed in the
device header file.

Relevant Functions:

setup_timer_0O(mode) Sets the source, prescale etc for timerO

set_timerO(value) or Initializes the timer0 clock/counter. Value may be a 8-bit or
set_rtcc(value) 16-bit depending on the device

value=get_timer0 Returns the value of the timer0 clock/counter

Relevant Preprocessor:
None

Relevant Interrupts :
INT_TIMERO or INT_RTCC Interrupt fires when timerO overflows

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters:
TIMERO Returns 1 if the device has timer0

Example Code:
For PIC18F452
setup_timerO(RTCC_INTERNAL|RTCC_DIV_2|RTCC_8_BIT);//sets the internal clock as source
/land prescale 2. At 20Mhz timerQ
[/Iwill increment every 4us in this
//setup and overflows every

1/1.024ms
set_timer0(0); /this sets timerO register to 0
time=get_timer0(); /Ithis will read the timerO register
/Ivalue

52

Functional Overviews

Timerl

. __|
These options lets the user configure and use timerl. The clock/counter is 16-bit on PIC 16 and
PIC 18 MCUs. It counts up and also provides interrupt on overflow. The options available differ
and are listed in the device header file.

Relevant Functions:

setup_timer_1(mode) Disables or sets the source and prescale for timerl
set_timerl(value) Initializes the timerl clock/counter
value=get_timerl Returns the value of the timerl clock/counter

Relevant Preprocessor:
None

Relevant Interrupts :
INT_TIMER1 Interrupt fires when timer0O overflows

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters:
TIMER1 Returns 1 if the device has timerl

Example Code:
For PIC18F452
setup_timer1(T1_DISABLED); //disables timerl
or
setup_timerl(T1_INTERNAL|T1_DIV_BY_8);//sets the internal clock as source
/land prescale as 8. At 20Mhz timer1 will increment
/levery 1.6us in this setup and overflows every

//104.896ms
set_timer1(0); /lthis sets timer1l register to 0
time=get_timer1(); /lthis will read the timerl register value

53

C Compiler Reference Manual

Timer2

. __|
These options lets the user configure and use timer2. The clock/counter is 8-bit on PIC 16 and PIC

18 MCUs. It counts up and also provides interrupt on overflow. The options available differ and are
listed in the device header file.

Relevant Functions:
setup_timer_2 Disables or sets the prescale, period and a postscale for timer2
(mode,period,postscale)

set_timer2(value) Initializes the timer2 clock/counter
value=get_timer2 Returns the value of the timer2 clock/counter

Relevant Preprocessor:
None

Relevant Interrupts :
INT_TIMER2 Interrupt fires when timer2 overflows

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters:
TIMER2 Returns 1 if the device has timer2

Example Code:
For PIC18F452
setup_timer2(T2_DISABLED); //disables timer2
or
setup_timer2(T2_DIV_BY_4,0xc0,2);//sets the prescale as 4, period as 0xc0 and postscales as 2.
/At 20Mhz timer2 will increment every .8us in this
/Isetup overflows every 154.4us and interrupt every 308.2us

set_timer2(0); /lthis sets timer2 register to 0
time=get_timer2(); /lthis will read the timerl register value
Timer3

. __|
Timer3 is very similar to timerl. So please refer to the Timerl section for more details.

Timer4

. __|
Timer4 is very similar to timer2. So please refer to the Timer2 section for more details.

Functional Overviews

Timer5

. __|
These options lets the user configure and use timer5. The clock/counter is 16-bit and is available
only on 18Fxx31 devices. It counts up and also provides interrupt on overflow. The options
available differ and are listed in the device header file.

Relevant Functions:

setup_timer_5(mode) Disables or sets the source and prescale for timer5
set_timer5(value) Initializes the timer5 clock/counter
value=get_timer5 Returns the value of the timer51 clock/counter

Relevant Preprocessor:
None

Relevant Interrupts :
INT_TIMERS Interrupt fires when timer5 overflows

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters:
TIMER5 Returns 1 if the device has timer5

Example Code:
For PIC18F4431
setup_timer5(T5_DISABLED) //disables timer5
or
setup_timerl(T5_INTERNAL|TS5_DIV_BY_1); //sets the internal clock as source and prescale as 1.
/IAt 20Mhz timer5 will increment every .2us in this
/Isetup and overflows every 13.1072ms
set_timer5(0); /lthis sets timer5 register to 0
time=get_timer5(); /lthis will read the timer5 register value

55

C Compiler Reference Manual

USB

. __|
Universal Serial Bus, or USB, is used as a method for peripheral devices to connect to and talk to a
personal computer. CCS provides libraries for interfacing a PIC to PC using USB by using a PIC
with an internal USB peripheral (like the PIC16C765 or the PIC18F4550 family) or by using any PIC
with an external USB peripheral (the National USBN9603 family).

Relevant Functions
usb_init()

usb_init_cs()

usb_task()

Initializes the USB hardware. Will then wait in an infinite loop for the
USB peripheral to be connected to bus (but that doesn't mean it has
been enumerated by the PC). Will enable and use the USB interrupt.

The same as usb_init(), but does not wait for the device to be
connected to the bus. This is useful if your device is not bus powered
and can operate without a USB connection.

If you use connection sense, and the usb_init_cs() for initialization, then
you must periodically call this function to keep an eye on the
connection sense pin. When the PIC is connected to the BUS, this
function will then prepare the USB peripheral. When the PIC is
disconnected from the bus, it will reset the USB stack and peripheral.
Will enable and use the USB interrupt.

Note: In your application you must define USB_CON_SENSE_PIN to the connection sense pin.

usb_detach()

usb_attach()

usb_attached()

usb_enumerated()

usb_put_packet
(endpoint, data, len, tgl)

usb_puts
(endpoint, data, len,
timeout)

usb_kbhit(endpoint)

56

Removes the PIC from the bus. Will be called automatically by
usb_task() if connection is lost, but can be called manually by the user.

Attaches the PIC to the bus. Will be called automatically by usb_task()
if connection is made, but can be called manually by the user.

If using connection sense pin (USB_CON_SENSE_PIN), returns TRUE
if that pin is high. Else will always return TRUE.

Returns TRUE if the device has been enumerated by the PC. If the
device has been enumerated by the PC, that means it is in normal
operation mode and you can send/receive packets.

Places the packet of data into the specified endpoint buffer. Returns
TRUE if success, FALSE if the buffer is still full with the last packet.

Sends the following data to the specified endpoint. usb_puts()
differs from usb_put_packet() in that it will send multi packet
messages if the data will not fit into one packet.

Returns TRUE if the specified endpoint has data in its receive buffer.

usb_get_packet
(endpoint, ptr, max)

usb_gets
(endpoint, ptr, max,
timeout)

Relevant CDC Functions

Functional Overviews

Reads up to max bytes from the specified endpoint buffer and saves
it to the pointer ptr. Returns the number of bytes saved to ptr.

Reads a message from the specified endpoint. The difference
between usb_get_packet() and usb_gets() is that usb_gets()

will wait until a full message has received, which a message may
contain more than one packet. Returns the number of bytes received.

A CDC USB device will emulate an RS-232 device, and will appear on your PC as a COM port.
The following functions allow for this virtual RS-232/serial interface.

Note: When using the CDC library, you can use the same functions above, but do not use the
packet related function such as usb_kbhit(), usb_get_packet(), etc.

usb_cdc_kbhit()

usb_cdc_getc()

usb_cdc_putc(c)

usb_cdc_putc_fast(c)

usb_cdc_putready()

Relevant Preporcessor:

None

Relevant Interrupts:
#int_usb

Relevant Include files:
pic_usb.h

pic_18usb.h

The same as kbhit(), returns TRUE if there is 1 or more character in the
receive buffer.

The same as getc(), reads and returns a character from the receive
buffer. If there is no data in the receive buffer it will wait indefinitely
until there a character has been received.

The same as putc(), sends a character. It actually puts a character into
the transmit buffer, and if the transmit buffer is full will wait indefinitely
until there is space for the character.

The same as usb_cdc_putc(), but will not wait indefinitely until there is
space for the character in the transmit buffer. In that situation the
character is lost.

Returns TRUE if there is space in the transmit buffer for another
character.

A USB event has happened, and requires application intervention. The
USB library that CCS provides handles this interrupt automatically.

Hardware layer driver for the PIC16C765 family PIC® MCUs with an
internal USB peripheral.

Hardware layer driver for the PIC18F4550 family PIC® MCUs with an
internal USB peripheral.

57

C Compiler Reference Manual

usbn960x.h

usb.h

usb.c

usb_cdc.h

Hardware layer driver for the National USBN9603/USBN9604 external
USB peripheral. You can use this external peripheral to add USB to
any microcontroller.

Common definitions and prototypes used by the USB driver

The USB stack, which handles the USB interrupt and USB Setup
Requests on Endpoint 0.

A driver that takes the previous include files to make a CDC USB
device, which emulates an RS232 legacy device and shows up as a
COM port in the MS Windows device manager.

Relevant getenv() Parameters:

USB

Example Code:

Returns TRUE if the PIC® MCU has an integrated internal USB
peripheral.

Due to the complexity of USB, example code will not fit here. However, the following examples are
included in the CCS C Compiler:

ex_usb_hid.c

ex_ush_mouse.c

ex_usb_kbmouse.c

ex_usb_kbmouse2.c

ex_usb_scope.c

ex_usb_serial.c

ex_ush_serial2.c

58

A simple HID device

A HID Mouse, when connected to the PC the mouse cursor will go in
circles.

An example of how to create a USB device with multiple interfaces by
creating a keyboard and mouse in one device.

An example of how to use multiple HID report IDs to transmit more than
one type of HID packet, as demonstrated by a keyboard and mouse on
one device.

A vendor-specific class using bulk transfers is demonstrated.

The CDC virtual RS232 library is demonstrated with this RS232 < - >
USB example.

Another CDC virtual RS232 library example, this time a port of the
ex_intee.c example to use USB instead of RS232.

Functional Overviews

Voltage Reference

. __|
These functions configure the voltage reference module. These are available only in the supported
chips.

Relevant Functions:

setup_vref(mode| value) Enables and sets up the internal voltage reference value. The
options vary depending on the chip, please refer to the header file for
details

Relevant Preprocessor:
None

Relevant Interrupts :
None

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters:
VREF Returns 1 if the device has VREF

Example Code:
For eg:
For PIC12F675
#INT_COMP //lcomparator interrupt handler
void isr() {
safe_conditions=FALSE;
printf("WARNING!! Voltage level is above 3.6 V. \n\n");

}
setup_comparator(A1l_VR_OUT_ON_A2); // sets two comparators(Al and VR and A2 as the
/l output)
setup_vref(VREF_HIGH|15); IIsets 3.6(vdd *value/32 +vdd/4) if vdd is 5.0V
enable_interrupts(INT_COMP); /lenables the comparator interrupt
enable_interrupts(GLOBAL); /lenables global interrupts

59

C Compiler Reference Manual

WDT or Watch Dog Timer

. __|
Different chips provide different options to enable/disable or configure the WDT.

Relevant Functions:
setup_wdt Enables/disables the wdt or sets the prescalar

restart_wdt Restarts the wdt, if wdt is enables this must be periodically called to prevent
a timeout reset.

For 12 and 14-bit chips it is enabled/disabled using WDT or NOWDT fuses, whereas, on PIC 18
devices it is done using the setup_wdt function.

The timeout time for 12 and 14-bit chips are set using the setup_wdt function and on PIC 18
devices

using fuses like WDT16, WDT256 etc.

RESTART_WDT when specified in #use delay , #use 12c and #use RS232 statements like this
#use delay(clock=20000000, restart_wdt) will cause the wdt to restart if it times out during the delay
or I2C_READ or GETC.

Relevant Preprocessor:
#fuses WDT/NOWDT Enabled/Disables wdt in 12 and 14-bit devices
#fuses WDT16 Sets ups the timeout time in PIC18 devices

Relevant Interrupts:
None

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters:
None

Example Code:
For eg:
For PIC16F877
#fuses wdt
setup_wdt(WDT_2304MS);
while(true){
restart_wdt();
perform_activity();

}
For PIC18F452
#fuse WDT1
setup_wdt(WDT_ON);
while(true){
restart_wdt();
perform_activity();

}
Some of the PCB chips are share the WDT prescalar bits with timer0 so the WDT prescalar
constants can be used with setup_counters or setup_timer0 or setup_wdt functions.

60

PRE-PROCESSOR DIRECTIVES

F ol ok
Yl Y. Wl

C Compiler

PRE-PROCESSOR

Pre-processor directives all begin with a # and are followed by a specific command. Syntax is
dependent on the command. Many commands do not allow other syntactical elements on the
remainder of the line. A table of commands and a description is listed on the previous page.

Several of the pre-processor directives are extensions to standard C. C provides a pre-processor
directive that compilers will accept and ignore or act upon the following data. This implementation
will allow any pre-processor directives to begin with #PRAGMA. To be compatible with other
compilers, this may be used before non-standard features.

Examples:
Both of the following are valid
#INLINE

#PRAGMA INLINE

#DEFINE ID STRING #IF expr #NOLIST
#ELSE #IFDEF id #PRAGMA cmd
Standard C #ENDIF #INCLUDE "FILENAME" #UNDEF id
#ERROR #LIST
#INLINE #INT_GLOBAL #SEPARATE
Function #INT_DEFAULT H#INT_xxx
Qualifier
Pre-Defined _ DATE__ _LINE__ __PCH__
Identifier __DEVICE__ __PCB__ __TIME__
__FILE__ __PCM__ _ FILENAME___
#TASK #USE RTOS

61

C Compiler Reference Manual

#DEVICE CHIP #ID "filename" #FUSES options
#ID NUMBER #ID CHECKSUM #SERIALIZE

Device
Specification

#USE DELAY CLOCK #USE FIXED_IO #USE RS232

#USE FAST_IO #USE 12C #USE STANDARD_IO
Built-in Libraries #USE SPI

#ASM #BYTE id=id #ROM

#BIT id=id.const #ENDASM #TYPE

#BIT #FILL_ROM #ZERO_RAM

id=const.const
‘Memory Control S-SR #LOCATE id=const

#BYTE id=const #RESERVE

#CASE #OPT n #PRIORITY
Compiler Control #IGNORE_WARNINGS #ORG

62

Pre-Processor Directives

#ASM, #ENDASM

Syntax: #asm
or
#asm ASIS
code
#endasm

Elements: code is a list of assembly language instructions

Purpose: The lines between the #ASM and #ENDASM are treated as assembly code to be
inserted. These may be used anywhere an expression is allowed. The syntax
is described on the following page. The predefined variable _RETURN_ may be
used to assign a return value to a function from the assembly code. Be aware
that any C code after the #ENDASM and before the end of the function may
corrupt the value.

If the second form is used with ASIS then the compiler will not do any automatic
bank switching for variables that cannot be accessed from the current bank. The
assembly code is used as-is. Without this option the assembly is augmented so
variables are always accessed correctly by adding bank switching where
needed.

Examples: int find _parity (int data) {

int count;
#asm

mov lw 0x8
movwT count

mov lw 0
loop:

xorwf data,w
rrf data,f

decfsz count,f

goto loop

mov lw 1

awdwT count,f

movwf _return_
#endasm

}

Example ex_glint.c
Files:

Also See: None

63

C Compiler Reference Manual

12 Bit and 14 Bit
ADDWEF f,d ANDWEF f,d
CLRF f CLRW
COMF f,d DECF f,d
DECFSZ f,d INCF f,d
INCFSZ f,d IORWF f,d
MOVF f,d MOVPHW
MOVPLW MOVWEF f
NOP RLF f,d
RRF f,d SUBWEF f,d
SWAPF f,d XORWEF f,d
BCF f,b BSF f,b
BTFSC f,b BTFSS f,b
ANDLW k CALL k
CLRWDT GOTO k
IORLW k MOVLW k
RETLW k SLEEP
XORLW OPTION
TRIS k
14 Bit
ADDLW k
SUBLW k
RETFIE
RETURN
f may be a constant (file number) or a simple variable
may be a constant (0 or 1) or W or F
f,b may be a file (as above) and a constant (0-7) or it may be just a bit variable reference.

may be a constant expression

64

Note that all expressions and comments are in C like syntax.

Pre-Processor Directives

PIC 18

ADDWF [f,d IADDWFC |[f,d IANDWF f.d
CLRF f COMF f,d CPFSEQ f
CPFSGT |f CPFSLT | DECF f.d
DECFSZ [f.d DCFSNZ |f,d INCF f.d
INFSNZ |fd IORWF f,d MOVF f,d
MOVFF [fs,d MOVWF |[f MULWF f
NEGF f RLCF f.d RLNCF f.d
RRCF f.d RRNCF f.d SETF f
SUBFWB |f,d SUBWF f,d SUBWFB f.d
SWAPF |f,d TSTFSZ f XORWF f.d
BCF f,.b BSF f,.b BTFSC f,b
BTFSS f,.b BTG if.d BC n
BN n BNC n BNN n
BNOV n BNZ n BOV n
BRA n BZ n CALL n,s
CLRWDT | DAW - GOTO n
NOP - NOP - POP -
PUSH - RCALL n RESET -
RETFIE |s RETLW k RETURN 5
SLEEP - IADDLW k IANDLW k
IORLW LFSR f,K MOVLB Kk
MOVLW |k MULLW k RETLW k
SUBLW |k [XORLW k TBLRD *
TBLRD >+ TBLRD [*- TBLRD +*
TBLWT [TBLWT [*+ [TBLWT *-
TBLWT +*

The compiler will set the access bit depending on the value of the file register.

If there is just a variable identifier in the #asm block then the compiler inserts an & before it. And if
it is an expression it must be a valid C expression that evaluates to a constant (no & here). In C an
un-subscripted array name is a pointer and a constant (no need for &).

#ENDASM

. __|]
See: #ASM

65

C Compiler Reference Manual

#BIT

. __|]
Syntax: #bit id = x.y
Elements: id is a valid C identifier,

X is a constant or a C variable,
y is a constant 0-7.

Purpose: A new C variable (one bit) is created and is placed in memory at byte x and bit
y. This is useful to gain access in C directly to a bit in the processors special
function register map. It may also be used to easily access a bit of a standard C
variable.

Examples: #bit TOIF = Oxb.2
TOIF = 0; // Clear Timer O interrupt flag
int result;
#bit result_odd = result.0

if (result_odd)

Example ex_glint.c
Files:
Also See: #byte, #reserve, #locate

66

#BUILD

Syntax:

Elements:

Purpose:

Examples:

Example
Files:
Also See:

Pre-Processor Directives

#build(segment = address)

#build(segment = address, segment = address)
#build(segment = start:end)

#build(segment = start: end, segment = start: end)
#build(nosleep)

segment is one of the following memory segments which may be assigned a
location: MEMORY, RESET, or INTERRUPT.

address is a ROM location memory address. Start and end are used to specify
a range in memory to be used.

Start is the first ROM location and end is the last ROM location to be used.

Nosleep is used to prevent the compiler from inserting a sleep at the end of
main()

PIC18XXX devices with external ROM or PIC18XXX devices with no internal
ROM can direct the compiler to utilize the ROM. When linking multiple
compilation units, this directive must appear exactly the same in each
compilation unit.

#bui 1d(memory=0x20000 : Ox2FFFF) //Assigns memory space
#bui ld(reset=0x200, interrupt=0x208) //Assigns start
//location
//0of reset and
//interrupt
//vectors
#bui ld(reset=0x200:0x207, interrupt=0x208:0x2ff)
//Assign limited space
//for reset and
//interrupt vectors.

None

#locate, #reserve, #rom, #org

67

C Compiler Reference Manual

#BYTE

Syntax:

Elements:

Purpose:

Examples:

Example
Files:
Also See:

68

#byte id = x

id is a valid C identifier,
X is a C variable or a constant

If the id is already known as a C variable then this will locate the variable at
address x. In this case the variable type does not change from the original
definition. If the id is not known a new C variable is created and placed at
address x with the type int (8 bit)

Warning: In both cases memory at x is not exclusive to this variable. Other
variables may be located at the same location. In fact when x is a variable, then
id and x share the same memory location.

#byte status
#byte b_port

3
6

struct {

short int r_w;

short int c_d;

int unused : 2;

int data : 4; } a port;
#byte a _port = 5

a_port.c_d = 1;
ex_glint.c

#bit, #locate, #reserve

Pre-Processor Directives

#CASE

. __|
Syntax: #case
Elements: None
Purpose: Will cause the compiler to be case sensitive. By default the compiler is case

insensitive. When linking multiple compilation units, this directive must appear
exactly the same in each compilation unit.

Warning: Not all the CCS example programs, headers and drivers have been
tested with case sensitivity turned on.

Examples: #case
int STATUS;

void func(Q {
int status;

é‘i’ATUS = status; // Copy local status to

//global
b
Example ex_cust.c
Files:
Also See: None
DATE
Syntax: __DATE__
Elements: None
Purpose: This pre-processor identifier is replaced at compile time with the date of the
compile in the form: "31-JAN-03"
Examples: printf(“'Software was compiled on ");
printf(__DATE_);
Example None
Files:
Also See: None

69

C Compiler Reference Manual

#DEFINE

Syntax:

Elements:

Purpose:

Examples:

Example
Files:
Also See:

70

#define id text
or
#define id(x,y...) text

id is a preprocessor identifier, text is any text, x,y and so on are local
preprocessor identifiers, and in this form there may be one or more identifiers
separated by commas.

Used to provide a simple string replacement of the ID with the given text from
this point of the program and on.

In the second form (a C macro) the local identifiers are matched up with similar
identifiers in the text and they are replaced with text passed to the macro where
it is used.

If the text contains a string of the form #idx then the result upon evaluation will
be the parameter id concatenated with the string x.

If the text contains a string of the form #idx#idy then parameter idx is
concatenated with parameter idy forming a new identifier.

#define BITS 8
a=a+BITS; //same as a=a+8;

#define hi(x) (x<<4)
a=hi(a); //same as a=(a<<4);

ex_stwt.c, ex_macro.c

#undef, #ifdef, #ifndef

#DEVICE

Pre-Processor Directives

Syntax:

Elements:

#device chip options
#device Compilation mode selection

Chip Options-
chip is the name of a specific processor (like: PIC16C74), To get a current list of
supported devices:

START | RUN | CCSC +Q

Options are qualifiers to the standard operation of the device. Valid options are:

*:5

*:8

*=16
ADC=x
ICD=TRUE

WRITE_EEPROM=ASYNC

HIGH_INTS=TRUE
%f=.

OVERLOAD=KEYWORD

OVERLOAD=AUTO
PASS_STRINGS=IN_RAM

CONST=READ_ONLY

CONST=ROM

Use 5 bit pointers (for all parts)

Use 8 hit pointers (14 and 16 bit parts)

Use 16 bit pointers (for 14 bit parts)

Where x is the number of bits read_adc()
should return

Generates code compatible with Microchips
ICD debugging hardware.

Prevents WRITE_EEPROM from hanging
while writing is taking place. When used, do
not write to EEPROM from both ISR and
outside ISR.

Use this option for high/low priority interrupts
on the PIC®18.

No 0 before a decimal pint on %f numbers
less than 1.

Overloading of functions is now supported.
Requires the use of the keyword for
overloading.

Default mode for overloading.

A new way to pass constant strings to a
function by first copying the string to RAM
and then passing a pointer to RAM to the
function.

Uses the ANSI keyword CONST definition,
making CONST variables read only, rather
than located in program memory.

Uses the CCS compiler traditional keyword
CONST definition, making CONST variables
located in program memory. This is the
default mode.

Both chip and options are optional, so multiple #device lines may be used to fully
define the device. Be warned that a #device with a chip identifier, will clear all

71

C Compiler Reference Manual

Purpose:

Examples:

72

previous #device and #fuse settings.

Compilation mode selection-

The #device directive supports compilation mode selection. The valid keywords
are CCS2, CCS3, CCS4 and ANSI. The default mode is CCS4. For the CCS4
and ANSI mode, the compiler uses the default fuse settings NOLVP, PUT for
chips with these fuses. The NOWDT fuse is default if no call is made to
restart_wdt().

CCs4 This is the default compilation mode. The pointer size in this
mode for PCM and PCH is set to *=16 if the part has RAM over
OFF.

ANSI Default data type is SIGNED all other modes default is

UNSIGNED. Compilation is case sensitive, all other modes are
case insensitive. Pointer size is set to *=16 if the part has RAM
over OFF.

CCs2 varl6é = NegConst8 is compiled as: varl6 = NegConst8 & Oxff
CCs3 (no sign extension)Pointer size is set to *=8 for PCM and PCH
and *=5 for PCB. The overload keyword is required.

CCS2 The default #device ADC is set to the resolution of the part, all
only other modes default to 8.
onebit = eightbits is compiled as onebit = (eightbits != 0)
All other modes compile as: onebit = (eightbits & 1)
Chip Options -Defines the target processor. Every program must have exactly
one #device with a chip. When linking multiple compilation units, this directive
must appear exactly the same in each compilation unit.

Compilation mode selection - The compilation mode selection allows existing
code to be compiled without encountering errors created by compiler
compliance. As CCS discovers discrepancies in the way expressions are
evaluated according to ANSI, the change will generally be made only to the
ANSI mode and the next major CCS release.

Chip Options-

#device PIC16C74

#device PIC16C67 *=16

#device *=16 ICD=TRUE

#device PIC16F877 *=16 ADC=10

#device %f=.

printf(C"'%f*,.5); //will print .5, without the directive it will
print 0.5

Compilation mode selection-
#device CCS2 // This will set the ADC to the resolution of the
part

Pre-Processor Directives

Example ex_mxram.c, ex_icd.c, 16¢c74.h
Files:
Also See: read adc()
DEVICE
Syntax: __ DEVICE__
Elements: None
Purpose: This pre-processor identifier is defined by the compiler with the base number of
the current device (from a #device). The base number is usually the number
after the C in the part number. For example the PIC16C622 has a base
number of 622.
Examples: #if __device_ ==71
SETUP_ADC_PORTS(ALL_DIGITAL);
#endif
Example None
Files:
Also See: #device
#ELIF

|
See #if expr or #ifdef

73

C Compiler Reference Manual

#ELSE

See #if expr or #ifdef

#ENDIF

See #if expr or #ifdef

#ERROR

Syntax:

Elements:

Purpose:

Examples:

Example
Files:

Also See:

#error text
text is optional and may be any text

Forces the compiler to generate an error at the location this directive appears in
the file. The text may include macros that will be expanded for the display. This
may be used to see the macro expansion. The command may also be used to
alert the user to an invalid compile time situation.

#if BUFFER_SIZE>16

#error Buffer size is too large
#endif

#error Macro test: min(X,y)

ex_psp.c

None

Pre-Processor Directives

#EXPORT (options)

Syntax:

Elements:

Purpose:

#EXPORT (options)

FILE=filname

The filename which will be generated upon compile. If not given, the filname will
be the name of the file you are compiling, with a .0 or .hex extension (depending
on output format).

ONLY=symbol+symbol+.....+symbol
Only the listed symbols will be visible to modules that import or link this relocatable
object file. If neither ONLY or EXCEPT is used, all symbols are exported.

EXCEPT=symbol+symbol+.....+symbol

All symbols except the listed symbols will be visible to modules that import or link
this relocatable object file. If neither ONLY or EXCEPT is used, all symbols are
exported.

RELOCATABLE
CCS relocatable object file format. Must be imported or linked before loading into
a PIC. This is the default format when the #EXPORT is used.

HEX
Intel HEX file format. Ready to be loaded into a PIC. This is the default format
when no #EXPORT is used.

RANGE=start:stop
Only addresses in this range are included in the hex file.

OFFSET=address
Hex file address starts at this address (0 by default)

ODD
Only odd bytes place in hex file.

EVEN
Only even bytes placed in hex file.

This directive will tell the compiler to either generate a relocatable object file or a
stand-alone HEX binary. A relocatable object file must be linked into your
application, while a stand-alone HEX binary can be programmed directly into the
PIC.

The command line compiler and the PCW IDE Project Manager can also be
used to compile/link/build modules and/or projects.

Multiple #EXPORT directives may be used to generate multiple hex files. this
may be used for 8722 like devices with external memory.

75

C Compiler Reference Manual

Examples: #EXPORT(RELOCATABLE, ONLY=TimerTask)
void TimerFuncl(void) { /* some code */ }
void TimerFunc2(void) { /* some code */ }
void TimerFunc3(void) { /* some code */ }
void TimerTask(void)

{
TimerFuncl();
TimerFunc2();
TimerFunc3(Q):

3

/*

This source will be compiled into a relocatable object, but the
object this is being linked to can only see TimerTask()
*/

Example none
Files:

See Also: #IMPORT, #MODULE, Invoking the Command Line Compiler, Linker Overview

__FILE__

Syntax: __FILE__
Elements: None
Purpose: The pre-processor identifier is replaced at compile time with the file path and

the filename of the file being compiled.

Examples: if(index>MAX_ENTRIES)
printf("'Too many entries, source file: "
__FILE__ ™ at line " __LINE__ "\r\n");
Example assert.h
Files:
Also See: line

76

Pre-Processor Directives

__FILENAME__

Syntax: __FILENAME___
Elements: None
Purpose: The pre-processor identifier is replaced at compile time with the filename of the

file being compiled.

Examples: if(index>MAX_ENTRIES)
printf("'Too many entries, source file: "
_ FILENAME__ ™ at line "™ __ LINE__ "\r\n");
Example None
Files:
Also See: line
#FILL_ROM

Syntax: #fill_rom value
Elements: value is a constant 16-bit value
Purpose: This directive specifies the data to be used to fill unused ROM locations. When

linking multiple compilation units, this directive must appear exactly the same in
each compilation unit.

Examples: #Ffill_rom 0x36

Example None
Files:
Also See: #rom

77

C Compiler Reference Manual

#FUSES

. __|
Syntax: #fuse options

Elements: options vary depending on the device. A list of all valid options has been put at
the top of each devices .h file in a comment for reference. The PCW device edit
utility can modify a particular devices fuses. The PCW pull down menu VIEW |
Valid fuses will show all fuses with their descriptions.

Some common options are:

e LP, XT, HS, RC

o WDT, NOWDT

e PROTECT, NOPROTECT

e PUT, NOPUT (Power Up Timer)
¢ BROWNOUT, NOBROWNOUT

Purpose: This directive defines what fuses should be set in the part when it is
programmed. This directive does not affect the compilation; however, the
information is put in the output files. If the fuses need to be in Parallax format,
add a PAR option. SWAP has the special function of swapping (from the
Microchip standard) the high and low BYTES of non-program data in the Hex
file. This is required for some device programmers.

Some processors allow different levels for certain fuses. To access these levels,
assign a value to the fuse. For example, on the 18F452, the fuse PROTECT=6
would place the value 6 into CONFIG5L, protecting code blocks 0 and 3.

When linking multiple compilation units be aware this directive applies to the final
object file. Later files in the import list may reverse settings in previous files.

Examples: #fuses HS,NOWDT

Example ex_sqw.c
Files:
Also See: None

78

Pre-Processor Directives

#HEXCOMMENT

Syntax: #HEXCOMMENT text comment for the top of the hex file
#HEXCOMMENT\ text comment for the end of the hex file

Elements: None
Purpose: Puts a comment in the hex file
Examples: #HEXCOMMENT Version 3.1 - only use 876A chips
Example None
Files:
Also See: None
#1D

Syntax: #ID number 16
#ID number, number, number, number
#ID "filename"
#ID CHECKSUM

Elements: Numberl16 is a 16 bit number, number is a 4 bit number, filename is any valid
PC filename and checksum is a keyword.

Purpose: This directive defines the ID word to be programmed into the part. This directive
does not affect the compilation but the information is put in the output file.

The first syntax will take a 16-bit number and put one nibble in each of the four
ID words in the traditional manner. The second syntax specifies the exact value
to be used in each of the four ID words.

When a filename is specified the ID is read from the file. The format must be
simple text with a CR/LF at the end. The keyword CHECKSUM indicates the
device checksum should be saved as the ID.

Examples: #id 0x1234
#id "serial.num"
#id CHECKSUM

Example ex_cust.c
Files:
Also See: None

79

C Compiler Reference Manual

#ID CHECKSUM

See #ID

#ID "filename"

See #1D

#ID number 16

See #ID

#ID number, number, number, number

See #1D

(0]
o

Pre-Processor Directives

#IF exp, #ELSE, #ELIF, #ENDIF

Syntax: #if expr
code
#elif expr //Optional, any number may be used
code
#else //Optional
code
#endif

Elements: expr is an expression with constants, standard operators and/or preprocessor
identifiers. Code is any standard c source code.

Purpose: The pre-processor evaluates the constant expression and if it is non-zero will
process the lines up to the optional #ELSE or the #ENDIF.

Note: you may NOT use C variables in the #IF. Only preprocessor identifiers
created via #define can be used.

The preprocessor expression DEFINED(id) may be used to return 1 if the id is
defined and 0 if it is not.

== and != operators now accept a constant string as both operands. This allows
for compile time comparisons and can be used with GETENV() when it returns a
string result.

Examples: #i1f MAX_VALUE > 255
long value;
#else
int value;
#endif

#iT getenv(“DEVICE”)=="PIC16F877”
//do something special for the PIC16F877

#endi f
Example ex_extee.c
Files:
Also See: #ifdef, #ifndef , getenv()

81

C Compiler Reference Manual

#IFDEF, #IFNDEF, #ELSE, #ELIF, #ENDIF

. __|]
Syntax: #ifdef id

code

#elif

code

#else

code

#endif

#ifndef id
code
#elif
code
#else
code
#endif

Elements: id is a preprocessor identifier, code is valid C source code.

Purpose: This directive acts much like the #IF except that the preprocessor simply checks
to see if the specified ID is known to the preprocessor (created with a #DEFINE).
#IFDEF checks to see if defined and #IFNDEF checks to see if it is not defined.

Examples: #define debug // Comment line out for no debug

#ifdef DEBUG
printf(‘‘debug point a);
#endif

Example ex_sqw.c
Files:

Also See: #if

82

Pre-Processor Directives

#IGNORE_WARNINGS

Syntax: #ignore_warnings ALL
#IGNORE_WARNINGS NONE
#IGNORE_WARNINGS warnings

Elements: warnings is one or more warning numbers separated by commas

Purpose: This function will suppress warning messages from the compiler. ALL indicates
no warning will be generated. NONE indicates all warnings will be generated.
If numbers are listed then those warnings are suppressed.

Examples: #ignore_warnings 203
while(TRUE) {
#ignore_warnings NONE

Example None
Files:
Also See: Warning messages

83

C Compiler Reference Manual

#IMPORT (options)

. __|
Syntax: #lmport (options)
Elements: FILE=filname
The filename of the object you want to link with this compilation.

ONLY=symbol+symbol+.....+symbol
Only the listed symbols will imported from the specified relocatable object file. If
neither ONLY or EXCEPT is used, all symbols are imported.

EXCEPT=symbol+symbol+.....+symbol
The listed symbols will not be imported from the specified relocatable object file.
If neither ONLY or EXCEPT is used, all symbols are imported.

RELOCATABLE
CCS relocatable object file format. This is the default format when the #IMPORT
is used.

COFF
COFF file format from MPASM, C18 or C30.

HEX
Imported data is straight hex data.

RANGE=start:stop
Only addresses in this range are read from the hex file.

Purpose: This directive will tell the compiler to include (link) a relocatable object with this
unit during compilation. Normally all global symbols from the specified file will be
linked, but the EXCEPT and ONLY options can prevent certain symbols from
being linked.

The command line compiler and the PCW IDE Project Manager can also be
used to compile/link/build modules and/or projects.

Examples: #IMPORT(FILE=timer.o, ONLY=TimerTask)
void main(void)

while(TRUE)
TimerTask(Q);
by
/*
timer.o is linked with this compilation, but only TimerTask()
is visible in scope from this object.
*/

Example none
Files:

See Also: #EXPORT, #MODULE, Invoking the Command Line Compiler, Linker Overview

84

Pre-Processor Directives

#INCLUDE
. __|
Syntax: #include <filename>

or
#include "filename"

Elements: filename is a valid PC filename. It may include normal drive and path
information. A file with the extension ".encrypted” is a valid PC file. The
standard compiler #include directive will accept files with this extension and
decrypt them as they are read. This allows include files to be distributed without
releasing the source code.

Purpose: Text from the specified file is used at this point of the compilation. If a full path is
not specified the compiler will use the list of directories specified for the project to
search for the file. If the filename is in " then the directory with the main source
file is searched first. If the filename is in <> then the directory with the main
source file is searched last.

Examples: #include <16C54.H>
#include <C:\INCLUDES\COMLIB\MYRS232.C>

Example ex_sqw.c
Files:
Also See: PCW IDE

#INLINE
I
Syntax: #inline
Elements: None
Purpose: Tells the compiler that the function immediately following the directive is to be

implemented INLINE. This will cause a duplicate copy of the code to be placed
everywhere the function is called. This is useful to save stack space and to
increase speed. Without this directive the compiler will decide when it is best to
make procedures INLINE.

Examples: #inline
swapbyte(int &a, int &b) {

int t;
t=a;
a=b;
b=t;
}
Example ex_cust.c

Files:
Also See: #separate

85

C Compiler Reference Manual

#INT _XXXX

Syntax:

86

#INT_AD
#INT_ADOF
#INT_BUSCOL
#INT_BUTTON
#INT_CANERR
#INT_CANIRX
#INT_CANRXO
#INT_CANRX1
#INT_CANTXO
#INT_CANTX1
#INT_CANTX2
#INT_CANWAKE
#INT_CCP1
#INT_CCP2
#INT_CCP3
#INT_CCP4
#INT_CCP5
#INT_COMP
#INT_COMP1
#INT_COMP2
#INT_CR
#INT_EEPROM
#INT_EXT
#INT_EXT1
#INT_EXT2
#INT_EXT3
#INT_I2C
#INT_IC1
#INT_IC2
#INT_IC3
#INT_LCD
#INT_LOWVOLT
#INT_LVD

Analog to digital conversion complete

Analog to digital conversion timeout

Bus collision

Pushbutton

An error has occurred in the CAN module

An invalid message has occurred on the CAN bus
CAN Receive buffer 0 has received a new message
CAN Receive buffer 1 has received a new message
CAN Transmit buffer 0 has completed transmission
CAN Transmit buffer 0 has completed transmission
CAN Transmit buffer 0 has completed transmission
Bus Activity wake-up has occurred on the CAN bus
Capture or Compare on unit 1

Capture or Compare on unit 2

Capture or Compare on unit 3

Capture or Compare on unit 4

Capture or Compare on unit 5

Comparator detect

Comparator 1 detect

Comparator 2 detect

Cryptographic activity complete

Write complete

External interrupt

External interrupt #1

External interrupt #2

External interrupt #3

12C interrupt (only on 14000)

Input Capture #1

Input Capture #2

Input Capture #3

LCD activity

Low voltage detected

Low voltage detected

Elements:

Purpose:

#INT_OSC_FAIL

Pre-Processor Directives

System oscillator failed

#INT_OSCF System oscillator failed

#INT_PSP Parallel Slave Port data in
#INT_PWMTB PWM Time Base

#INT_RA Port A any change on AO_A5

#INT_RB Port B any change on B4-B7

#INT_RC Port C any change on C4-C7
#INT_RDA RS232 receive data available
#INT_RDAO RS232 receive data available in buffer 0
#INT_RDA1 RS232 receive data available in buffer 1
#INT_RDA2 RS232 receive data available in buffer 2
#INT_RTCC Timer 0 (RTCC) overflow

#INT_SPP Streaming Parallel Port Read/Write
#INT_SSP SPI or 12C activity

#INT_SSP2 SPI or 12C activity for Port 2

#INT_TBE RS232 transmit buffer empty
#INT_TBEO RS232 transmit buffer 0 empty
#INT_TBE1 RS232 transmit buffer 1 empty
#INT_TBE2 RS232 transmit buffer 2 empty
#INT_TIMERO Timer 0 (RTCC) overflow
#INT_TIMER1 Timer 1 overflow

#INT_TIMER2 Timer 2 overflow

#INT_TIMER3 Timer 3 overflow

#INT_TIMERA4 Timer 4 overflow

#INT_TIMERS Timer 5 overflow

#INT_USB Universal Serial Bus activity

Note many more #INT_ options are available on specific chips. Check the
devices .h file for a full list for a given chip.

