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ABSTRACT

It is not uncommon for a driver to drive numerous
receivers. In some designs it is impractical, or
undesirable, to drive every receiver from a single trace
segment. In such cases it is common to design a trace
that branches out into two or more branches, each
serving a select number of receivers. The question
then becomes where to place the branch point.
Improper placement of the branch point can have
serious implications from an impedance discontinuity
standpoint, resulting in reflections that can have signal
integrity consequences. This paper describes several
ways to deal with the branching problem in designs if
they come up.

CONTROLLED IMPEDANCE

When a driver sends a signal down a trace, the signal
reflects back from the end of the trace toward the

driver. In most cases this reflection is inconsequential.
In some circumstances, however, the reflection can be
significant enough to cause a signal integrity problem.

The magnitude of the reflection depends (in part) on
the relationship between the propagation time of the
signal down the trace and the rise (or fall) time of the
signal. It is generally agreed that signal reflections can
become signal integrity issues when the propagation
time down the trace approaches or exceeds about
one-half the rise time of the signal. The trace length at
which the propagation time equals one-half the rise
time is called the "critical length." If signal reflections
can become a signal integrity issue, there is typically a
two-stage process designers go through to control the
problem:
 Design the trace to look and perform
like a transmission line with character-
istic impedance Zo

» Terminate the trace using one of several
well known techniques? to absorb the
reflection.

Traces that are designed to look and act like
transmission lines are called "controlled
impedance" traces. Impedance control is
typically obtained through the control of the
geometry of the trace. The characteristic
impedance of a trace is primarily determined
by the trace width, the distance between the
trace and nearby reference plane(s), and the
relative dielectric constant of the material(s)
surrounding the trace. It is also secondarily

Us

controlled impedance traces it is important that the
impedance remain constant everywhere along the
trace. If there is an impedance discontinuity at any
point along the trace, a reflection may be created at
that point which may then cause a signal integrity
problem for the circuit.2

Constant impedance generally means uniform
geometry, something that is not hard to maintain if the
trace is totally contained on one individual trace layer.
When signal traces move from one trace layer to
another, however, some aspects of the geometry may
change (the distance to the plane(s), the relative
dielectric coefficient, etc.) In such cases, it is entirely
possible that the trace width may need to be different
on different layers in order to achieve a constant
impedance at all points along the trace. Most board
designers understand this and have no problems with
this aspect of board design.

There is a situation, however, where the rule "the
impedance must be constant everywhere along the
trace" confuses some designers, especially those
without a strong technical background. Consider the
situation illustrated in Figure 1. The figure illustrates a
driver, UA, driving a signal down a trace with
characteristic impedance ZoA. The trace branches
into two or more branches, each with its own
characteristic impedance shown in Figure 1 as ZoB1,
ZoB2, ..., ZoBn. A designer may interpret the rule as
meaning that each of these individual branches must
have the same impedance as the initial segment from
the driver. That is, as meaning that:

ZoB1 = ZoB2 = --- = ZoBn = Z0A

ZoBl

Zoa ZoBZ

Z0Bn

affected by the trace thickness. In dealing with  Figure 1: A trace branching into several other traces.
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People with a strong technical background understand
that this is an incorrect interpretation of the rule. The
trace segments after the branch point are all in
parallel. If they all have the same impedance, and if
that impedance is equal to ZoA, then the parallel
combination of all of them appears to the system as
being a single trace segment with characteristic
impedance ZoA /n. Thus, the system sees an
impedance discontinuity at the branch point, and a
reflection may well develop at that point.
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Figure 2: Hyperlynx simulation of one trace branching into three. The model is shown in a (top). Simulation results are shown for step

function b (left) and for a square wave c (right)
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There are three possible ways to correct the design
issue illustrated in Figure 1. These are shown in
Figure 3 for the simple case (for convenience) where
a single trace branches into two. They are:
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Figure 3: Here are three solutions to the branching problem. Bring the branch
back close to the driver (a, top). Increase the impedance of the traces after the
branch (b, middle). Add a series resistor to each branch immediately after the

branch point (c, bottom).

There are three alternatives to consider.

