
R. Reese; Oct 2005, V0.2

Some MCC18 Examples

This small code archive has some code examples that are compatible with Microchip
MCC18 compiler so that you could use the Microchip MCC18 compiler instead of the
HI-TECH PICC18 compiler. The code is written in the HI-TECH compiler style in terms
of bitnames (i.e. TRISB0 instead of TRISBbits.TRISB). MPLAB project files are
provided for both 18F242 and 18F4620 processors.

Why Use MCC18?

You may find it convenient use the MCC18 compiler if you want a compiler integrated
with MPLAB on your personal PC instead of using the ECE Linux server. The MCC18
2.4 student compiler is a free download from Microchip. After 60 days, some compiler
optimizations are disabled (resulting in slightly larger and slower code) but the compiler
still works.

ZIP Archive Contents

In order for the MPLAB projects to work with MCC18, you must unzip this archive into
the top level of your C: drive. This will create a directory called C:\mcc18_examples.

The directories are:

• c:\mcc18_examples\common - files common to all examples such as config.h,
serio.c, etc.

• c:\mcc18_examples\source - C code source examples and MPLAB project files.
The two examples provided are pwm_example.c and stepmotor_test.c (contains an
example of an interrupt service routine).

• c:\mcc18_examples\mcc18_startup – linker scripts and C runtime code.

MPLAB Project Files
The project files are named:

• sourcefile_18F242_bootldr.mcp – project configured for 18F242 and bootloader
• sourcefile_18F4620_bootldr.mcp – project configured for 18F4620 and

bootloader
• sourcefile_18F242.mcp – project configured for 18F242; no bootloader support.
• sourcefile_18F4620.mcp – project configured for 18F4620; no bootloader

support.

The difference between the projects that produce hex files compatible with the Jolt/Colt
bootloaders and the non-bootloader compatible projects are:

 1 of 7

R. Reese; Oct 2005, V0.2

• The bootloader projects use the linker files 18f242i_bldr.lkr or 18f4620i_bldr.lkr
while the non-bootloader projects uses the files 18f242i.lkr or 18f4620i.lkr. The
bootloader linker files offset the code by the required amount (0x200 for the
18F242, 0x800 for the 18F4620). The bootloader linker files also link to C
runtime files that are offset by the correct code amount as well.

• The project defines the compiler symbol HIGH_INTERRUPT=0x200 (for
18F242) or HIGH_INTERRUPT=0x800 (for 18F4620) to specify where the high
interrupt vector lives.

All of the MCC18 project files use the auto storage class, which allocates function
parameters and local parameters on the stack. The other two storage classes are overlay
and static. Overlay uses static allocation for local variables, and shares memory locations
used for local variables between functions that are not active at the same time. This is the
allocation strategy also used by the HI-TECH PICC18 compiler, and results in smaller
and faster code, at the cost of not being able to do recursion. Overlay mode also uses
static allocation for function parameters. The static storage class uses static allocation as
its name implies, but does not allow overlaying of memory locations. I tested all of the
files with the auto storage class, but they should also work with the overlay storage class
as well. However, the _user_putc (auto char c) function that is used by serial.c and in the
LCD examples for single character output via the printf() function must remain with its
parameter list explicitly specified as auto storage class. This is because printf() is
compiled under the auto storage class in the MCC library and it is printf() that calls this
function.

Also, the MCC18 project file for any example with a printf() function was configured to
use the large code model; this uses 24 bit pointers for any pointers to program memory
space. The MCC18 library is compiled with the large code model, and if the project is
compiled with the small code model (16-bit pointers to code space) a warning “type
qualifier mismatch in assignment” is generated for each printf(). The code still works, but
these warnings can mask other important warnings, so I used the large memory model for
these project files to remove the warnings.

Differences between the HI-TECH PICC18 and Microchip MCC18
compilers

Special Function Registers and Named Bits, config.h
For the PICC18 compiler, a named bit is simply accessed via its name, i.e, as TRISB0,
since each named bit is declared as a bit type by the PICC18 header files.

However, the MCC18 compiler uses C unions to represent special function registers and
named bits, so TRISB0 would be accessed as TRISBbits.TRISB0. In general, a named bit
in the MCC18 compiler is represented by the union regnamebits.bitname.