None

These directives specify the following function is an interrupt function. Interrupt
functions may not have any parameters. Not all directives may be used with all
parts. See the devices .h file for all valid interrupts for the part or in PCW use the
pull down VIEW | Valid Ints

The compiler will generate code to jump to the function when the interrupt is
detected. It will generate code to save and restore the machine state, and will

87

C Compiler Reference Manual

Examples:

Example
Files:
Also See:

88

clear the interrupt flag. To prevent the flag from being cleared add NOCLEAR
after the #INT_xxxx. The application program must call
ENABLE_INTERRUPTS(INT_xxxx) to initially activate the interrupt along with
the ENABLE_INTERRUPTS(GLOBAL) to enable interrupts.

The keywords HIGH and FAST may be used with the PCH compiler to mark an
interrupt as high priority. A high-priority interrupt can interrupt another interrupt
handler. An interrupt marked FAST is performed without saving or restoring any
registers. You should do as little as possible and save any registers that need to
be saved on your own. Interrupts marked HIGH can be used normally. See
#DEVICE for information on building with high-priority interrupts.

A summary of the different kinds of PIC18 interrupts:
#INT _XxXXX
Normal (low priority) interrupt. Compiler saves/restores key registers.
This interrupt will not interrupt any interrupt in progress.
#INT_xxxx FAST
High priority interrupt. Compiler DOES NOT save/restore key registers.
This interrupt will interrupt any normal interrupt in progress.
Only one is allowed in a program.
#INT_xxxx HIGH
High priority interrupt. Compiler saves/restores key registers.
This interrupt will interrupt any normal interrupt in progress.
#INT_GLOBAL
Compiler generates no interrupt code. User function is located
at address 8 for user interrupt handling.

#int_ad
adc_handler() {
adc_active=FALSE;

}

#int_rtcc noclear
isrQ {

b

See ex_sisr.c and ex_stwt.c for full example programs.

enable interrupts(), disable interrupts(), #int default, #int global, #PRIORITY

Pre-Processor Directives

#INT_DEFAULT

Syntax: #int_default
Elements: None
Purpose: The following function will be called if the PIC® triggers an interrupt and none of

the interrupt flags are set. If an interrupt is flagged, but is not the one triggered,
the #INT_DEFAULT function will get called.

Examples: #int_default
default_isrQ {
printf("'Unexplained interrupt\r\n');

Example None
Files:

Also See: #INT xxxx, #INT global

#INT_GLOBAL
Syntax: #int_global
Elements: None
Purpose: This directive causes the following function to replace the compiler interrupt

dispatcher. The function is normally not required and should be used with great
caution. When used, the compiler does not generate start-up code or clean-up
code, and does not save the registers.

Examples: #int_global

isrQ { // Will be located at location 4 for PIC16 chips.
#asm
bsf isr_flag
retfie
#endasm
}
Example ex_glint.c
Files:
Also See: #int xxxx

89

C Compiler Reference Manual

__LINE__

Syntax: __line__
Elements: None
Purpose: The pre-processor identifier is replaced at compile time with line number of the

file being compiled.

Examples: if(index>MAX_ENTRIES)
printf("'Too many entries, source file: "
__FILE__ "™ at line ™ __LINE__ '\r\n");
Example assert.h
Files:
Also See: file
#LIST

Syntax: #list

Elements: None

Purpose: #List begins inserting or resumes inserting source lines into the .LST file after
a #NOLIST.

Examples: #NOLIST // Don"t clutter up the list file
#include <cdriver.h>
#LIST

Example 16¢c74.h

Files:

Also See: #nolist

90

#LOCATE

Syntax:

Elements:

Purpose:

Examples:

Example
Files:

Also See:

Pre-Processor Directives

#locate id=x

id is a C variable,
X is a constant memory address

#LOCATE works like #BYTE however in addition it prevents C from using the
area.

// This will locate the float variable at 50-53
// and C will not use this memory for other

// variables automatically located.

float x;

#locate x=0x50

ex_glint.c

#byte, #bit, #reserve

91

C Compiler Reference Manual

#MODULE

Syntax:

Elements:

Purpose:

Examples:

Example
Files:

See Also:

92

#MODULE
None

All global symbols created from the #MODULE to the end of the file will only be
visible within that same block of code (and files #included within that block). This
may be used to limit the scope of global variables and functions within include
files. This directive also applies to pre-processor #defines.

Note: The extern and static data qualifiers can also be used to denote scope of
variables and functions as in the standard C methodology. #MODULE does add
some benefits in that pre-processor #defines can be given scope, which cannot
normally be done in standard C methodology.

int GetCount(void);
void SetCount(int newCount);
#MODULE
int g_count;
#define G_COUNT_MAX 100
int GetCount(void) {return(g_count);}
void SetCount(int newCount) {

iT (newCount>G_COUNT_MAX)

newCount=G_COUNT_MAX;

g_count=newCount;
by
/*
the functions GetCount() and SetCount() have global scope, but
the variable g_count and the #define G_COUNT_MAX only has scope
to this file.
*/

None

#EXPORT, #MODULE, Invoking the Command Line Compiler, Linker Overview

#NOLIST

Syntax:

Elements:

Purpose:

Examples:

Example
Files:
Also See:

#OPT

Syntax:

Elements:

Purpose:

Examples:

Example
Files:

Also See:

Pre-Processor Directives

#nolist
None
Stops inserting source lines into the .LST file (until a #LIST)

#NOLIST // Don"t clutter up the list file
#include <cdriver.h>
#LIST

16c74.h

#LIST

#OPT n

All Devices: n is the optimization level 0-9
PIC18XXX: n is the optimization level 0-11

The optimization level is set with this directive. This setting applies to the entire
program and may appear anywhere in the file. Optimization level 5 will set the
level to be the same as the PCB, PCM, and PCH standalone compilers. The
PCW default is 9 for full optimization. PIC18XXX devices may utilize levels 10
and 11 for extended optimization. Level 9 may be used to set a PCW compile to
look exactly like a PCM compile for example. It may also be used if an
optimization error is suspected to reduce optimization.

#opt 5
None

None

93

C Compiler Reference Manual

#ORG

Syntax: #org start, end
or
#org segment
or
#org start, end {}
or
#org start, end auto=0
#ORG start,end DEFAULT
or
#ORG DEFAULT

Elements: start is the first ROM location (word address) to use, end is the last ROM
location, segment is the start ROM location from a previous #org

Purpose: This directive will fix the following function or constant declaration into a specific
ROM area. End may be omitted if a segment was previously defined if you only
want to add another function to the segment.

Follow the ORG with a {} to only reserve the area with nothing inserted by the
compiler.

The RAM for a ORG'ed function may be reset to low memory so the local
variables and scratch variables are placed in low memory. This should only be
used if the ORG'ed function will not return to the caller. The RAM used will
overlap the RAM of the main program. Add a AUTO=0 at the end of the #ORG
line.

If the keyword DEFAULT is used then this address range is used for all functions
user and compiler generated from this point in the file until a #ORG DEFAULT is
encountered (no address range). If a compiler function is called from the
generated code while DEFAULT is in effect the compiler generates a new
version of the function within the specified address range.

When linking multiple compilation units be aware this directive applies to the final

object file. Itis an error if any #org overlaps between files unless the #org
matches exactly.

94

Examples:

Example
Files:

Also See:

__PCB__

#0ORG Ox1E00, Ox1FFF
MyFunc() {
//This function located at 1EOO

}

#0ORG Ox1EQO
Anotherfunc({
// This will be somewhere 1EO00-1F00

}

#0ORG 0x800, 0x820 {}
//Nothing will be at 800-820

#0RG 0x1C00, Ox1COF

CHAR CONST ID[10}= {'"123456789"};
//This ID will be at 1C00

//Note some extra code will
//proceed the 123456789

#ORG Ox1F00, Ox1FFO
Void loader (O{

}

loader.c

#ROM

Pre-Processor Directives

Syntax:
Elements:

Purpose:

Examples:

Example
Files:

Also See:

__PCB__

None

The PCB compiler defines this pre-processor identifier. It may be used to
determine if the PCB compiler is doing the compilation.

#ifdef _ pcb__
#device P1C16c54
#endi f
ex_sqw.c

PCM , PCH

95

C Compiler Reference Manual

PCM

Syntax: _PCM__
Elements: None
Purpose: The PCM compiler defines this pre-processor identifier. It may be used to

determine if the PCM compiler is doing the compilation.

Examples: #ifdef __pcm__
#device PI1Cl6c71

#endif
Example ex_sgw.c
Files:
Also See: PCB _, PCH
PCH

Syntax: _PCH__
Elements: None
Purpose: The PCH compiler defines this pre-processor identifier. It may be used to

determine if the PCH compiler is doing the compilation.

Examples: #ifdef _ _ PCH _ _
#device PIC18C452
#endi f

Example ex_sqw.c

Files:

Also See: PCB , PCM

96

#PRAGMA

Pre-Processor Directives

Syntax: #pragma cmd

Elements: cmd is any valid preprocessor directive.

Purpose: This directive is used to maintain compatibility between C compilers. This
compiler will accept this directive before any other pre-processor command. In
no case does this compiler require this directive.

Examples: #pragma device PIC16C54

Example ex_cust.c

Files:

Also See: None

#PRIORITY

Syntax: #priority ints

Elements: ints is a list of one or more interrupts separated by commas.
export makes the functions generated from this directive available to other
compilation units within the link.

Purpose: The priority directive may be used to set the interrupt priority. The highest priority
items are first in the list. If an interrupt is active it is never interrupted. If two
interrupts occur at around the same time then the higher one in this list will be
serviced first. When linking multiple compilation units be aware only the one in
the last compilation unit is used.

Examples: #priority rtcc,rb

Example None

Files:

Also See: #int xxxx

97

C Compiler Reference Manual

#RESERVE

Syntax: #reserve address
or
#reserve address, address, address
or
#reserve start:end

Elements: address is a RAM address, start is the first address and end is the last address

Purpose: This directive allows RAM locations to be reserved from use by the compiler.
#RESERVE must appear after the #DEVICE otherwise it will have no effect.
When linking multiple compilation units be aware this directive applies to the
final object file.

Examples: #DEVICE PIC16C74
#RESERVE 0x60:0X6F

Example ex_cust.c
Files:

Also See: #org

#ROM
Syntax: #rom address = {list}
Elements: address is a ROM word address, list is a list of words separated by commas
Purpose: Allows the insertion of data into the .HEX file. In particular, this may be used to

program the '84 data EEPROM, as shown in the following example.

Note that if the #ROM address is inside the program memory space, the
directive creates a segment for the data, resulting in an error if a #ORG is over
the same area. The #ROM data will also be counted as used program memory
space.

When linking multiple compilation units be aware this directive applies to the
final object file.

Examples: #rom 0x2100={1,2,3,4,5,6,7,8}

Example None
Files:
Also See: #org

98

#SEPARATE

Syntax:
Elements:

Purpose:

Examples:

Example
Files:
Also See:

Pre-Processor Directives

#separate
None

Tells the compiler that the procedure IMMEDIATELY following the directive is to
be implemented SEPARATELY. This is useful to prevent the compiler from

automatically making a procedure INLINE. This will save ROM space but it does

use more stack space. The compiler will make all procedures marked
SEPARATE, separate, as requested, even if there is not enough stack space to
execute.

#separate
swapbyte (int *a, int *b) {
int t;
t=*a;
*a=*b;
*b=t;
}

ex_cust.c

#inline

99

C Compiler Reference Manual

#SERIALIZE

Syntax:

Elements:

Purpose:

100

#serialize(id=xxx, next="x" | file="filename.txt
"prompt="text", log="filename.txt") -

| listfile="filename.txt",

Or-#serialize(dataee=x, binary=x, next="x" | file="filename.txt" |
listfile="filename.txt", prompt="text", log="filename.txt")

id=xxx Specify a C CONST identifier, may be int8, int16, int32 or char array

Use in place of id parameter, when storing serial number to EEPROM:

dataee=x The address x is the start address in the data EEPROM.

binary=x The integer x is the number of bytes to be written to address specified.
_Or-

string=x The integer x is the number of bytes to be written to address

specified.

Use only one of the next three options:

file="filename.txt" The file x is used to read the initial serial number from,
and this file is updated by the ICD programmer. It is assumed this is a one line
file with the serial number. The programmer will increment the serial number.

listfile="filename.txt" The file x is used to read the initial serial number from,
and this file is updated by the ICD programmer. It is assumed this is a file one
serial number per line. The programmer will read the first line then delete that
line from the file. next="x" The serial number X is used for the first load, then
the hex file is updated to increment x by one.

prompt="text" If specified the user will be prompted for a serial number on
each load. If used with one of the above three options then the default value the
user may use is picked according to the above rules.

log=xxx A file may optionally be specified to keep a log of the date, time, hex
file name and serial number each time the part is programmed. If no id=xxx is
specified then this may be used as a simple log of all loads of the hex file.

Assists in making serial numbers easier to implement when working with CCS
ICD units. Comments are inserted into the hex file that the ICD software
interprets.

Examples:

Example
Files:

Also See:

Pre-Processor Directives

//Prompt user for serial number to be placed

//at address of serialNumA

//Default serial number = 200int8 const serialNumA=100;
#serialize(id=serialNumA,next="200",prompt="Enter the serial
number*")

//Adds serial number log in seriallog.txt
#serialize(id=serialNumA,next="200",prompt="Enter the serial
number™, log="seriallog.txt")

//Retrieves serial number from serials.txt
#serialize(id=serialNumA, listfFile="serials.txt")

//Place serial number at EEPROM address O, reserving 1 byte
#serialize(dataee=0,binary=1,next=""45",prompt="Put in Serial
number")

//Place string serial number at EEPROM address 0, reserving 2
bytes

#serialize(dataee=0, string=2,next="AB",prompt="Put in Serial
number'")

None

None

101

C Compiler Reference Manual

#TASK

. __|
The RTOS is only included with the PCW and PWH packages. Each RTOS task is specified as a
function that has no parameters and no return. The #task directive is needed just before each
RTOS task to enable the compiler to tell which functions are RTOS tasks. An RTOS task cannot
be called directly like a regular function can.

Syntax: #task (options)
Elements: options are separated by comma and may be:
rate=time Where time is a number followed by s, ms,
us, or ns. This specifies how often the task
will execute.
max=time Where time is a number followed by s, ms,
us, or ns. This specifies the budgeted time
for this task.
gqueue=bytes Specifies how many bytes to allocate for this
task's incoming messages. The default value
is 0.
Purpose: This directive tells the compiler that the following function is an RTOS
task.

The rate option is used to specify how often the task should execute. This must
be a multiple of the minor_cycle option if one is specified in the #use rtos
directive.

The max option is used to specify how much processor time a task will use in
one execution of the task. The time specified in max must be equal to or less
than the time specified in the minor_cycle option of the #use rtos directive before
the project will compile successfully. The compiler does not have a way to
enforce this limit on processor time, so a programmer must be careful with how
much processor time a task uses for execution. This option does not need to be
specified.

The queue option is used to specify the number of bytes to be reserved
for the task to receive messages from other tasks or functions. The default
queue value is 0.

Examples: #task(rate=1s, max=20ms, queue=5)

Also See: #use rtos

102

Pre-Processor Directives

__TIME _
Syntax: __TIME__
Elements: None
Purpose: This pre-processor identifier is replaced at compile time with the time of the
compile in the form: "hh:mm:ss"
Examples: printf('Software was compiled on ');
printf(_TIME_);
Example None
Files:
Also See: None
#TYPE
Syntax: #type standard-type=size
#type default=area
#type unsigned
#type signed
Elements: standard-type is one of the C keywords short, int, long, or default
sizeis 1,8,16 or 32
area is a memory region defined before the #TYPE using the addressmod
directive
Purpose: By default the compiler treats SHORT as one bit, INT as 8 bits, and LONG as 16

bits. The traditional C convention is to have INT defined as the most efficient
size for the target processor. This is why it is 8 bits on the PIC®. In order to
help with code compatibility a #TYPE directive may be used to allow these types
to be changed. #TYPE can redefine these keywords.

Note that the commas are optional. Since #TYPE may render some sizes
inaccessible (like a one bit int in the above) four keywords representing the four
ints may always be used: INT1, INT8, INT16, and INT32. Be warned CCS
example programs and include files may not work right if you use #TYPE in your
program. This directive may also be used to change the default RAM area used
for variable storage. This is done by specifying default=area where area is a
addressmod address space.

When linking multiple compilation units be aware this directive only applies to the
current compilation unit.

The #TYPE directive allows the keywords UNSIGNED and SIGNED to set the
default data type.

103

C Compiler Reference Manual

Examples: #TYPE SHORT=8, INT=16, LONG=32
#TYPE default=area
addressmod (user_ram_block, 0x100, Ox1FF);
#type default=user_ram_block // all variable declarations
// in this area will be in

// 0x100-O0x1FF

#type default= // restores memory allocation
// back to normal

#TYPE SIGNED
void mainQ

int variablel; // variablel can only take values from -128 to

127
}
Example ex_cust.c
Files:
Also See: None
#UNDEF
. __|
Syntax: #undef id
Elements: id is a pre-processor id defined via #define
Purpose: The specified pre-processor ID will no longer have meaning to the pre-
processor.
Examples: #if MAXSIZE<100
#undef MAXSIZE
#define MAXSIZE 100
#endif
Example None
Files:
Also See: #define

104

Pre-Processor Directives

#USE DELAY

. __|
Syntax: #use delay (clock=speed)

#use delay(clock=speed, restart_wdt)
#use delay(clock=speed, type)

#use delay(clock=speed, type=speed)
#use delay(type=speed)

Elements: speed is a constant 1-100000000 (1 hz to 100 mhz). This number can contain
commas. It also supports the following denominations: M, MHZ, K, KHZ

type defines what kind of clock you are using, and the following values are valid:
oscillator, osc (same as oscillator), crystal, xtal (same as crystal), internal, int
(same as internal) or rc. The compiler will automatically set the oscillator
configuration bits based upon your defined type. If you specified internal, the
compiler will also automatically set the internal oscillator to the defined speed.

restart_wdt will restart the watchdog timer on every delay_us() and delay_ms()
use.

Purpose: Tells the compiler the speed of the processor and enables the use of the built-in
functions: delay_ms() and delay_us(). Will also set the proper configuration bits,
and if needed configure the internal oscillator. Speed is in cycles per second. An
optional restart. WDT may be used to cause the compiler to restart the WDT
while delaying. When linking multiple compilation units, this directive must
appear in any unit that needs timing configured (delay_ms(), delay_us(), UART,
SPI).

In multiple clock speed applications, this directive may be used more than once.
Any timing routines (delay_ms(), delay_us, UART, SPI) that need timing
information will use the last defined #use delay(). For initialization purposes, the
compiler will initialize the configuration bits and internal oscillator based upon the
first #use delay().

Examples: //set timing config to 32KHz, restart watchdog timer
//0on delay _us() and delay_ms(Q)
#use delay(clock=32000, RESTART_WDT)

//the following 4 examples all configure the timing library
//to use a 20Mhz clock, where the source is an oscillator.
//user must manually set HS config bit

#use delay(clock=20000000)

#use delay(clock=20,000,000)

#use delay(clock=20M)

//compiler will set HS config bit
#use delay(clock=20M, oscillator)

105

C Compiler Reference Manual

Example
Files:
Also See:

106

#use delay(oscillator=20M)//compiler will set HS config bit

//application is using a 10Mhz oscillator, but using the 4x
//PLL to upscale it to 40Mhz. Compiler will set H4 config bit.
#use delay(clock=40M, oscillator=10M)

//application will use the internal oscillator at 8MHz.
//compiler will set INTOSC_IO config bit, and set the internal

//oscillator to 8MHz.
#use delay(internal=8M)

ex_sqw.c

delay_ms(), delay_us()

Pre-Processor Directives

#USE FAST_IO

Syntax: #use fast_io (port)
Elements: port is A-G
Purpose: Affects how the compiler will generate code for input and output instructions that

follow. This directive takes effect until another #use xxxx_|O directive is
encountered. The fast method of doing 1/O will cause the compiler to perform I/O
without programming of the direction register. The user must ensure the
direction register is set correctly via set_tris_X(). When linking multiple
compilation units be aware this directive only applies to the current compilation
unit.

Examples: #use fast_io(A)

Example ex_cust.c
Files:
Also See: #use fixed io, #use standard io, set_tris X()

#USE FIXED_IO

Syntax: #use fixed_io (port_outputs=pin, pin?)
Elements: port is A-G, pin is one of the pin constants defined in the devices .h file.
Purpose: This directive affects how the compiler will generate code for input and output

instructions that follow. This directive takes effect until another #use xxx_IO
directive is encountered. The fixed method of doing I/O will cause the compiler
to generate code to make an 1/O pin either input or output every time it is used.
The pins are programmed according to the information in this directive (not the
operations actually performed). This saves a byte of RAM used in standard 1/O.
When linking multiple compilation units be aware this directive only applies to
the current compilation unit.

Examples: #use fTixed_io(a_outputs=PIN_A2, PIN_A3)

Example None
Files:
Also See: #use fast _io, #use standard io

107

C Compiler Reference Manual

#USE 12C

Syntax: #use i’c (options)
Elements: Options are separated by commas and may be:
MULTI_MASTER Set the multi_master mode
SLAVE Set the slave mode
SCL=pin Specifies the SCL pin (pin is a bit address)
SDA=pin Specifies the SDA pin
ADDRESS=nn Specifies the slave mode address
FAST Use the fast I°C specification. Specifies the
speed.
SLOW Use the slow I°C specification
RESTART_WDT Restart the WDT while waiting in I’°C_READ
FORCE_HW Use hardware I°C functions.
NOFLOAT_HIGH Does not allow signals to float high, signals are
driven from low to high
SMBUS Bus used is not I°C bus, but very similar
STREAM=id Associates a stream identifier with this I1°C port.
The identifier may then be used in functions like
i’c_read or i’c_write.
Purpose: The I°C library contains functions to implement an I°C bus. The #USE I°C
remains in effect for the °C_START, I°C_STOP, I’°C_READ, I’°C_WRITE and
I’C_POLL functions until another USE I°C is encountered. Software functions
are generated unless the FORCE_HW is specified. The SLAVE mode should
only be used with the built-in SSP. The functions created with this directive are
exported when using multiple compilation units. To access the correct function
use the stream identifier.
Examples: #use 12C(master, sda=PIN_BO, scl=PIN_B1)
#use 12C(slave,sda=PIN_C4,scl=PIN_C3
address=0xa0, FORCE_HW)
#use 12C(master, scl=PIN_BO, sda=PIN_B1, fast=450000)
//sets the target speed to 450 KBSP
Example ex_extee.c with 16c74.h
Files:
Also See: ifc_read(), ifc_write()

108

Pre-Processor Directives

RESTART_WDT

INVERT

PARITY=X
BITS =X
FLOAT_HIGH

ERRORS

SAMPLE_EARLY

RETURN=pin

#USE RS232
. __|
Syntax: #use rs232 (options)
Elements: Options are separated by commas and may be:
STREAM=id Associates a stream identifier with this RS232 port.
The identifier may then be used in functions like
fputc.
BAUD=x Set baud rate to x
XMIT=pin Set transmit pin
RCV=pin Set receive pin
FORCE_SW Will generate software serial 1/0 routines even
when the UART pins are specified.
BRGH10K Allow bad baud rates on chips that have baud rate
problems.
ENABLE=pin The specified pin will be high during transmit. This
may be used to enable 485 transmit.
DEBUGGER Indicates this stream is used to send/receive data

though a CCS ICD unit. The default pin used in B3,
use XMIT= and RCV= to change the pin used.
Both should be the same pin.

Will cause GETC() to clear the WDT as it waits for
a character.

Invert the polarity of the serial pins (normally not
needed when level converter, such as the
MAX232). May not be used with the internal UART.

Where xis N, E, or O.
Where x is 5-9 (5-7 may not be used with the SCI).

The line is not driven high. This is used for open
collector outputs. Bit 6 in RS232_ERRORS is set if
the pin is not high at the end of the bit time.

Used to cause the compiler to keep receive errors
in the variable RS232_ERRORS and to reset errors
when they occur.

A getc() normally samples data in the middle of a
bit time. This option causes the sample to be at the
start of a bit time. May not be used with the UART.
For FLOAT_HIGH and MULTI_MASTER this is the
pin used to read the signal back. The default for
FLOAT_HIGH is the XMIT pin and for

109

C Compiler Reference Manual

Purpose:

110

MULTI_MASTER

LONG_DATA

DISABLE_INTS

STOP=X

TIMEOUT=X

SYNC_SLAVE

SYNC_MASTER

SYNC_MATER_CONT

UART1

UART2

MULTI_MASTER the RCV pin.

Uses the RETURN pin to determine if another
master on the bus is transmitting at the same time.
If a collision is detected bit 6 is set in
RS232_ERRORS and all future PUTC's are
ignored until bit 6 is cleared. The signal is checked
at the start and end of a bit time. May not be used
with the UART.

Makes getc() return an intl6 and putc accept an
intl6. This is for 9 bit data formats.

Will cause interrupts to be disabled when the routines
get or put a character. This prevents character
distortion for software implemented 1/0 and prevents
interaction between 1/O in interrupt handlers and the
main program when using the UART.

To set the number of stop bits (default is 1). This worl
both UART and non-UART ports.

To set the time getc() waits for a byte in
milliseconds. If no character comes in within this
time the RS232_ERRORS is set to 0 as well as the
return value form getc(). This works for both UART
and non-UART ports.

Makes the RS232 line a synchronous slave, making
the receive pin a clock in, and the data pin the data
in/out.

Makes the RS232 line a synchronous master,
making the receive pin a clock out, and the data pin
the data in/out.

Makes the RS232 line a synchronous master mode
in continuous receive mode. The receive pin is set
as a clock out, and the data pin is set as the data
in/out.

Sets the XMIT= and RCV= to the chips first
hardware UART.

Sets the XMIT= and RCV= to the chips second
hardware UART.

This directive tells the compiler the baud rate and pins used for serial I/O. This
directive takes effect until another RS232 directive is encountered. The #USE
DELAY directive must appear before this directive can be used. This directive
enables use of built-in functions such as GETC, PUTC, and PRINTF. The

Pre-Processor Directives

functions created with this directive are exported when using multiple compilation
units. To access the correct function use the stream identifier.

When using parts with built-in SCI and the SCI pins are specified, the SCI will be
used. If a baud rate cannot be achieved within 3% of the desired value using the
current clock rate, an error will be generated. The definition of the
RS232_ERRORS is as follows:

No UART:
e Bit 7 is 9th bit for 9 bit data mode (get and put).
e Bit 6 set to one indicates a put failed in float high mode.

With a UART:

e Used only by get:

e Copy of RCSTA register except:

e Bit 0 is used to indicate a parity error.

Warning:

The PIC UART will shut down on overflow (3 characters received by the
hardware with a GETC() call). The "ERRORS" option prevents the shutdown by
detecting the condition and resetting the UART.

Examples: #use rs232(baud=9600, xmit=PIN_A2,rcv=PIN_A3)
Example ex_cust.c

Files:
Also See: getc(), putc(), printf(), setup_uart(), RS232 I/O overview

111

C Compiler Reference Manual

#USE RTOS

. __|
The RTOS is only included with the PCW and PCWH packages. The CCS Real Time Operating
System (RTOS) allows a PIC micro controller to run regularly scheduled tasks without the need for
interrupts. This is accomplished by a function (RTOS_RUN()) that acts as a dispatcher. When a
task is scheduled to run, the dispatch function gives control of the processor to that task. When the
task is done executing or does not need the processor anymore, control of the processor is
returned to the dispatch function which then will give control of the processor to the next task that is
scheduled to execute at the appropriate time. This process is called cooperative multi-tasking.

Syntax: #use rtos (options)
Elements: options are separated by comma and may be:
timer=X Where x is 0-4 specifying the timer used by the
RTOS.
minor_cycle=time Where time is a number followed by s, ms, us,
ns. This is the longest time any task will run.
Each task's execution rate must be a multiple of
this time. The compiler can calculate this if it is
not specified.
statistics Maintain min, max, and total time used by each
task.
Purpose: This directive tells the compiler which timer on the PIC to use for

monitoring and when to grant control to a task. Changes to the specified timer's
prescaler will effect the rate at which tasks are executed.

This directive can also be used to specify the longest time that a task will ever
take to execute with the minor_cycle option. This simply forces all task
execution rates to be a multiple of the minor_cycle before the project will compile
successfully. If the this option is not specified the

compiler will use a minor_cycle value that is the smallest possible

factor of the execution rates of the RTOS tasks.

If the statistics option is specified then the compiler will keep track of

the minimum processor time taken by one execution of each task, the maximum
processor time taken by one execution of each task, and the total processor time
used by each task.

When linking multiple compilation units, this directive must appear exactly the
same in each compilation unit.

Examples: #use rtos(timer=0, minor_cycle=20ms)

Also See: #task

112

Pre-Processor Directives

#USE SPI
. __|
Syntax: #use spi (options)
Elements: Options are separated by commas and may be:
MASTER Set the device as the master.
SLAVE Set the device as the slave.
BAUD=n Target bits per second, default is as fast as
possible.
CLOCK_HIGH=n High time of clock in us (not needed of BAUD= is
used).
CLOCK_LOW=n Low time of clock in us (not needed of BAUD= is
used).
DI=pin Optional pin for incoming data.
DO=pin Optional pin for outgoing data.
CLK=pin Clock pin.
MODE=n The mode to put the SPI bus.
ENABLE=pin Optional pin to be active during data transfer.
LOAD=pin Optional pin to be pulsed active after data is
transferred.
DIAGNOSTIC=pin Optional pin to the set high when data is
sampled.
SAMPLE_RISE Sample on rising edge.
SAMPLE_FALL Sample on falling edge (default).
BITS=n Max number of bits in a transfer.
SAMPLE_COUNT=n Number of samples to take (uses majority vote).
LOAD_ACTIVE=n Active state for LOAD pin (0, 1).
ENABLE_ACTIVE=n Active state for ENABLE pin (0, 1).
IDLE=n Inactive state for CLK pin (0, 1).
ENABLE_DELAY=n Time in us to delay after ENABLE is activated.
LSB_FIRST LSB is sent first.
MSB_FIRST MSB is sent first.
STREAM=id Specify a stream name for this protocol.
FORCE_HW Forces hardware for this stream.
Purpose: The SPI library contains functions to implement an SPI bus. After setting all of

the proper parameters in #use spi, the spi_xfer() function can be used to both
transfer and receive data on the SPI bus.

The FORCE_HW option will use the SPI hardware onboard the PIC. The most
common pins present on hardware SPI are: DI, DO, and CLK. These pins
don’t need to be assigned values through the options; the compiler will
automatically assign hardware-specific values to these pins. Consult your
PIC’s data sheet as to where the pins for hardware SPI are. If hardware SPI is
not used, then software SPI will be used. Software SPI is much slower than

113

C Compiler Reference Manual

Examples:

Example
Files:
Also See:

hardware SPI, but software SPI can use any pins to transfer and receive data
other than just the pins tied to the PIC’s hardware SPI pins.

The MODE option is more or less a quick way to specify how the stream is
going to sample data. MODE=0 sets IDLE=0 and SAMPLE_RISE. MODE=1
sets IDLE=0 and SAMPLE_FALL. MODE=2 sets IDLE=1 and SAMPLE_FALL.
MODE-=3 sets IDLE=1 and SAMPLE_RISE. There are only these 4 MODEs.

SPI cannot use the same pins for DI and DO. If needed, specify two streams:
one to send data and another to receive data.

#use spi(DI=PIN_B1, DO=PIN_BO, CLK=PIN_B2, ENABLE=PIN__B4
// uses software SPI

#use spi(FORCE_HW, BITS=16, stream=SP1_STREAM)

// uses hardware SPl and gives this stream the name
// SP1_STREAM

none

spi_xfer()

#USE STANDARD_IO

Syntax:
Elements:
Purpose:

Examples:

Example
Files:
Also See:

114

#USE STANDARD_IO (port)
port may be A-G

This directive affects how the compiler will generate code for input and output
instructions that follow. This directive takes effect until another #use xxx_io
directive is encountered. The standard method of doing I/O will cause the
compiler to generate code to make an 1/O pin either input or output every time it
is used. On the 5X processors this requires one byte of RAM for every port set
to standard /0.

Standard_io is the default /0 method for all ports.

When linking multiple compilation units be aware this directive only applies to the
current compilation unit.

#use standard_io(A)

ex_cust.c

#use fast_io, #use fixed io

Pre-Processor Directives

#ZERO_RAM

. __|
Syntax: #zero_ram
Elements: None
Purpose: This directive zero's out all of the internal registers that may be used to hold

variables before program execution begins.

Examples: #zero_ram
void main() {
b

Example ex_cust.c

Files:

Also See: None

115

C Compiler Reference Manual

BUILT-IN-FUNCTIONS

F ol ok

-’

BUILT-IN-FUNCTIONS

C Compiler

The CCS compiler provides a lot of built-in functions to access and use the PIC microcontroller
peripherals. This makes it very easy for the users to configure and use the peripherals without
going into in depth details of the registers associated with the functionality. The functions
categorized by the peripherals associated with them. A complete description, parameter and return
value descriptions follow in the subsequent pages.

ASSERT() GETCH() PUTC()

FGETC() GETCHAR() PUTCHAR()

FGETS() GETS() PUTS()

RS232 1/O FPRINTF() KBHIT() SET_UART_SPEED()

FPUTC() PERROR() SETUP_UART()

FPUTS() PRINTF()

SETUP_SPI() SPI_DATA_IS_IN() SPI_READ() SPI_WRITE()

SPI TWO WIRE SPI_XFER()
/0

GET_TRISX() INPUT_K() OUTPUT_FLOAT() SET_TRIS_B()

INPUT() INPUT_STATE() OUTPUT_G() SET_TRIS_C()

INPUT_A() INPUT_x() OUTPUT_H() SET_TRIS_D()

INPUT_B() OUTPUT_A() OUTPUT_HIGH() SET_TRIS_E()

INPUT_C() OUTPUT_B() OUTPUT_J() SET_TRIS_F()

INPUT_D() OUTPUT_BIT() OUTPUT_K() SET_TRIS_G()

DISCRETE I/O INPUT_E() OUTPUT_C() OUTPUT_LOW() SET_TRIS_H()

INPUT_F() OUTPUT_D() OUTPUT_TOGGLE SET_TRIS_J()
()

INPUT_G() OUTPUT DRIVE() PORT_A_PULLUP SET_TRIS_K()
S()

INPUT_H() OUTPUT_E() PORT_B_PULLUP
S()

INPUT_J() OUTPUT_F() SET_TRIS_A()

PSP_INPUT_FULL() PSP_OVERFLOW()

PARALLEL
SLAVE 1/O

116

I’C 1/0

PROCESSOR
CONTROLS

BIT/BYTE
MANIPULATIO
N

STANDARD C
MATH

VOLTAGE REF
A/D
CONVERSION

STANDARD C
CHAR

PSP_OUTPUT_FULL()

I’C_ISR_STATE()
1’C_POLL()

CLEAR_INTERRUPT()
DISABLE_INTERRUPT
S()
ENABLE_INTERRUPT
S()

EXT_INT_EDGE()

Built-in-Functions

SETUP_PSP()

I°C_READ()
I’C_START()

I°C_STOP()
I’C_WRITE()

GOTO_ADDRESS()
INTERRUPT_ACTIVE(

)
JUMP_TO_ISR

RESET_CPU()
RESTART_CAUSE()

SETUP_OSCILLATOR()

LABEL_ADDRESS() SLEEP()

GETENV() READ_BANK() WRITE_BANK()
BIT_CLEAR() MAKES() _MUL() SHIFT_LEFT()
BIT_SET() MAKE16() ROTATE_LEFT() SHIFT_RIGHT()
BIT_TEST() MAKE32() ROTATE_RIGHT() SWAP()
ABS() COSH() LABS() SIN()
ACOS() DIV() LDEXP() SINH()
ASIN() EXP() LDIV() SQRT()
ATAN() FABS() LOG() TAN()
ATAN2() FLOOR() LOG10() TANH()
CEIL() FMOD() MODF()

cos() FREXP() POW()

SETUP_LOW_VOLT_DETECT()

SET_ADC_CHANNEL()

SETUP_VREF()

SETUP_ADC_PORTS()

SETUP_ADC() READ_ADC()

ATOF() ISLOWER(char) STRCMP() STRRCHR()
ATOI() ISPRINT(X) STRCOLL() STRSPN()
ATOI32() ISPUNCT(x) STRCPY() STRSTR()
ATOL() ISSPACE(char) STRCSPN() STRTOD()

117

C Compiler Reference Manual

TIMERS

ISALNUM() ISUPPER(char) STRLEN() STRTOK()
ISALPHA(char) ISXDIGIT(char) STRLWR() STRTOL()
ISAMOUNG() ITOA() STRNCAT() STRTOUL()
ISCNTRL(X) SPRINTF() STRNCMP() STRXFRM()
ISDIGIT(char) STRCAT() STRNCPY() TOLOWER()
ISGRAPH(X) STRCHR() STRPBRK() TOUPPER()
GET_TIMERO() SET_RTCC() SETUP_TIMER_O ()

GET_TIMER1()
GET_TIMER2()
GET_TIMER3()
GET_TIMERA4()
GET_TIMERS5()
GET_TIMERX()

SET_TIMERO()
SET_TIMER1()
SET_TIMER2()
SET_TIMER3()
SET_TIMER4()
SET_TIMERS5()

SETUP_TIMER_1 ()
SETUP_TIMER_2 ()
SETUP_TIMER_3 ()
SETUP_TIMER_4 ()
SETUP_TIMER_5 ()
SETUP_WDT ()

RESTART_WDT()

SETUP_COUNTERS()

CALLOC() MEMCMP() OFFSETOFBIT()
FREE() MEMCPY() REALLOC()
STANDARD C LONGJIMP() MEMMOVE() SETIMP()
MEMORY MALLOC() MEMSET()
MEMCHR() OFFSETOF()

CAPTURE/COM
PARE/PWM

SET_POWER_PWM_OVERRIDE()
SET_POWER_PWMX_DUTY()

SET_PWM1_DUTY()
SET_PWM2_DUTY()
SET_PWM3_DUTY()

SETUP_CCP2()
SETUP_CCP3()
SETUP_CCP4()
SETUP_CCP5()
SETUP_CCP6()

SET_PWM4_DUTY()
SET_PWM5_DUTY()
SETUP_CCP1()

SETUP_POWER_PWM()
SETUP_POWER_PWM_PINS()

ERASE_PROGRAM_EEPROM()
READ_CALIBRATION()
READ_EEPROM()
READ_EXTERNAL_MEMORY()
READ_PROGRAM_EEPROM()
READ_PROGRAM_MEMORY()

SETUP_EXTERNAL_MEMORY()
WRITE_CONFIGURATION_MEMORY/()
WRITE_EEPROM()
WRITE_EXTERNAL_MEMORY()
WRITE_PROGRAM_EEPROM()
WRITE_PROGRAM_MEMORY()

INTERNAL
EEPROM

BSEARCH() RAND() SRAND() QSORT()

STANDARD C
SPECIAL

118

Built-in-Functions

DELAY_CYCLES() DELAY_MS() DELAY_US()

DELAYS

ANALOG SETUP_COMPARATOR()
COMPARE

RTOS_AWAIT() RTOS_MSG_SEND() RTOS_TERMINATE()

RTOS_DISABLE() RTOS_OVERRUN() RTOS_WAIT()
RIS RTOS_ENABLE() RTOS_RUN() RTOS_YIELD()

RTOS_MSG_POLL() RTOS_SIGNAL()

RTOS_MSG_READ() RTOS_STATS()

STRXFRM() MEMCHR() MEMCMP()
STRCAT() STRCHR() STRCMP()
STRCOLL() STRCSPN() STRICMP()
STANDARD STRCOLL() STRCSPN() STRICMP()
STRING STRLEN() STRLWR() STRNCAT()
STRNCMP() STRNCPY() STRPBRK()
STRRCHR() STRSPN() STRSTR()

STANDARD STRING FUNCTION()

LCD_LOAD() LCD_SYMBOL() SETUP_LCD()

SETUP_OPAMP1() SETUP_OPAMP2() SLEEP_ULPWU()

119

C Compiler Reference Manual

ABS()

Syntax: value = abs(x)

Parameters: X is a signed 8, 16, or 32 bit int or a float
Returns: Same type as the parameter.