1. Move the branch point back near the driver UA. In
general, designs are usually acceptable if the first
segment length from UA to the branch point is less
than the critical length of the trace, although most
engineers and designers would opt for a trace
segment much shorter than that --- ideally as short as
practical. Most drivers are fairly tolerant of the loads
they are driving (up to the maximum output of the
driver), so that the impedance at the drive point is
normally not an issue. There are a small number of
special cases, however, where the driver must drive a
trace with a specific impedance, making this solution

Upz

more difficult. The practical issue with this solution is
that layout constraints may make it difficult to move
the branch point suitably close to the driver.

2. Adjust the trace impedances after the
branch so that each segment has an
impedance equal to n times ZoA. Each
segment would then be terminated in a
resistor whose value was equal to the
adjusted impedance, also n times ZoA. That
is, as shown in the Figure, RB1 = RB2 =
2*Z0A. This is a very nice approach, except
that increasing the impedance of these trace
segments typically means reducing their width
(unless it is possible to move the segments do
a different trace layer with different impedance
characteristics.) It is sometimes impractical to
fabricate trace widths small enough to achieve
the impedance targets.

3. Add a resistor to each trace segment
immediately after the branch point whose
value is (n-1)* ZoA. The impedance of each
individual trace after the branch as seen by
the driver at the branch point becomes (n-1)*
Z0A + ZoA = n* ZoA. The parallel combination
of all branches is then equal to n* ZoA /n =
ZoA, and there is no impedance discontinuity
at the branch point. The practical issue with
this solution is the addition of n resistors to the
circuit. Each resistor also forms a voltage
divider with the trace reducing the ultimate
signal level at the receiver.
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The Hyperlynx tool can easily simulate each of these
alternatives. Figures 4, 5 and 6 illustrate the
simulations for each of these solutions for cases
where a single trace branches into three. In each case
the improvement over the simulation in Figure 2 is
apparent.
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Figure 4: One solution is to bring the branch point back close to the
driver. A (top) illustrates the model used and b (above) illustrates
the result of the simulation.
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Figure 5: A second solution is to increase the characteristic
impedance of the traces following the branch. The model is illustrate
in a, (bottom left) and the results of the simulation in b (above). In
some designs it may not be practical to achieve the higher
impedances needed.
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Figure 6: A third possible solution is to add a series resistor in each
branch immediately after the branch. A (middle) illustrates the model
used and b (above) illustrates the result of the simulation. Note that
this solution results in a smaller signal waveform at the receiver.
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We have designed boards for customers where the
practical constraints prevented us from fully
implementing any of these solutions. It was necessary
to find the best compromise that allowed the circuit to
work "well enough" to meet overall system
requirements. Customers with the Hyperlynx
simulation tool are able to model different alternatives
and evaluate the simulation results, helping them zero
in on the best practical design criteria.

SUMMARY

When it is necessary to divide a net into two or more
branches, the best approach is to bring the branch
point back as close as possible to the driver. If the
branch point is some distance away from the driver,
especially as distant as the critical length or more,
special design techniques are required. Otherwise,
impedance discontinuities and damaging reflections
might result. Two other possible alternatives are:

1. Increase the controlled impedance of each branch
to a level equal to n*Zo, where n is the number of
branches and Zo is the impedance of the first trace
segment between the driver and the branch. Each
branch would then be terminated in a resistor equal to
n times Zo. This approach results in a clean signal at
each receiver, but it can be difficult to implement if the
target impedance requires traces that are too narrow.

2. Add a series resistor to each brance at the branch
point equal to (n-1)*Zo, where n and Zo are defined as
in the previous paragraph. This technique results in a
clean, but reduced, signal at each receiver.

FOOTNOTES

1. For an excellent discussion on termination techniques see
Ethirajan and Nemec, "Termination Techniques for High
Speed Buses," EDN, February 16, 1998, p. 135. (This
article is available through the EDN on-line archives.)

2. See Douglas Brooks, Signal Integrity Issues and Printed
Circuit Board Design, Chapters 10 and 11 for a thorough
discussion of reflections and transmission line design
principles on circuit boards.

3. See Brooks (footnote 2) Chapter 11 for several
illustrations of simulations of a variety of improperly
terminated traces.
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