 2 of 7

R. Reese; Oct 2005, V0.2

The file config.h (found in mcc18_examples/common) is used to define equivalences
between these two naming conventions, so the following #define is conditionally declared
in config.h if the MCC18 compiler is being used:

#define TRISB0 TRISBbits.TRISB0

These macros support the PIC18F242 (PIC18Fxx2) and PIC18F4620 processors. If you
want to use a different processor, then add similar macros to support the new processor
(or else just use MCC18 bit naming).

In-line Assembly Code
In-line assembly code such as asm(“sleep”) and asm(“clrwdt”) are represented by
macros such as SLEEP() and CLRWDT() which are defined in config.h to be the correct
in-line assembly for the MCC18.

Interrupt Service Routine Declarations
The MCC18 and PICC18 compilers declare interrupt service routines differently, so this
required changing an ISR declaration like the following:

void interrupt pic_isr(void) //HI-TECH compiler
{

to:

//MCC18 Compiler
#pragma interrupt pic_isr save=section(".tmpdata"),section("MATH_DATA"),PROD
void pic_isr(void)
{

The “save=section...” command causes the compiler to generate code to save some
temporary data and registers used by foreground code operation so that the ISR does not
corrupt these values when it is invoked. The above “save” command is a worst case – if
your ISR does not touch these data sections, then you would not have to save this.
Unfortunately, you would need to look at the MAP file to determine if your ISR used
these or not, so the above “save” command may waste some CPU time, but at least your
ISR will not produce strange results by corrupting data used by the foreground code.

Also, the MCC18 compiler requires the user to explicitly specify code to be placed at the
interrupt vector location, so all interrupt examples has the following code included (I
placed this at the of the main() code for less clutter):

//for MCC18, place the interrupt vector goto
#if defined(HIGH_INTERRUPT)
#pragma code HighVector=HIGH_INTERRUPT
#else

 3 of 7

R. Reese; Oct 2005, V0.2

#pragma code HighVector=0x0008
#endif
void HighVector (void)
{
 _asm goto pic_isr _endasm
}
#pragma code

The value of the HIGH_INTERRUPT macro in the above code must be passed in by the
compiler; if this code is to be used with the Jolt/Colt serial bootloaders then the compiler
flag –DHIGH_INTERRUPT=0x0208 should be used since the code is offset by 0x0200
locations (or HIGH_INTERRUPT=0x0800 for processors with a 2K boot sector like the
18F4620).

Global variable initialization
The runtime code for the PICC18 compiler gives all global variables their explicit
initialization value, or a value of ‘0’ if they are not explicitly initialized. The PICC18
compiler also defines the persistent qualifier for variables that are to be left un-initialized
by the C startup code. The reset_cnt variable in the chap8/F_8_11_reset_cnt.c code is
one example that makes use of this capability. Thus, in the PICC18 compiler, the global
variables below of k, j, n are initialized as described in the comments.

char k; // in PICC18, is initialized to 0
char j = 5; // in PICC18 is initialized to 5
persistent char n; // value is not initialized.

In the MCC18 compiler, the initialization of global variables is controlled by the runtime
code that is linked in. In mcc18\lib there are three object files to choose from: c018.o,
c018i.o, and c018iz.o. The c018.o code does no global variable initialization; the c018i.o
code only initializes those global variables with explicit initial values, while the c018iz.o
code first zeros all memory, then initializes those global variables with explicit initial
values. The persistent qualifier is not supported in the MCC18 compiler.

The MCC18 project files all either link to c018i.o, c018i_bldr_0x200.o (this code is
offset by 0x200 locations for bootloader), or c018i_bldr_0x800.o (this code is offset by
0x800 locations for bootloader). Using this run time code, the global variables below of
k, j, n are initialized as described in the comments.

// assuming c018i.o code is used
char k = 0; // initialized to 0
char j = 5; //initialized to 5
char n ; // value is not initialized, BE CAREFUL!!!!

The variable ‘n’ above will have an unpredictable value at startup since it has not been
initialized. This could be OK if you do not need an initial value; simply be aware of this.

 4 of 7

R. Reese; Oct 2005, V0.2

Lack of scanf() in MCC18
The MCC18 library does not include scanf(); you must write a custom function to do
something like:

 scanf("%d",&ivalue); // read integer from string

 char buf[20];
 sscanf(buf,”%d %d”, &i, &j); //read two integers from string

The file common/serio.c has two functions named console_getuint() and buffer_getuint()
that are useful for reading integers from the console or a string (see the stepmotor.c and
pwm_example.c code for how these are used). The code fragments below show how to
replace scanf() functionality with these function calls.