Function: Computes the absolute value of a number.
Availability: All devices

Requires: #include <stdlib.h>

Examples: signed int target,actual;

error = abs(target-actual);
Example None

Files:
Also See: labs()

ACOS()

See: SIN()

ASIN()

See: SIN()

ASSERT()

Built-in-Functions

Syntax: assert (condition);
Parameters: condition is any relational expression
Returns: Nothing
Function: This function tests the condition and if FALSE will generate an error message
on STDERR (by default the first USE RS232 in the program). The error
message will include the file and line of the assert(). No code is generated for
the assert() if you #define NODEBUG. In this way you may include asserts in
your code for testing and quickly eliminate them from the final program.
Availability: All devices
Requires: assert.h and #use rs232
Examples: assert(number_of_entries<TABLE_SIZE);
// If number_of_entries is >= TABLE_SIZE then
// the following is output at the RS232:
// Assertion failed, file myfile.c, line 56
Example None
Files:
Also See: #use rs232, RS232 1/0O overview
ATAN()
See: SIN()
ATAN2()
See: SIN()

121

C Compiler Reference Manual

ATOF()

. __|
Syntax: result = atof (string)
Parameters: string is a pointer to a null terminated string of characters.
Returns: Result is a 32 bit floating point number.

Function: Converts the string passed to the function into a floating point representation.
If the result cannot be represented, the behavior is undefined.

Availability: All devices

Requires: #include <stdlib.h>
Examples: char string [10];
float x;

strcpy (string, '123.456");
x = atof(string);
// X is now 123.456

Example ex_tank.c
Files:
Also See: atoi(), atol(), atoi32(), printf()

122

Built-in-Functions

ATOI(), ATOL(), ATOI32()

Syntax: ivalue = atoi(string)
or

Ivalue = atol(string)
or

i32value = atoi32(string)
Parameters: string is a pointer to a null terminated string of characters.

Returns: ivalue is an 8 bit int.
Ivalue is a 16 bit int.
i32value is a 32 bit int.

Function: Converts the string pointed to by ptr to int representation. Accepts both
decimal and hexadecimal argument. If the result cannot be represented, the
behavior is undefined.

Availability: All devices

Requires: #include <stdlib.h>
Examples: char string[10];
int x;

strcpy(string, 123");
x = atoi(string);
// x is now 123

Example input.c
Files:

Also See: printf()

ATOI32()
ATOL()

See ATOI()

123

C Compiler Reference Manual

BIT_CLEAR()

. __|
Syntax: bit_clear(var, bit)

Parameters: var may be a 8,16 or 32 bit variable (any Ivalue) bit is a number 0-31
representing a bit number, 0 is the least significant bit.

Returns: undefined

Function: Simply clears the specified bit (0-7, 0-15 or 0-31) in the given variable. The
least significant bit is 0. This function is the same as: var &= ~(1<<bit);

Availability: All devices

Requires: Nothing
Examples: int x;
X=5;

bit_clear(x,2);
// x is now 1

bit_clear(*11,7); // A crude way to disable ints

Example ex_patg.c
Files:
Also See: bit_set(), bit_test()

124

BIT_SET()

Built-in-Functions

Syntax:

Parameters:

Returns:

Function:

Availability:

Requires:

Examples:

Example
Files:

Also See:

bit_set(var, bit)

var may be a 8,16 or 32 bit variable (any Ivalue)
bit is a number 0-31 representing a bit number, 0 is the least significant bit.

Undefined

Sets the specified bit (0-7, 0-15 or 0-31) in the given variable. The least
significant bit is 0. This function is the same as: var |= (1<<bit);

All devices
Nothing
int x;
X=5;

bit_set(x,3);
// x is now 13

bit_set(*6,1); // A crude way to set pin Bl high

ex_patg.c

bit_clear(), bit_test()

125

C Compiler Reference Manual

BIT_TEST()

. __|
Syntax: value = bit_test (var, bit)

Parameters: var may be a 8,16 or 32 bit variable (any Ivalue) bit is a number 0-31
representing a bit number, 0 is the least significant bit.

Returns: Oorl
Function: Tests the specified bit (0-7,0-15 or 0-31) in the given variable. The least
significant bit is 0. This function is much more efficient than, but otherwise the

same as: ((var & (1<<bit)) != 0)

Availability: All devices

Requires: Nothing
Examples: if(bit_test(x,3) || 'bit_test (x,1)){
//either bit 3 is 1 or bit 1 is 0O
}

if(datal=0)

for(i=31;!bit_test(data, i);i--) ;
// 1 now has the most significant bit in data
// that is set to a 1

Example ex_patg.c
Files:
Also See: bit_clear(), bit_set()

126

BSEARCH()

Built-in-Functions

Syntax:

Parameters:

Returns:

Function:

Availability:

Requires:

Examples:

Example
Files:

Also See:

ip = bsearch
(&key, base, num, width, compare)

key: Object to search for

base: Pointer to array of search data

num: Number of elements in search data

width: Width of elements in search data

compare: Function that compares two elements in search data

bsearch returns a pointer to an occurrence of key in the array pointed to by
base. If key is not found, the function returns NULL. If the array is not in order
or contains duplicate records with identical keys, the result is unpredictable.

Performs a binary search of a sorted array
All devices
#include <stdlib.h>

int nums[5]={1,2,3,4,5};
int compar(const void *argl,const void *arg2?);

void main() {
int *ip, key;
key = 3;
ip = bsearch(&key, nums, 5, sizeof(int), compar);

}

int compar(const void *argl,const void *arg2) {
if (* (int *) argl < (* (int *) arg2) return -1
else if (* (int *) argl == (* (int *) arg2) return O
else return 1;

}

None

gsort()

127

C Compiler Reference Manual

CALLOC()

. __|
Syntax: ptr=calloc(nmem, size)

Parameters: nmem is an integer representing the number of member objects and size the
number of bytes to be allocated or each one of them.

Returns: A pointer to the allocated memory, if any. Returns null otherwise.

Function: The calloc function allocates space for an array of nmem objects whose size is
specified by size. The space is initialized to all bits zero.

Availability: All devices

Requires: STDLIBM.H must be included

Examples: int * iptr;
iptr=calloc(5,10);

// iptr will point to a block of memory of
// 50 bytes all initialized to O.

Example None
Files:
Also See: realloc(), free(), malloc()
CEIL()
. __|
Syntax: result = ceil (value)
Parameters: value is a float
Returns: A float
Function: Computes the smallest integral value greater than the argument. CEIL(12.67)
is 13.00.
Availability: All devices
Requires: #include <math.h>
Examples: // Calculate cost based on weight rounded

// up to the next pound

cost = ceil(weight) * DollarsPerPound;

Example None
Files:
Also See: floor

128

Built-in-Functions

CLEAR_INTERRUPT()

Syntax: clear_interrupt(level)
Parameters: level - a constant defined in the devices.h file
Returns: undefined
Function: Clears the interrupt flag for the given level. This function is designed for use
with a specific interrupt, thus eliminating the GLOBAL level as a possible
parameter. Some chips that have interrupt on change for individual pins allow
the pin to be specified like INT_RA1.
Availability: All devices
Requires: Nothing
Examples: clear_interrupt(int_timerl);
Example None
Files:
Also See: enable_interrupts(), #INT, Interrupts overview
COS()
See: SIN()
COSH()
See: SIN()

129

C Compiler Reference Manual

DELAY_CYCLES()

. __|]
Syntax: delay_cycles (count)
Parameters: count - a constant 1-255
Returns: undefined

Function: Creates code to perform a delay of the specified number of instruction clocks
(1-255). An instruction clock is equal to four oscillator clocks.

The delay time may be longer than requested if an interrupt is serviced during
the delay. The time spent in the ISR does not count toward the delay time.

Availability: All devices
Requires: Nothing

Examples: delay_cycles(1); // Same as a NOP

delay_cycles(25); // At 20 mhz a 5us delay

Example ex_cust.c
Files:
Also See: delay us(), delay ms()

130

DELAY_MS()

Built-in-Functions

Syntax:

Parameters:

Returns:

Function:

Availability:

Requires:

Examples:

Example
Files:

Also See:

delay_ms (time)
time - a variable 0-65535(int16) or a constant 0-65535
Note: Previous compiler versions ignored the upper byte of an int16, now the

upper byte affects the
time.

undefined

This function will create code to perform a delay of the specified length. Time
is specified in milliseconds. This function works by executing a precise number
of instructions to cause the requested delay. It does not use any timers. If
interrupts are enabled the time spent in an interrupt routine is not counted
toward the time.

The delay time may be longer than requested if an interrupt is serviced during
the delay. The time spent in the ISR does not count toward the delay time.

All devices
#use delay

#use delay (clock=20000000)

delay_ms(2);

void delay_seconds(int n) {
for (;n'=0; n- -)

delay_ms(1000);
}

ex_sqw.c

delay_us(), delay_cycles(), #use delay

131

C Compiler Reference Manual

DELAY_US()

. __|
Syntax: delay_us (time)
Parameters: time - a variable 0-65535(int16) or a constant 0-65535

Note: Previous compiler versions ignored the upper byte of an int16, now the
upper byte affects the

time.
Returns: undefined
Function: Creates code to perform a delay of the specified length. Time is specified in

microseconds. Shorter delays will be INLINE code and longer delays and
variable delays are calls to a function. This function works by executing a
precise number of instructions to cause the requested delay. It does not use
any timers. If interrupts are enabled the time spent in an interrupt routine is not
counted toward the time.

The delay time may be longer than requested if an interrupt is serviced during
the delay. The time spent in the ISR does not count toward the delay time.

Availability: All devices

Requires: #use delay
Examples: #use delay(clock=20000000)
do {

output_high(PIN_BO);
delay_us(duty);
output_low(PIN_BO);
delay_us(period-duty);
3} while(TRUE);

Example ex_sqw.c
Files:
Also See: delay ms(), delay cycles(), #use delay

132

Built-in-Functions

DISABLE_INTERRUPTS()

Syntax:

Parameters:

Returns:

Function:

Availability:

Requires:

Examples:

Example
Files:
Also See:

disable_interrupts (level)
level - a constant defined in the devices .h file
undefined

Disables the interrupt at the given level. The GLOBAL level will not disable any
of the specific interrupts but will prevent any of the specific interrupts,
previously enabled to be active. Valid specific levels are the same as are used
in #INT_xxx and are listed in the devices .h file. GLOBAL will also disable the
peripheral interrupts on devices that have it. Note that it is not necessary to
disable interrupts inside an interrupt service routine since interrupts are
automatically disabled. Some chips that have interrupt on change for individual
pins allow the pin to be specified like INT_RA1.

Device with interrupts (PCM and PCH)
Should have a #int_xxxx, constants are defined in the devices .h file.

disable_interrupts(GLOBAL); // all interrupts OFF
disable_interrupts(INT_RDA); // RS232 OFF

enable_interrupts(ADC_DONE);
enable_interrupts(RB_CHANGE);
// these enable the interrupts
// but since the GLOBAL is disabled they
// are not activated until the following
// statement:
enable_interrupts(GLOBAL);

None

enable interrupts(), #int xxxX, Interrupts overview

133

C Compiler Reference Manual

DIV(), LDIV()

Syntax: idiv=div(num, denom)
Idiv =Idiv(Inum, Idenom)
idiv=Idiv(Inum, Idenom)

Parameters: num and denom are signed integers.
num is the numerator and denom is the denominator.
Inum and Idenom are signed longs.
Inum is the numerator and Idenom is the denominator.

Returns: idiv is an object of type div_t and lidiv is an object of type Idiv_t. The div
function returns a structure of type div_t, comprising of both the quotient and
the remainder. The Idiv function returns a structure of type Idiv_t, comprising of
both the quotient and the remainder.

Function: The div and Idiv function computes the quotient and remainder of the division
of the numerator by the denominator. If the division is inexact, the resulting
quotient is the integer or long of lesser magnitude that is the nearest to the
algebraic quotient. If the result cannot be represented, the behavior is
undefined; otherwise quot*denom(ldenom)+rem shall equal num(Inum).

Availability: All devices.
Requires: #include <STDLIB.H>

Examples: div_t idiv;
Idiv_t lidiv;
idiv=div(3,2);
// idiv will contain quot=1 and rem=1

lidiv=1div(300,250);
//1idiv will contain quot=1 and rem=50

Example None
Files:
Also See: None

134

Built-in-Functions

ENABLE_INTERRUPTS()

Syntax: enable_interrupts (level)

Parameters: level - a constant defined in the devices .h file

Returns: undefined

Function: Enables the interrupt at the given level. An interrupt procedure should have

been defined for the indicated interrupt. The GLOBAL level will not enable any
of the specific interrupts but will allow any of the specific interrupts previously
enabled to become active. Some chips that have interrupt on change for
individual pins allow the pin to be specified like INT_RA1.

Availability: Device with interrupts (PCM and PCH)
Requires: Should have a #int_xxxx, Constants are defined in the devices .h file.

Examples: enable_interrupts(GLOBAL);
enable_interrupts(INT_TIMERO);
enable_interrupts(INT_TIMER1);

Example None
Files:
Also See: disable enterrupts(), #int_xxxx, Interrupts overview

135

C Compiler Reference Manual

ERASE_PROGRAM_EEPROM()
. __|
Syntax: erase_program_eeprom (address);

Parameters: address is 16 bits on PCM parts and 32 bits on PCH parts. The least
significant bits may be ignored.

Returns: undefined
Function: Erases FLASH_ERASE_SIZE bytes to OxFFFF in program memory.
FLASH_ERASE_SIZE varies depending on the part. For example, if it is 64

bytes then the least significant 6 bits of address is ignored.

See WRITE_PROGRAM_MEMORY for more information on program memory

access.

Availability: Only devices that allow writes to program memory.

Requires: Nothing

Examples: for(i=0x1000; i<=0x1fff; i+=getenv(""FLASH_ERASE_SIZE"))
erase_program_memory(i);

Example None

Files:

Also See: WRITE PROGRAM_EEPROM(), WRITE_ PROGRAM_MEMORY(), Program

eeprom overview

136

EXP()

Built-in-Functions

Syntax:

Parameters:

Returns:

Function:

Availability:

Requires:

Examples:

Example
Files:

Also See:

result = exp (value)
value is a float
A float

Computes the exponential function of the argument. This is e to the power of
value where e is the base of natural logarithms. exp(1) is 2.7182818.

Note on error handling:

If "errno.h" is included then the domain and range errors are stored in the errno
variable. The user can check the errno to see if an error has occurred and print
the error using the perror function.

Range error occur in the following case:
e exp: when the argument is too large

All devices

math.h must be included

// Calculate x to the power of y
x_power_y = exp(y * log(x));
None

pow(), log(), log10()

137

C Compiler Reference Manual

EXT_INT_EDGE()

. __|
Syntax: ext_int_edge (source, edge)

Parameters: source is a constant 0,1 or 2 for the PIC18XXX and O otherwise source is
optional and defaults to 0 edge is a constant H_TO_L or L_TO_H representing
"high to low" and "low to high"

Returns: undefined

Function: Determines when the external interrupt is acted upon. The edge may be
L TO_Hor H_TO_L to specify the rising or falling edge.

Availability: Only devices with interrupts (PCM and PCH)

Requires: Constants are in the devices .h file

Examples: ext_int_edge(2, L_TO H); // Set up PIC18 EXT2
ext_int_edge(H_TO_L); // Sets up EXT

Example ex_wakup.c

Files:

Also See: #INT_EXT, enable_interrupts(), disable_interrupts(), Interrupts overview
FABS()
. __|

Syntax: result=fabs (value)

Parameters: value is a float

Returns: result is a float

Function: The fabs function computes the absolute value of a float

Availability: All devices.

Requires: MATH.H must be included

Examples: float result;

result=fabs(-40.0)
// result is 40.0

Example None

Files:

Also See: abs(), labs()

138

FGETC()

Built-in-Functions

See GETC

FGETS()

See GETS

FLOOR()

Syntax:

Parameters:

Returns:

Function:

Availability:

Requires:

Examples:

Example
Files:
Also See:

result = floor (value)
value is a float
result is a float

Computes the greatest integral value not greater than the argument. Floor
(12.67) is 12.00.

All devices.

MATH.H must be included

// Find the fractional part of a value

frac = value - floor(value);

None

ceil()

139

C Compiler Reference Manual

FMOD()

. __|

Syntax: result= fmod (vall, val2)

Parameters: vall and val2 are floats

Returns: result is a float

Function: Returns the floating point remainder of vall/val2. Returns the value vall -
i*val2 for some integer “i” such that, if val2 is nonzero, the result has the same
sign as vall and magnitude less than the magnitude of val2.

Availability: All devices.

Requires: MATH.H must be included

Examples: float result;
result=fmod(3,2);
// result is 1

Example None
Files:

Also See: None

FPRINTF()

See PRINTF

FPUTC()

See PUTC

FPUTS()

Built-in-Functions

See PUTS

FREE()

Syntax:

Parameters:

Returns:

Function:

Availability:

Requires:

Examples:

Example
Files:
Also See:

free(ptr)

ptr is a pointer earlier returned by the calloc, malloc or realloc.

No value

The free function causes the space pointed to by the ptr to be deallocated, that
is made available for further allocation. If ptr is a null pointer, no action occurs.
If the ptr does not match a pointer earlier returned by the calloc, malloc or
realloc, or if the space has been deallocated by a call to free or realloc function,
the behavior is undefined.

All devices.

STDLIBM.H must be included

int * iptr;

iptr=malloc(10);

free(iptr)

// iptr will be deallocated

None

realloc(), malloc(), calloc()

141

C Compiler Reference Manual

FREXP()
. __|
Syntax: result=frexp (value, & exp);

Parameters: value is float
exp is a signed int.

Returns: result is a float

Function: The frexp function breaks a floating point number into a normalized fraction
and an integral power of 2. It stores the integer in the signed int object exp.
The result is in the interval [1/2,1) or zero, such that value is result times 2
raised to power exp. If value is zero then both parts are zero.

Availability: All devices.
Requires: MATH.H must be included

Examples: float result;
signed int exp;
result=frexp(.5,&exp);
// result is .5 and exp is O

Example None
Files:
Also See: Idexp(), exp(), log(), 10g10(), modf()

142

Built-in-Functions

GET_TIMERX()

Syntax: value=get_timer0() Same as: value=get_rtcc()
value=get_timerl()
value=get_timer2()
value=get_timer3()
value=get_timer4()
value=get_timer5()
Parameters: None

Returns: Timers 1, 3, and 5 return a 16 bit int.
Timers 2 and 4 return an 8 bit int.
Timer 0 (AKA RTCC) returns a 8 bit int except on the PIC18XXX where it
returns a 16 bit int.

Function: Returns the count value of a real time clock/counter. RTCC and Timer0 are
the same. All timers count up. When a timer reaches the maximum value it
will flip over to 0 and continue counting (254, 255, 0, 1, 2...).

Availability: Timer 0 - All devices
Timers 1 & 2 - Most but not all PCM devices
Timer 3 - Only PIC18XXX
Timer 4 - Some PCH devices
Timer 5 - Only PIC18XX31

Requires: Nothing
Examples: set_timer0(0);
while (get_timer0() < 200) ;
Example ex_stwt.c
Files:
Also See: set_timerx(), setup_timerx(), Timer0 overview, Timerl overview, Timer2

overview, Timer5 overview

143

C Compiler Reference Manual

GET_TRISX()

Syntax: value = get_tris_A();
value = get_tris_B();
value = get_tris_C();
value = get_tris_D();
Parameters: None
Returns: Byte, the value of TRIS register
Function: Returns the value of the TRIS register of port A, B, C or D.

Availability: All devices.

Requires: Nothing

Examples: tris_a = GET_TRIS_AQ;
Example None

Files:

Also See: input(), output low(), output_high()

144

Built-in-Functions

GETC(), GETCH(), GETCHAR(), FGETC()

Syntax: value = getc()
value = fgetc(stream)
value=getch()
value=getchar()

Parameters: stream is a stream identifier (a constant byte)
Returns: An 8 bit character

Function: This function waits for a character to come in over the RS232 RCV pin and
returns the character. If you do not want to hang forever waiting for an
incoming character use kbhit() to test for a character available. If a built-in
USART is used the hardware can buffer 3 characters otherwise GETC must be
active while the character is being received by the PIC®.

If fgetc() is used then the specified stream is used where getc() defaults to
STDIN (the last USE RS232).

Availability: All devices

Requires: #use rs232
Examples: printf('Continue (Y,N)?");
do {

answer=getch();
Iwhile(answer!="Y" && answer!="N");

#use rs232(baud=9600,xmit=pin_c6,
rcv=pin_c7,stream=HOSTPC)
#use rs232(baud=1200,xmit=pin_bl,
rcv=pin_b0, stream=GPS)
#use rs232(baud=9600,xmit=pin_b3,
stream=DEBUG)

while(TRUE) {
c=fgetc(GPS);

fputc(c,HOSTPC) ;
if(c==13)
fprintf(DEBUG, ""Got a CR\r\n");
Example ex_stwt.c
Files:
Also See: putc(), kbhit(), printf(), #use rs232, input.c, RS232 I/O overview

145

C Compiler Reference Manual

GETCHAR()

See GETC

GETENV()

Syntax: value = getenv (cstring);
Parameters:
Returns:
Function:

cstring is a constant string with a recognized keyword
A constant number, a constant string or O
This function obtains information about the execution environment. The

following are recognized keywords. This function returns a constant 0 if the

keyword is not understood.

FUSE_SET
FUSE_VALID
ID

DEVICE

VERSION
VERSION_STRING
PROGRAM_MEMORY

STACK
DATA_EEPROM

READ_PROGRAM
PIN:pb
ADC_CHANNELS
ADC_RESOLUTION

ICD

SPI
USB

CAN
12C_SLAVE
12C_MASTER

PSP

fffff Returns 1 if fuse fffff is enabled
fffff Returns 1 if fuse fffff is valid
Returns the device ID (set by #ID)

Returns the device name string (like
"PIC16C74")

Returns the compiler version as a float
Returns the compiler version as a string

Returns the size of memory for code (in
words)

Returns the stack size

Returns the number of bytes of data
EEPROM

Returns a 1 if the code memory can be read
Returns a 1 if bit b on port p is on this part
Returns the number of A/D channels

Returns the number of bits returned from
READ_ADC()

Returns a 1 if this is being compiled
fora ICD

Returns a 1 if the device has SPI

Returns a 1 if the device has USB

Returns a 1 if the device has CAN

Returns a 1 if the device has 12C slave H/W

Returns a 1 if the device has I12C
master H/W

Returns a 1 if the device has PSP

Built-in-Functions

COMP Returns a 1 if the device has a comparator
VREF Returns a 1 if the device has a

voltage reference
LCD Returns a 1 if the device has direct

LCD H/W
UART Returns the number of H/W UARTs
CCPx Returns a 1 if the device has CCP number x
TIMERX Returns a 1 if the device has TIMER

FLASH_WRITE_SIZE
FLASH_ERASE_SIZE
BYTES_PER_ADDRESS

BITS_PER_INSTRUCTION
RAM

SFR:name

BIT:name

number x

Smallest number of bytes that can be
written to FLASH

Smallest number of bytes that can be
erased in FLASH

Returns the number of bytes at an address
location

Returns the size of an instruction in bits
Returns the number of RAM bytes available
for your device.

Returns the address of the specified special
file register. The output format can be used
with the preprocessor command #byte.
name must match SFR denomination of
your target PIC (example: STATUS,
INTCON, TXREG, RCREG, etc)

Returns the bit address of the specified
special file register bit. The output format
will be in “address:bit”, which can be used
with the preprocessor command #byte.
name must match SFR.bit denomination of
your target PIC (example: C, Z, GIE,
TMROIF, etc)

Availability: All devices

Requires: Nothing

#1F getenv("'VERSION")<3.050
#ERROR Compiler version too old
#ENDIF

Examples:

for(i=0;i<getenv("'DATA_EEPROM™); i++)
write_eeprom(i,0);

#IF getenv(*'FUSE_VAL 1D :BROWNOUT")
#FUSE BROWNOUT

147

C Compiler Reference Manual

#ENDIF

#byte status_reg=GETENV(*“SFR:STATUS™)
#bit carry_flag=GETENV(“BIT:C”)

Example None
Files:
Also See: None

GETS(), FGETS()

. __|
Syntax: gets (string)
value = fgets (string, stream)

Parameters: string is a pointer to an array of characters. Stream is a stream identifier (a
constant byte)

Returns: undefined

Function: Reads characters (using GETC()) into the string until a RETURN (value 13) is
encountered. The string is terminated with a 0. Note that INPUT.C has a more
versatile GET_STRING function.

If fgets() is used then the specified stream is used where gets() defaults to
STDIN (the last USE RS232).

Availability: All devices

Requires: #use rs232

Examples: char string[30];
printf('Password: ™);
gets(string);

if(strcmp(string, password))
printf("'OK"™);

Example None
Files:
Also See: getc(), get_string in input.c

148

Built-in-Functions

GOTO_ADDRESS()

. __|

Syntax: goto_address(location);

Parameters: location is a ROM address, 16 or 32 bit int.

Returns: Nothing

Function: This function jumps to the address specified by location. Jumps outside of the
current function should be done only with great caution. This is not a normally
used function except in very special situations.

Availability: All devices

Requires: Nothing

Examples: #define LOAD_REQUEST PIN_B1
#define LOADER 0x1f00

iF(input(LOAD_REQUEST))
goto_address(LOADER) ;

Example setjmp.h

Files:

Also See: label_address()

149

C Compiler Reference Manual

I2C_ISR_STATE()

Syntax: state = i’c_isr_state();

Parameters: None

Returns: state is an 8 bit int
0 - Address match received with R/W bit clear
1-0x7F - Master has written data; i’c_read() will immediately return the data
0x80 - Address match received with R/W bit set; respond with i’c_write()
0x81-0xFF - Transmission completed and acknowledged; respond with
i’c_write()

Function: Returns the state of I’°C communications in I°C slave mode after an SSP
interrupt. The return value increments with each byte received or sent.

Availability: Devices with i’c hardware
Requires: #use i’c
Examples: #INT_SSP

void i2c_isr(Q {
state = i2c_isr_state();
if(state >= 0x80)
i2c_write(send_buffer[state - 0x80]);
else if(state > 0)
rcv_buffer[state - 1] = i2c_read():

T
Example None
Files:
Also See: i?c_write, i*c_read, #usei’c.

150

12C_POLL()

Built-in-Functions

Syntax:

Parameters:
Returns:

Function:

Availability:
Requires:

Examples:

Example
Files:

Also See:

i’c_poll()
i’c_poll(stream)

stream (optional)- specify the stream defined in #USE I°C
1 (TRUE) or 0 (FALSE)

The I°C_POLL() function should only be used when the built-in SSP is used.
This function returns TRUE if the hardware has a received byte in the buffer.
When a TRUE is returned, a call to I°C_READ() will immediately return the byte
that was received.

Devices with built in I°C

#use i’c

i2c_start(); // Start condition
i2c_write(0Oxcl); // Device address/Read
count=0;

while(count!=4) {
while(1i2c_poll(Q)) ;
buffer[count++]= i12c_read(); //Read Next

T
i2c_stop(); // Stop condition

ex_slave.c

i?c_start, i’c_write, i’c_stop ,I?C overview

151

C Compiler Reference Manual

12C_READ()

Syntax: data = i’c_read();
data = i’c_read(stream);
data = i’c_read(stream, ack);

Parameters: ack -Optional, defaults to 1.
0 indicates do not ack.
1 indicates to ack.
stream - specify the stream defined in #USE I°C

Returns: data - 8 bit int

Function: Reads a byte over the I°C interface. In master mode this function will generate
the clock and in slave mode it will wait for the clock. There is no timeout for the
slave, use I°C_POLL to prevent a lockup. Use RESTART WDT in the #USE
I°C to strobe the watch-dog timer in the slave mode while waiting.

Availability: Devices with built in I°C
Requires: #use i’c

Examples: i2c_start();
i2c_write(0Oxal);
datal = i12c_read();
data2 = i12c_read();
i2c_stop(Q);

Example ex_extee.c with 2416.c
Files:
Also See: i?c_start, i’c_write, i’c_stop, ic_poll, 1*C overview

152

Built-in-Functions

12C_SlaveAddr()

Syntax:

Parameters:

Returns:

Function:

Availability:

Requires:

Examples:

Example
Files:

Also See:

12C_SlaveAdr(int8 addr);
12C_SlaveAddr(stream, int8 addr);

Addr = 8b long deveice address

Stream = specifies which 12C stream declared in #use 12C statement is used
(optional)

Nothing

This function sets the address for the 12C interface in slave mode.

Devices with built in 12C

#use i’c

i2c_slaveaddr(0x08);
i2c_slaveaddr(i2cstreaml, 0x08);

ex_slave.c

i?c_start, ’c_write, ic_stop, ic_poll, I’C overview

153

C Compiler Reference Manual

12C_START()

Syntax: i’c_start()
i’c_start(stream)
i’c_start(stream, restart)

Parameters: stream: specify the stream defined in #USE I°C
restart: 2 — new restart is forced instead of start
1 — normal start is performed
0 (or not specified) — restart is done only if the compiler last uncounted a
I’°C_START and no I°C_STOP

Returns: undefined

Function: Issues a start condition when in the I°C master mode. After the start condition
the clock is held low until I°C_WRITE() is called. If another I°C_start is called
in the same function before an i’c_stop is called then a special restart condition
is issued. Note that specific I°C protocol depends on the slave device. The
I’C_START function will now accept an optional parameter. If 1 the compiler
assumes the bus is in the stopp'ed state. If 2 the compiler treats this
I’°C_START as a restart. If no parameter is passed a 2 is used only if the
compiler compiled a I’°C_START last with no I2C_STOP since.

Availability: All devices.

Requires: #use i’c

Examples: i2c_start();
i2c_write(0xa0); // Device address
i2c_write(address); // Data to device
i2c_start(); // Restart
i2c_write(0Oxal); // to change data direction
data=i2c_read(0); // Now read from slave

i2c_stop(Q;

Example ex_extee.c with 2416.c
Files:
Also See: iZc_write, i*c_stop, i2c_poll, I’C overview

154

Built-in-Functions

12C_STOP()

Syntax: i’c_stop()
i’c_stop(stream)

Parameters: stream: (optional) specify stream defined in #USE I°C

Returns: undefined

Function: Issues a stop condition when in the I°C master mode.

Availability: All devices.

Requires: #use i’c

Examples: i2c_start(Q); // Start condition
i2c_write(0xa0); // Device address
i2c_write(5); // Device command
i2c_write(12); // Device data
i2c_stop(); // Stop condition

Example ex_extee.c with 2416.c

Files:

Also See: i?c_start, iéc_write, i’c_read, c_poll, #use i’c , ’C overview

155

C Compiler Reference Manual

12C_WRITE()

Syntax: i’c_write (data)
i’c_write (stream, data)

Parameters: data is an 8 bit int
stream - specify the stream defined in #USE I°C

Returns: This function returns the ACK Bit.
0 means ACK, 1 means NO ACK, 2 means there was a collision if in
Multi_Master Mode.

Function: Sends a single byte over the I°C interface. In master mode this function will
generate a clock with the data and in slave mode it will wait for the clock from
the master. No automatic timeout is provided in this function. This function
returns the ACK bit. The LSB of the first write after a start determines the
direction of data transfer (0 is master to slave). Note that specific I°C protocol
depends on the slave device.

Availability: All devices.
Requires: #use i’c

Examples: long cmd;

i2c_start(Q); // Start condition
i2c_write(0xa0);// Device address
i2c_write(cmd);// Low byte of command
i2c_write(cmd>>8);// High byte of command

i2c_stop(Q); // Stop condition
Example ex_extee.c with 2416.c
Files:
Also See: iZc_start(), ifc_stop, i2c_read, i%c_poll, #use i, [2C overview

156

Built-in-Functions

INPUT()

. __|
Syntax: value = input (pin)

Parameters: Pin to read. Pins are defined in the devices .h file. The actual value is a bit
address. For example, port a (byte 5) bit 3 would have a value of 5*8+3 or 43.
This is defined as follows: #define PIN_A3 43.
The PIN could also be a variable. The variable must have a value equal to one
of the constants (like PIN_A1) to work properly. The tristate register is updated
unless the FAST_|0 mode is set on port A. note that doing 1/0 with a variable
instead of a constant will take much longer time.

Returns: 0 (or FALSE) if the pin is low,
1 (or TRUE) if the pin is high

Function: This function returns the state of the indicated pin. The method of I/O is
dependent on the last USE *_10 directive. By default with standard I/O before
the input is done the data direction is set to input.

Availability: All devices.
Requires: Pin constants are defined in the devices .h file

Examples: while ('input(PIN_B1));
// waits for Bl to go high

if(input(PIN_AO))
printf(""A0 is now high\r\n™);

intl6i=PIN_B1;
while(1i);
//waits for Bl to go high

Example ex_pulse.c
Files:
Also See: input_x(), output_low(), output_high(), #use xxxx_io

157

C Compiler Reference Manual

INPUT_STATE()

. __|
Syntax: value = input_state(pin)

Parameters: pin to read. Pins are defined in the devices .h file. The actual value is a bit
address. For example, port A (byte 5) bit 3 would have a value of 5*8+3 or 43.
This is defined as follows: #define PIN_A3 43.

Returns: Bit specifying whether pin is high or low. A 1 indicates the pin is high and a 0
indicates it is low.

Function: This function reads the level state of a pin without changing the direction of the
pin as INPUT() does.

Availability: All devices.

Requires: Nothing
Examples: level = input_state(pin_A3);
printf("level: %d",level);
Example None
Files:
Also See: input(), set_tris_x(), output_low(), output_high()
INPUT_x()
I
Syntax: value = input_a() value = input_b() value = input_c()
value = input_d() value = input_e() value = input_f()
value = input_g() value = input_h() value = input_j()
value = input_k()
Parameters: None
Returns: An 8 bit int representing the port input data.
Function: Inputs an entire byte from a port. The direction register is changed in

accordance with the last specified #USE *_|O directive. By default with
standard 1/O before the input is done the data direction is set to input.

Availability: All devices.

Requires: Nothing

Examples: data = input_bQ;

Example

Files:

Also See: input(), output x(), #USE xxxx_IO

158

Built-in-Functions

INTERRUPT_ACTIVE()

Syntax:

Parameters:

Returns:

Function:

Availability:

Requires:

Examples:

Example
Files:

Also See:

interrupt_active (interrupt)
Interrupt — constant specifying the interrupt
Boolean value

The function checks the interrupt flag of the specified interrupt and returns true
in case the flag is set.

Device with interrupts (PCM and PCH)
Should have a #int_xxxx, Constants are defined in the devices .h file.

interrupt_active(INT_TIMERO);
interrupt_active(INT_TIMER1);

None

disable enterrupts(), #INT, Interrupts overview

159

C Compiler Reference Manual

ISALNUM(char), ISALPHA(char), ISDIGIT(char), ISLOWER(char),
ISSPACE(char), ISUPPER(char), ISXDIGIT(char), ISCNTRL(x), ISGRAPH(x),
ISPRINT(x), ISPUNCT(x)

Syntax:

Parameters:

Returns:

Function:

Availability:

Requires:

Examples:

Example
Files:
Also See:

160

value = isalnum(datac)

value = isdigit(datac)

value = islower(datac)

value = isspace(datac)

value = isupper(datac)

value = isxdigit(datac)

iscntrl(x) X is less than a space

isgraph(x) X is greater than a space

isprint(x) X is greater than or equal to a space

ispunct(x) X is greater than a space and not a letter or number

datac is a 8 bit character

0 (or FALSE) if datac dose not match the criteria, 1 (or TRUE) if datac does
match the criteria.

Tests a character to see if it meets specific criteria as follows:

isalnum(x) Xis 0..9,'A".."Z", or'a'..'z'
isalpha(x) Xis'A'..'Z'or'a'..'z
isdigit(x) Xis'0'..'9'
islower(x) Xis'a'..'z'
isupper(x) Xis'A'..'Z
isspace(x) X is a space
isxdigit(x) Xis'0..'9', 'A"..'F', or 'a’..'f
All devices.
ctype.h

char i1d[20];

if(isalpha(id[0])) {
valid_id=TRUE;
for(i=1;i<strlen(id);i++)
valid_id=valid_id&& isalnum(id[i]);
} else
valid_id=FALSE;

ex_str.c

isamounq()

Built-in-Functions

ISAMOUNG()
. __|
Syntax: result =isamoung (value, cstring)
Parameters: value is a character
cstring is a constant string
Returns: 0 (or FALSE) if value is not in cstring
1 (or TRUE) if value is in cstring
Function: Returns TRUE if a character is one of the characters in a constant string.
Availability: All devices.
Requires: Nothing
Examples: char x="x";
if(isamoung(X,
''0123456789ABCDEFGH I JKLMNOPQRSTUVWXYZ™))
printf(""The character is valid");
Example Files: ctype.h
Also See: isalnum(), isalpha(), isdigit(), isspace(), islower(), isupper(), isxdigit()
ITOA()
. __|
Syntax: string = itoa(i32value, i8base, string)
Parameters: i32value is a 32 bit int
i8base is a 8 bit int
string is a pointer to a null terminated string of characters
Returns: string is a pointer to a null terminated string of characters
Function: Converts the signed int32 to a string according to the provided base and
returns the converted value if any. If the result cannot be represented, the
function will return 0.
Availability: All devices
Requires: #inlcude<stdlib.h>
Examples: int32 x=1234;
char string[5];
itoa(x,10, string);
I/ string is now “1234"
Example Files: None
Also See: None

161

C Compiler Reference Manual

JUMP_TO_ISR

. __|

Syntax: jump_to_isr (address)

Parameters: address is a valid program memory address

Returns: No value

Function: The jump_to_isr function is used when the location of the interrupt service
routines are not at the default location in program memory. When an interrupt
occurs, program execution will jump to the default location and then jump to the
specified address.

Availability: All devices

Requires: Nothing

Examples: int_global
void global_isr(void) {
Jump_to_isr(isr_address);
}

Example None
Files:

Also See: #build()

162

KBHIT()

Built-in-Functions

Syntax:

Parameters:

Returns:

Function:

Availability:

Requires:

Examples:

Example
Files:
Also See:

value = kbhit()
value = kbhit (stream)

stream is the stream id assigned to an available RS232 port. If the stream parameter
is not included, the function uses the primary stream used by getc().

0 (or FALSE) if getc() will need to wait for a character to come in, 1 (or TRUE) if a
character is ready for getc()

If the RS232 is under software control this function returns TRUE if the start bit of a
character is being sent on the RS232 RCV pin. If the RS232 is hardware this function
returns TRUE if a character has been received and is waiting in the hardware buffer
for getc() to read. This function may be used to poll for data without stopping and
waiting for the data to appear. Note that in the case of software RS232 this function
should be called at least 10 times the bit rate to ensure incoming data is not lost.

All devices.
#use rs232

char timed_getc() {
long timeout;

timeout_error=FALSE;
timeout=0;
while(Tkbhit()&&(++timeout<50000)) // 1/2
// second
delay_us(10);
if(kbhitQ))
return(getc());
else {
timeout_error=TRUE;
return(0);
}
}

ex_tgetc.c

getc(), #USE RS232, RS232 I/O overview

163

C Compiler Reference Manual

LABEL_ADDRESS()

Syntax: value = label_address(label);

Parameters: label is a C label anywhere in the function

Returns: A 16 bit int in PCB,PCM and a 32 bit int for PCH

Function: This function obtains the address in ROM of the next instruction after the label.

This is not a normally used function except in very special situations.

Availability: All devices.

Requires: Nothing
Examples: start:
a = (b+c)<<2;
end:

printf("'1t takes %lu ROM locations.\r\n",
label_address(end)-label_address(start));

Example setjmp.c
Files:

Also See: goto_address()

LABS()
Syntax: result = labs (value)
Parameters: value is a 16 bit signed long int
Returns: A 16 bit signed long int
Function: Computes the absolute value of a long integer.
Availability: All devices.
Requires: stdlib.h must be included
Examples: if(labs(target_value - actual_value) > 500)
printf("Error is over 500 points\r\n");
Example None
Files:
Also See: abs

164

Built-in-Functions

LCD_LOAD()

. __|

Syntax: Icd_load (buffer_pointer, offset, length);

Parameters: buffer_pointer points to the user data to send to the LCD, offset is the offset
into the LCD segment memory to write the data, length is the number of bytes
to transfer.

Returns: undefined

Function: Will load length bytes from buffer_pointer into the 923/924 LCD segment data

area beginning at offset (0-15). Icd_symbol provides an easier way to write
data to the segment memory.

Availability: This function is only available on devices with LCD drive hardware.
Requires Constants are defined in the devices .h file.

Examples: Icd_load(buffer, 0, 16);

Example ex_92lcd.c

Files:

Also See: lcd_symbol(), setup_lcd(), Internal LCD overview

165

C Compiler Reference Manual

LCD_SYMBOL()

. __|
Syntax: Icd_symbol (symbol, bx_addr[, by_addr]);

Parameters: symbol is a 8 bit or 16 bit constant.
bX_addr is a bit address representing the segment location to be used for bit
X of symbol.
1-16 segments could be specified.

Returns: undefined

Function: Loads bits into the segment data area for the LCD with each bit address
specified. If bit 0 in symbol is set the segment at BO_addr is set, otherwise it is
cleared. The same is true of all other bits in symbol. The BO_addr is a bit
address into the LCD RAM.

Availability: This function is only available on devices with LCD drive hardware.
Requires Constants are defined in the devices .h file.
Examples: byte CONST DIGIT_MAP[10]=

{0X90,0XB7,0X19,0X36,0X54,0X50,0XB5,0X24} ;

#define DIGIT_1_CONFIG
COMO+2,COMO+4 , COMO5 , COM2+4 , COM2+1,
COM1+4,COM1+5

for(i=1; i<=9; ++i) {
LCD_SYMBOL(DIGIT_MAP[i].DIGIT_1_CONFIG);
delay_ms(1000);

Example ex_92lcd.c
Files:
Also See: setup lcd(), lcd load(), Internal LCD Overview

166

Built-in-Functions

LDEXP()
. __|
Syntax: result= ldexp (value, exp);
Parameters: value is float
exp is a signed int.
Returns: result is a float with value result times 2 raised to power exp.
Function: The Idexp function multiplies a floating-point number by an integral power of 2.
Availability: All devices.
Requires: MATH.H must be included
Examples: float result;

result=ldexp(-5,0);
// result is .5

Example None

Files:

Also See: frexp(), exp(), log(), l1og10(), modf()
LOG()

Syntax: result = log (value)

Parameters: value is a float
Returns: A float

Function: Computes the natural logarithm of the float x. If the argument is less than or
equal to zero or too large, the behavior is undefined.

Note on error handling:

"errno.h" is included then the domain and range errors are stored in the errno
variable. The user can check the errno to see if an error has occurred and print
the error using the perror function.

Domain error occurs in the following cases:
¢ log: when the argument is negative

Availability: All devices

Requires: math.h must be included.
Examples: Inx = log(Xx);
Example None

Files:

Also See: 10910(), exp(), pow()

167

C Compiler Reference Manual

LOG10()

. __|]
Syntax: result = log10 (value)
Parameters: value is a float
Returns: A float

Function: Computes the base-ten logarithm of the float x. If the argument is less than or
equal to zero or too large, the behavior is undefined.

Note on error handling:

If "errno.h" is included then the domain and range errors are stored in the errno
variable. The user can check the errno to see if an error has occurred and print
the error using the perror function.

Domain error occurs in the following cases:
¢ log10: when the argument is negative

Availability: All devices

Requires: #include <math.h>

Examples: db = logl0(read_adc()*(5.0/255))*10;
Example None

Files:

Also See: loda(), exp(), pow()

168

LONGJIMP()

Built-in-Functions

Syntax: longjmp (env, val)

Parameters: env: The data object that will be restored by this function
val: The value that the function setjmp will return. If val is 0 then the function
setjmp will return 1 instead.

Returns: After longjmp is completed, program execution continues as if the
corresponding invocation of the setjmp function had just returned the value
specified by val.

Function: Performs the non-local transfer of control.

Availability: All devices

Requires: #include <setjmp.h>

Examples: longjmp(@mpbuf, 1);

Example None

Files:

Also See: setimp()

MAKES()

Syntax: i8 = MAKES8(var, offset)

Parameters: var is a 16 or 32 bit integer.
offset is a byte offset of 0,1,2 or 3.

Returns: An 8 bit integer

Function: Extracts the byte at offset from var. Same as: i8 = (((var >> (offset*8)) & Oxff)
except it is done with a single byte move.

Availability: All devices

Requires: Nothing

Examples: int32 x;
int y;

y = make8(x,3); // Gets MSB of x

Example None

Files:

Also See: make16(), make32()

169

C Compiler Reference Manual

MAKE16()

. __|
Syntax: i16 = MAKE16(varhigh, varlow)
Parameters: varhigh and varlow are 8 bit integers.
Returns: A 16 bit integer
Function: Makes a 16 bit number out of two 8 bit numbers. If either parameter is 16 or 32
bits only the Isb is used. Same as: i16 =
(int16)(varhigh&Oxff)*0x100+(varlow&0xff) except it is done with two byte

moves.

Availability: All devices

Requires: Nothing
Examples: long x;
int hi,lo;

x = makel6(hi,lo0);

Example Itcl298.c
Files:
Also See: make8(), make32()

170

MAKE32()

Built-in-Functions

Syntax:

Parameters:

Returns:

Function:

Availability:

Requires:

Examples:

Example
Files:
Also See:

i32 = MAKE32(varl, var2, var3, var4)

varl-4 are a 8 or 16 bit integers. var2-4 are optional.

A 32 bit integer

Makes a 32 bit number out of any combination of 8 and 16 bit numbers. Note
that the number of parameters may be 1 to 4. The msb is first. If the total bits

provided is less than 32 then zeros are added at the msb.

All devices
Nothing

int32 x;
int y;
long z;

x = make32(1,2,3,4); // x is 0x01020304

y=0x12;
z=0x4321;

x = make32(y,z); // x is 0x00124321

x = make32(y,y,z); // x is 0x12124321
ex_freqc.c

make8(), makel6()

171

C Compiler Reference Manual

MALLOC()

. __|
Syntax: ptr=malloc(size)
Parameters: size is an integer representing the number of byes to be allocated.
Returns: A pointer to the allocated memory, if any. Returns null otherwise.

Function: The malloc function allocates space for an object whose size is specified by
size and whose value is indeterminate.

Availability: All devices
Requires: STDLIBM.H must be included

Examples: int * iptr;
iptr=malloc(10);
// iptr will point to a block of memory of 10 bytes.

Example None
Files:
Also See: realloc(), free(), calloc()

172

Built-in-Functions

MEMCPY(), MEMMOVE()

Syntax:

Parameters:

Returns:

Function:

Availability:

Requires:

Examples:

Example
Files:

Also See:

memcpy (destination, source, n)
memmove(destination, source, n)

destination is a pointer to the destination memory, source is a pointer to the
source memory, n is the number of bytes to transfer

undefined

Copies n bytes from source to destination in RAM. Be aware that array names
are pointers where other variable names and structure names are not (and
therefore need a & before them).

Memmove performs a safe copy (overlapping objects doesn't cause a
problem). Copying takes place as if the n characters from the source are first
copied into a temporary array of n characters that doesn't overlap the
destination and source objects. Then the n characters from the temporary array
are copied to destination.

All devices
Nothing

memcpy(&structA, &structB, sizeof (structAh));
memcpy(arrayA,arrayB,sizeof (arrayA));
memcpy(&structA, &databyte, 1);

char a[20]="hello";
memmove(a,a+2,5);
// a is now "H110"MEMMOVEQ)

None

strcpy(), memset()

173

C Compiler Reference Manual

MEMSET()
. __|
Syntax: memset (destination, value, n)

Parameters: destination is a pointer to memory, value is a 8 bit int, n is a 8 bit int.
Returns: undefined

Function: Sets value to destination for n number of bytes. Be aware that array names
are pointers where other variable names and structure names are not (and
therefore need a & before them).

Availability: All devices

Requires: Nothing

Examples: memset(arrayA, 0, sizeof(arrayA));
memset(arrayB, "?", sizeof(arrayB));
memset(&structA, OxFF, sizeof(structA));

Example None
Files:

Also See: memcpy()

MODF()

Syntax: result= modf (value, & integral)
Parameters: value and integral are floats
Returns: result is a float

Function: The modf function breaks the argument value into integral and fractional parts,
each of which has the same sign as the argument. It stores the integral part as
a float in the object integral.

Availability: All devices
Requires: MATH.H must be included

Examples: float result, integral;
result=modf(123.987,&integral);
// result is .987 and integral is 123.0000

Example None
Files:
Also See: None

174

_MUL()

Built-in-Functions

Syntax:
Parameters:

Returns:

Function:

Availability:

Requires:

Examples:

Example Files:

Also See:

prod=_mul(vall, val2);

vall and val2 are both 8-bit integers or 16-bit integers

A 16-bit integer if both parameters are 8-bit integers, or a 32-hit integer if both

parameters are 16-bit integers.

Performs an optimized multiplication. By accepting a different type than it
returns, this function avoids the overhead of converting the parameters to a

larger type.

All devices

Nothing

int a=50, b=100;

long int c;
c = _mul(a, b); //c holds 5000
None

None

175

C Compiler Reference Manual

OFFSETOF(), OFFSETOFBIT()

Syntax:

Parameters:

Returns:

Function:

Availability:

Requires:

Examples:

Example
Files:

Also See:

value = offsetof(stype, field);
value = offsetofhit(stype, field);

stype is a structure type name.
Field is a field from the above structure

An 8 hit byte

These functions return an offset into a structure for the indicated field. offsetof
returns the offset in bytes and offsetofbit returns the offset in bits.

All devices
stddef.h

struct time_structure {
int hour, min, sec;
int zone : 4;
intl daylight_savings;

x = offsetof(time_structure, sec);
/7 x will be 2
x = offsetofbit(time_structure, sec);
// x will be 16
x = offsetof (time_structure,
daylight_savings);
/7 x will be 3
x = offsetofbit(time_structure,
daylight_savings);
/7 x will be 28

None

None

OFFSETOFBIT()

See OFFSETOF

176

Built-in-Functions

OUTPUT_A(), OUTPUT _B(), OUTPUT_C(), OUTPUT_D(), OUTPUT_E(),
OUTPUT_F(), OUTPUT_G(), OUTPUT_H(), OUTPUT _J(), OUTPUT_K()

. __|
Syntax: output_a (value)
output_b (value)
output_c (value)
output_d (value)
output_e (value)
output_f (value)
output_g (value)
output_h (value)
output_j (value)
output_k (value)

Parameters: value is a 8 bit int
Returns: undefined

Function: Output an entire byte to a port. The direction register is changed in accordance
with the last specified #USE *_|O directive.

Availability: All devices, however not all devices have all ports (A-E)

Requires: Nothing

Examples: OUTPUT_B(OxfT0);

Example ex_patg.c

Files:

Also See: input(), output low(), output high(), output float(), output bit(), #use xxxx_io

177

C Compiler Reference Manual

OUTPUT_B
OUTPUT_C
OUTPUT_D
OUTPUT_E
OUTPUT F
OUTPUT_G
OUTPUT_H
OUTPUT_J
OUTPUT K

See OUTPUT_A

OUTPUT_BIT()

Syntax:
Parameters:

Returns:
Function:

Availability:
Requires:
Examples:

output_bit (pin, value)

Pins are defined in the devices .h file. The actual number is a bit address. For
example, port a (byte 5) bit 3 would have a value of 5*8+3 or 43. This is
defined as follows: #define PIN_A3 43. The PIN could also be a variable. The
variable must have a value equal to one of the constants (like PIN_A1) to work
properly. The tristate register is updated unless the FAST 10 mode is set on
port A. Note that doing 1/0 with a variable instead of a constant will take much
longer time. Valueisa1orao0.

undefined

Outputs the specified value (0 or 1) to the specified I/O pin. The method of
setting the direction register is determined by the last #USE *_IO
directive.

All devices.
Pin constants are defined in the devices .h file

output_bit(PIN_BO, 0);
// Same as output_low(pin_B0);
output_bit(PIN_BO,input(PIN_B1));
// Make pin BO the same as Bl
output_bit(PIN_BO,

shift_left(&data,l1, input(PIN_B1)));
// Output the MSB of data to
// BO and at the same time
// shift Bl into the LSB of data
intl6i=PIN_BO;
ouput_bit(i,shift_left(&data,l, input(PIN_B1)));
//same as above example, but
//uses a variable instead of a constant

Built-in-Functions

Example ex_extee.c with 9356.h
Files:
Also See: input(), output_low(), output_high(), output_float(), output_x(), #use XXxx_io

OUTPUT_DRIVE()

. __|]
Syntax: output_drive(pin)
Parameters: Pins are defined in the devices .h file. The actual value is a bit address. For

example, port a (byte 5) bit 3 would have a value of 5*8+3 or 43. This is
defined as follows: #define PIN_A3 43.

Returns: undefined
Function: Sets the specified pin to the output mode. This will allow the pin to have its
value read.

Availability: All devices.

Requires: Pin constants are defined in the devices.h file.

Examples: output_drive(pin_A0); // sets pin_AO0 to output its value
output_bit(pin_BO, input(pin_A0)) // makes BO the same as AO

Example None

Files:

Also See: input(), output_low(), output_high(), output_bit(), output_x(), output_float()

179

C Compiler Reference Manual

OUTPUT_FLOAT()

. __|
Syntax: output_float (pin)

Parameters: Pins are defined in the devices .h file. The actual value is a bit address. For
example, port a (byte 5) bit 3 would have a value of 5*8+3 or 43. This is
defined as follows: #define PIN_A3 43. The PIN could also be a variable to
identify the pin. The variable must have a value equal to one of the constants
(like PIN_A1) to work properly. The tristate register is updated unless the
FAST_I0 mode is set on port A. note that doing 1/0 with a variable instead of a
constant will take much longer time.

Returns: undefined

Function: Sets the specified pin to the input mode. This will allow the pin to float high to
represent a high on an open collector type of connection.

Availability: All devices.

Requires: Pin constants are defined in the devices .h file
Examples: if((data & 0x80)==0)
output_low(pin_A0);
else

output_Ffloat(pin_A0);

Example None
Files:
Also See: input(), output_low(), output_high(), output_bit(), output _x(), output_drive(),

#use Xxxx_io

180

Built-in-Functions

OUTPUT_HIGH()

. __|
Syntax: output_high (pin)

Parameters: Pin to write to. Pins are defined in the devices .h file. The actual value is a bit
address. For example, port a (byte 5) bit 3 would have a value of 5*8+3 or 43.
This is defined as follows: #define PIN_A3 43. The PIN could also be a
variable. The variable must have a value equal to one of the constants (like
PIN_A1) to work properly. The tristate register is updated unless the FAST_I0
mode is set on port A. Note that doing I/0 with a variable instead of a constant
will take much longer time.

Returns: undefined

Function: Sets a given pin to the high state. The method of /0O used is dependent on the
last USE * IO directive.

Availability: All devices.
Requires: Pin constants are defined in the devices .h file

Examples: output_high(PIN_AO);

INt16i=PIN_A1l;
output_low(PIN_Al1l);

Example None
Files:
Also See: input(), output_low(), output float(), output bit(), output x(), #use XxXxx_io

181

C Compiler Reference Manual

OUTPUT_LOW()

. __|
Syntax: output_low (pin)

Parameters: Pins are defined in the devices .h file. The actual value is a bit address. For
example, port a (byte 5) bit 3 would have a value of 5*8+3 or 43. This is
defined as follows: #define PIN_A3 43. The PIN could also be a variable. The
variable must have a value equal to one of the constants (like PIN_A1) to work
properly. The tristate register is updated unless the FAST_I0 mode is set on
port A. Note that doing I/0 with a variable instead of a constant will take much

longer time.
Returns: undefined
Function: Sets a given pin to the ground state. The method of I/0 used is dependent on

the last USE *_IO directive.
Availability: All devices.
Requires: Pin constants are defined in the devices .h file

Examples: output_low(PIN_AO);

INt16i=PIN_A1l;
output_low(PIN_Al1l);

Example sqw.c
Files:
Also See: input(), output high(), output float(), output bit(), output x(), #use xxxx_io

182

Built-in-Functions

OUTPUT_TOGGLE()

Syntax: output_toggle(pin)

Parameters: Pins are defined in the devices .h file. The actual value is a bit address. For
example, port a (byte 5) bit 3 would have a value of 5*8+3 or 43. This is a
defined as follows: #define PIN_A3 43.

Returns: Undefined
Function: Toggles the high/low state of the specified pin.

Availability: All devices.

Requires: Pin constants are defined in the devices .h file
Examples: output_toggle(PIN_B4);
Example None
Files:
Also See: Input(), output_high(), output_low(), output_bit(), output_x()
PERROR()
. __|]
Syntax: perror(string);

Parameters: string is a constant string or array of characters (null terminated).
Returns: Nothing

Function: This function prints out to STDERR the supplied string and a description of the
last system error (usually a math error).

Availability: All devices.
Requires: #use rs232, errno.h
Examples: x = sin(y);

if(errno!=0)
perror("'Problem in find_area™);

Example None
Files:
Also See: RS232 I/O overview

183

C Compiler Reference Manual

PORT_A_PULLUPS ()

. __|
Syntax: port_a_pullups (value)

Parameters: value is TRUE or FALSE on most parts, some parts that allow pullups to be
specified on individual pins permit an 8 bit int here, one bit for each port pin.

Returns: undefined
Function: Sets the port A input pullups. TRUE will activate, and a FALSE will deactivate.

Availability: Only 14 and 16 bit devices (PCM and PCH). (Note: use SETUP_COUNTERS
on PCB parts).

Requires: Nothing

Examples: port_a_ pullups(FALSE);
Example ex_lcdkb.c with kdb.c

Files:

Also See: input(), input_x(), output_float()

PORT_B_PULLUPS()

. __|
Syntax: port_b_pullups (value)

Parameters: value is TRUE or FALSE on most parts, some parts that allow pullups to be
specified on individual pins permit a 8 bit int here, one bit for each port pin

Returns: undefined
Function: Sets the port B input pullups. TRUE will activate, and a FALSE will deactivate.

Availability: Only 14 and 16 bit devices (PCM and PCH). (Note: use SETUP_COUNTERS
on PCB parts).

Requires: Nothing

Examples: port_b_pullups(FALSE);
Example ex_lcdkb.c with kdb.c

Files:

Also See: input(), input_x(), output_float()

184

Built-in-Functions

POW(), PWR()

Syntax: f = pow (X,y)
f=pwr (x,y)

Parameters: x andy and of type float

Returns: A float

Function: Calculates X to the Y power.
Note on error handling:
If "errno.h" is included then the domain and range errors are stored in the errno
variable. The user can check the errno to see if an error has occurred and print

the error using the perror function.

Range error occurs in the following case:
e pow: when the argument X is negative

Availability: All Devices

Requires: #include <math.h>
Examples: area = (size,3.0);
Example None

Files:

Also See: None

185

C Compiler Reference Manual

PRINTF(), FPRINTF()

. __|
Syntax: printf (string)
or
printf (cstring, values...)
or
printf (fname, cstring, values...)
fprintf (stream, cstring, values...)

Parameters: String is a constant string or an array of characters null terminated.
Values is a list of variables separated by commas, fname is a function
name to be used for outputting (default is putc is none is specified).
Stream is a stream identifier (a constant byte)

Returns: undefined

Function: Outputs a string of characters to either the standard RS-232 pins (first two
forms) or to a specified function. Formatting is in accordance with the string
argument. When variables are used this string must be a constant. The %
character is used within the string to indicate a variable value is to be formatted
and output. Longs in the printf may be 16 or 32 bit. A %% will output a single
%. Formatting rules for the % follows.

If fprintf() is used then the specified stream is used where printf() defaults to
STDOUT (the last USE RS232).

Format:

The format takes the generic form %nt. n is optional and may be 1-9 to specify
how many characters are to be outputted, or 01-09 to indicate leading zeros, or
1.1 to 9.9 for floating point and %w output. t is the type and may be one of the

following:
c Character
s String or character
u Unsigned int
d Signed int
Lu Long unsigned int
Ld Long signed int
X Hex int (lower case)
X Hex int (upper case)
Lx Hex long int (lower case)
LX Hex long int (upper case)

f Float with truncated decimal
g Float with rounded decimal

e Float in exponential format
w

Unsigned int with decimal place inserted. Specify two numbers for
n. The first is a total field width. The second is the desired number

186

Availability:

Requires:

Examples:

Example
Files:

Also See:

Built-in-Functions

of decimal places.

Example formats:

Specifier Value=0x12 Value=0xfe
%03u 018 254

%u 18 254

%2u 18 *

%5 18 254

%d 18 -2

%X 12 fe

%X 12 FE

%4X 0012 00FE
%3.1w 1.8 254

* Result is undefined - Assume garbage.
All Devices
#use rs232 (unless fname is used)

byte Xx,y,z;

printf(""HiThere™);
printf("'RTCCValue=>%2x\n\r",get_rtcc());
printf('%2u %X %4X\n\r'',x,y,z);
printf(LCD_PUTC, "n=%u'',n);

ex_admm.c, lcdkb.c

atoi(), puts(), putc(), getc() (for a stream example), RS232 I/O overview

187

C Compiler Reference Manual

PSP_OUTPUT_FULL(), PSP_INPUT_FULL(), PSP_OVERFLOW()

. __|
Syntax: result = psp_output_full()
result = psp_input_full()
result = psp_overflow()

Parameters: None
Returns: A 0 (FALSE) or 1 (TRUE)

Function: These functions check the Parallel Slave Port (PSP) for the indicated
conditions and return TRUE or FALSE.

Availability: This function is only available on devices with PSP hardware on chips.
Requires: Nothing

Examples: whille (psp_output_full()) ;
psp_data = command;
while(Ipsp_input_fullQ) ;
if (psp_overflow(Q)

error = TRUE;
else
data = psp_data;

Example ex_psp.c
Files:
Also See: setup _psp(), PSP overview

PSP_INPUT_FULL()

|
See PSP_OUTPUT FULL

PSP_OVERFLOW()

See PSP_OUTPUT FULL

Built-in-Functions

PUTC(), PUTCHAR(), FPUTC()

Syntax:

Parameters:

Returns:

Function:

Availability:

Requires:

Examples:

Example
Files:

Also See:

PUTCHAR()

putc (cdata)

putchar (cdata)

value = fputc(cdata, stream)

cdata is a 8 bit character. Stream is a stream identifier (a constant byte)
undefined

This function sends a character over the RS232 XMIT pin. A #USE RS232
must appear before this call to determine the baud rate and pin used. The
#USE RS232 remains in effect until another is encountered in the file.

If fputc() is used then the specified stream is used where putc() defaults to
STDOUT (the last USE RS232).

All devices

#use rs232

putc("*");

for(i=0; i<10; i++)
putc(buffer[i]);

putc(13);

ex_tget.c

getc(), printf(), #USE RS232, RS232 1/0 overview

See PUTC

189

C Compiler Reference Manual

PUTS(), FPUTS()

. __|
Syntax: puts (string). value = fputs (string, stream)

Parameters: string is a constant string or a character array (null-terminated). Stream is a
stream identifier (a constant byte)

Returns: undefined
Function: Sends each character in the string out the RS232 pin using PUTC(). After the
string is sent a RETURN (13) and LINE-FEED (10) are sent. In general printf()

is more useful than puts().

If fputs() is used then the specified stream is used where puts() defaults to
STDOUT (the last USE RS232)

Availability: All devices

Requires: #use rs232

Examples: puts(" ——————————— ");
putsC ™ | M1 |7)
puts(" ——————————- ");

Example None

Files:

Also See: printf(), gets(), RS232 I/0 overview

190

QSORT()

Built-in-Functions

Syntax:

Parameters:

Returns:

Function:

Availability:

Requires:

Examples:

Example
Files:
Also See:

gsort (base, num, width, compare)

base: Pointer to array of sort data

num: Number of elements

width: Width of elements

compare: Function that compares two elements

None

Performs the shell-metzner sort (not the quick sort algorithm). The contents of
the array are sorted into ascending order according to a comparison function
pointed to by compare.

All devices

#include <stdlib.h>

int nums[5]={ 2,3,1,5,4};
int compar(const void *argl,const void *arg2?);

void main() {

gsort (nums, 5, sizeof(int), compare);

int compar(const void *argl,const void *arg2) {
if (* (int *) argl < (* (int *) arg2) return -1
else if (* (int *) argl == (* (int *) arg2) return O
else return 1;

}

None

bsearch()

191

C Compiler Reference Manual

RAND()

Syntax: re=rand()

Parameters: None

Returns: A pseudo-random integer.

Function: The rand function returns a sequence of pseudo-random integers in the range

of 0 to RAND_MAX.

Availability: All devices
Requires: #include <STDLIB.H>
Examples: int I;
I=rand();
Example None
Files:

Also See: srand()

192

READ_ADC()

Built-in-Functions

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example
Files:
Also See:

value = read_adc ([mode])

mode is an optional parameter. If used the values may be:
ADC_START_AND_READ (continually takes readings, this is the default)
ADC_START_ONLY (starts the conversion and returns)
ADC_READ_ONLY (reads last conversion result)

Either a 8 or 16 bit int depending on #DEVICE ADC= directive.

This function will read the digital value from the analog to digital converter.
Calls to setup_adc(), setup_adc_ports() and set_adc_channel() should be
made sometime before this function is called. The range of the return value
depends on number of bits in the chips A/D converter and the setting in the
#DEVICE ADC-= directive as follows:

#DEVICE 8 bit 10 bit 11 bit 16 bit
ADC=8 00-FF 00-FF 00-FF 00-FF
ADC=10 X 0-3FF X X
ADC=11 X X 0-7FF X
ADC=16 0-FFOO O-FFCO 0-FFEO O-FFFF

Note: x is not defined
This function is only available on devices with A/D hardware.
Pin constants are defined in the devices .h file.

setup_adc(ADC_CLOCK_INTERNAL);
setup_adc_ports(ALL_ANALOG);
set_adc_channel (1);
while (input(PIN_BO)) {

delay_ms(5000);

value = read_adc();

printf("'A/D value = %2x\n\r', value);

read_adc(ADC_START_ONLY);

sleep();
value=read_adc(ADC_READ_ONLY);

ex_admm.c, ex_14kad.c

setup_adc(), set_adc_channel(), setup_adc_ports(), #DEVICE, ADC overview

193

C Compiler Reference Manual

READ_BANK()

. __|
Syntax: value = read_bank (bank, offset)

Parameters: bank is the physical RAM bank 1-3 (depending on the device), offset is the
offset into user RAM for that bank (starts at 0),

Returns: 8 bitint

Function: Read a data byte from the user RAM area of the specified memory bank. This
function may be used on some devices where full RAM access by auto
variables is not efficient. For example, setting the pointer size to 5 bits on the
PIC16C57 chip will generate the most efficient ROM code. However, auto
variables can not be about 1Fh. Instead of going to 8 bit pointers, you can
save ROM by using this function to write to the hard-to-reach banks. In this
case, the bank may be 1-3 and the offset may be 0-15.

Availability: All devices but only useful on PCB parts with memory over 1Fh
and PCM parts with memory over FFh.

Requires: Nothing

Examples: // See write_bank() example to see

// how we got the data
// NMoves data from buffer to LCD
i=0;
do {

c=read_bank(1,i++);

if(c!=0x13)

Icd_putc(c);

} while (c!=0x13);

Example ex_psp.c

Files:

Also See: write_bank(), and the "Common Questions and Answers" section for more
information.

194

Built-in-Functions

READ_CALIBRATION()

Syntax:

Parameters:

Returns:

Function:

Availability:

Requires:
Examples:

Example
Files:

Also See:

value = read_calibration (n)
n is an offset into calibration memory beginning at 0
An 8 bit byte

The read_calibration function reads location "n" of the 14000-calibration
memory.

This function is only available on the PIC14000.

Nothing
fin = read_calibration(16);

ex_14kad.c with ex_14cal.c

None

READ_EEPROM()

Syntax:

Parameters:

Returns:

Function:

Availability:

Requires:
Examples:

Example
Files:
Also See:

value = read_eeprom (address)
address is an (8 bit or 16 bit depending on the part) int
An 8 bit int

Reads a byte from the specified data EEPROM address. The address begins
at 0 and the range depends on the part.

This command is only for parts with built-in EEPROMS

Nothing
#define LAST_VOLUME 10
volume = read_EEPROM (LAST_VOLUME):

ex_intee.c

write_eeprom(), data eeprom overview

195

C Compiler Reference Manual

READ_PROGRAM_EEPROM()

. __|
Syntax: value = read_program_eeprom (address)

Parameters: address is 16 bits on PCM parts and 32 hits on PCH parts

Returns: 16 bits

Function: Reads data from the program memory.

Availability: Only devices that allow reads from program memory.
Requires: Nothing

Examples: checksum = 0;

for(i=0;i<81é6;i++)
checksum™=read_program_eeprom(i);
printf('Checksum is %2X\r\n",checksum);

Example None

Files:

Also See: write_program_eeprom(), write_eeprom(), read _eeprom() Program eeprom
overview

READ_PROGRAM_MEMORY(), READ_EXTERNAL_MEMORY/()

Syntax: READ_PROGRAM_MEMORY (address, dataptr, count);
READ_EXTERNAL_MEMORY (address, dataptr, count);

Parameters: address is 16 bits on PCM parts and 32 bits on PCH parts. The least
significant bit should always be 0 in PCM. dataptr is a pointer to one or more
bytes. count is a 8 bit integer

Returns: undefined

Function: Reads count bytes from program memory at address to RAM at dataptr. Both
of these functions operate exactly the same.

Availability: Only devices that allow reads from program memory.

Requires: Nothing
Examples: char buffer[64];
read_external_memory(0x40000, buffer, 64);
Example None
Files:
Also See: WRITE PROGRAM MEMORY(), External memory overview, Program

eeprom overview

196

Built-in-Functions

READ_EXTERNAL_MEMORY()

. __|]
See: Read Program Memory

REALLOC()

. __|
Syntax: realloc (ptr, size)

Parameters: ptr is a null pointer or a pointer previously returned by calloc or malloc or
realloc function, size is an integer representing the number of byes to be

allocated.

Returns: A pointer to the possibly moved allocated memory, if any. Returns null
otherwise.

Function: The realloc function changes the size of the object pointed to by the ptr to the

size specified by the size. The contents of the object shall be unchanged up to
the lesser of new and old sizes. If the new size is larger, the value of the newly
allocated space is indeterminate. If ptr is a null pointer, the realloc function
behaves like malloc function for the specified size. If the ptr does not match a
pointer earlier returned by the calloc, malloc or realloc, or if the space has been
deallocated by a call to free or realloc function, the behavior is undefined. If the
space cannot be allocated, the object pointed to by ptr is unchanged. If size is
zero and the ptr is not a null pointer, the object is to be freed.

Availability: All devices
Requires: STDLIBM.H must be included

Examples: int * iptr;
iptr=malloc(10);
realloc(iptr,20)

// iptr will point to a block of memory of 20 bytes, if

available.
Example None
Files:
Also See: malloc(), free(), calloc()

197

C Compiler Reference Manual

RESET_CPU()

. __|
Syntax: reset_cpu()

Parameters: None
Returns: This function never returns

Function: This is a general purpose device reset. It will jump to location 0 on PCB and
PCM parts and also reset the registers to power-up state on the PIC18XXX.

Availability: All devices

Requires: Nothing

Examples: if(checksum!=0)
reset_cpu(Q);

Example None

Files:

Also See: None

RESTART_CAUSE()

. __|
Syntax: value = restart_cause()

Parameters: None

Returns: A value indicating the cause of the last processor reset. The actual values are
device dependent. See the device .h file for specific values for a specific
device. Some example values are: WDT_FROM_SLEEP, WDT_TIMEOUT,
MCLR_FROM_SLEEP and NORMAL_POWER_UP.

Function: Returns the cause of the last processor reset.
Availability: All devices

Requires: Constants are defined in the devices .h file.

Examples: switch (restart_cause()) {
case WDT_FROM_SLEEP:
case WDT_TIMEOUT:
handle_error();

b
Example ex_wdt.c
Files:
Also See: restart_wdt(), reset_cpu()

198

Built-in-Functions

RESTART _WDT()

. __|]
Syntax: restart_wdt()
Parameters: None
Returns: undefined

Function: Restarts the watchdog timer. If the watchdog timer is enabled, this must be
called periodically to prevent the processor from resetting.

The watchdog timer is used to cause a hardware reset if the software appears
to be stuck.

The timer must be enabled, the timeout time set and software must periodically
restart the timer. These are done differently on the PCB/PCM and PCH parts

as follows:
PCB/PCM PCH

Enable/Disable #fuses setup_wdt()

Timeout time setup_wdt() #fuses

restart restart_wdt() restart_wdt()
Availability: All devices
Requires: #fuses
Examples: #fuses WDT // PCB/PCM example

// See setup_wdt for a PIC18 example
main() {

setup_wdt(WDT_2304MS) ;

while (TRUE) {
restart_wdt();
perform_activity(Q);

H
3
Example ex_wdt.c
Files:
Also See: #fuses, setup wdt(), WDT or Watch Dog Timer overview

199

C Compiler Reference Manual

ROTATE_LEFT()

. __|
Syntax: rotate_left (address, bytes)

Parameters: address is a pointer to memory, bytes is a count of the number of bytes to

work with.
Returns: undefined
Function: Rotates a bit through an array or structure. The address may be an array

identifier or an address to a byte or structure (such as &data). Bit O of the
lowest BYTE in RAM is considered the LSB.

Availability: All devices
Requires: Nothing

Examples: X = 0x86;
rotate_left(&x, 1);
// x is now 0xOd

Example None
Files:
Also See: rotate right(), shift_left(), shift_right()

200

Built-in-Functions

ROTATE_RIGHT()

Syntax: rotate_right (address, bytes)

Parameters: address is a pointer to memory, bytes is a count of the number of bytes to
work with.