 //scanf("%d",&ivalue);
 ivalue = console_getuint(); // will read integer from console
 char buf[20], *s;

 //sscanf(buf,”%d %d”, &i, &j); //read two integers from string
 s = buffer_getuint(buf,&i); // get first integer
 s = buffer_getuint(s,&j); // get second integer

Variables placed in ROM (program memory)
The PICC18 compiler used the const qualifier for any constant variables that should be
placed in program memory. The MCC18 compiler requires the additional rom qualifier as
shown below (see reesemicro/code/labs/sinegen.h):

#if defined(__18CXX)
rom
#endif
 const unsigned char sine64tab[] = {

Integer promotion
ANSI C states that computation must be done at int precision at the minimum. In the
code below, the value of the computation ‘k << 8’ is done with 16-bit precision assuming
that an int is 16 bits;

int value;
char k;

value = value | (k << 8);

The above code works fine with the PICC18 compiler. However, for the MCC18
compiler, by default a computation is done at the size of the largest operand. Thus the
computation “k << 8” is done with 8-bit precision before being applied to the rest of the
computation, resulting in incorrect results. If the code is changed to:

 5 of 7

R. Reese; Oct 2005, V0.2

int value;
char k;

value = value | (k * 256);

then the correct result is obtained because the value 256 requires 16-bit precision. You
can also change the code to:

int value;
char k;

value = value | ((int) k << 8);

where k is explicitly cast to an int in the expression.

You can also explicitly enable integer promotion in the MCC18 compiler by using the “-
Oi” flag; this has been done in all MCC project files for the Chapter 12 examples because
the code examples have “ADRESH << 8” in them. In cases in other chapters, an
expression like “a_var << 8” has been replaced by “a_var * 256”.

If you want to be safe, you can always enable integer promotions via the “-Oi” compiler
flag at the cost of extra code space (this is not an issue in the HI-TECH compiler as it
seems to be a bit smarter on when integer promotions are needed or not needed).

Things to look out for
The following contains some code examples of coding mistakes to watch for when using
these compilers.

Pointers to Program Memory Space
In both compilers, a “char * “is a pointer to data memory space.

In the PICC18 compiler, a “const char *” is a pointer to program memory space.

In the MCC18 compiler, a “rom far const char *” or “rom near const *” is a pointer to
program memory space, depending on if the large or small code model is used.

Be careful not to pass a program memory pointer to a function expecting a data memory
pointer. In both compilers, if you do something like:

 foo(“Hello There!”)

the string “Hello There!” is placed in program memory space. If the function foo() is
declared as:

 foo(char *s){

 6 of 7

R. Reese; Oct 2005, V0.2

then the function foo() will not operate correctly as it is expecting a pointer to data
memory, but it is being passed a pointer to program memory space.

Mixed INT, LONG arithmetic
For both compilers, if you execute the code below (example taken from Microchip user
forum):

long sum; //longs are 4 bytes
unsigned int a,b; //ints are 2 bytes

a = 40000;
b = 30000;
sum = a + b;

the result is 4464 (0x1170) instead of 70000 (0x11170) because the addition is done as
16-bit addition before being assigned to the long variable. Having integer promotions
enabled within Microchip does not help this case.

You need to put a typecast in front of one of the operands in order to achieve the correct
result:

sum = (long) a + b;

If the calculation is something like:

sum = (long) a + (b << 1);

then you need to put typecasts in front of both variables:

sum = (long) a + ((long) b << 1);

Which Compiler Is Best?

I prefer the HI-TECH compiler because there is a Linux version; each person has their
own reasons as to why they might prefer one compiler to another. The examples in this
ZIP archive allow you try both compilers and decide for yourself.

 7 of 7

	Some MCC18 Examples
	Why Use MCC18?
	ZIP Archive Contents
	MPLAB Project Files

	Differences between the HI-TECH PICC18 and Microchip MCC18 compilers
	Special Function Registers and Named Bits, config.h
	In-line Assembly Code
	Interrupt Service Routine Declarations
	Global variable initialization
	Lack of scanf() in MCC18
	Variables placed in ROM (program memory)
	Integer promotion

	Things to look out for
	Pointers to Program Memory Space
	Mixed INT, LONG arithmetic

	Which Compiler Is Best?