Returns: undefined

Function: Rotates a bit through an array or structure. The address may be an array

identifier or an address to a byte or structure (such as &data). Bit O of the
lowest BYTE in RAM is considered the LSB.

Availability: All devices

Requires: Nothing

Examples: struct {
int cell_1 : 4;
int cell_2 : 4;
int cell_3 : 4;

int cell_4 : 4; } cells;
rotate_right(&cells, 2);
rotate_right(&cells, 2);
rotate_right(&cells, 2);
rotate_right(&cells, 2);
// cell_1->4, 2->1, 3->2 and 4-> 3

Example None
Files:
Also See: rotate left(), shift_left(), shift_right()

201

C Compiler Reference Manual

SET_ADC_CHANNEL()

. __|
Syntax: set_adc_channel (chan)

Parameters: chan is the channel number to select. Channel numbers start at 0 and are
labeled in the data sheet ANO, AN1

Returns: undefined

Function: Specifies the channel to use for the next READ_ADC call. Be aware that
you must wait a short time after changing the channel before you can get a
valid read. The time varies depending on the impedance of the input
source. In general 10us is good for most applications. You need not change
the channel before every read if the channel does not change.

Availability: This function is only available on devices with A/D hardware.
Requires: Nothing
Examples: set_adc_channel (2);

delay_us(10);
value = read_adc();

Example ex_admm.c
Files:
Also See: read adc(), setup adc(), setup adc ports(), ADC overview

202

Built-in-Functions

SET_PWM1_DUTY(), SET_PWM2_DUTY(), SET_PWM3_DUTY(),
SET_PWM4_DUTY(), SET_PWM5_DUTY()

Syntax: set_pwml_duty (value)
set_pwm2_duty (value)
set_pwm3_duty (value)
set_pwm4_duty (value)
set_pwmb5_duty (value)

Parameters: value may be an 8 or 16 bit constant or variable.
Returns: undefined

Function: Writes the 10-bit value to the PWM to set the duty. An 8-bit value may be used
if the least significant bits are not required. If value is an 8 bit item, it is shifted
up with two zero bits in the Isb positions to get 10 bits. The 10 bit value is then
used to determine the amount of time the PWM signal is high during each cycle
as follows:
¢ value*(1/clock)*t2div

Where clock is oscillator frequency and t2div is the timer 2 prescaler (set in the
call to setup_timer2).

Availability: This function is only available on devices with CCP/PWM hardware.
Requires: Nothing
Examples: // For a 20 mhz clock, 1.2 khz frequency,
// t2D1V set to 16
// the following sets the duty to 50% (or 416 us).
long duty;

duty = 512; // .000416/(16*(1/20000000))
set_pwml_duty(duty);

Example ex_pwm.c
Files:
Also See: setup _ccpX(), CCP1 overview

203

C Compiler Reference Manual

SET_PWM2_DUTY
SET_PWM3_DUTY
SET_PWM4_DUTY
SET_PWM5_DUTY

See SET_PWM1 DUTY

SET_POWER_PWMX_DUTY()

. __|
Syntax: set_power_pwmX_duty(duty)

Parameters: Xis0,2,4,0r6
Duty is an integer between 0 and 16383.

Returns: undefined

Function: Stores the value of duty into the appropriate PDCXL/H register. This duty
value is the amount of time that the PWM output is in the active state.

Availability: All devices equipped with PWM.

Requires: None

Examples: set_power_pwmO_duty(4000);

Example None

Files:

Also See: setup_power_pwm(), setup_power_pwm_pins(),set_power_pwm_override()

Built-in-Functions

SET_POWER_PWM_OVERRIDE()

. __|
Syntax: set_power_pwm_override(pwm, override, value)

Parameters: pwm is a constant between 0 and 7
Override is true or false
ValueisOor 1

Returns: undefined

Function: pwm selects which module will be affected. Override determines whether the
output is to be determined by the OVDCONS register or the PDC registers.
When override is false, the PDC registers determine the output. When
override is true, the output is determined by the value stored in OVDCONS.
When value is a 1, the PWM pin will be driven to its active state on the next
duty cycle. If value is 0, the pin will be inactive.

Availability: All devices equipped with PWM.

Requires: None

Examples: set_power_pwm_override(l, true, 1); //PWM1 will be
overridden to active state
set_power_pwm_override(l, false, 0); //PMW1 will not be
overidden

Example None

Files:

Also See: setup power pwm(), setup_power pwm_pins(),set_power pwmX_duty()

205

C Compiler Reference Manual

SET_RTCC(), SET_TIMERO(), SET_TIMER1(), SET_TIMER2(),
SET_TIMER3(), SET_TIMERA4(), SET_TIMER5()

Syntax:

Parameters:

Returns:
Function:

Availability:

Requires:
Examples:

Example
Files:
Also See:

set_timerO(value) or set_rtcc (value)
set_timerl(value)
set_timer2(value)
set_timer3(value)
set_timer4(value)
set_timer5(value)

Timers 1 & 3 get a 16 bit int.

Timer 2 gets an 8 bit int.

Timer 0 (AKA RTCC) gets an 8 bit int except on the PIC18XXX where it needs
a 16 bit int.

undefined

Sets the count value of a real time clock/counter. RTCC and TimerO are the
same. All timers count up. When a timer reaches the maximum value it will flip
over to 0 and continue counting (254, 255, 0, 1, 2...)

Timer O - All devices

Timers 1 & 2 - Most but not all PCM devices
Timer 3 - Only PIC18XXX

Timer 4 - Some PCH devices

Timer 5 - Only PIC18XX31

Nothing
// 20 mhz clock, no prescaler, set timer 0O
// to overflow in 35us

set_timer0(81); // 256-(.000035/(4/20000000))

ex_patg.c

set_timerl(), get timerX() Timer0 overview, Timerloverview, Timer2 overview,
Timer5 overview

SET_TIMERO()
SET_TIMERL()
SET_TIMER2()
SET_TIMER3()
SET_TIMER4()
SET_TIMER5()

See SET_RTCC

206

Built-in-Functions

SET_TRIS_A(), SET_TRIS_B(), SET_TRIS_C(), SET_TRIS_D(),
SET_TRIS_E(), SET_TRIS_F(), SET_TRIS_G(), SET_TRIS_H(),
SET_TRIS_J(), SET_TRIS_K()

Syntax: set_tris_a (value)
set_tris_b (value)
set_tris_c (value)
set_tris_d (value)
set_tris_e (value)
set_tris_f (value)
set_tris_g (value)
set_tris_h (value)
set_tris_j (value)
set_tris_k (value)

Parameters: value is an 8 bit int with each bit representing a bit of the 1/0 port.
Returns: undefined

Function: These functions allow the I/O port direction (TRI-State) registers to be set.
This must be used with FAST_10 and when I/O ports are accessed as memory
such as when a #BYTE directive is used to access an I/O port. Using the
default standard I/0 the built in functions set the 1/O direction automatically.

Each bit in the value represents one pin. A 1 indicates the pin is input and a 0
indicates it is output.

Availability: All devices (however not all devices have all I/0O ports)
Requires: Nothing

Examples: SET_TRIS_B(OxOF);
// B7,B6,B5,B4 are outputs
// B3,B2,B1,B0O are inputs

Example lcd.c
Files:
Also See: #USE FAST 10, #USE FIXED 10, #USE STANDARD 10

207

C Compiler Reference Manual

SET_TRIS B
SET_TRIS_C
SET_TRIS_D
SET_TRIS_E
SET_TRIS_F(
SET_TRIS_G
SET_TRIS_H
SET_TRIS_J(
SET_TRIS_K(

)
)
)
)
)
)
)
)
)

See SET_TRIS A

SET_UART_SPEED()

Syntax:

Parameters:

Returns:

Function:

Availability:

Requires:

Examples:

Example
Files:

Also See:

set_uart_speed (baud, [stream])

baud is a constant 100-115200 representing the number of bits per second.
stream is an optional stream identifier.

undefined

Changes the baud rate of the built-in hardware RS232 serial port at run-time.

This function is only available on devices with a built in UART.
#use rs232

// Set baud rate based on setting
// of pins BO and Bl

switch(mput bO & 3) {
case 0 : set_uart_speed(2400); break;

case 1 : set_uart_speed(4800); break;
case 2 : set_uart_speed(9600); break;
case 3 : set_uart_speed(19200); break;
}
loader.c

#USE RS232, putc(), getc(), RS232 1/0O overview

Built-in-Functions

SETIMP()
. __|

Syntax: result = setjmp (env)

Parameters: env: The data object that will receive the current environment

Returns: If the return is from a direct invocation, this function returns 0.

If the return is from a call to the longjmp function, the setjmp function
returns a nonzero value and it's the same value passed to the longjmp
function.

Function: Stores information on the current calling context in a data object of type
jmp_buf and which marks where you want control to pass on a
corresponding longjmp call.

Availability: All devices

Requires: #include <setjmp.h>

Examples: result = setjmp(mpbuf);

Example Files: None

Also See: longjmp()

SETUP_ADC(mode)

Syntax: setup_adc (mode);

Parameters: mode- Analog to digital mode. The valid options vary depending on the
device. See the devices .h file for all options. Some typical options
include:

e ADC_OFF

o ADC_CLOCK_INTERNAL
e ADC_CLOCK_DIV_32

Returns: undefined

Function: Configures the analog to digital converter.

Availability: Only the devices with built in analog to digital converter.
Requires: Constants are defined in the devices .h file.

Examples: setup_adc_ports(ALL_ANALOG);

setup_adc(ADC_CLOCK_INTERNAL);
set_adc_channel(0);
value = read_adc();
setup_adc(ADC_OFF);
Example Files: ex_admm.c
Also See: setup adc ports(), set_adc channel(), read adc(), #device. The device .h
file., ADC overview

209

C Compiler Reference Manual

SETUP_ADC_PORTS()

. __|
Syntax: setup_adc_ports (value)
Parameters: value - a constant defined in the devices .h file
Returns: undefined
Function: Sets up the ADC pins to be analog, digital or a combination. The allowed
combinations vary depending on the chip. The constants used are different for
each chip as well. Check the device include file for a complete list. The

constants ALL_ANALOG and NO_ANALOGS are valid for all chips. Some
other example constants:

o ANALOG_RA3_REF- All analog and RAS3 is the reference
. RAO_RA1_RA3_ANALOG- Just RAO, RA1 and RA3 are
analog

Availability: This function is only available on devices with A/D hardware.
Requires: Constants are defined in the devices .h file.

Examples: // All pins analog (that can be)
setup_adc_ports(ALL_ANALOG);

// Pins AO, Al and A3 are analog and all others
// are digital. The +5v is used as a reference.
setup_adc_ports(RAO_RA1_RA3_ANALOG);

// Pins A0 and Al are analog. Pin RA3 is used
// for the reference voltage and all other pins
// are digital.

setup_adc_ports(AO_RA1_ANALOGRA3_REF);

Example ex_admm.c
Files:
Also See: setup_adc(), read_adc(), set_adc _channel() , ADC overview

210

Built-in-Functions

SETUP_CCP1(), SETUP_CCP2(), SETUP_CCP3(), SETUP_CCP4(),
SETUP_CCP5(), SETUP_CCP6()

Syntax:

Parameters:

setup_ccpl (mode)
setup_ccp2 (mode)
setup_ccp3 (mode)
setup_ccp4 (mode)
setup_ccp5 (mode)
setup_ccp6 (mode)

or setup_ccpl (mode, pwm)
or setup_ccp2 (mode, pwm)
or setup_ccp3 (mode, pwm)
or setup_ccp4 (mode, pwm)
or setup_ccp5 (mode, pwm)
or setup_ccp6 (mode, pwm)

mode is a constant. Valid constants are in the devices .h file and are as

follows:

Disable the CCP:
CCP_OFF

Set CCP to capture mode:
CCP_CAPTURE_FE
CCP_CAPTURE_RE
CCP_CAPTURE_DIV_4
CCP_CAPTURE_DIV_16

Set CCP to compare mode:
CCP_COMPARE_SET _ON_MATCH
CCP_COMPARE_CLR_ON_MATCH
CCP_COMPARE_INT
CCP_COMPARE_RESET_TIMER

Set CCP to PWM mode:
CCP_PWM

Capture on falling edge
Capture on rising edge
Capture after 4 pulses

Capture after 16 pulses

Output high on compare
Output low on compare
interrupt on compare

Reset timer on compare

Enable Pulse Width Modulator

pwm parameter is an optional parameter for chips that includes ECCP module.
This parameter allows setting the shutdown time. The value may be 0-255.

CCP_PWM_H_H
CCP_PWM_H_L
CCP_PWM_L_H
CCP_PWM_L L

CCP_PWM_FULL_BRIDGE
CCP_PWM_FULL_BRIDGE_REV
CCP_PWM_HALF_BRIDGE

211

C Compiler Reference Manual

CCP_SHUTDOWN_ON_COMP1 shutdown on Comparator 1
change
CCP_SHUTDOWN_ON_COMP2 shutdown on Comparator 2
change
CCP_SHUTDOWN_ON_COMP Either Comp. 1 or 2 change
CCP_SHUTDOWN_ON_INTO VIL on INT pin
CCP_SHUTDOWN_ON_COMP1_INTO VIL on INT pin or Comparator
1 change
CCP_SHUTDOWN_ON_COMP2_INTO VIL on INT pin or Comparator
2 change
CCP_SHUTDOWN_ON_COMP_INTO VIL on INT pin or Comparator

1 or 2 change

CCP_SHUTDOWN_AC L Drive pins A nad C high
CCP_SHUTDOWN_AC _H Drive pins A nad C low
CCP_SHUTDOWN_AC F Drive pins A nad C tri-state

CCP_SHUTDOWN _BD_L Drive pins B nad D high
CCP_SHUTDOWN_BD_H Drive pins B nad D low
CCP_SHUTDOWN_BD_F Drive pins B nad D tri-state
CCP_SHUTDOWN_RESTART the device restart after a
shutdown event
CCP_DELAY use the dead-band delay
Returns: undefined
Function: Initialize the CCP. The CCP counters may be accessed using the long

variables CCP_1 and CCP_2. The CCP operates in 3 modes. In capture
mode it will copy the timer 1 count value to CCP_x when the input pin event
occurs. In compare mode it will trigger an action when timer 1 and CCP_x are
equal. In PWM mode it will generate a square wave. The PCW wizard will
help to set the correct mode and timer settings for a particular application.

Availability: This function is only available on devices with CCP hardware.

Requires: Constants are defined in the devices .h file.
Examples: setup_ccpl(CCP_CAPTURE_RE);
Example ex_pwm.c, ex_ccpmp.c, ex_ccpls.c

212

Built-in-Functions

Files:
Also See: set pwmX_ duty(), CCP1 overview

SETUP_CCP2()
SETUP_CCP3()
SETUP_CCP4()
SETUP_CCP5()

See: SETUP_CCP1()

213

C Compiler Reference Manual

SETUP_COMPARATOR()

. __|
Syntax: setup_comparator (mode)

Parameters: mode is a constant. Valid constants are in the devices .h file and are as
follows:
A0_A3 Al _A2
A0_A2 Al _A2
NC_NC_Al_A2
NC_NC_NC_NC
A0 VR _Al_VR
A3 VR _A2 VR
A0 A2 Al A2 OUT ON_A3 A4
A3 A2 Al _A2

Returns: undefined

Function: Sets the analog comparator module. The above constants have four parts
representing the inputs: C1-, C1+, C2-, C2+

Availability: This function is only available on devices with an analog comparator.
Requires Constants are defined in the devices .h file.

Examples: // Sets up two independent comparators (Cl1 and C2),
// Cl uses A0 and A3 as inputs (- and +), and C2
// uses Al and A2 as inputs
setup_comparator(A0_A3_Al_A2);

Example ex_comp.c
Files:
Also See: Analog Comparator overview

214

Built-in-Functions

SETUP_COUNTERS()

. __|
Syntax: setup_counters (rtcc_state, ps_state)

Parameters: rtcc_state may be one of the constants defined in the devices .h file. For
example: RTCC_INTERNAL, RTCC_EXT_L_TO_H or RTCC_EXT_H_TO_L

ps_state may be one of the constants defined in the devices .h file.

For example: RTCC_DIV_2, RTCC_DIV_4, RTCC_DIV_8, RTCC_DIV_16,
RTCC_DIV_32, RTCC_DIV_64, RTCC_DIV_128, RTCC_DIV_256,
WDT_18MS, WDT_36MS, WDT_72MS, WDT_144MS, WDT_288MS,
WDT_576MS, WDT_1152MS, WDT_2304MS

Returns: undefined

Function: Sets up the RTCC or WDT. The rtcc_state determines what drives the
RTCC. The PS state sets a prescaler for either the RTCC or WDT. The
prescaler will lengthen the cycle of the indicated counter. If the RTCC
prescaler is set the WDT will be set to WDT_18MS. If the WDT prescaler is
set the RTCC is setto RTCC_DIV_1.

This function is provided for compatibility with older versions. setup_timer_0
and setup_WDT are the recommended replacements when possible. For PCB
devices if an external RTCC clock is used and a WDT prescaler is used then
this function must be used.

Availability: All devices

Requires: Constants are defined in the devices .h file.
Examples: setup_counters (RTCC_INTERNAL, WDT_2304MS);
Example None

Files:

Also See: setup_wdt(), setup_timer_0(), devices .h file

215

C Compiler Reference Manual

SETUP_EXTERNAL_MEMORY/()

. __|
Syntax: SETUP_EXTERNAL_MEMORY(mode);
Parameters: mode is one or more constants from the device header file OR'ed together.
Returns: undefined
Function: Sets the mode of the external memory bus.
Availability: Only devices that allow external memory.
Requires: Device .h file.

Examples: setup_external_memory(EXTMEM_WORD_WRITE
|EXTMEM_WAIT 0);
setup_external_memory(EXTMEM_DISABLE) ;

Example None
Files:
Also See: WRITE_PROGRAM_EEPROM(), WRITE_PROGRAM_MEMORY(), External

Memory overview

216

Built-in-Functions

SETUP_LCD()

Syntax:

Parameters:

Returns:

Function:

Availability:

Requires
Examples:
Example

Files:
Also See:

setup_lcd (mode, prescale, [segments]);
Mode may be one of these constants from the devices .h file:
e | CD_DISABLED, LCD_STATIC, LCD_MUX12,LCD_MUX13,
LCD_MUX14

The following may be or'ed (via [) with any of the above:
e STOP_ON_SLEEP, USE_TIMER_1

See the devices.h file for other device specific options.
Prescale may be 0-15 for the LCD clock.
Segments may be any of the following constants or'ed together:

e SEGO_4, SEG5_8, SEG9_11, SEG12_15, SEG16_19, SEGO_28,
SEG29_31, ALL_LCD_PINS

If omitted the compiler will enable all segments used in the program.
undefined

This function is used to initialize the 923/924 LCD controller.

Only devices with built in LCD drive hardware.

Constants are defined in the devices .h file.
setup_lcd(LCD_MUX14|STOP_ON_SLEEP,2);

ex_92lcd.c

Ilcd_symbol(), lcd load(), Internal LCD overview

217

C Compiler Reference Manual

SETUP_LOW_VOLT_DETECT()

. __|
Syntax: setup_low_volt_detect(mode)

Parameters: mode may be one of the constants defined in the devices .h file. LVD_LVDIN,
LVD_45, LVD_42, LVD_40, LVD_38, LVD_36, LVD_35, LVD_33, LVD_30,
LVD_28, LVD_27, LVD_25, LVD_23, LVD_21, LVD_19
One of the following may be or'ed(via |) with the above if high voltage detect is
also available in the device
LVD_TRIGGER_BELOW, LVD_TRIGGER_ABOVE

Returns: undefined

Function: This function controls the high/low voltage detect module in the device. The
mode constants specifies the voltage trip point and a direction of change from
that point(available only if high voltage detect module is included in the
device). If the device experiences a change past the trip point in the specified
direction the interrupt flag is set and if the interrupt is enabled the execution
branches to the interrupt service routine.

Availability: This function is only available with devices that have the high/low voltage
detect module.

Requires Constants are defined in the devices.h file.
Examples: setup_low_volt_detect(LVD_TRIGGER_BELOW | LVD_36);

This would trigger the interrupt when the voltage is below 3.6 volts

Example None
Files:
Also See: None

218

Built-in-Functions

SETUP_OSCILLATOR()

. __|
Syntax: setup_oscillator(mode, finetune)

Parameters: mode is dependent on the chip. For example, some chips allow speed setting
such as OSC_8MHZ or OSC_32KHZ. Other chips permit changing the source
like OSC_TIMERL.

The finetune (only allowed on certain parts) is a signed int with a range of -31
to +31.

Returns: Some chips return a state such as OSC_STATE_STABLE to indicate the
oscillator is stable.

Function: This function controls and returns the state of the internal RC oscillator on
some parts. See the devices .h file for valid options for a particular device.

Note that if INTRC or INTRC_IO is specified in #fuses and a #USE DELAY is
used for a valid speed option, then the compiler will do this setup automatically
at the start of main().

WARNING: If the speed is changed at run time the compiler may not generate
the correct delays for some built in functions. The last #USE DELAY
encountered in the file is always assumed to be the correct speed. You can
have multiple #USE DELAY lines to control the compilers knowledge about the
speed.

Availability: Only parts with a OSCCON register.

Requires: Constants are defined in the .h file.
Examples: setup_oscillator(0SC_2MHZ);
Example None

Files:

Also See: #fuses, Internal oscillator overview

219

C Compiler Reference Manual

SETUP_OPAMP1()
SETUP_OPAMP2()

Syntax:

Parameters:

Returns:

Function:

Availability:

Requires:

Examples:

Example
Files:

Also See:

setup_opampl(enabled)
setup_opamp2(enabled)

enabled can be either TRUE or FALSE.
undefined

Enables or Disables the internal operational amplifier peripheral of certain
PICmicros.

Only parts with a built-in operational amplifier (for example, PIC16F785).

Only parts with a built-in operational amplifier (for example, PIC16F785).

setup_opampl(TRUE);
setup_opamp2(boolean_flag);

None

None

SETUP_OPAMP2()

See: SETUP_OPAMP1()

220

Built-in-Functions

SETUP_POWER_PWM()

Syntax: setup_power_pwm(modes, postscale, time_base, period, compare,
compare_postscale, dead_time)

Parameters: modes values may be up to one from each group of the following:
PWM_CLOCK_DIV_4, PWM_CLOCK_DIV_16,
PWM_CLOCK_DIV_64, PWM_CLOCK_DIV_128

PWM_OFF, PWM_FREE_RUN, PWM_SINGLE_SHOT,
PWM_UP_DOWN, PWM_UP_DOWN_INT

PWM_OVERRIDE_SYNC
PWM_UP_TRIGGER,

PWM_DOWN_TRIGGER
PWM_UPDATE_DISABLE, PWM_UPDATE_ENABLE

PWM_DEAD_CLOCK_DIV_2,
PWM_DEAD_CLOCK_DIV_4,
PWM_DEAD_CLOCK_DIV_8,
PWM_DEAD_CLOCK_DIV_16

postscale is an integer between 1 and 16. This value sets the PWM time base
output postscale.

time_base is an integer between 0 and 65535. This is the initial value of the
PWM base

timer.period is an integer between 0 and 4095. The PWM time base is
incremented until it reaches this number.

compare is an integer between 0 and 255. This is the value that the PWM
time base is compared to, to determine if a special event should be triggered.

compare_postscale is an integer between 1 and 16. This postscaler affects
compare, the special events trigger.

dead_time is an integer between 0 and 63. This value specifies the length of
an off period that should be inserted between the going off of a pin and the
going on of it is a complementary pin.

Returns: undefined

221

C Compiler Reference Manual

Function: Initializes and configures the Pulse Width Modulation (PWM) device.

Availability: All devices equipped with PWM.

Requires: None

Examples: setup_power_pwm(PWM_CLOCK_DIV_4 | PWM_FREE_RUN |
PWM_DEAD_CLOCK_DIV_4,1,10000,1000,0,1,0);

Example None

Files:

Also See: set _power pwm_override(), setup_power _pwm_pins(),

set power pwmX duty()

SETUP_POWER_PWM_PINS()

Syntax: setup_power_pwm_pins(module0,modulel,module2,module3)
Parameters: For each module (two pins) specify:
PWM_OFF, PWM_ODD_ON, PWM_BOTH_ON,
PWM_COMPLEMENTARY
Returns: undefined

Function: Configures the pins of the Pulse Width Modulation (PWM) device.

Availability: All devices equipped with PWM.

Requires: None
Examples: setup_power_pwm_pins(PWM_OFF, PWM_OFF, PWM_OFF,
PWM_OFF) ;

setup_power_pwm_pins(PWM_COMPLEMENTARY,
PWM_COMPLEMENTARY, PWM_OFF, PWM_OFF);

Example None
Files:
Also See: setup power pwm(), set_power pwm_override(),set power pwmX_ duty()

222

SETUP_PSP()

Built-in-Functions

Syntax:

Parameters:

Returns:
Function:

Availability:

Requires:
Examples:

Example
Files:
Also See:

setup_psp (mode)

mode may be:
PSP_ENABLED
PSP_DISABLED

undefined

Initializes the Parallel Slave Port (PSP). The SET_TRIS_E(value) function may
be used to set the data direction. The data may be read and written to using
the variable PSP_DATA.

This function is only available on devices with PSP hardware.
Constants are defined in the devices .h file.
setup_psp(PSP_ENABLED) ;

ex_psp.c

set_tris_e(), PSP overview

SETUP_SPI(), SETUP_SPI2()

Syntax:

Parameters:

Returns:
Function:

Availability:

Requires:
Examples:

Example
Files:

Also See:

setup_spi (mode)

setup_spi2 (mode)

mode may be:

SPI_MASTER, SPI_SLAVE, SPI_SS DISABLED
SPI_L_TO H,SPI_H TO L

SPI_CLK_DIV_4, SPI_CLK_DIV_16,

SPI_CLK_DIV_64, SPI_CLK_T2

Constants from each group may be or'ed together with |.

undefined

Initializes the Serial Port Interface (SPI). This is used for 2 or 3 wire serial
devices that follow a common clock/data protocol.

This function is only available on devices with SPI hardware.
Constants are defined in the devices .h file.

setup_spi(spi_master |spi_Il_to_h |
spi_clk_div_16);

ex_spi.c

spi_write(), spi_read(), spi_data_is_in(), SPI overview

223

C Compiler Reference Manual

SETUP_TIMER_0()
. __|
Syntax: setup_timer_0 (mode)

Parameters: mode may be one or two of the constants defined in the devices .h file.
RTCC_INTERNAL, RTCC_EXT_L_TO _Hor RTCC_EXT H TO L

RTCC_DIV_2, RTCC_DIV_4, RTCC_DIV_8, RTCC_DIV_16, RTCC_DIV_32,
RTCC_DIV_64, RTCC_DIV_128, RTCC_DIV_256

PIC18XXX only: RTCC_OFF, RTCC_8_BIT

One constant may be used from each group or'ed together with the | operator.
Returns: undefined
Function: Sets up the timer 0 (aka RTCC).

Availability: All devices.

Requires: Constants are defined in the devices .h file.
Examples: setup_timer_0 (RTCC_DIV_2]|RTCC_EXT_L_TO H);
Example ex_stwt.c

Files:

Also See: get_timerQ(), set_timer0(), setup_counters()

224

Built-in-Functions

SETUP_TIMER_1()

Syntax: setup_timer_1 (mode)

Parameters: mode values may be:

o T1_DISABLED, T1_INTERNAL, T1_EXTERNAL,

T1_EXTERNAL_SYNC

o T1_CLK_OUT

° T1 DIV_BY_1,T1 _DIV_BY_2,T1_DIV_BY_4,

T1 DIV_BY_8

° constants from different groups may be or'ed together with |.
Returns: undefined
Function: Initializes timer 1. The timer value may be read and written to using

SET_TIMERZ1() and GET_TIMER1(). Timer 1 is a 16 bit timer.

With an internal clock at 20mhz and with the T1_DIV_BY_8 mode, the timer
will increment every 1.6us. It will overflow every 104.8576ms.

Availability: This function is only available on devices with timer 1 hardware.
Requires: Constants are defined in the devices .h file.
Examples: setup_timer_1 (T1_DISABLED);

setup_timer_1 (T1_INTERNAL | T1 DIV_BY 4)
setup_timer_1 (T1_INTERNAL | T1 DIV _BY 8)

Example ex_patg.c
Files:
Also See: get _timerl(), set _timerl(), Timerl overview

225

C Compiler Reference Manual

SETUP_TIMER_2()
. __|
Syntax: setup_timer_2 (mode, period, postscale)

Parameters: mode may be one of:
e T2 DISABLED, T2 DIV_BY_ 1, T2 DIV_BY_4, T2 DIV_BY_ 16

period is a int 0-255 that determines when the clock value is reset,

postscale is a number 1-16 that determines how many timer overflows before
an interrupt: (1 means once, 2 means twice, and so on).

Returns: undefined

Function: Initializes timer 2. The mode specifies the clock divisor (from the oscillator
clock). The timer value may be read and written to using GET_TIMER2()
and SET_TIMERZ2(). Timer 2 is a 8 bit counter/timer.

Availability: This function is only available on devices with timer 2 hardware.
Requires: Constants are defined in the devices .h file.
Examples: setup_timer_2 (T2_DIV_BY_4, 0xc0, 2);

// At 20mhz, the timer will increment every 800ns,
// will overflow every 154 _4us,
// and will interrupt every 308.8us.

Example ex_pwm.c
Files:
Also See: get_timer2(), set_timer2(), Timer2 overview

226

Built-in-Functions

SETUP_TIMER_3()

Syntax:

Parameters:

Returns:
Function:

Availability:

Requires:
Examples:

Example
Files:
Also See:

setup_timer_3 (mode)

Mode may be one of the following constants from each group or'ed (via |)
together:
e T3 _DISABLED, T3_INTERNAL, T3_EXTERNAL, 3_EXTERNAL_SYNC
e T3 DIV_BY_1, T3_DIV_BY_2, T3 DIV_BY 4, T3 DIV_BY_8

undefined

Initializes timer 3 or 4. The mode specifies the clock divisor (from the
oscillator clock). The timer value may be read and written to using
GET_TIMER3() and SET_TIMER3(). Timer 3 is a 16 bit counter/timer.

This function is only available on PIC®18 devices.
Constants are defined in the devices .h file.
setup_timer_3 (T3_INTERNAL | T3_DIV_BY_2);
None

get_timer3(), set_timer3()

SETUP_TIMER_4()

Syntax:

Parameters:

Returns:
Function:

Availability:

Requires:
Examples:

Example
Files:

Also See:

setup_timer_4 (mode, period, postscale)

mode may be one of:
e T4 DISABLED, T4 DIV_BY_1, T4 DIV_BY_4, T4 DIV_BY_16
period is a int 0-255 that determines when the clock value is reset,
postscale is a number 1-16 that determines how many timer overflows before
an interrupt: (1 means once, 2 means twice, and so on).

undefined

Initializes timer 4. The mode specifies the clock divisor (from the oscillator
clock). The timer value may be read and written to using GET_TIMER4() and
SET_TIMERA4(). Timer 4 is a 8 bit counter/timer.

This function is only available on devices with timer 4 hardware.
Constants are defined in the devices .h file

setup_timer_4 (T4_DIV_BY_4, 0xc0, 2);

// At 20mhz, the timer will increment every 800ns,
// will overflow every 153.6us,

// and will interrupt every 307.2us.

ex_pwm.c

get_timer4(), set_timer4()

227

C Compiler Reference Manual

SETUP_TIMER_5()
. __|
Syntax: setup_timer_5 (mode)
Parameters: mode may be one or two of the constants defined in the devices .h file.
T5_DISABLED, T5_INTERNAL, T5_EXTERNAL, or T5S_EXTERNAL_SYNC
T5_DIV_BY_1, T5 DIV_BY_2,T5 DIV_BY_4, T5 _DIV_BY_8

T5_ONE_SHOT, T5_DISABLE_SE_RESET, or
T5_ENABLE_DURING_SLEEP

Returns: undefined

Function: Initializes timer 5. The mode specifies the clock divisor (from the oscillator
clock). The timer value may be read and written to using GET_TIMER5()
and SET_TIMER5(). Timer 5 is a 16 bit counter/timer.

Availability: This function is only available on PIC®18 devices.

Requires: Constants are defined in the devices .h file.
Examples: setup_timer_5 (T5_INTERNAL | T5_DIV_BY_2);
Example None

Files:

Also See: get_timer5(), set_timer5(), Timer5 overview

228

Built-in-Functions

SETUP_UART()

Syntax: setup_uart(baud, stream)
setup_uart(baud)

Parameters: baud is a constant representing the number of bits per second. A one or zero
may also be passed to control the on/off status. Stream is an optional stream
identifier.

Chips with the advanced UART may also use the following constants:
UART_ADDRESS UART only accepts data with 9th bit=1
UART_DATA UART accepts all data

Chips with the EUART H/W may use the following constants:
UART_AUTODETECT Waits for 0x55 character and sets the UART baud rate
to match.

UART_AUTODETECT_NOWAIT Same as above function, except returns
before Ox55 is received. KBHIT() will be true when the match is made. A call
to GETC() will clear the character.

UART_WAKEUP_ON_RDA Wakes PIC up out of sleep when RCV goes from

high to low
Returns: undefined
Function: Very similar to SET_UART_SPEED. If 1 is passed as a parameter, the UART

is turned on, and if 0 is passed, UART is turned off. If a BAUD rate is passed
to it, the UART is also turned on, if not already on.

Availability: This function is only available on devices with a built in UART.

Requires: #use rs232
Examples: setup_uart(9600);
setup_uart(9600, rsOut);
Example None
Files:
Also See: #USE RS232, putc(), getc(), RS232 I/O overview

229

C Compiler Reference Manual

SETUP_VREF()

. __|
Syntax: setup_vref (mode | value)

Parameters: mode may be one of the following constants:

e FALSE (off)
VREF_LOW for VDD*VALUE/24
VREF_HIGH for VDD*VALUE/32 + VDD/4
any may be or'ed with VREF_A2.

value is an int 0-15.
Returns: undefined

Function: Establishes the voltage of the internal reference that may be used for analog
compares and/or for output on pin A2.

Availability: This function is only available on devices with VREF hardware.
Requires: Constants are defined in the devices .h file.
Examples: setup_vref (VREF_HIGH | 6);
// At VDD=5, the voltage is 2.19V
Example ex_comp.c
Files:
Also See: Voltage Reference overview

230

Built-in-Functions

SETUP_WDT()

Syntax:

Parameters:

Returns:

Function:

Availability:

Requires:

Examples:

Example
Files:
Also See:

setup_wdt (mode)

For PCB/PCM parts: WDT_18MS, WDT_36MS, WDT_72MS,
WDT_144MS,WDT_288MS, WDT_576MS, WDT_1152MS, WDT_2304MS

For PIC®18 parts: WDT_ON, WDT_OFF
undefined

Sets up the watchdog timer.

The watchdog timer is used to cause a hardware reset if the software appears
to be stuck.

The timer must be enabled, the timeout time set and software must periodically
restart the timer. These are done differently on the PCB/PCM and PCH parts
as follows:

PCB/PCM PCH
Enable/Disable #fuses setup_wdt()
Timeout time setup_wdt() #fuses
restart restart_wdt() restart_wdt()

All devices

#fuses, Constants are defined in the devices .h file.

#fuses WDT1 // PIC18 example, See
// restart_wdt for a PIC18 example
main() { // WDT1 means 18ms*1 for old PIC18s and

// 4ms*1 for new PIC18s
setup_wdt(WDT_ON);
while (TRUE) {
restart_wdt();
perform_activity();
}
}

ex_wdt.c

#fuses, restart wdt(), WDT or Watch Dog Timer overview

231

C Compiler Reference Manual

SHIFT_LEFT()

. __|
Syntax: shift_left (address, bytes, value)

Parameters: address is a pointer to memory, bytes is a count of the number of bytes to
work with, value is a 0 to 1 to be shifted in.

Returns: 0 or 1 for the bit shifted out

Function: Shifts a bit into an array or structure. The address may be an array identifier or
an address to a structure (such as &data). Bit O of the lowest byte in RAM is
treated as the LSB.

Availability: All devices
Requires: Nothing

Examples: byte buffer[3];
for(i=0; i<=24; ++i){
// Wait for clock high
while (Tinput(PIN_A2));
shift_left(buffer,3, input(PIN_A3));
// Wait for clock low
while (input(PIN_A2));
}
// reads 24 bits from pin A3,each bit is read
// on a low to high on pin A2

Example ex_extee.c, 9356
Files:
Also See: shift_right(), rotate right(), rotate left(),

232

Built-in-Functions

SHIFT_RIGHT()

. __|
Syntax: shift_right (address, bytes, value)

Parameters: address is a pointer to memory, bytes is a count of the number of bytes to
work with, value is a 0 to 1 to be shifted in.

Returns: 0 or 1 for the bit shifted out

Function: Shifts a bit into an array or structure. The address may be an array identifier or
an address to a structure (such as &data). Bit O of the lowest byte in RAM is
treated as the LSB.

Availability: All devices

Requires: Nothing
Examples: // reads 16 bits from pin Al, each bit is read
// on a low to high on pin A2
struct {
byte time;
byte command : 4;
byte source : 4;} msg;

for(i=0; i1<=16; ++i) {
while(Tinput(PIN_A2));
shift_right(&msg,3, input(PIN_Al));
while (input(PIN_A2)) ;}

// This shifts 8 bits out PIN_AO, LSB first.
for(i=0;i<8;++1)
output_bit(PIN_AO,shift_right(&data,1,0));

Example None
Files:
Also See: shift_left(), rotate_right(), rotate left(), <<, >>

233

C Compiler Reference Manual

SIN(), COS(), TAN(), ASIN(), ACOS(), ATAN(), SINH(), COSH(), TANH(),
ATAN2()

Syntax: val = sin (rad)
val = cos (rad)
val = tan (rad)
rad = asin (val)
radl = acos (val)
rad = atan (val)
rad2=atan2(val, val)
result=sinh(value)
result=cosh(value)
result=tanh(value)

Parameters: rad is a float representing an angle in Radians -2pi to 2pi. val is a float with
the range -1.0 to 1.0. Value is a float.

Returns: rad is a float representing an angle in Radians -pi/2 to pi/2
val is a float with the range -1.0 to 1.0.
radl is a float representing an angle in Radians 0 to pi

rad2 is a float representing an angle in Radians -pi to pi
Result is a float

Function: These functions perform basic Trigonometric functions.
sin returns the sine value of the parameter (measured in radians)
cos returns the cosine value of the parameter (measured in radians)
tan returns the tangent value of the parameter (measured in radians)
asin returns the arc sine value in the range [-pi/2,+pi/2] radians
acos returns the arc cosine value in the range[0,pi] radians
atan returns the arc tangent value in the range [-pi/2,+pi/2] radians
atan2 returns the arc tangent of y/x in the range [-pi,+pi] radians
sinh returns the hyperbolic sine of x
cosh returns the hyperbolic cosine of x
tanh returns the hyperbolic tangent of x

Note on error handling:

If "errno.h" is included then the domain and range errors are stored in the errno
variable. The user can check the errno to see if an error has occurred and print
the error using the perror function.

234

Domain error occurs in the following cases:
asin: when the argument not in the range[-1,+1]
acos: when the argument not in the range[-1,+1]
atan2: when both arguments are zero

Range error occur in the following cases:
cosh: when the argument is too large
sinh: when the argument is too large

Built-in-Functions

Availability: All devices
Requires: math.h must be included.
Examples: float phase;
// Output one sine wave
for(phase=0; phase<2*3.141596; phase+=0.01)
set_analog_voltage(sin(phase)+1);
Example ex_tank.c
Files:
Also See: loqg(), 10g10(), exp(), pow(), sart()
SINH()
See: SIN()

235

C Compiler Reference Manual

SLEEP()

Syntax: sleep()
Parameters: None
Returns: Undefined

Function: Issues a SLEEP instruction. Details are device dependent. However, in
general the part will enter low power mode and halt program execution until
woken by specific external events. Depending on the cause of the wake up
execution may continue after the sleep instruction. The compiler inserts a
sleep() after the last statement in main().

Availability: All devices

Requires: Nothing
Examples: SLEEPQ);
Example Ex_wakup.c
Files:

Also See: reset cpu()

SLEEP_ULPWU()

Syntax: sleep_ulpwu(time)

Parameters: time specifies how long, in us, to charge the capacitor on the ultra-low power
wakeup pin (by outputting a high on PIN_AO).

Returns: Undefined

Function: Charges the ultra-low power wake-up capacitor on PIN_AO for time
microseconds, and then puts the PIC to sleep. The PIC will then wake-up on
an 'Interrupt-on-Change' after the charge on the cap is lost.

Availability: Ultra Low Power Wake-Up support on the PIC (example, PIC12F683)

236

Built-in-Functions

Requires: #use delay
Examples: while(TRUE)
{

if (input(PIN_Al))
//do something

else
sleep_ulpwu(10); //cap will be charged for 10us, then goto
sleep
}
Example None
Files:
Also See: #use delay

SPI_DATA_IS_IN(), SPI_DATA_IS_IN2()
. __|]

Syntax: result = spi_data_is_in()
result = spi_data_is_in2()

Parameters: None

Returns: 0 (FALSE) or 1 (TRUE)

Function: Returns TRUE if data has been received over the SPI.
Availability: This function is only available on devices with SPI hardware.
Requires: Nothing

Examples: ('spi_data_is_in() && input(PIN_B2));

if(spi_data_is_in(Q))
data = spi_read();

Example None
Files:
Also See: spi_read(), spi_write(), SPI overview

237

C Compiler Reference Manual

SPI_READ(), SPI_READ2()

Syntax: value = spi_read (data)
value = spi_read?2 (data)

Parameters: data is optional and if included is an 8 bit int.
Returns: An 8 bit int

Function: Return a value read by the SPI. If a value is passed to SPI_READ the data will
be clocked out and the data received will be returned. If no data is ready,
SPI_READ will wait for the data.

If this device is the master then either do a SPI_WRITE(data) followed by a
SPI_READ() or do a SPI_READ(data). These both do the same thing and will
generate a clock. If there is no data to send just do a SPI_READ(0) to get the
clock.

If this device is a slave then either call SPI_READ() to wait for the clock and
data or use SPI_DATA_IS_IN() to determine if data is ready.

Availability: This function is only available on devices with SPI hardware.
Requires: Nothing

Examples: in_data = spi_read(out_data);

Example ex_spi.c

Files:

Also See: spi_data is_in(), spi_write(), SPI overview

238

Built-in-Functions

SPI_WRITE(), SPI_WRITE2()

Syntax: SPI_WRITE (value)
SPI_WRITE2 (value)

Parameters: value is an 8 bit int
Returns: Nothing

Function: Sends a byte out the SPI interface. This will cause 8 clocks to be generated.
This function will write the value out to the SPI. At the same time data is
clocked out data is clocked in and stored in a receive buffer. SPI_READ may
be used to read the buffer.

Availability: This function is only available on devices with SPI hardware.
Requires: Nothing

Examples: spi_write(data_out);
data_in = spi_read();

Example ex_spi.c
Files:
Also See: spi_read(), spi_data is_in(), SPI overview

239

C Compiler Reference Manual

SPI_XFER()

Syntax: spi_xfer(data)
spi_xfer(stream, data)
spi_xfer(stream, data, bits)
result = spi_xfer(data)
result = spi_xfer(stream, data)
result = spi_xfer(stream, data, bits)

Parameters: data is the variable or constant to transfer via SPI. The pin used to transfer
data is defined in the DO=pin option in #use spi. stream is the SPI stream to
use as defined in the STREAM=name option in #use spi. bits is how many
bits of data will be transferred.

Returns: The data read in from the SPI. The pin used to transfer result is defined in the
DI=pin option in #use spi.

Function: Transfers data to and reads data from an SPI device.
Availability: All devices with SPI support.
Requires: #use spi

Examples: int i = 34;
spi_xfer(i);
// transfers the number 34 via SPI
int trans = 34, res;
res = spi_xfer(trans);
// transfers the number 34 via SPI
// also reads the number coming in from SPI

Example None
Files:
Also See: #USE SPI

240

SPRINTF()

Built-in-Functions

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example
Files:

Also See:

sprintf(string, cstring, values...);

string is an array of characters.
cstring is a constant string or an array of characters null terminated. Values
are a list of variables separated by commas.

Nothing

This function operates like printf except that the output is placed into the
specified string. The output string will be terminated with a null. No checking
is done to ensure the string is large enough for the data. See printf() for details
on formatting.

All devices.

Nothing

char mystring[20];
long mylong;

mylong=1234;
sprintf(mystring, "<%lu>",mylong);

// mystring now has:
// <1234>\0

None

printf()

241

C Compiler Reference Manual

SQRT()

. __|]
Syntax: result = sqrt (value)
Parameters: value is a float
Returns: A float

Function: Computes the non-negative square root of the float value x. If the argument is
negative, the behavior is undefined.

Note on error handling:

If "errno.h" is included then the domain and range errors are stored in the errno
variable. The user can check the errno to see if an error has occurred and print
the error using the perror function.

Domain error occurs in the following cases:
sgrt: when the argument is negative

Availability: All devices.

Requires: #include <math.h>

Examples: distance = sqrt(sqr(x1-x2) + sqr(yl-y2));
Example None

Files:

Also See: None

242

Built-in-Functions

SRAND()
. __|
Syntax: srand(n)

Parameters: n is the seed for a new sequence of pseudo-random numbers to be returned
by subsequent calls to rand.

Returns: No value.

Function: The srand function uses the argument as a seed for a new sequence of
pseudo-random numbers to be returned by subsequent calls to rand. If srand is
then called with same seed value, the sequence of random numbers shall be
repeated. If rand is called before any call to srand have been made, the same
sequence shall be generated as when srand is first called with a seed value of
1.

Availability: All devices.

Requires: #include <STDLIB.H>

Examples: srand(10);
I=rand();

Example None

Files:

Also See: rand()

243

C Compiler Reference Manual

STANDARD STRING FUNCTIONS()

MEMCHR()
MEMCMP()
STRCAT()
STRCHR()
STRCMP()
STRCOLL()
STRCSPN()
STRICMP()
STRLEN()
STRLWR()
STRNCAT()
STRNCMP()
STRNCPY()
STRPBRK()
STRRCHR()
STRSPN()
STRSTR()
STRXFRM()

Syntax: ptr=strcat (s1, s2)
ptr=strchr (s1, c)
ptr=strrchr (s1, c)
cresult=strcmp (s1, s2)
iresult=strncmp (s1, s2, n)
iresult=stricmp (s1, s2)
ptr=strncpy (s1, s2, n)
iresult=strcspn (s1, s2)
iresult=strspn (s1, s2)
iresult=strlen (s1)
ptr=striwr (s1)
ptr=strpbrk (s1, s2)
ptr=strstr (s1, s2)
ptr=strncat(s1,s2)
iresult=strcoll(s1,s2)

res=strxfrm(s1,s2,n)

244

Concatenate s2 onto s1

Find c in s1 and return &s1[i]

Same but search in reverse

Compare sl to s2

Compare sl to s2 (n bytes)

Compare and ignore case

Copy up to n characters s2->s1

Count of initial chars in s1 not in s2
Count of initial chars in s1 also in s2
Number of characters in s1

Convert string to lower case

Search s1 for first char also in s2
Search for s2 in s1

Concatenates up to n bytes of s2 onto s1
Compares sl to s2, both interpreted as
appropriate to the current locale.

Transforms maximum of n characters of s2
and places them in s1, such that

Parameters:

Returns:

Function:

Availability:

Requires:

Examples:

Example
Files:
Also See:

STRCAT()
STRCHR()

Built-in-Functions

strcmp(s1,s2) will give the same result as
strcoll(s1,s2)

iresult=memcmp(m1,m2,n) Compare ml to m2 (n bytes)
ptr=memchr(m1,c,n) Find c in first n characters of m1 and return

&mi[i]
s1 and s2 are pointers to an array of characters (or the name of an array).
Note that s1 and s2 MAY NOT BE A CONSTANT (like "hi").
n is a count of the maximum number of character to operate on.
c is a 8 bit character

m1 and m2 are pointers to memory.

ptr is a copy of the s1 pointer

iresult is an 8 bit int

result is -1 (less than), 0 (equal) or 1 (greater than)
res is an integer.

Functions are identified above.
All devices.
#include <string.h>

char stringl[10], string2[10];

strcpy(stringl,”hi);
strcpy(string2,'there™);
strcat(stringl,string2);

printf('Length is %u\r\n", strlen(stringl));
// Will print 8

ex_str.c

strepy(), strtok()

245

C Compiler Reference Manual

STRCMP()
STRCOLL()

See: STANDARD STRING FUNCTIONS()

STRCPY(), STRCOPY()

Syntax:

Parameters:

Returns:

Function:

Availability:

Requires:

Examples:

Example
Files:
Also See:

strcpy (dest, src)
strcopy (dest, src)

dest is a pointer to a RAM array of characters.
src may be either a pointer to a RAM array of characters or it may be a
constant string.

undefined

Copies a constant or RAM string to a RAM string. Strings are terminated with
ao.

All devices.

Nothing

char string[10], string2[10];

étrcpy (string, "Hi There™);

strcpy(string2,string);
ex_str.c

Strxxxx()

STRCSPN()
STRLEN()
STRLWR()
STRNCAT()
STRNCMP()
STRNCPY()
STRPBRK()
STRRCHR()
STRSPN()

Built-in-Functions

See: STANDARD STRING FUNCTIONS()

STRTOD()

Syntax:
Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example
Files:

Also See:

result=strtod(nptr,& endptr)
nptr and endptr are strings

result is a float.
returns the converted value in result, if any. If no conversion could be
performed, zero is returned.

The strtod function converts the initial portion of the string pointed to by nptr to
a float representation. The part of the string after conversion is stored in the
object pointed to endptr, provided that endptr is not a null pointer. If nptr is
empty or does not have the expected form, no conversion is performed and the
value of nptr is stored in the object pointed to by endptr, provided endptr is not
a null pointer.

All devices.
STDLIB.H must be included

float result;

char str[12]="123.45hello";

char *ptr;

result=strtod(str,&ptr);

//result is 123.45 and ptr is "hello"

None
strtol(), strtoul()

247

C Compiler Reference Manual

STRTOK()

. __|
Syntax: ptr = strtok(s1, s2)

Parameters: sl and s2 are pointers to an array of characters (or the name of an array).
Note that s1 and s2 MAY NOT BE A CONSTANT (like "hi"). s1 may be 0 to
indicate a continue operation.

Returns: ptr points to a character in s1 or is 0
Function: Finds next token in s1 delimited by a character from separator string s2 (which

can be different from call to call), and returns pointer to it.

First call starts at beginning of s1 searching for the first character NOT
contained in s2 and returns null if there is none are found.

If none are found, it is the start of first token (return value). Function then
searches from there for a character contained in s2.

If none are found, current token extends to the end of s1, and subsequent
searches for a token will return null.

If one is found, it is overwritten by "\Q', which terminates current token.
Function saves pointer to following character from which next search will start.

Each subsequent call, with 0 as first argument, starts searching from the saved
pointer.

Availability: All devices.
Requires: #include <string.h>

Examples: char string[30], term[3], *ptr;

strcpy(string,‘one, two, three;™);
strcpy(term,™,;™);

ptr = strtok(string, term);
while(ptr!=0) {

puts(ptr);

ptr = strtok(0, term);

// Prints:
one
two
three
Example ex_str.c
Files:
Also See: Strxxxx(), strepy()

248

STRTOL()

Built-in-Functions

Syntax:

Parameters:

Returns:

Function:

Availability:

Requires:

Examples:

Example
Files:

Also See:

result=strtol(nptr,& endptr, base)
nptr and endptr are strings and base is an integer

result is a signed long int.
returns the converted value in result , if any. If no conversion could be
performed, zero is returned.

The strtol function converts the initial portion of the string pointed to by nptr to a
signed long int representation in some radix determined by the value of base.
The part of the string after conversion is stored in the object pointed to endptr,
provided that endptr is not a null pointer. If nptr is empty or does not have the
expected form, no conversion is performed and the value of nptr is stored in
the object pointed to by endptr, provided endptr is not a null pointer.

All devices.
STDLIB.H must be included

signed long result;

char str[9]="123hello";

char *ptr;

result=strtol (str,&ptr,10);
//result is 123 and ptr is "hello”

None

strtod(), strtoul()

249

C Compiler Reference Manual

STRTOUL()

. __|
Syntax: result=strtoul(nptr,& endptr, base)
Parameters: nptr and endptr are strings and base is an integer

Returns: result is an unsigned long int.
returns the converted value in result , if any. If no conversion could be
performed, zero is returned.

Function: The strtoul function converts the initial portion of the string pointed to by nptr to
a long int representation in some radix determined by the value of base. The
part of the string after conversion is stored in the object pointed to endptr,
provided that endptr is not a null pointer. If nptr is empty or does not have the
expected form, no conversion is performed and the value of nptr is stored in
the object pointed to by endptr, provided endptr is not a null pointer.

Availability: All devices.
Requires: STDLIB.H must be included

Examples: long result;
char str[9]="123hello";
char *ptr;
result=strtoul (str,&ptr,10);
//result is 123 and ptr is "hello”

Example None

Files:

Also See: strtol(), strtod()

250

Built-in-Functions

STRXFRM()

|
See: STANDARD STRING FUNCTIONS()

SWAP()
. __|
Syntax: swap (lvalue)
Parameters: Ivalue is a byte variable
Returns: undefined - WARNING: this function does not return the result
Function: Swaps the upper nibble with the lower nibble of the specified byte. This is the
same as:

byte = (byte << 4) | (byte >> 4);

Availability: All devices.

Requires: Nothing
Examples: x=0x45;
swap(x);

//x now is 0x54

Example None
Files:

Also See: rotate right(), rotate left()

TAN()
TANH()

See: SIN()

251

C Compiler Reference Manual

TOLOWER(), TOUPPER()

Syntax: result = tolower (cvalue)
result = toupper (cvalue)

Parameters: cvalue is a character

Returns: An 8 bit character

Function: These functions change the case of letters in the alphabet.
TOLOWER(X) will return 'a"..'z' for X in 'A'.."Z" and all other characters are
unchanged. TOUPPER(X) will return 'A'..'Z' for X in 'a"..'z" and all other
characters are unchanged.

Availability: All devices.

Requires: Nothing

Examples: switch(toupper(getcQ)) {
case "R" : read _cmd(); break;
case "W" : write_cmd(); break;
case "Q" : done=TRUE; break;

3
Example ex_str.c
Files:
Also See: None

252

Built-in-Functions

WRITE_BANK()

. __|
Syntax: write_bank (bank, offset, value)

Parameters: bank is the physical RAM bank 1-3 (depending on the device), offset is the
offset into user RAM for that bank (starts at 0), value is the 8 bit data to write

Returns: undefined

Function: Write a data byte to the user RAM area of the specified memory bank. This
function may be used on some devices where full RAM access by auto
variables is not efficient. For example on the PIC16C57 chip setting the
pointer size to 5 bits will generate the most efficient ROM code however auto
variables can not be above 1Fh. Instead of going to 8 bit pointers you can save
ROM by using this function to write to the hard to reach banks. In this case the
bank may be 1-3 and the offset may be 0-15.

Availability: All devices but only useful on PCB parts with memory over 1Fh and PCM parts
with memory over FFh.

Requires: Nothing
Examples: i=0; // Uses bank 1 as a RS232 buffer
do {
c=getc();

write_bank(l,i++,c);
} while (c!=0x13);

Example ex_psp.c
Files:
Also See: See the "Common Questions and Answers" section for more information.

253

C Compiler Reference Manual

WRITE_CONFIGURATION_MEMORY/()

. __|
Syntax: write_configuration_memory (dataptr, count)

Parameters: dataptr: pointer to one or more bytes
count: a 8 bit integer

Returns: undefined

Function: Erases all fuses and writes count bytes from the dataptr to the configuration
memory.

Availability: All PIC18 flash devices

Requires: Nothing

Examples: int data[6];
write_configuration_memory(data,6)

Example None

Files:

Also See: WRITE PROGRAM_ MEMORY, Configuration memory overview

WRITE_EEPROM()

. __|
Syntax: write_eeprom (address, value)
Parameters: address is a (8 bit or 16 bit depending on the part) int, the range is device
dependent, value is an 8 bit int
Returns: undefined

Function: Write a byte to the specified data EEPROM address. This function may take
several milliseconds to execute. This works only on devices with EEPROM
built into the core of the device.

For devices with external EEPROM or with a separate EEPROM in the same
package (line the 12CE671) see EX_EXTEE.c with CE51X.c, CE61X.c or
CE67X.c.

Availability: This function is only available on devices with supporting hardware on chip.

Requires: Nothing

Examples: #define LAST _VOLUME 10 // Location in EEPROM
volume++;
write_eeprom(LAST_VOLUME,volume);

Example ex_intee.c, ex_extee.c, ex_ce51x.c, ex_cebl.c, ex_ce67.c

Files:

Also See: read eeprom(), write_program_eeprom(), read program_eeprom(),

data eeprom overview

254

Built-in-Functions

WRITE_EXTERNAL_MEMORY()

Syntax:

Parameters:

Returns:

Function:

Availability:

Requires:

Examples:

Example
Files:

Also See:

write_external_memory(address, dataptr, count)

address is 16 bits on PCM parts and 32 bits on PCH parts
dataptr is a pointer to one or more bytes count is a 8 bit integer

undefined

Writes count bytes to program memory from dataptr to

address. Unlike WRITE_PROGRAM_EEPROM and READ_PROGRAM_EEPROM
this function does not use any special EEPROM/FLASH write algorithm. The data is
simply copied from register address space to program memory address space. This is
useful for external RAM or to implement an algorithm for external flash.

Only PCH devices.
Nothing

For(i=0x1000; i<=0x1fff;i++) {
value=read_adc();
write_external_memory(i, value, 2);
delay_ms(1000);

None

None

255

C Compiler Reference Manual

WRITE_PROGRAM_EEPROM()

. __|
Syntax: write_program_eeprom (address, data)

Parameters: address is 16 bits on PCM parts and 32 bits on PCH parts, data is 16 bits.
The least significant bit should always be 0 in PCH.

Returns: undefined

Function: Writes to the specified program EEPROM area.

See our WRITE_PROGRAM_MEMORY for more information on this function.

Availability: Only devices that allow writes to program memory.

Requires: Nothing

Examples: write_program_eeprom(0,0x2800); //disables program

Example ex_loadc.c, loader.c

Files:

Also See: read_program_eeprom(), read_eeprom(), write_eeprom(),
write_program_memory(), erase _program_eeprom(), Program eeprom
overview

256

Built-in-Functions

WRITE_PROGRAM_MEMORY/()

Syntax:

Parameters:

Returns:

Function:

Availability:

Requires:
Examples:

Example
Files:
Also See:

Additional
Notes:

write_program_memory(address, dataptr, count);

address is 16 bits on PCM parts and 32 bits on PCH parts.
dataptr is a pointer to one or more bytes count is a 8 bit integer

undefined

Writes count bytes to program memory from dataptr to address. This function
is most effective when count is a multiple of FLASH_WRITE_SIZE. Whenever
this function is about to write to a location that is a multiple of
FLASH_ERASE_SIZE then an erase is performed on the whole block.

Only devices that allow writes to program memory.

Nothing

for(i=0x1000; i<=0Ox1Fff;i++) {
value=read_adc();

write_program_memory(i, value, 2); delay_ms(1000);

ks
loader.c

write_program_eeprom, erase_program_eeprom, Program eeprom overview

Clarification about the functions to write to program memory:

For chips where

getenv(“FLASH ERASE_SIZE™) > getenv(“FLASH WRITE_SIZE™)
WRITE_PROGRAM_EEPROM

Writes 2 bytes, does not erase (use ERASE_PROGRAM_EEPROM)
WRITE_PROGRAM_MEMORY

Writes any number of bytes, will erase a block whenever the
first (lowest) byte in a block is written to. |If the first
address is not the start of a block that block is not erased.
ERASE_PROGRAM_EEPROM

Will erase a block. The lowest address bits are not used.
For chips where

getenv(“FLASH_ERASE_SIZE™) = (“FLASH_WRITE_SIZE™)
WRITE_PROGRAM_EEPROM

Writes 2 bytes, no erase is needed.

WRITE_PROGRAM_MEMORY

Writes any number of bytes, bytes outside the range of the
write block are not changed. No erase is needed.
ERASE_PROGRAM_EEPROM

Not available

257

C Compiler Reference Manual

STANDARD C INCLUDE FILES

r o
W

C Compiler

errno.h
errno.h
EDOM Domain error value
ERANGE Range error value
errno error value
float.h

float.h

FLT_RADIX: Radix of the exponent representation

FLT_MANT_DIG: Number of base digits in the floating point significant

FLT_DIG: Number of decimal digits, q, such that any floating point number

- with g decimal digits can be rounded into a floating point number

with p radix b digits and back again without change to the q
decimal digits.

FLT_MIN_EXP: Minimum negative integer such that FLT_RADIX raised to that

FLT_MIN_10_EXP:
FLT_MAX_EXP:

FLT_MAX_10_EXP:

power minus 1 is a normalized floating-point number.

Minimum negative integer such that 10 raised to that power is in
the range of normalized floating-point numbers.

Maximum negative integer such that FLT_RADIX raised to that
power minus 1 is a representable finite floating-point number.
Maximum negative integer such that 10 raised to that power is in
the range representable finite floating-point numbers.

FLT_MAX: Maximum representable finite floating point number.

FLT_EPSILON: The difference between 1 and the least value greater than 1 that
is representable in the given floating point type.

FLT_MIN: Minimum normalized positive floating point number.

DBL_MANT _DIG:

Number of base digits in the floating point significant

Standard C Include Files

DBL_DIG:

DBL_MIN_EXP:
DBL_MIN_10_EXP:
DBL_MAX_EXP:
DBL_MAX_10_EXP:

DBL_MAX:
DBL_EPSILON:

DBL_MIN:

LDBL_MANT_DIG:
LDBL_DIG:

LDBL_MIN_EXP:
LDBL_MIN_10_EXP:
LDBL_MAX_EXP:

LDBL_MAX_10_EXP:

LDBL_MAX:
LDBL_EPSILON:

LDBL_MIN:

Number of decimal digits, g, such that any floating point number
with g decimal digits can be rounded into a floating point number
with p radix b digits and back again without change to the q
decimal digits.

Minimum negative integer such that FLT_RADIX raised to that
power minus 1 is a normalized floating-point number.

Minimum negative integer such that 10 raised to that power is in
the range of normalized floating-point numbers.

Maximum negative integer such that FLT_RADIX raised to that
power minus 1 is a representable finite floating-point number.
Maximum negative integer such that 10 raised to that power is in
the range of representable finite floating-point numbers.
Maximum representable finite floating point number.

The difference between 1 and the least value greater than 1 that
is representable in the given floating point type.

Minimum normalized positive floating point number.

Number of base digits in the floating point significant

Number of decimal digits, g, such that any floating point number
with g decimal digits can be rounded into a floating point number
with p radix b digits and back again without change to the q
decimal digits.

Minimum negative integer such that FLT_RADIX raised to that
power minus 1 is a normalized floating-point number.

Minimum negative integer such that 10 raised to that power is in
the range of normalized floating-point numbers.

Maximum negative integer such that FLT_RADIX raised to that
power minus 1 is a representable finite floating-point number.
Maximum negative integer such that 10 raised to that power is in
the range of representable finite floating-point numbers.
Maximum representable finite floating point number.

The difference between 1 and the least value greater than 1 that
is representable in the given floating point type.

Minimum normalized positive floating point number.

259

C Compiler Reference Manual

limits.h

. __|
limits.h
CHAR_BIT: Number of bits for the smallest object that is not a bit_field.
SCHAR_MIN: Minimum value for an object of type signed char
SCHAR_MAX: Maximum value for an object of type signed char
UCHAR_MAX: Maximum value for an object of type unsigned char
CHAR_MIN: Minimum value for an object of type char(unsigned)
CHAR_MAX: Maximum value for an object of type char(unsigned)
MB_LEN_MAX: Maximum number of bytes in a multibyte character.
SHRT_MIN: Minimum value for an object of type short int
SHRT_MAX: Maximum value for an object of type short int
USHRT_MAX: Maximum value for an object of type unsigned short int
INT_MIN: Minimum value for an object of type signed int
INT_MAX: Maximum value for an object of type signed int
UINT_MAX: Maximum value for an object of type unsigned int
LONG_MIN: Minimum value for an object of type signed long int
LONG_MAX: Maximum value for an object of type signed long int
ULONG MAX: Maximum value for an object of type unsigned long int

locale.h
|
locale.h
locale.h (Localization not supported)
lconv localization structure
SETLOCALE() returns null
LOCALCONV() returns clocale
setimp.h
|
setjimp.h
jmp_buf: An array used by the following functions
setjmp: Marks a return point for the next longjmp
longjmp: Jumps to the last marked point

260

Standard C Include Files

stddef.h
. __|
stddef.h
ptrdiff_t: The basic type of a pointer
size t: The type of the sizeof operator (int)
wchar_t The type of the largest character set supported (char) (8 bits)
NULL A null pointer (0)

stdio.h

stdio.h

stderr The standard error s stream (USE RS232 specified as stream or the first USE
RS232)

stdout The standard output stream (USE RS232 specified as stream last USE RS232)

stdin The standard input s stream (USE RS232 specified as stream last USE RS232)

stdlib.h
I
stdlib.h
div_t structure type that contains two signed integers(quot and rem).
Idiv_t structure type that contains two signed longs(quot and rem

EXIT_FAILURE returns 1
EXIT_SUCCESS returns 0O

RAND_MAX-

MBCUR_MAX- 1

SYSTEM() Returns O(not supported)
Multibyte Multibyte characters not supported

character and
string functions:

MBLEN() Returns the length of the string.
MBTOWC() Returns 1.

WCTOMB() Returns 1.

MBSTOWCS() Returns length of string.
WBSTOMBS() Returns length of string.

Stdlib.h functions included just for compliance with ANSI C.

261

C Compiler Reference Manual

ERROR MESSAGES

r o
W

C Compiler

Compiler Error Messages

#ENDIF with no corresponding #IF
Compiler found a #ENDIF directive without a corresponding #IF.

#ERROR

A #DEVICE required before this line
The compiler requires a #device before it encounters any statement or compiler directive that may
cause it to generate code. In general #defines may appear before a #device but not much more.

A numeric expression must appear here
Some C expression (like 123, A or B+C) must appear at this spot in the code. Some expression
that will evaluate to a value.

Arrays of bits are not permitted
Arrays may not be of SHORT INT. Arrays of Records are permitted but the record size is always
rounded up to the next byte boundary.

Attempt to create a pointer to a constant

Constant tables are implemented as functions. Pointers cannot be created to functions. For
example CHAR CONST MSG[9]={"HI THERE"}; is permitted, however you cannot use &MSG. You
can only reference MSG with subscripts such as MSG]Ji] and in some function calls such as Printf
and STRCPY.

Attributes used may only be applied to a function (INLINE or SEPARATE)
An attempt was made to apply #INLINE or #SEPARATE to something other than a function.

Bad ASM syntax

Bad expression syntax
This is a generic error message. It covers all incorrect syntax.

Error Messages

Baud rate out of range

The compiler could not create code for the specified baud rate. If the internal UART is being used
the combination of the clock and the UART capabilities could not get a baud rate within 3% of the
requested value. If the built in UART is not being used then the clock will not permit the indicated
baud rate. For fast baud rates, a faster clock will be required.

BIT variable not permitted here
Addresses cannot be created to bits. For example &X is not permitted if X is a SHORT INT.

Cannot change device type this far into the code
The #DEVICE is not permitted after code is generated that is device specific. Move the #DEVICE
to an area before code is generated.

Character constant constructed incorrectly
Generally this is due to too many characters within the single quotes. For example 'ab' is an error
as is '\nr'. The backslash is permitted provided the result is a single character such as "\010' or '\n'".

Constant out of the valid range
This will usually occur in inline assembly where a constant must be within a particular range and it
is not. For example BTFSC 3,9 would cause this error since the second operand must be from 0-8.

Define expansion is too large
A fully expanded DEFINE must be less than 255 characters. Check to be sure the DEFINE is not
recursively defined.

Define syntax error
This is usually caused by a missing or misplaced (or) within a define.

Demo period has expired
Please contact CCS to purchase a licensed copy.

http://www.ccsinfo.com/pic.html

Different levels of indirection
This is caused by a INLINE function with a reference parameter being called with a parameter that
is not a variable. Usually calling with a constant causes this.

Divide by zero
An attempt was made to divide by zero at compile time using constants.

Duplicate case value
Two cases in a switch statement have the same value.

263

C Compiler Reference Manual

Duplicate DEFAULT statements
The DEFAULT statement within a SWITCH may only appear once in each SWITCH. This error
indicates a second DEFAULT was encountered.

Duplicate function
A function has already been defined with this name. Remember that the compiler is not case
sensitive unless a #CASE is used.

Duplicate Interrupt Procedure
Only one function may be attached to each interrupt level. For example the #INT_RB may only
appear once in each program.

Duplicate USE
Some USE libraries may only be invoked once since they apply to the entire program such as
#USE DELAY. These may not be changed throughout the program.

Element is not a member
A field of a record identified by the compiler is not actually in the record. Check the identifier
spelling.

ELSE with no corresponding IF
Compiler found an ELSE statement without a corresponding IF. Make sure the ELSE statement
always match with the previous IF statement.

End of file while within define definition
The end of the source file was encountered while still expanding a define. Check for a missing).

End of source file reached without closing comment */ symbol

The end of the source file has been reached and a comment (started with /*) is still in effect. The */
is missing.

type are INT and CHAR.

Expect ;

Expect }

Expect comma
Expect WHILE
Expecting *
Expecting :
Expecting <
Expecting =
Expecting >
Expecting a (
Expecting a, or)
Expecting a, or }

264

Error Messages

Expecting a.

Expecting a; or,
Expecting a ; or {
Expecting a close paren
Expecting a declaration
Expecting a structure/union
Expecting a variable
Expecting an =
Expecting a]

Expecting a{

Expecting an array
Expecting an identifier
Expecting function name

Expecting an opcode mnemonic
This must be a Microchip mnemonic such as MOVLW or BTFSC.

Expecting LVALUE such as a variable name or * expression
This error will occur when a constant is used where a variable should be. For example 4=5; will
give this error.

Expecting a basic type
Examples of a basic type are INT and CHAR.

Expression must be a constant or simple variable

The indicated expression must evaluate to a constant at compile time. For example 5*3+1 is
permitted but 5*x+1 where X is a INT is not permitted. If X were a DEFINE that had a constant
value then it is permitted.

Expression must evaluate to a constant

The indicated expression must evaluate to a constant at compile time. For example 5*3+1 is
permitted but 5*x+1 where X is a INT is not permitted. If X were a DEFINE that had a constant
value then it is permitted.

Expression too complex
This expression has generated too much code for the compiler to handle for a single expression.
This is very rare but if it happens, break the expression up into smaller parts.

Too many assembly lines are being generated for a single C statement. Contact CCS to increase
the internal limits.

EXTERNal symbol not found

EXTERNal symbol type mis-match

265

C Compiler Reference Manual

Extra characters on preprocessor command line

Characters are appearing after a preprocessor directive that do not apply to that directive.
Preprocessor commands own the entire line unlike the normal C syntax. For example the
following is an error:

#PRAGMA DEVICE <PIC16C74> main() { int x; x=1;}

File cannot be opened
Check the filename and the current path. The file could not be opened.

File cannot be opened for write

The operating system would not allow the compiler to create one of the output files. Make sure the
file is not marked READ ONLY and that the compiler process has write privileges to the directory
and file.

Filename must start with " or <

The correct syntax of a #include is one of the following two formats:
#include 'filename.ext"

#include <filename.ext>

This error indicates neither a " or < was found after #include.

Filename must terminate with " or; msg:'"'
The filename specified in a #include must terminate with a " if it starts with a . It must terminate
with a > if it starts with a <.

Floating-point numbers not supported for this operation
A floating-point number is not permitted in the operation near the error. For example, ++F where F
is a float is not allowed.

Function definition different from previous definition

This is a mis-match between a function prototype and a function definition. Be sure that if a
#INLINE or #SEPARATE are used that they appear for both the prototype and definition. These
directives are treated much like a type specifier.

Function used but not defined
The indicated function had a prototype but was never defined in the program.

Identifier is already used in this scope
An attempt was made to define a new identifier that has already been defined.

lllegal C character in input file
A bad character is in the source file. Try deleting the line and re-typing it.

266

Error Messages

Improper use of a function identifier
Function identifiers may only be used to call a function. An attempt was made to otherwise
reference a function. A function identifier should have a (after it.

Incorrectly constructed label

This may be an improperly terminated expression followed by a label. For example:
x=5+

MPLAB:

Initialization of unions is not permitted
Structures can be initialized with an initial value but UNIONS cannot be.

Internal compiler limit reached
The program is using too much of something. An internal compiler limit was reached. Contact
CCS and the limit may be able to be expanded.

Internal Error - Contact CCS

This error indicates the compiler detected an internal inconsistency. This is not an error with the
source code; although, something in the source code has triggered the internal error. This problem
can usually be quickly corrected by sending the source files to CCS so the problem can be re-
created and corrected.

In the meantime if the error was on a particular line, look for another way to perform the same
operation. The error was probably caused by the syntax of the identified statement. If the error
was the last line of the code, the problem was in linking. Look at the call tree for something out of
the ordinary.

Interrupt handler uses too much stack
Too many stack locations are being used by an interrupt handler.

Invalid conversion from LONG INT to INT

In this case, a LONG INT cannot be converted to an INT. You can type cast the LONG INT to
perform a truncation. For example:

I = INT(LD);

Invalid parameters to built in function
Built-in shift and rotate functions (such as SHIFT_LEFT) require an expression that evaluates to a
constant to specify the number of bytes.

Invalid Pre-Processor directive
The compiler does not know the preprocessor directive. This is the identifier in one of the following

two places:
HXXXXX
#PRAGMA XXXXX

267

C Compiler Reference Manual

Invalid ORG range

The end address must be greater than or equal to the start address. The range may not overlap
another range. The range may not include locations 0-3. If only one address is specified it must
match the start address of a previous #org.

Invalid type conversion

Library in USE not found
The identifier after the USE is not one of the pre-defined libraries for the compiler. Check the
spelling.

Linker Error: "%s" already defined in "%s"
Linker Error: ("%s'

Linker Error: Canont allocate memory for the section "%s" in the module "%s", because it
overlaps with other sections.

Linker Error: Cannot find unique match for symbol "%s"
Linker Error: Cannot open file "%s"
Linker Error: COFF file "%s" is corrupt; recompile module.

Linker Error: Not enough memory in the target to reallocate the section "%s" in the module
"0

Linker Error: Section "%s" is found in the modules "%s" and "%s" with different section
types.

Linker Error: Unknown error, contact CCS support.
Linker Error: Unresolved external symbol "%s" inside the module "%s".
Linker option no compatible with prior options.

Linker Warning: Section "%s" in module "%s" is declared as shared but there is no shared
memory in the target chip. The shared flag is ignored.

Linker option not compatible with prior options
Conflicting linker options are specified. For example using both the EXCEPT= and ONLY= options
in the same directive is not legal.

268

Error Messages

LVALUE required
This error will occur when a constant is used where a variable should be. For example 4=5; will
give this error.

Macro identifier requires parameters

A #DEFINE identifier is being used but no parameters were specified, as required. For example:
#define min(x,y) ((X<y)?x:y)

When called MIN must have a (--,--) after it such as:

r=min(value, 6);

Macro is defined recursively
A C macro has been defined in such a way as to cause a recursive call to itself.

Missing #ENDIF
A #IF was found without a corresponding #ENDIF.

Missing or invalid .CRG file

The user registration file(s) are not part of the download software. In order for the software to run
the files must be in the same directory as the .EXE files. These files are on the original diskette,
CD ROM or e-mail in a non-compressed format. You need only copy them to the .EXE directory.
There is one .REG file for each compiler (PCB.REG, PCM.REG and PCH.REG).

More info:

Must have a #USE DELAY before a #USE RS232
The RS232 library uses the DELAY library. You must have a #USE DELAY before you can do a
#USE RS232.

No errors
The program has successfully compiled and all requested output files have been created.

No MAIN() function found
All programs are required to have one function with the name main().

No valid assignment made to function pointer

269

C Compiler Reference Manual

Not enough RAM for all variables

The program requires more RAM than is available. The symbol map shows variables allocated.
The call tree shows the RAM used by each function. Additional RAM usage can be obtained by
breaking larger functions into smaller ones and splitting the RAM between them.

For example, a function A may perform a series of operations and have 20 local variables declared.
Upon analysis, it may be determined that there are two main parts to the calculations and many
variables are not shared between the parts. A function B may be defined with 7 local variables and
a function C may be defined with 7 local variables. Function A now calls B and C and combines
the results and now may only need 6 variables. The savings are accomplished because B and C
are not executing at the same time and the same real memory locations will be used for their 6
variables (just not at the same time). The compiler will allocate only 13 locations for the group of
functions A, B, C where 20 were required before to perform the same operation.

Number of bits is out of range
For a count of bits, such as in a structure definition, this must be 1-8. For a bit number
specification, such as in the #BIT, the number must be 0-7.

Option invalid

Out of ROM, A segment or the program is too large

A function and all of the INLINE functions it calls must fit into one segment (a hardware code page).
For example, on the PIC16 chip a code page is 512 instructions. If a program has only one
function and that function is 600 instructions long, you will get this error even though the chip has
plenty of ROM left. The function needs to be split into at least two smaller functions. Even after
this is done, this error may occur since the new function may be only called once and the linker
might automatically INLINE it. This is easily determined by reviewing the call tree. If this error is
caused by too many functions being automatically INLINED by the linker, simply add a
#SEPARATE before a function to force the function to be SEPARATE. Separate functions can be
allocated on any page that has room. The best way to understand the cause of this error is to
review the call tree.

Parameters not permitted
An identifier that is not a function or preprocessor macro can not have a ' (' after it.

Pointers to bits are not permitted
Addresses cannot be created to bits. For example, &X is not permitted if X is a SHORT INT.

Previous identifier must be a pointer
A -> may only be used after a pointer to a structure. It cannot be used on a structure itself or other
kind of variable.

Printf format type is invalid
An unknown character is after the % in a printf. Check the printf reference for valid formats.

270

Error Messages

Printf format (%) invalid
A bad format combination was used. For example, %lc.

Printf variable count (%) does not match actual count
The number of % format indicators in the printf does not match the actual number of variables that
follow. Remember in order to print a single %, you must use %%.

Recursion not permitted
The linker will not allow recursive function calls. A function may not call itself and it may not call
any other function that will eventually re-call it.

Recursively defined structures not permitted
A structure may not contain an instance of itself.

Reference arrays are not permitted
A reference parameter may not refer to an array.

Return not allowed in void function
A return statement may not have a value if the function is void.

RTOS call only allowed inside task functions

Selected part does not have ICD debug capability

STDOUT not defined (may be missing #RS 232)
An attempt was made to use a I/O function such as printf when no default I/O stream has been
established. Add a #USE RS232 to define a I/O stream.

Stream must be a constant in the valid range

1/0 functions like fputc, fgetc require a stream identifier that was defined in a #USE RS232. This
identifier must appear exactly as it does when it was defined. Be sure it has not been redefined with
a #define.

String too long

Structure field name required
A structure is being used in a place where a field of the structure must appear. Change to the form
s.f where s is the structure name and f is a field name.

Structures and UNIONS cannot be parameters (use * or &)
A structure may not be passed by value. Pass a pointer to the structure using &.

271

C Compiler Reference Manual

Subscript out of range
A subscript to a RAM array must be at least 1 and not more than 128 elements. Note that large
arrays might not fit in a bank. ROM arrays may not occupy more than 256 locations.

This linker function is not available in this compiler version.
Some linker functions are only available if the PCW or PCWH product is installed.

This type cannot be qualified with this qualifier

Check the qualifiers. Be sure to look on previous lines. An example of this error is:
VOID X;

Too many array subscripts
Arrays are limited to 5 dimensions.

Too many constant structures to fit into available space

Available space depends on the chip. Some chips only allow constant structures in certain places.
Look at the last calling tree to evaluate space usage. Constant structures will appear as functions
with a @CONST at the beginning of the name.

Too many elements in an ENUM
A max of 256 elements are allowed in an ENUM.

Too many fast interrupt handlers have been identified

Too many nested #INCLUDEs
No more than 10 include files may be open at a time.

Too many parameters
More parameters have been given to a function than the function was defined with.

Too many subscripts
More subscripts have been given to an array than the array was defined with.

Type is not defined
The specified type is used but not defined in the program. Check the spelling.

Type specification not valid for a function
This function has a type specifier that is not meaningful to a function.

Undefined label that was used in a GOTO
There was a GOTO LABEL but LABEL was never encountered within the required scope. A GOTO
cannot jump outside a function.

272

Error Messages

Unknown device type

A #DEVICE contained an unknown device. The center letters of a device are always C regardless
of the actual part in use. For example, use PIC16C74 not PIC16RC74. Be sure the correct
compiler is being used for the indicated device. See #DEVICE for more information.

Unknown keyword in #FUSES
Check the keyword spelling against the description under #FUSES.

Unknown linker keyword
The keyword used in a linker directive is not understood.

Unknown type
The specified type is used but not defined in the program. Check the spelling.

User aborted compilation

USE parameter invalid
One of the parameters to a USE library is not valid for the current environment.

USE parameter value is out of range
One of the values for a parameter to the USE library is not valid for the current environment.

Variable never used

Variable of this data type is never greater than this constant

273

C Compiler Reference Manual

COMPILER WARNING MESSAGES

r o
W

C Compiler

Compiler Warning Messages

#error/warning

Assignment inside relational expression
Although legal it is a common error to do something like if(a=b) when it was intended to do if(a==b).

Assignment to enum is not of the correct type.
This warning indicates there may be such atypo in this line:

Assignment to enum is not of the correct type
If a variable is declared as a ENUM it is best to assign to the variables only elements of the enum.

For example:
enum colors {RED,GREEN,BLUE} color;

color

= GREEN; // OK
color = 1; // Warning 209
color = (colors)l; //0K

Code has no effect
The compiler can not discern any effect this source code could have on the generated code. Some
examples:

Condition always FALSE
This error when it has been determined at compile time that a relational expression will never be
true. For example:

int x;

if(x>>9)

Compiler Warning messages

Condition always TRUE
This error when it has been determined at compile time that a relational expression will never be
false. For example:

#define PIN_Al 41

if(PINAL) /7 Intended was: if(input(PIN_A1))

Function not void and does not return a value

Functions that are declared as returning a value should have a return statement with a value to be
returned. Be aware that in C only functions declared VOID are not intended to return a value. If
nothing is specified as a function return value "int" is assumed.

Duplicate #define

The identifier in the #define has already been used in a previous #define. To redefine an identifier
use #UNDEF first. To prevent defines that may be included from multiple source do something
like:

#ifndef ID
#define ID text
#endif

Function not void and does not return a value.

Interrupts disabled during call to prevent re-entrancy.
Linker Warning: "%s" already defined in object "%s"; second definition ignored.

Linker Warning: Address and size of section "%s" in module "%s" exceeds maximum range
for this processor. The section will be ignored.

Linker Warning: The module "%s" doesn't have a valid chip id. The module will be
considered for the target chip "%s".

Linker Warning: The target chip "%s" of the imported module "%s" doesn't match the target
chip "%s" of the source.

Linker Warning: Unsupported relocation type in module "%s".

Memory not available at requested location.

Operator precedence rules may not be as intended, use() to clarify
Some combinations of operators are confusing to some programmers. This warning is issued for
expressions where adding() would help to clarify the meaning. For example:
if(x<<n+1)
would be more universally understood when expressed:
if(x << (n+1))

275

C Compiler Reference Manual

Structure passed by value
Structures are usually passed by reference to a function. This warning is generated if the structure
is being passed by value. This warning is not generated if the structure is less than 5 bytes. For
example:

void myfunct(mystruct sl) // Pass by value - Warning

myfunct(s2);

void myfunct(mystruct * sl) // Pass by reference - OK

myfunct(&s2);

void myfunct(mystruct & s1) // Pass by reference - OK

myfunct(s2);

Undefined identifier
The specified identifier is being used but has never been defined. Check the spelling.

Unprotected call in a #INT_GLOBAL

The interrupt function defined as #INT_GLOBAL is intended to be assembly language or very
simple C code. This error indicates the linker detected code that violated the standard memory
allocation scheme. This may be caused when a C function is called from a #INT_GLOBAL
interrupt handler.

Unreachable code
Code included in the program is never executed. For example:
if(n==5)
goto do5;
goto exit;
if(n==20) // No way to get to this line
return;

Unsigned variable is never less than zero
Unsigned variables are never less than 0. This warning indicates an attempt to check to see if an
unsigned variable is negative. For example the following will not work as intended:

int i;

for(i=10; i>=0; i--)

Variable assignment never used.

Variable of this data type is never greater than this constant
A variable is being compared to a constant. The maximum value of the variable could never be
larger than the constant. For example the following could never be true:

int x; // 8 bits, 0-255

if (x>300)

Variable never used
A variable has been declared and never referenced in the code.

Variable used before assignment is made.

276

COMMON QUESTIONS AND ANSWERS

r o
o T

C Compiler

How are type conversions handled?

The compiler provides automatic type conversions when an assignment is performed. Some
information may be lost if the destination can not properly represent the source. For example:
int8var = intl6var; Causes the top byte of intl6var to be lost.

Assigning a smaller signed expression to a larger signed variable will result in the sign being
maintained. For example, a signed 8 bit int that is -1 when assigned to a 16 bit signed variable is
still -1.

Signed numbers that are negative when assigned to a unsigned number will cause the 2's
complement value to be assigned. For example, assigning -1 to a int8 will result in the int8 being
255. In this case the sign bit is not extended (conversion to unsigned is done before conversion to
more bits). This means the -1 assigned to a 16 bit unsigned is still 255.

Likewise assigning a large unsigned number to a signed variable of the same size or smaller will
result in the value being distorted. For example, assigning 255 to a signed int8 will result in -1.

The above assignment rules also apply to parameters passed to functions.

When a binary operator has operands of differing types then the lower order operand is converted
(using the above rules) to the higher. The order is as follows:
° Float
Signed 32 bit
Unsigned 32 bit
Signed 16 bit
Unsigned 16 bit
Signed 8 bit
Unsigned 8 bit
1 bit

The result is then the same as the operands. Each operator in an expression is evaluated
independently. For example:

277

C Compiler Reference Manual

i32 = i16 - (i8 + i8)

The + operator is 8 bit, the result is converted to 16 bit after the addition and the - is 16 bit, that
result is converted to 32 bit and the assignment is done. Note that if i8 is 200 and i16 is 400 then
the result in i32 is 256. (200 plus 200 is 144 with a 8 bit +)

Explicit conversion may be done at any point with (type) inserted before the expression to be
converted. For example in the above the perhaps desired effect may be achieved by doing:

i32 =16 - ((long)i8 + i8)

In this case the first i8 is converted to 16 bit, then the add is a 16 bit add and the second i8 is
forced to 16 bit.

A common C programming error is to do something like:
i16 =i8 * 100;

When the intent was:
i16 = (long) i8 * 100;

Remember that with unsigned ints (the default for this compiler) the values are never negative. For
example 2-4 is 254 (in 8 bit). This means the following is an endless loop since i is never less than
0:

inti;
for(i=100; i>=0; i--)

How can a constant data table be placed in ROM?

. __|
The compiler has support for placing any data structure into the device ROM as a constant read-
only element. Since the ROM and RAM data paths are separate in the PIC®, there are restrictions
on how the data is accessed. For example, to place a 10 element BYTE array in ROM use:

BYTE CONST TABLE [10]= {9.8,7,6,5,4,3,2,1,0};

and to access the table use:
X = TABLE [i];

OR

x = TABLE [5];

BUT NOT
ptr = &TABLE [i];

In this case, a pointer to the table cannot be constructed.

278

COMMON QUESTIONS AND ANSWERS

Similar constructs using CONST may be used with any data type including structures, longs and
floats.

Note that in the implementation of the above table, a function call is made when a table is accessed
with a subscript that cannot be evaluated at compile time.

How can | pass a variable to functions like OUTPUT_HIGH()?

. __|
The pin argument for built in functions like OUTPUT_HIGH need to be known at
compile time so the compiler knows the port and bit to generate the correct code.

If your application needs to use a few different pins not known at compile time consider:
switch(pin_to_use) {

case PIN_B3 : output_high(PIN_B3); break;

case PIN_B4 : output_high(PIN_B4); break;

case PIN_B5 : output_high(PIN_B5); break;

case PIN_A1 : output_high(PIN_Al); break;

}

If you need to use any pin on a port use:

#byte portb = 6
#byte portb_tris = 0x86 // **

portb_tris &= ~(l<<bit_to_use); // **

portb |= (1<<bit_to_use); // bit_to_use is 0-7

If you need to use any pin on any port use:
*(pin_to_use/8]0x80) &= ~(1<<(pin_to_use&7)); // **
*(pin_to_use/8) |= (1<<(pin_to_useé&7));

In all cases pin_to_use is the normal PIN_AO... defines.

** These lines are only required if you need to change the direction register (TRIS).

279

C Compiler Reference Manual

How can | use two or more RS-232 ports on one PIC®?

. __|]
The #USE RS232 (and I12C for that matter) is in effect for GETC, PUTC, PRINTF and KBHIT
functions encountered until another #USE RS232 is found.

The #USE RS232 is not an executable line. It works much like a #DEFINE.

The following is an example program to read from one RS-232 port (A) and echo the data to both
the first RS-232 port (A) and a second RS-232 port (B).

#USE RS232(BAUD=9600, XMIT=PIN_BO, RCV=PIN_B1)
void put_to a(char c) {
put(c);

char get_from a() {

return(getcQ):; }
#USE RS232(BAUD=9600, XMIT=PIN_B2,RCV=PIN_B3)
void put_to b(char b) {

putc(c);

}
main() {
char c;
put_to_a('Online\n\r')
put_to_b('Online\n\r')
while(TRUE) {
c=get_from_a(Q);
put_to _b(c);
put_to_a(c);

}
}

The following will do the same thing but is more readable and is the recommended method:

#USE RS232(BAUD=9600, XMIT=PIN_BO, RCV=PIN_B1, STREAM=COM_A)
#USE RS232(BAUD=9600, XMIT=PIN_B2, RCV=PIN_B3, STREAM=COM_B)

mainQ) {
char c;
FfprintF(COM_A,""Online\n\r");
FfprintF(COM_B,""Online\n\r");
while(TRUE) {
c = fgetc(COM_A);
fputc(c, COM_A);
fputc(c, COM_B);
}
}

280

COMMON QUESTIONS AND ANSWERS

How can the RB interrupt be used to detect a button press?

. __|
The RB interrupt will happen when there is any change (input or output) on pins B4-B7. There is
only one interrupt and the PIC® does not tell you which pin changed. The programmer must
determine the change based on the previously known value of the port. Furthermore, a single
button press may cause several interrupts due to bounce in the switch. A debounce algorithm will
need to be used. The following is a simple example:

#int_rb
rb_isrQ {
byte changes;
changes = last_b » port_b;
last_b = port_b;
if (bit_test(changes,4)&& !bit_test(last_b,4)){
//b4 went low

3

if (bit_test(changes,5)&& 'bit_test (last_b,5)){
//b5 went low

s

éelay_ms (100); //debounce
}

The delay=ms (100) is a quick and dirty debounce. In general, you will not want to sit in an ISR for
100 MS to allow the switch to debounce. A more elegant solution is to set a timer on the first
interrupt and wait until the timer overflows. Do not process further changes on the pin.

How do | do a printf to a string?

. __|
The following is an example of how to direct the output of a printf to a string. We used the \f to
indicate the start of the string.

This example shows how to put a floating point number in a string.

main() {
char string[20];
float T;
=12.345;
sprintf(string, "\f%6.3f",f);

281

C Compiler Reference Manual

How do I directly read/write to internal registers?

. __|
A hardware register may be mapped to a C variable to allow direct read and write capability to the
register. The following is an example using the TIMERO register:

#BYTE timerO = 0Ox01

timerO= 128; //set timerO to 128

whille (timer0 ! = 200); // wait for timerO to reach 200

Bits in registers may also be mapped as follows:
#BIT TOIF = Ox0B.2

while (1TOIF); //wait for timer0 interrupt

Registers may be indirectly addressed as shown in the following example:
printf (“enter address:');

a = gethex O;

printf ("\r\n value is %x\r\n", *a);

The compiler has a large set of built-in functions that will allow one to perform the most common
tasks with C function calls. When possible, it is best to use the built-in functions rather than directly
write to registers. Register locations change between chips and some register operations require a
specific algorithm to be performed when a register value is changed. The compiler also takes into
account known chip errata in the implementation of the built-in functions. For example, it is better
to do set_tris_A(0); rather than *0x85=0;

How do | get getc() to timeout after a specified time?

. __|
GETC will always wait for the character to become available. The trick is to not call getc() until a
character is ready. This can be determined with kbhit().

The following is an example of how to time out of waiting for an RS232 character.

Note that without a hardware UART the delay_us should be less than a tenth of a bit time (10 us at
9600 baud). With hardware you can make it up to 10 times the bit time. (1000 us at 9600 baud).
Use two counters if you need a timeout value larger than 65535.

short timeout_error;

char timed_getc() {
long timeout;

timeout_error=FALSE;

282

COMMON QUESTIONS AND ANSWERS

timeout=0;
while(Tkbhit&&(++timeout<50000)) // 1/2 second
delay_us(10);
if(kbhitQ))
return(getc());
else {
timeout_error=TRUE;
return(0);

How do | make a pointer to a function?

. __|
The compiler does not permit pointers to functions so that the compiler can know at compile time
the complete call tree. This is used to allocate memory for full RAM re-use. Functions that could
not be in execution at the same time will use the same RAM locations. In addition since there is no
data stack in the PIC®, function parameters are passed in a special way that requires knowledge at
compile time of what function is being called. Calling a function via a pointer will prevent knowing
both of these things at compile time. Users sometimes will want function pointers to create a state
machine. The following is an example of how to do this without pointers:

enum tasks {taskA, taskB, taskC};
run_task(tasks task_to_run) {
switch(task_to_run) {
case taskA : taskA main(); break;
case taskB : taskB_main(); break;
case taskC : taskC_main(); break;

}

How do | put a NOP at location O for the ICD?

. __|
The CCS compilers are fully compatible with Microchips ICD debugger using MPLAB. In order to
prepare a program for ICD debugging (NOP at location 0 and so on) you need to add a #DEVICE
ICD=TRUE after your normal #DEVICE.

For example:
#INCLUDE <16F877.h>
#DEVICE I1CD=TRUE

283

C Compiler Reference Manual

How do | write variables to EEPROM that are not a byte?

. __|
The following is an example of how to read and write a floating point number from/to EEPROM.
The same concept may be used for structures, arrays or any other type.

n is an offset into the eeprom.
For floats you must increment it by 4.
For example, if the first float is at 0 the second one should be at 4 and the third at

@...

WRITE_FLOAT_EXT_EEPROM(long int n, float data) {
int i;
for (i = 0; 1 < 4; i++)
write_ext_eeprom(i + n, *(&data + 1)) ;

}
float READ_FLOAT_EXT_EEPROM(long int n) {
int i;
float data;
for (i = 0; 1 < 4; i++)
*(&data + 1) = read_ext_eeprom(i + n);
return(data);
}

How does one map a variable to an 1/O port?

. __|]
Two methods are as follows:

#oyte PORTB = 6 //Just an example, check the
#define ALL_OUT O //PATH sheet for the correct
#define ALL_IN Oxff //address for your chip
mainQ) {

int i;

set_tris_b(ALL_OUT);
PORTB = 0;// Set all pins low

Ffor(i=0;1<=127;++1) // Quickly count from 0 to 127
PORTB=1; // on the 1/0 port pin

set_tris_b(ALL_IN);

i = PORTB; // 1 now contains the portb value.

284

COMMON QUESTIONS AND ANSWERS

Remember when using the #BYTE, the created variable is treated like memory. You must maintain
the tri-state control registers yourself via the SET_TRIS_X function. Following is an example of
placing a structure on an |1/O port:

struct port_b_layout

{int data : 4;

int rw : 1;

int cd : 1;

int enable : 1;

int reset : 1; };
struct port_b_layout port_b;
#byte port. b =6

struct port_b_layout const |INIT_1 = {0, 1,1,1,1};
struct port_b _layout const INIT 2 = {3, 1,1,1,0};
struct port_b_layout const INIT_3 = {0, 0,0,0,0};
struct port_b_layout const FOR_SEND = {0,0,0,0,0};

struct port_b_layout const FOR_READ = {15,0,0,0,0};
// Data is an input
main() {

int x;
set_tris_b((int)FOR_SEND); // The constant
// structure is

// treated like
// a byte and
// is used to
// set the data
// direction

port_ b = INIT_1;

delay_us(25);

port_b = INIT_2; // These constant structures delay us(25);
// are used to set all fields
port_b = INIT_3; // on the port with a single
// command

set_tris_b((int)FOR_READ);
port_b.rw=0;

// Here the individual
port_b.cd=1; // fields are accessed
port_b._enable=0; // independently.

X = port_b.data;
port_b.enable=0

285

C Compiler Reference Manual

How does the compiler determine TRUE and FALSE on expressions?

. __|
When relational expressions are assigned to variables, the result is always O or 1.

For example:
bytevar = 5>0; //bytevar will be 1
bytevar = 0>5; //bytevar will be 0

The same is true when relational operators are used in expressions.
For example:
bytevar = (x>y)*4;
is the same as:
if(x>y)
bytevar=4;
else

bytevar=0;

SHORT INTs (bit variables) are treated the same as relational expressions. They evaluate to O or
1.

When expressions are converted to relational expressions or SHORT INTS, the result will be
FALSE (or 0) when the expression is 0, otherwise the result is TRUE (or 1).

For example:

bytevar = 54;

bitvar = bytevar; //bitvar will be 1 (bytevar ! = 0)
if(bytevar) //will be TRUE

bytevar = 0;

bitvar = bytevar; //bitvar will be 0

286

COMMON QUESTIONS AND ANSWERS

How does the PIC® connect to a PC?

A level converter should be used to convert the TTL (0-5V__ levels that the PIC® operates with to

the RS-232 voltages (+/- 3-12V) used by the PIC®. The following is a popular configuration using
the MAX232 chip as a level converter.

PC

7

]

Pins may be

used here

+ +
I—Ij ——
1 16 2 4 14
3 6
% 16 [~
4 Max 232 | L . =
= 18 Pin 15 TJ“
14 1 2 (A3)
13 15 12 1(A2) 5
1 <
= Any two I/O

287

C Compiler Reference Manual

How does the PIC® connect to an 12C device?

Two /O lines are required for 12C. Both lines must have pullup registers. Often the I12C device will
have a H/W selectable address. The address set must match the address in S/W. The example

programs all assume the selectable address lines are grounded.

+
f_l_l
— 4 14
11 8 —+
18 Pin 16
— 2 2416 7 5 PIC®
— 3 6 —1 12(B9) v
1K+
1 4 5 I-—"1 13 (B7)
5
4 L

288

COMMON QUESTIONS AND ANSWERS

How much time do math operations take?

. __|
Unsigned 8 bit operations are quite fast and floating point is very slow. If possible consider fixed
point instead of floating point. For example instead of "float cost_in_dollars;" do "long
cost_in_cents;". For trig formulas consider a lookup table instead of real time calculations (see
EX_SINE.C for an example). The following are some rough times on a 20 mhz, 14 bit PIC®. Note
times will vary depending on memory banks used.

20 mhz PIC16
int8 [us] int16 [us] int32 [us] float [us]
+ 0.6 1.4 3 111.3
- 0.6 1.4 3 113.9
* 11.1 47.2 132 178.3
/ 23.2 70.8 239.2 330.9
exp() | * * * 1697.3
In() * * * 2017.7
sin() * * * 2184.5
40 mhz PIC18
int8 [us] int16 [us] int32 [us] float [us]
+ 0.3 0.4 0.6 51.3
- 0.3 0.4 0.6 52.3
* 0.4 3.2 22.2 35.8
/ 11.3 32 106.6 144.9
exp() | * * * 510.4
In) * * * 644.8
sin() * * * 698.7

289

C Compiler Reference Manual

Instead of 800, the compiler calls 0. Why?

. __|
The PIC® ROM address field in opcodes is 8-10 Bits depending on the chip and specific opcode.
The rest of the address bits come from other sources. For example, on the 174 chip to call
address 800 from code in the first page will show:

BSF 0A,3
CALL O

The call 0 is actually 800H since Bit 11 of the address (Bit 3 of PCLATH, Reg 0A) has been set.

Instead of AO, the compiler is using register 20. Why?

. __|
The PIC® RAM address field in opcodes is 5-7 bits long, depending on the chip. The rest of the
address field comes from the status register. For example, on the 74 chip to load AO into W note
the following:

BSF 3,5
MOVFW 20

Note that the BSF may not be immediately before the access since the compiler optimizes out the
redundant bank switches.

What can be done about an OUT OF RAM error?

The compiler makes every effort to optimize usage of RAM. Understanding the RAM allocation can
be a help in designing the program structure. The best re-use of RAM is accomplished when local

variables are used with lots of functions. RAM is re-used between functions not active at the same
time. See the NOT ENOUGH RAM error message in this manual for a more detailed example.

RAM is also used for expression evaluation when the expression is complex. The more complex
the expression, the more scratch RAM locations the compiler will need to allocate to that
expression. The RAM allocated is reserved during the execution of the entire function but may be
re-used between expressions within the function. The total RAM required for a function is the sum
of the parameters, the local variables and the largest number of scratch locations required for any
expression within the function. The RAM required for a function is shown in the call tree after the
RAM=. The RAM stays used when the function calls another function and new RAM is allocated
for the new function. However, when a function RETURNS the RAM may be re-used by another

290

COMMON QUESTIONS AND ANSWERS

function called by the parent. Sequential calls to functions each with their own local variables is

very efficient use of RAM as opposed to a large function with local variables declared for the entire
process at once.

Be sure to use SHORT INT (1 bit) variables whenever possible for flags and other boolean
variables. The compiler can pack eight such variables into one byte location. The compiler does
this automatically whenever using SHORT INT. The code size and ROM size will be smaller.

Finally, consider an external memory device to hold data not required frequently. An external 8 pin
EEPROM or SRAM can be connected to the PIC® with just two wires and provide a great deal of
additional storage capability. The compiler package includes example drivers for these devices.
The primary drawback is a slower access time to read and write the data. The SRAM will have fast
read and write with memory being lost when power fails. The EEPROM will have a very long write
cycle, but can retain the data when power is lost.

What is an easy way for two or more PICs® to communicate?

There are two example programs (EX_PBUSM.C and EX_PBUSR.C) that show how to use a
simple one-wire interface to transfer data between PICs®. Slower data can use pin BO and the EXT
interrupt. The built-in UART may be used for high speed transfers. An RS232 driver chip may be
used for long distance operations. The RS485 as well as the high speed UART require 2 pins and
minor software changes. The following are some hardware configurations.

SIMPLE MULTIPLE PIC® BUS

+5 ses
BOJ BOJ BUJ

PIC® PIC® PICE| eee

#USE RS232 (baud=9600, fleat_high, bits=9, xmit=PIN B0, rcv=PIN _EO)

LONG DISTANCE MUTLI-DROP BUS

+ +
i]
NP 8 6 6 8 11+ * use C86,
ELQ-Q-QQDJ[c7
pice * | 4 7 || o004 7 4+ PICE highor
speed or
g2|_| 3 Ds75176 Ds75176 3 || B2 B0, 81 for
2 5 Several 2 5 slower
PICS can d

T’ tapin ITI)
parallel

#USE R3232 (baud=9600, bits=9, xmit=PIN *,K RCV=PIN *, enable=PIN E2)

291

C Compiler Reference Manual

What is the format of floating point numbers?

. __|
CCS uses the same format Microchip uses in the 14000 calibration constants. PCW users have a
utility Numeric Converter that will provide easy conversion to/from decimal, hex and float in a small
window in the Windows IDE. See EX_FLOAT.C for a good example of using floats or float types
variables. The format is as follows:

BYTE 1 BYTE 2 BYTE 3 BYTE 4

Lowest
BYTE
in RAM

jf/ T MSB LSB

8 Bit Sign . _
exponent Bit 23 Bit Mantisa
with bias

of 7F

Example Number

0 00 00 00 00
1 7F 00 00 00
-1 7F 80 00 00
10 82 20 00 00
100 85 48 00 00
123.45 85 76 E6 66
123.45E20 C8 27 4E 53
123.45 E-20 43 36 2E 17

!

Lowest BYTE in RAM

292

COMMON QUESTIONS AND ANSWERS

Why does the .LST file look out of order?

. __|
The list file is produced to show the assembly code created for the C source code. Each C source
line has the corresponding assembly lines under it to show the compiler’s work. The following
three special cases make the .LST file look strange to the first time viewer. Understanding how the
compiler is working in these special cases will make the .LST file appear quite normal and very
useful.

1. Stray code near the top of the program is sometimes under what looks like a non-executable
source line.

Some of the code generated by the compiler does not correspond to any particular source line.
The compiler will put this code either near the top of the program or sometimes under a #USE that
caused subroutines to be generated.

2. The addresses are out of order.

The compiler will create the .LST file in the order of the C source code. The linker has re-arranged
the code to properly fit the functions into the best code pages and the best half of a code page.
The resulting code is not in source order. Whenever the compiler has a discontinuity in the .LST
file, it will put a * line in the file. This is most often seen between functions and in places where
INLINE functions are called. In the case of an INLINE function, the addresses will continue in order
up where the source for the INLINE function is located.

3. The compiler has gone insane and generated the same instruction over and over.

For example:
___________ A=0;
03F: CLRF 15
*
46:CLRF 15
*
051: CLRF 15
*
113: CLRF 15

This effect is seen when the function is an INLINE function and is called from more than one place.
In the above case, the A=0 line is in an INLINE function called in four places. Each place it is
called from gets a new copy of the code. Each instance of the code is shown along with the
original source line, and the result may look unusual until the addresses and the * are noticed.

293

C Compiler Reference Manual

Why does the compiler show less RAM than there really is?

. __|
Some devices make part of the RAM much more ineffective to access than the standard RAM. In
particular, the 509, 57, 66, 67,76 and 77 devices have this problem.

By default, the compiler will not automatically allocate variables to the problem RAM and, therefore,
the RAM available will show a number smaller than expected.

There are three ways to use this RAM:
1. Use #BYTE or #BIT to allocate a variable in this RAM. Do NOT create a pointer to these
variables.

Example:
#BYTE counter=0x30

2. Use Read_Bank and Write_Bank to access the RAM like an array. This works well if needing to
allocate an array in this RAM.

Example:
For(i=0;i<15;i++)
Write_Bank(l,i,getc());
For(i=0;i<=15;i++)
PUTC(Read_Bank(1,1));

3. Switch to larger pointers for full RAM access (which takes more ROM). In PCB add *=8 to the
#device and in PCM/PCH add *=16 to the #device.

Example:
#DEVICE PIC16C77 *=16

or

#include <16C77.h>
#device *=16

294

COMMON QUESTIONS AND ANSWERS

Why does the compiler use the obsolete TRIS?

The use of TRIS causes concern for some users. The Microchip data sheets recommend not using
TRIS instructions for upward compatibility. If there is existing ASM code and it uses TRIS, then it
would be more difficult to port to a new Microchip part without TRIS. C does not have this problem,
however; the compiler has a device database that indicates specific characteristics for every part.
This includes information on whether the part has a TRIS and a list of known problems with the
part. The latter question is answered by looking at the device errata.

CCS makes every attempt to add new devices and device revisions as the data and errata sheets
become available.

PCW users can edit the device database. If the use of TRIS is a concern, simply change the
database entry for the specific part and the compiler will not use it.

Why is the RS-232 not working right?

1. The PIC® is Sending Garbage Characters.
A. Check the clock on the target for accuracy. Crystals are usually not a problem but RC
oscillators can cause trouble with RS-232. Make sure the #USE DELAY matches the actual
clock frequency.
B. Make sure the PC (or other host) has the correct baud and parity setting.
C. Check the level conversion. When using a driver/receiver chip, such as the MAX 232, do
not use INVERT when making direct connections with resistors and/or diodes. Use
probably need the INVERT option in the #USE RS232.

D. Remember that PUTC(6) will send an ASCII 6 to the PC and this may not be a visible
character. PUTC('A") will output a visible character A.

2. The PIC® is Receiving Garbage Characters.

A. Check all of the above.

295

C Compiler Reference Manual

3. Nothing is Being Sent.

A. Make sure that the tri-state registers are correct. The mode (standard, fast, fixed) used
will be whatever the mode is when the #USE RS232 is encountered. Staying with the
default STANDARD mode is safest.

B. Use the following main() for testing:
main() {
while(TRUE)
putc("U");

Check the XMIT pin for activity with a logic probe, scope or whatever you can. Possibly
look at it with a scope, check the bit time (it should be 1/BAUD). Check again after the level
converter.

4. Nothing is being received.

First be sure the PIC® can send data. Use the following main() for testing:
main() {
printf('start™);
while(TRUE)
putc(getc(Q+1);
}

When connected to a PC typing A should show B echoed back.

If nothing is seen coming back (except the initial "Start"), check the RCV pin on the PIC®
with a logic probe. You should see a HIGH state and when a key is pressed at the PC, a
pulse to low. Trace back to find out where it is lost.

5. The PIC® is always receiving data via RS-232 even when none is being sent.

A. Check that the INVERT option in the USE RS232 is right for your level converter. If the
RCYV pin is HIGH when no data is being sent, you should NOT use INVERT. If the pin is
low when no data is being sent, use INVERT.

B. Check that the pin is stable at HIGH or LOW in accordance with A above when no data
is being sent.

C. When using PORT A with a device that supports the SETUP_ADC_PORTS function
make sure the port is set to digital inputs. This is not the default. The same is true for
devices with a comparator on PORT A.

6. Compiler reports INVALID BAUD RATE.

296

A. When using a software RS232 (no built-in UART), the clock cannot be really slow when
fast baud rates are used and cannot be really fast with slow baud rates. Experiment with
the clock/baud rate values to find the limits.

B. When using the built-in UART, the requested baud rate must be within 3% of a rate that
can be achieved for no error to occur. Some parts have internal bugs with BRGH set to 1
and the compiler will not use this unless BRGH1OK is specified in the #USE RS232
directive.

EXAMPLE PROGRAMS

r o
W

C Compiler

EXAMPLE PROGRAMS

A large number of example programs are included with the software. The following is a list of many
of the programs and some of the key programs are re-printed on the following pages. Most
programs will work with any chip by just changing the #INCLUDE line that includes the device
information. All of the following programs have wiring instructions at the beginning of the code in a
comment header. The SIOW.EXE program included in the program directory may be used to
demonstrate the example programs. This program will use a PC COM port to communicate with
the target.

Generic header files are included for the standard PIC® parts. These files are in the DEVICES
directory. The pins of the chip are defined in these files in the form PIN_B2. It is recommended
that for a given project, the file is copied to a project header file and the PIN_xx defines be changed
to match the actual hardware. For example; LCDRW (matching the mnemonic on the schematic).
Use the generic include files by placing the following in your main .C file:

#include <16C74.H>

LIST OF COMPLETE EXAMPLE PROGRAMS (in the EXAMPLES directory)

EX_14KAD.C
An analog to digital program with calibration for the PIC14000

EX_1920.C
Uses a Dallas DS1920 button to read temperature

EX_8PIN.C
Demonstrates the use of 8 pin PICs with their special I/0 requirements

EX_92LCD.C
Uses a PIC16C92x chip to directly drive LCD glass

EX_AD12.C
Shows how to use an external 12 bit A/D converter

EX_ADMM.C
A/D Conversion example showing min and max analog readings

EX_CCP1S.C
Generates a precision pulse using the PIC CCP module

297

C Compiler Reference Manual

EX_CCPMP.C
Uses the PIC CCP module to measure a pulse width

EX_COMP.C
Uses the analog comparator and voltage reference available on some PICs

EX_CRC.C
Calculates CRC on a message showing the fast and powerful bit operations

EX_CUST.C
Change the nature of the compiler using special preprocessor directives

EX_FIXED.C
Shows fixed point numbers

EX_DNSLOOKUP.C
Example to perform a DNS lookup on the internet

EX_DPOT.C
Controls an external digital POT

EX_DTMF.C
Generates DTMF tones

EX_EMAIL.C
Program will send e-mail

EX_ENCOD.C
Interfaces to an optical encoder to determine direction and speed

EX_EXPIO.C
Uses simple logic chips to add I/O ports to the PIC

EX_EXSIO.C
Shows how to use a multi-port external UART chip

EX_EXTEE.C
Reads and writes to an external EEPROM

EX_FLOAT.C
Shows how to use basic floating point

EX_FREQC.C
A 50 mhz frequency counter

EX_GLINT.C
Shows how to define a custom global interrupt hander for fast interrupts

298

EXAMPLE PROGRAMS

EX_ICD.C
Shows a simple program for use with Microchips ICD debugger

EX_INTEE.C
Reads and writes to the PIC internal EEPROM

EX_LCDKB.C
Displays data to an LCD module and reads data for keypad

EX_LCDTH.C
Shows current, min and max temperature on an LCD

EX_LED.C
Drives a two digit 7 segment LED

EX_LOAD.C
Serial boot loader program for chips like the 16F877

EX_LOGGER.C
A simple temperature data logger, uses the flash program memory for saving data

EX_MACRO.C
Shows how powerful advanced macros can be in C

EX_MOUSE.C
Shows how to implement a standard PC mouse on a PIC

EX_MXRAM.C
Shows how to use all the RAM on parts will problem memory allocation

EX_PATG.C
Generates 8 square waves of different frequencies

EX_PBUSM.C
Generic PIC to PIC message transfer program over one wire

EX_PBUSR.C
Implements a PIC to PIC shared RAM over one wire

EX_PBUTT.C
Shows how to use the B port change interrupt to detect pushbuttons

EX_PGEN.C
Generates pulses with period and duty switch selectable

EX_PLL.C
Interfaces to an external frequency synthesizer to tune a radio

299

C Compiler Reference Manual

EX_PSP.C
Uses the PIC PSP to implement a printer parallel to serial converter

EX _PULSE.C
Measures a pulse width using timer0

EX_PWM.C
Uses the PIC CCP module to generate a pulse stream

EX_REACT.C
Times the reaction time of a relay closing using the CCP module

EX_RMSDB.C
Calculates the RMS voltage and dB level of an AC signal

EX_RTC.C
Sets and reads an external Real Time Clock using RS232

EX_RTCLK.C
Sets and reads an external Real Time Clock using an LCD and keypad

EX_SINE.C
Generates a sine wave using a D/A converter

EX_SISR.C
Shows how to do RS232 serial interrupts

EX_STISR.C
Shows how to do RS232 transmit buffering with interrupts

EX_SLAVE.C
Simulates an 12C serial EEPROM showing the PIC slave mode

EX_SPEED.C
Calculates the speed of an external object like a model car

EX_SPI.C
Communicates with a serial EEPROM using the H/W SPI module

EX_SQW.C
Simple Square wave generator

EX_SRAM.C
Reads and writes to an external serial RAM

EX_STEP.C
Drives a stepper motor via RS232 commands and an analog input

300

EXAMPLE PROGRAMS

EX_STR.C
Shows how to use basic C string handling functions

EX_STWT.C
A stop Watch program that shows how to user a timer interrupt

EX_TANK.C
Uses trig functions to calculate the liquid in a odd shaped tank

EX_TEMP.C
Displays (via RS232) the temperature from a digital sensor

EX_TGETC.C
Demonstrates how to timeout of waiting for RS232 data

EX_TONES.C
Shows how to generate tones by playing "Happy Birthday"

EX_TOUCH.C
Reads the serial number from a Dallas touch device

EX_USB_HID.C
Implements a USB HID device on the PIC16C765 or an external USB chip

EX_USB_SCOPE.C
Implements a USB bulk mode transfer for a simple oscilloscope on an ext USB chip

EX_VOICE.C
Self learning text to voice program

EX_WAKUP.C
Shows how to put a chip into sleep mode and wake it up

EX_WDT.C
Shows how to use the PIC watch dog timer

EX_WDT18.C
Shows how to use the PIC18 watch dog timer

EX_WEBSV.C
Shows how to implement a simple web server

EX_X10.C
Communicates with a TW523 unit to read and send power line X10 codes

LIST OF INCLUDE FILES (in the DRIVERS directory)

14KCAL.C

301

C Compiler Reference Manual

Calibration functions for the PIC14000 A/D converter

2401.C
Serial EEPROM functions

2402.C
Serial EEPROM functions

2404.C
Serial EEPROM functions

2408.C
Serial EEPROM functions

24128.C
Serial EEPROM functions

2416.C
Serial EEPROM functions

24256.C
Serial EEPROM functions

2432.C
Serial EEPROM functions

2465.C
Serial EEPROM functions

25160.C
Serial EEPROM functions

25320.C
Serial EEPROM functions

25640.C
Serial EEPROM functions

25C080.C
Serial EEPROM functions

68HC68R1
C Serial RAM functions

68HC68R2.C
Serial RAM functions

74165.C

302

Expanded input functions

74595.C
Expanded output functions

9346.C
Serial EEPROM functions

9356.C
Serial EEPROM functions

9356SPI.C
Serial EEPROM functions (uses H/W SPI)

9366.C
Serial EEPROM functions

AD7705.C
A/D Converter functions

AD7715.C
A/D Converter functions

AD8400.C
Digital POT functions

ADS8320.C
A/D Converter functions

ASSERT.H
Standard C error reporting

AT25256.C
Serial EEPROM functions

AT29C1024.C
Flash drivers for an external memory chip

CRC.C
CRC calculation functions

CE51X.C
Functions to access the 12CE51x EEPROM

CE62X.C
Functions to access the 12CE62x EEPROM

CE67X.C

EXAMPLE PROGRAMS

303

C Compiler Reference Manual

Functions to access the 12CE67x EEPROM

CTYPE.H
Definitions for various character handling functions

DNS.C
Functions used to perform a DNS lookup on the internet

DS1302.C
Real time clock functions

DS1621.C
Temperature functions

DS1621M.C
Temperature functions for multiple DS1621 devices on the same bus

DS1631.C
Temperature functions

DS1624.C
Temperature functions

DS1868.C
Digital POT functions

ERRNO.H
Standard C error handling for math errors

FLOAT.H
Standard C float constants

FLOATEE.C
Functions to read/write floats to an EEPROM

INPUT.C
Functions to read strings and numbers via RS232

1SD4003.C
Functions for the ISD4003 voice record/playback chip

KBD.C
Functions to read a keypad

LCD.C
LCD module functions

LIMITS.H

304

Standard C definitions for numeric limits

LMX2326.C
PLL functions

LOADER.C
A simple RS232 program loader

LOCALE.H

Standard C functions for local language support

LTC1298.C
12 Bit A/D converter functions

MATH.H
Various standard trig functions

MAX517.C
D/A converter functions

MCP3208.C
A/D converter functions

NJU6355.C
Real time clock functions

PCF8570.C
Serial RAM functions

PIC_USB.H
Hardware layer for built-in PIC USB

S7600.H
Driver for Sieko S7600 TCP/IP chip

SC28L19X.C

Driver for the Phillips external UART (4 or 8 port)

SETIJMP.H

Standard C functions for doing jumps outside functions

SMTP.H
e-mail functions

STDDEF.H
Standard C definitions

STDIO.H

EXAMPLE PROGRAMS

305

C Compiler Reference Manual

Not much here - Provided for standard C compatibility

STDLIB.H
String to number functions

STDLIBM.H
Standard C memory management functions

STRING.H
Various standard string functions

TONES.C
Functions to generate tones

TOUCH.C
Functions to read/write to Dallas touch devices

USB.H
Standard USB request and token handler code

USBN960X.C
Functions to interface to Nationals USBN960x USB chips

USB.C
USB token and request handler code, Also includes usb_desc.h and usb.h

X10.C
Functions to read/write X10 codes

L1177 77///7//7/77/77777/7//77/

/// EX_SQW.C ///
/// This program displays a message over the RS-232 and ///
/// waits for any keypress to continue. The program //7/
/// will then begin a 1khz square wave over 1/0 pin BO. ///
/// Change both delay us to delay ms to make the ///
/// frequency 1 hz. This will be more visible on ///
/// a LED. Configure the CCS prototype card as follows: ///

/// insert jumpers from 11 to 17, 12 to 18, and 42 to 47. ///
L11777777717777777777/7777777777777////7/777777/////////7/777//7//7

#ifdef _ PCB__
#include <16C56.H>
#else

#include <16C84.H>
#endif

#use delay(clock=20000000)
#use rs232(baud=9600, xmit=PIN_A3, rcv=PIN_A2)

306

EXAMPLE PROGRAMS

main() {
printf("'Press any key to begin\n\r');
getcQ;
printf("'1 khz signal activated\n\r');
while (TRUE) {
output_high (PIN_BO);
delay_us(500);
output_low(PIN_BO);
delay_us(500);

}

}

L117777777777777777777777777777777/////77777777/////////77/77//77/7
/// EX_STWT.C ///
/// This program uses the RTCC (timer0) and interrupts ///
/// to keep a real time seconds counter. A simple stop ///
/// watch function is then implemented. Configure the ///
/// CCS prototype card as follows, insert jumpers from: ///
/// 11 to 17 and 12 to 18. //7/

LI17777777777777777777777777777/77//77/77//7//7//7//7//7//7//7//7777

#include <16C84._.H>
#use delay (clock=20000000)
#use rs232(baud=9600, xmit=PIN_A3, rcv=PIN_A2_

#define INTS_PER_SECOND 76 //(20000000/ (4*256*256))

byte seconds; //Number of interrupts left
//before a second has elapsed

#int_rtcc //This function is called

clock_isrQ) { //every time the RTCC (timer0)

//overflows (255->0)
//For this program this is apx
//76 times per second.

if(--int_count==0) {
++seconds;
int_count=INTS_PER_SECOND;

}
}

main() {
byte start;
int_count=INTS_PER_SECOND;
set_rtcc(0);
setup_counters (RTCC_INTERNAL, RTCC_DIV_256);
enable_interrupts (INT_RTCC);
enable_interrupts(GLOBAL)
do {
printf (""Press any key to begin. \n\r");

307

C Compiler Reference Manual

308

getcQ);

start=seconds;

printf("'Press any key to stop. \n\r');

getcQ);

printf ("%u seconds. \n\r", seconds-start);
} while (TRUE);

LI1777777777777777777777777777777/777/7//7//7//7//7//7//7//7/7777

/// EX_INTEE.C ///
/// This program will read and write to the 83 or ’84 ///
/// internal EEPROM. Configure the CCS prototype card as ///
/// follows: insert jumpers from 11 to 17 and 12 to 18. ///

L1177 7777777777/777/7777/777/77777/7777/777/777//77/7//777/7/777/777/
#include <16C84.H>

#use delay(clock-100000000)
#use rs232 (baud=9600, xmit=PIN_A3, rv+PIN_A2)

#include <HEX.C>

main (O {

byte 1i,j,address, value;

do {
printfC"\r\n\nEEPROM: \r\n') //Displays contents
for(i=0; i<3; ++i) { //entire EEPROM
for (J=0; j<=15; ++j) { //in hex
printf("'%2x", read_eeprom(i+16+j));

¥
printf(""\n\r'");

}

printf ('\r\nlocation to change: ");
address= gethex();

printf (""\r\nNew value: ");
value=gethex();

write_eeprom (address, value);
} while (TRUE)

EXAMPLE PROGRAMS

LI1777777777777777777777777777777//77/77//77//7//7//7//7//7//77//7777

/// Library for a Microchip 93C56 configured for a x8
///

/// org init_ext_eeprom(); Call before the other
/// functions are used
//7/

/// write_ext_eeprom(a,d); Write the byte d to
/// the address a

///

/// d=read_ext_eeprom (a); Read the byte d from
//7/ the address a.

/// The main program may define eeprom_select,

/// eeprom_di, eeprom_do and eeprom_clk to override
/// the defaults below.

/77
/77
177/
/77
177/
77/
/77
/77
/77
/77
177/
/77
/77

L11777777777777777777777777777777777//77777777/7/7//7////7/7777//7/777

#ifndef EEPROM_SELECT

#define EEPROM_SELECT
#define EEPROM_CLK
#define EEPROM_DI
#define EEPROM_DO

#endif

#define EEPROM_ADDRESS byte
#define EEPROM_SIZE

void init_ext_eeprom () {
byte cmd[2];
byte i;

output_low(EEPROM_DI);
output_low(EEPROM_CLK);
output_low(EEPROM_SELECT

cmd[0]=0x80;
cmd[1]=0x9;

for (i=1; i<=4; ++i)
shift_left(cmd, 2,0)

output_high (EEPROM_SELE

for (i=1; i<=12; ++i)

PIN_B7
PIN_B6
PIN_B5
PIN_B4

256

);

CT);

output_bit(EEPROM_DI, shift_left(cmd, 2,0));

output_high (EEPROM_

output_low(EEPROM_CL
}
output_low(EEPROM_DI);
output_low(EEPROM_SELECT

}

CLK);
K);

);

309

C Compiler Reference Manual

void write_ext_eeprom (EEPROM_ADDRESS address, byte data) {
byte cmd[3];
byte i;

cmd[0]=data;
cmd[1]=address;
cmd[2]=0xa;

for(i=1;i<=4;++i)
shift_left(cmd,3,0);
output_high(EEPROM_SELECT);
for(i=1;i<=20;++i) {
output_bit (EEPROM_DI, shift_left (cmd,3,0));
output_high (EEPROM_CLK);
output_low(EEPROM_CLK);

}
output_low (EEPROM_DI);
output_low (EEPROM_SELECT);
delay_ms(11);

}

byte read_ext_eeprom(EEPROM_ADDRESS address) {
byte cmd[3];
byte i, data;

cmd[0]=0;
cmd[1]=address;
cmd[2]=0xc;

for(i=1;i<=4;++1)
shift_left(cmd,3,0);
output_high(EEPROM_SELECT);
for(i=1;i<=20;++i) {
output_bit (EEPROM_DI, shift_left (cmd,3,0));
output_high (EEPROM_CLK);
output_low(EEPROM_CLK);
if (i>12)
shift_left (&data, 1, input (EEPROM_DO));
}
output_low (EEPROM_SELECT);
return(data);

310

EXAMPLE PROGRAMS

LI17777777777777777777777777777777/77/77//77//7//7//7//7//7/777//7777

/// This file demonstrates how to use the real time //7/
/// operating system to schedule tasks and how to use ///
/// the rtos_run function. ///
//7/ ///

/// this demo makes use of the PIC18F452 prototyping board ///
L1111 7//7777777777777/7777777777777//777/7/7777//////7/7//7/7777777/7

#include <18F452_h>

#use delay(clock=20000000)

#use rs232(baud=9600,xmit=PIN_C6,rcv=PIN_C7)

// this tells the compiler that the rtos functionality will be needed,
that

// timerO will be used as the timing device, and that the minor cycle for
// all tasks will be 500 miliseconds

#use rtos(timer=0,minor_cycle=100ms)

// each function that is to be an operating system task must have the
#task

// preprocessor directive located above it.

// in this case, the task will run every second, its maximum time to run
is

// less than the minor cycle but this must be less than or equal to the
// minor cycle, and there is no need for a queue at this point, so no
// memory will be reserved.

#task(rate=1000ms, max=100ms)

// the function can be called anything that a standard function can be
called

void The_Ffirst_rtos_task ()

printf("I\n\r");

#task(rate=500ms, max=100ms)
void The_second_rtos_task ()

printfC"\t21\n\r");

#task(rate=100ms, max=100ms)
void The_third_rtos_task ()

{
printfC\t\t3\n\r");

// main is still the entry point for the program
void main ()

// rtos_run begins the loop which will call the task functions above at
the

// schedualed time

rtos run ();

}

311

C Compiler Reference Manual

LI17777777777777777777777777777777/77/77//77//7//7//7//7//7/777//7777

/// This file demonstrates how to use the real time //7/
/// operating system rtos_terminate function ///
/// ///

/// this demo makes use of the PIC18F452 prototyping board ///
L1177 7777771777777777/777777777777/7///777/777777/////////7/777//77/7

#include <18F452_h>

#use delay(clock=20000000)

#use rs232(baud=9600,xmit=PIN_C6,rcv=PIN_C7)
#use rtos(timer=0,minor_cycle=100ms)

// a counter will be kept

int8 counter;

#task(rate=1000ms, max=100ms)

void The_first_rtos_task ()

printfC'I\n\r");
// if the counter has reached the desired value, the rtos will
terminate
if(++counter==5)
rtos_terminate ();

}
#task(rate=500ms, max=100ms)
void The_second_rtos_task ()

printfC"\t21\n\r");

}
#task(rate=100ms,max=100ms)
void The_third_rtos_task ()

printfC\t\t3\n\r');
void main ()

// main is the best place to initialize resources the the rtos is
dependent

// upon

counter = 0O;

rtos_run ();

// once the rtos_terminate function has been called, rtos _run will
return

// program control back to main

printf("'RTOS has been terminated\n\r');
}

312

EXAMPLE PROGRAMS

LI17777777777777777777777777777777/77/77//77//7//7//7//7//7/777//7777

/// This file demonstrates how to use the real time //7/
/// operating system rtos_enable and rtos_disable functions ///
/// ///

/// this demo makes use of the PIC18F452 prototyping board ///
L1177 7777771777777777/777777777777/7///777/777777/////////7/777//77/7

#include <18F452_h>
#use delay(clock=20000000)
#use rs232(baud=9600,xmit=PIN_C6,rcv=PIN_C7)
#use rtos(timer=0,minor_cycle=100ms)
int8 counter;
// now that task names will be passed as parameters, it is best
// to declare function prototypes so that their are no undefined
// identifier errors from the compiler
#task(rate=1000ms, max=100ms)
void The_first_rtos_task ();
#task(rate=500ms,max=100ms)
void The_second_rtos_task ();
#task(rate=100ms,max=100ms)
void The_third_rtos_task ();
void The_First_rtos_task () {
printf("1I\n\r");
if(counter==3)

// to disable a task, simply pass the task name
// into the rtos_disable function
rtos_disable(The_third_rtos_task);

}

void The_second_rtos_task () {
printfC\t2I\n\r'");
if(++counter==10) {
counter=0;
// enabling tasks is similar to disabling them
rtos_enable(The_third_rtos_task);
}

}
void The_third_rtos_task () {
printfC\t\t3\n\r");

void main () {
counter = O;
rtos_run ();

}

313

ccC

314

ompiler Reference Manual

LI17777777777777777777777777777777/77/77//77//7//7//7//7//7/777//7777

/// This file demonstrates how to use the real time ///
/// operating systems messaging functions //7/
/// ///

/// this demo makes use of the PIC18F452 prototyping board ///
LI111777777771777777777777/777/7777/7777/777//7/7//7/77///77//7/777/7

#include <18F452_h>

#use delay(clock=20000000)

#use rs232(baud=9600,xmit=PIN_C6,rcv=PIN_C7)
#use rtos(timer=0,minor_cycle=100ms)

int8 count;

// each task will now be given a two byte queue
#task(rate=1000ms,max=100ms, queue=2)

void The_Tfirst_rtos_task ();
#task(rate=500ms, max=100ms, queue=2)

void The_second_rtos_task ();

void The_first_rtos_task () {

// the function rtos_msg _poll will return the number of messages in the

// current tasks queue

// always make sure to check that their is a message or else the read

// function will hang
if(rtos_msg_poll ()>0){

// the function rtos_msg _read, reads the Ffirst value in the queue
printf("'messages recieved by taskl : %iI\n\r',rtos_msg_read ());

// the funciton rtos_msg _send, sends the value given as the
// second parameter to the function given as the first
rtos_msg_send(The_second_rtos_task,count);

count++;

}

void The_second_rtos_task () {
rtos_msg_send(The_first_rtos_task,count);
if(rtos_msg_poll ()>0){

printf("'messages recieved by task2 : %i\n\r',rtos_msg read ());

count++;

}

}

void main () {
count=0;
rtos_runQ);

}

EXAMPLE PROGRAMS

LI17777777777777777777777777777777/77/77//77//7//7//7//7//7/777//7777

/// This file demonstrates how to use the real time ///
/// operating systems yield function //7/
/// ///

/// this demo makes use of the PIC18F452 prototyping board ///
LI111777777771777777777777/777/7777/7777/777//7/7//7/77///77//7/777/7

#include <18F452_h>
#use delay(clock=20000000)
#use rs232(baud=9600,xmit=PIN_C6,rcv=PIN_C7)
#use rtos(timer=0,minor_cycle=100ms)
#task(rate=1000ms ,max=100ms, queue=2)
void The_first_rtos_task ();
#task(rate=500ms, max=100ms, queue=2)
void The_second_rtos_task ();
void The_First_rtos_task () {
int count=0;
// rtos_yield allows the user to break out of a task at a given point
// and return to the same ponit when the task comes back into context
while(TRUE){
count++;
rtos_msg_send(The_second_rtos_task,count);
rtos_vyield ();
}

void The_second_rtos _task () {
if(rtos_msg_poll())

printf(“'count is : %i\n\r",rtos_msg_read ());

}
void main () {
rtos_runQ);

T

L1177 7/77777777/77777777/777/77777/7/77/777//77//77/7//77//777/777/
/// This file demonstrates how to use the real time ///
/// operating systems yield function signal and wait //7/

/// function to handle resources ///
/// ///

/// this demo makes use of the PIC18F452 prototyping board ///
L1117 777777777777777777777777777/7/7///777777////7////7/77/7777777

#include <18F452.h>

#use delay(clock=20000000)

#use rs232(baud=9600,xmit=PIN_C6,rcv=PIN_C7)

#use rtos(timer=0,minor_cycle=100ms)

// a semaphore is simply a shared system resource

// in the case of this example, the semaphore will be the red LED
int8 sem;

#define RED PIN_B5

315

C Compiler Reference Manual

316

#task(rate=1000ms ,max=100ms, queue=2)
void The_first_rtos_task ();
#task(rate=1000ms,max=100ms, queue=2)
void The_second_rtos_task ();
void The_First_rtos_task () {
int i;
// this will decrement the semaphore variable to zero which signals
// that no more user may use the resource
rtos_wait(sem);
for(i=0;i<5;i++){
output_low(RED); delay _ms(20); output_high(RED);
rtos_yield ();

// this will inrement the semaphore variable to zero which then signals
// that the resource is available for use
rtos_signal(sem);

void The_second_rtos_task () {
int i;
rtos_wait(sem);
for(i=0;i<5;i++){
output_high(RED); delay_ms(20); output_low(RED);
rtos yield ();

rtos_signal(sem);

}

void main () {
// sem is initialized to the number of users allowed by the resource
// in the case of the LED and most other resources that limit is one
sem=1;
rtos_runQ);

s

L1177 777777777//777/7777/77777777/7777/777/777//77///77//77/7/777/
/// This file demonstrates how to use the real time ///
/// operating systems await function //7/
/// ///

/// this demo makes use of the PIC18F452 prototyping board ///
L1177 77777777777777777777777777777////777777777///////7/7/777//777

#include <18F452_h>

#use delay(clock=20000000)

#use rs232(baud=9600,xmit=PIN_C6,rcv=PIN_C7)
#use rtos(timer=0,minor_cycle=100ms)
#define RED PIN_B5

#define GREEN PIN_A5

int8 count;

#task(rate=1000ms, max=100ms, queue=2)
void The_Ffirst_rtos_task ();
#task(rate=1000ms,max=100ms, queue=2)
void The_second_rtos_task ();

EXAMPLE PROGRAMS

void The_first_rtos_task () {
// rtos_await simply waits for the given expression to be true
// if it is not true, it acts like an rtos_yield and passes the system
// to the next task
rtos_await(count==10);
output_low(GREEN); delay_ms(20); output_high(GREEN);
count=0;

}

void The_second_rtos_task () {
output_low(RED); delay_ms(20); output_high(RED);
count++;

}

void main () {
count=0;
rtos_runQ);

s

L1177 777777/7777/777/777//777/777//77//777/7/777/777/7/7/7/7/7/77/7/7777
/// This file demonstrates how to use the real time ///
/// operating systems statistics features ///
/// ///

/// this demo makes use of the PIC18F452 prototyping board ///
L1177 777771177777777777/7777777777/////7/777777/////////7/7777//7//7

#include <18F452._h>

#use delay(clock=20000000)

#use rs232(baud=9600,xmit=PIN_C6,rcv=PIN_C7)

#use rtos(timer=0,minor_cycle=100ms,statistics)

// This structure must be defined inorder to retrieve the statistical
// information

struct rtos_stats {

int32 task_total_ticks; // number of ticks the task has used
intlé task min_ticks; // the minimum number of ticks used
intlé task max_ticks; // the maximum number of ticks ueed
intlé hns_per_tick; // us = (ticks*hns_per_tic)/10

}:

#task(rate=1000ms, max=100ms)

void The_Tfirst_rtos_task ();

#task(rate=1000ms, max=100ms)

void The_second_rtos_task ();

void The_First_rtos_task () {
struct rtos_stats stats;
rtos_stats(The_second_rtos_task,&stats);
printf "\n\r");
printf ("task_total_ticks : %Lius\n\r" ,

(int32) (stats.task_total_ticks)*stats._hns_per_tick);

printf ("task_min_ticks o %Lius\n\r" ,
(int32)(stats.task_min_ticks)*stats.hns_per_tick);
printf ("task _max_ticks o %Lius\n\r" ,

(int32) (stats.task _max_ticks)*stats.hns_per_tick);
printf ('\n\r");

317

C Compiler Reference Manual

318

}
void The_second_rtos_task () {
int i, count = O;
while(TRUE) {
if(rtos_overrun(the_second_rtos_task)) {
printf("'The Second Task has Overrun\n\r\n\r');
count=0;
¥
else
count++;

for(i=0;i<count;i++)
delay_ms(50);

rtos_yield();
}

}
void main () {
rtos_run ();

¥

117777/ 7777777/7777/777/7777/777/77/7777/777/7/777/77/7/7/77/7777/7/7/77/777
/// This file demonstrates how to create a basic command ///
/// line using the serial port withought having to stop ///
//7/ RTOS operation, this can also be considered a //7/
/// semi kernal for the RTOS. ///
/// ///

/// this demo makes use of the PIC18F452 prototyping board ///
LI111777777777777777777777/777/7777/7777/777//7/77//7/77///77//7/777/7

#include <18F452.h>

#use delay(clock=20000000)

#use rs232(baud=9600,xmit=PIN_C6,rcv=PIN_C7)

#use rtos(timer=0,minor_cycle=100ms)

#define RED PIN_B5

#define GREEN PIN_A5

#include <string.h>

// this character array will be used to take input from the prompt
char input [30];

// this will hold the current position in the array
int index;

// this will signal to the kernal that input is ready to be processed
intl input_ready;

// different commands

char enl [] "enablel";

char en2 [] "enable2";

char disl [] = "disablel™;

char dis2 [] = "disable2";

#task(rate=1000ms, max=100ms)

void The_Tfirst_rtos_task ();

#task(rate=1000ms, max=100ms)

EXAMPLE PROGRAMS

void The_second_rtos_task ();
#task(rate=500ms,max=100ms)
void The_kernal ();

// serial interupt

#int_rda

void serial_interrupt ()

if(index<29) {
input [index] = getc (); // get the value in the serial recieve
reg

putc (input [index]); // display it on the screen

if(input[index]==0x0d){ // if the input was enter
putc(*\n");
input [index] = "\0"; // add the null character
input_ready=TRUE; // set the input read variable to true
index=0; // and reset the index

}
else if (input[index]==0x08){
if (index > 1) {
putc(” ");
putc(0x08);
index-=2;
}
T
index++;
else {
putc ("\n");
putc ("\r°);
input [index] = "\0";
index = 0;
input_ready = TRUE;
}

void The_first_rtos_task () {
output_low(RED); delay _ms(50); output_high(RED);

}
void The_second_rtos_task () {
output_low(GREEN); delay_ms(20); output_high(GREEN);

}
void The_kernal () {
while (TRUE) {
printf ("INPUT:> ");
while(Tinput_ready)
rtos_yield ();
printf ("%S\n\r%S\n\r"', input , enl);
if (!'strcmp(input , enl))
rtos_enable (The_first_rtos_task);
else if (Istrcmp(input , en2))
rtos_enable (The_second_rtos_task);
else if (Istrcmp(input , disl))

319

C Compiler Reference Manual

rtos_disable (The_first_rtos_task);
else if (Istrcmp (input , dis2))

rtos_disable (The_second_rtos_task);
else

printf ("Error: unknown command\n\r');
input_ready=FALSE;
index=0;

}

}

void main () {
// initialize input variables
index=0;
input_ready=FALSE;
// initialize interrupts
enable_interrupts(int_rda);
enable_interrupts(global);
rtos_run();

320

SOFTWARE LICENSE AGREEMENT

F el ok
Yl Y. Wl

C Compiler

SOFTWARE LICENSE AGREEMENT

By opening the software diskette package, you agree to abide by the following provisions. If you
choose not to agree with these provisions promptly return the unopened package for a refund.

1. License- Custom Computer Services ("CCS") grants you a license to use the software program
("Licensed Materials") on a single-user computer. Use of the Licensed Materials on a network
requires payment of additional fees.

2. Applications Software- Derivative programs you create using the Licensed Materials identified
as Applications Software, are not subject to this agreement.

3. Warranty- CCS warrants the media to be free from defects in material and workmanship and
that the software will substantially conform to the related documentation for a period of thirty (30)
days after the date of your purchase. CCS does not warrant that the Licensed Materials will be free
from error or will meet your specific requirements.

4. Limitations- CCS makes no warranty or condition, either expressed or implied, including but not
limited to any implied warranties of merchantability and fitness for a particular purpose, regarding
the Licensed Materials.

Neither CCS nor any applicable licensor will be liable for an incidental or consequential damages,
including but not limited to lost profits.

5. Transfers- Licensee agrees not to transfer or export the Licensed Materials to any country other
than it was originally shipped to by CCS.

The Licensed Materials are copyrighted

© 1994-2006 Custom Computer Services Incorporated
All Rights Reserved Worldwide

P.O. Box 2452

Brookfield, Wi 53008

321

	OVERVIEW
	PCB, PCM and PCH Overview
	Installation
	Technical Support
	Directories
	File Formats
	Invoking the Command Line Compiler
	PCW Overview
	PROGRAM SYNTAX
	Overall Structure
	Comment
	Trigraph Sequences
	Multiple Files
	Multiple Compilation Units
	Example

	STATEMENTS
	EXPRESSIONS
	Operators
	Operator Precedence
	Reference Parameters
	Variable Parameters
	Default Parameters
	Overloaded Functions

	DATA DEFINITIONS
	Basic and Special types
	Declarations
	Non-RAM Data Definitions
	Using Program Memory for Data

	FUNCTIONAL OVERVIEWS
	I2C
	ADC
	Analog Comparator
	CAN Bus
	CCP1
	CCP2, CCP3, CCP4, CCP5, CCP6
	Configuration Memory
	Data EEPROM
	External Memory
	Internal LCD
	Internal Oscillator
	Interrupts
	Low Voltage Detect
	Power PWM
	Program EEPROM
	PSP
	RS232 I/O
	RTOS
	SPI
	Timer0
	Timer1
	Timer2
	Timer3
	Timer4
	Timer5
	USB
	Voltage Reference
	WDT or Watch Dog Timer

	PRE-PROCESSOR DIRECTIVES
	#ASM, #ENDASM
	#ENDASM
	#BIT
	#BUILD
	#BYTE
	#CASE
	DATE
	#DEFINE
	#DEVICE
	DEVICE
	#ELIF
	#ELSE
	#ENDIF
	#ERROR
	#EXPORT (options)
	__FILE__
	__FILENAME__
	#FILL_ROM
	#FUSES
	#HEXCOMMENT
	#ID
	#ID CHECKSUM
	#ID "filename"
	#ID number 16
	#ID number, number, number, number
	#IF exp, #ELSE, #ELIF, #ENDIF
	#IFDEF, #IFNDEF, #ELSE, #ELIF, #ENDIF
	#IGNORE_WARNINGS
	#IMPORT (options)
	#INCLUDE
	#INLINE
	#INT_xxxx
	#INT_DEFAULT
	#INT_GLOBAL
	__LINE__
	#LIST
	#LOCATE
	#MODULE
	#NOLIST
	#OPT
	#ORG
	__PCB__
	__ PCM __
	__ PCH __
	#PRAGMA
	#PRIORITY
	#RESERVE
	#ROM
	#SEPARATE
	#SERIALIZE
	#TASK
	 __ TIME __
	#TYPE
	#UNDEF
	#USE DELAY
	#USE FAST_IO
	#USE FIXED_IO
	#USE I2C
	#USE RS232
	#USE RTOS
	#USE SPI
	#USE STANDARD_IO
	#ZERO_RAM

	BUILT-IN-FUNCTIONS
	ABS()
	ACOS()
	ASIN()
	ASSERT()
	ATAN()
	ATAN2()
	ATOF()
	ATOI(), ATOL(), ATOI32()
	ATOI32() ATOL()
	BIT_CLEAR()
	BIT_SET()
	BIT_TEST()
	BSEARCH()
	CALLOC()
	CEIL()
	CLEAR_INTERRUPT()
	COS()
	COSH()
	DELAY_CYCLES()
	DELAY_MS()
	DELAY_US()
	DISABLE_INTERRUPTS()
	DIV(), LDIV()
	ENABLE_INTERRUPTS()
	ERASE_PROGRAM_EEPROM()
	EXP()
	EXT_INT_EDGE()
	FABS()
	FGETC()
	FGETS()
	FLOOR()
	FMOD()
	FPRINTF()
	FPUTC()
	FPUTS()
	FREE()
	FREXP()
	GET_TIMERx()
	GET_TRISx()
	GETC(), GETCH(), GETCHAR(), FGETC()
	GETCHAR()
	GETENV()
	GETS(), FGETS()
	GOTO_ADDRESS()
	I2C_ISR_STATE()
	I2C_POLL()
	I2C_READ()
	I2C_SlaveAddr()
	I2C_START()
	I2C_STOP()
	I2C_WRITE()
	INPUT()
	INPUT_STATE()
	INPUT_x()
	INTERRUPT_ACTIVE()
	ISALNUM(char), ISALPHA(char), ISDIGIT(char), ISLOWER(char), ISSPACE(char), ISUPPER(char), ISXDIGIT(char), ISCNTRL(x), ISGRAPH(x), ISPRINT(x), ISPUNCT(x)
	ISAMOUNG()
	ITOA()
	JUMP_TO_ISR
	KBHIT()
	LABEL_ADDRESS()
	LABS()
	LCD_LOAD()
	LCD_SYMBOL()
	LDEXP()
	LOG()
	LOG10()
	LONGJMP()
	MAKE8()
	MAKE16()
	MAKE32()
	MALLOC()
	MEMCPY(), MEMMOVE()
	MEMSET()
	MODF()
	 _MUL()
	OFFSETOF(), OFFSETOFBIT()
	OFFSETOFBIT()
	OUTPUT_A(), OUTPUT_B(), OUTPUT_C(), OUTPUT_D(), OUTPUT_E(), OUTPUT_F(), OUTPUT_G(), OUTPUT_H(), OUTPUT_J(), OUTPUT_K()
	OUTPUT_B OUTPUT_C OUTPUT_D OUTPUT_E OUTPUT_F OUTPUT_G OUTPUT_H OUTPUT_J OUTPUT_K
	OUTPUT_BIT()
	OUTPUT_DRIVE()
	OUTPUT_FLOAT()
	OUTPUT_HIGH()
	OUTPUT_LOW()
	OUTPUT_TOGGLE()
	PERROR()
	PORT_A_PULLUPS ()
	PORT_B_PULLUPS()
	POW(), PWR()
	PRINTF(), FPRINTF()
	PSP_OUTPUT_FULL(), PSP_INPUT_FULL(), PSP_OVERFLOW()
	PSP_INPUT_FULL()
	PSP_OVERFLOW()
	PUTC(), PUTCHAR(), FPUTC()
	PUTCHAR()
	PUTS(), FPUTS()
	QSORT()
	RAND()
	READ_ADC()
	READ_BANK()
	READ_CALIBRATION()
	READ_EEPROM()
	READ_PROGRAM_EEPROM()
	READ_PROGRAM_MEMORY(), READ_EXTERNAL_MEMORY()
	READ_EXTERNAL_MEMORY()
	REALLOC()
	RESET_CPU()
	RESTART_CAUSE()
	RESTART_WDT()
	ROTATE_LEFT()
	ROTATE_RIGHT()
	SET_ADC_CHANNEL()
	SET_PWM1_DUTY(), SET_PWM2_DUTY(), SET_PWM3_DUTY(), SET_PWM4_DUTY(), SET_PWM5_DUTY()
	SET_PWM2_DUTY SET_PWM3_DUTY SET_PWM4_DUTY SET_PWM5_DUTY
	SET_POWER_PWMX_DUTY()
	SET_POWER_PWM_OVERRIDE()
	SET_RTCC(), SET_TIMER0(), SET_TIMER1(), SET_TIMER2(), SET_TIMER3(), SET_TIMER4(), SET_TIMER5()
	SET_TIMER0() SET_TIMER1() SET_TIMER2() SET_TIMER3() SET_TIMER4() SET_TIMER5()
	SET_TRIS_A(), SET_TRIS_B(), SET_TRIS_C(), SET_TRIS_D(), SET_TRIS_E(), SET_TRIS_F(), SET_TRIS_G(), SET_TRIS_H(), SET_TRIS_J(), SET_TRIS_K()
	SET_TRIS_B() SET_TRIS_C() SET_TRIS_D() SET_TRIS_E() SET_TRIS_F() SET_TRIS_G() SET_TRIS_H() SET_TRIS_J() SET_TRIS_K()
	SET_UART_SPEED()
	SETJMP()
	SETUP_ADC(mode)
	SETUP_ADC_PORTS()
	SETUP_CCP1(), SETUP_CCP2(), SETUP_CCP3(), SETUP_CCP4(), SETUP_CCP5(), SETUP_CCP6()
	SETUP_CCP2() SETUP_CCP3() SETUP_CCP4() SETUP_CCP5()
	SETUP_COMPARATOR()
	SETUP_COUNTERS()
	SETUP_EXTERNAL_MEMORY()
	SETUP_LCD()
	SETUP_LOW_VOLT_DETECT()
	SETUP_OSCILLATOR()
	SETUP_OPAMP1() SETUP_OPAMP2()
	SETUP_OPAMP2()
	See: SETUP_OPAMP1() SETUP_POWER_PWM()
	SETUP_POWER_PWM_PINS()
	SETUP_PSP()
	SETUP_SPI(), SETUP_SPI2()
	SETUP_TIMER_0()
	SETUP_TIMER_1()
	SETUP_TIMER_2()
	SETUP_TIMER_3()
	SETUP_TIMER_4()
	SETUP_TIMER_5()
	SETUP_UART()
	SETUP_VREF()
	SETUP_WDT()
	SHIFT_LEFT()
	SHIFT_RIGHT()
	SIN(), COS(), TAN(), ASIN(), ACOS(), ATAN(), SINH(), COSH(), TANH(), ATAN2()
	SINH()
	SLEEP()
	SLEEP_ULPWU()
	SPI_DATA_IS_IN(), SPI_DATA_IS_IN2()
	SPI_READ(), SPI_READ2()
	SPI_WRITE(), SPI_WRITE2()
	SPI_XFER()
	SPRINTF()
	SQRT()
	SRAND()
	STANDARD STRING FUNCTIONS()
	MEMCHR() MEMCMP() STRCAT() STRCHR() STRCMP() STRCOLL() STRCSPN() STRICMP() STRLEN() STRLWR() STRNCAT() STRNCMP() STRNCPY() STRPBRK() STRRCHR() STRSPN() STRSTR() STRXFRM()
	STRCAT() STRCHR() STRCMP() STRCOLL()
	STRCPY(), STRCOPY()
	STRCSPN() STRLEN() STRLWR() STRNCAT() STRNCMP() STRNCPY() STRPBRK() STRRCHR() STRSPN()
	STRTOD()
	STRTOK()
	STRTOL()
	STRTOUL()
	STRXFRM()
	SWAP()
	TAN() TANH()
	TOLOWER(), TOUPPER()
	WRITE_BANK()
	WRITE_CONFIGURATION_MEMORY()
	WRITE_EEPROM()
	WRITE_EXTERNAL_MEMORY()
	WRITE_PROGRAM_EEPROM()
	WRITE_PROGRAM_MEMORY()

	STANDARD C INCLUDE FILES
	errno.h
	float.h
	limits.h
	locale.h
	setjmp.h
	stddef.h
	stdio.h
	stdlib.h

	ERROR MESSAGES
	COMPILER WARNING MESSAGES
	COMMON QUESTIONS AND ANSWERS
	How are type conversions handled?
	How can a constant data table be placed in ROM?
	How can I pass a variable to functions like OUTPUT_HIGH()?
	How can I use two or more RS-232 ports on one PIC®?
	How can the RB interrupt be used to detect a button press?
	How do I do a printf to a string?
	How do I directly read/write to internal registers?
	How do I get getc() to timeout after a specified time?
	How do I make a pointer to a function?
	How do I put a NOP at location 0 for the ICD?
	How do I write variables to EEPROM that are not a byte?
	How does one map a variable to an I/O port?
	How does the compiler determine TRUE and FALSE on expressions?
	How does the PIC® connect to a PC?
	How does the PIC® connect to an I2C device?
	How much time do math operations take?
	Instead of 800, the compiler calls 0. Why?
	Instead of A0, the compiler is using register 20. Why?
	What can be done about an OUT OF RAM error?
	What is an easy way for two or more PICs® to communicate?
	What is the format of floating point numbers?
	Why does the .LST file look out of order?
	Why does the compiler show less RAM than there really is?
	Why does the compiler use the obsolete TRIS?
	Why is the RS-232 not working right?

	EXAMPLE PROGRAMS
	SOFTWARE LICENSE AGREEMENT

