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ABSTRACT

It is known that forward crosstalk increases (for all
practical purposes) with increasing coupled length, but
has a pulse width that is constant. Backwards
crosstalk, on the other hand, rises quickly (within the
critical region) to a constant maximum, but has a
pulse width that increases with increasing coupled
length. Simulations using HyperLynx® LineSim® show
this very effectively and clearly. The tool can
illustrate how impedance loading of the victim
trace can impact the magnitude, and even the
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BASIC MODEL

To simulate basic crosstalk concepts without any
spurious effects getting in the way, we will structure a
fairly specific, simple model. This model will be
designed with the intent of excluding all spurious
effects except those caused by crosstalk between the
traces themselves. The stripline portion of the model
is shown in Figure 1.
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polarity, of the backward crosstalk pulse.
HyperLynx also can be used to clearly illustrate
how the backward crosstalk pulse is twice the
propagation time through the coupled region plus
one rise time, how the crosstalk signal is
impacted by the relationship between the traces
and their reference planes and also with each
other, and how an aggressor AC signal's period
can interact with the length of the coupled region
to create some surprising crosstalk effects.
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In a previous article! | talked about the nature of
crosstalk, especially forward vs backward
crosstalk and how forward crosstalk is virtually
zero in a stripline environment. This article will
introduce several HyperLynx simulations illustrating
various characteristics of crosstalk. The reader will
gain an understanding of (a) how to use HyperLynx
LineSim to simulate crosstalk, and (b) how to
recognize various crosstalk effects.

We will illustrate a variety of simulations:

Figure 1 - Basic HyperLynx LinSim model for simulation.

The stackup for this model is shown in Figure 2. In
HyperLynx, the stackup is created or edited by the
menu selection Edit/Stackup. In this paper we are
going to be using the layers labeled "Top" (microstrip)
and "Stripline" (Signal layer 4). The stripline stackup
values have been carefully created to achieve a
propagation speed of almost exactly 6"/ns for ease in
understanding the results.
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Figure 2 - HyperLynx Stackup Editor.
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If you right-click one of the transmission line segments
the "Edit Transmission Line" window displays (Figure
3a). The most significant entry here is that the
"Coupled Stackup" radio button has been selected.
The "Edit Coupling Regions" tab (Figure 3b) reveals
the name and the layer of the coupling region. But
more importantly, there are places to edit the length
and width of the trace and the separation from the
adjacent (coupled) trace. This illustration shows a
length of 12 inches, a trace width of eight mils, and a
separation of only five mils. We can expect the
crosstalk to be fairly significant for two traces ten mils
away from their reference plane (Figure 2) and only
five mils apart (Figure 3b).
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Figures 3a and 3b - Transmission Line Edit windows.

We need terminating resistors for the traces. If you
select a resistor "holder" and then right-click it, the Edit
Resistor Values window displays (Figures 4a and b).
We have set the values of the two far end resistors to

60.2 ohms, to properly terminate the transmission
lines. The near resistor on the victim line has been set
to ten M ohms to simulate an open circuit or a high
impedance pin on a device. Thus, the backward
crosstalk signal on the victim line will reflect off this
point (with a 100% reflection coefficient3) and travel
back toward the far end of the victim line.
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Figures 4a and 4b - Setting terminating resistor values (top) and
parasitics (bottom).
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HyperLynx allows you to set parasitic values for the
passive devices (Figure 4b). This can be useful or
desirable if you want to try to precisely simulate how a
circuit will work with "real world" devices. For this
theoretical basic model, | have set all the parasitic
values to the minimum allowed by Hyperlynx. This is
so we can look as closely as possible to the crosstalk
effects, isolated from any other effects that might
distort the results.

PAGE 2



Finally, we need a driver to drive the aggressor trace.
That is identified in Figure 1 as "Ramp2nsec."
Because there are some things | specifically want to
identify from the basic results, | have created a driver
with some very special characteristics. This driver
rises almost perfectly linearly from zero to full value in
two ns. That compares with a typical device that would
have normal "roll-on" and "roll-off" characteristics. The
purpose for this will become clear later. But the driving
signal in this model is either constant or it is linear at
50%/ns. There is virtually no roll-on or roll-off.

To create a driver like this, start by Selecting
Edit/Databook IC Models (.Mod). Figure 5a shows the
Edit .MOD Model for the Device Model TDR in the
GENERIC MOD Library. Figure 5b shows how I edited
this model, and then saved it as Ramp2nsec in the
USER.mod library for my use. The edited model is the
driver we are going to use in this simulation.
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Figure 5a and 5b - Device model windows. Figure 5a (top) shows a
standard GENERIC MOD model for a TDR. Figure 5b (bottom)
shows how this model was edited to create Ramp2nsec device
model used in the simulation.
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Figure 6 - Result from the basic simulation.
INITIAL RESULTS

Running the simulation (Simulate/Run Scope..) leads
to the results shown in Figure 6. The red trace (a) in
Figure 6 is the driver. Note how it rises from zero to
full value (about 4.4 Volts) in almost exactly two ns.
The green trace (b) is the driven signal showing up at
the far end of the driven trace two ns later (the trace is
12 inches, or two ns long.) The blue trace (c) is the
backward crosstalk signal arriving at, and reflecting
from, the ten Mohm resistor at the front of the victim
trace. In this example, the magnitude of the signal
here is approximately 1.2 Volts.4 The orange trace (d)
is this reflected signal showing up at the far end of the
victim trace, two ns later. Its magnitude is about .6 V.
The near end backward crosstalk pulse is actually .6
V, too, but it shows up in the model as twice that value
because of the 100% positive reflection at the end of
the (effectively) unterminated transmission line.

It is instructive to look at pulse widths and shapes
here. And now it begins to come clear why we
structured such a special driver. The crosstalk signal
has the same rise time as the driver does (two ns).
And since there is no perceptible roll-on or roll-off, it is
very clear where these signals start and finish.

In the article referenced in Footnote 1, | pointed out
that the backward pulse width is twice as wide as the
propagation time through the coupled region. That is
approximately true if you measure it from the midpoint
of the rise and fall times. What is precisely true (and
can be seen in this special case) is that the backward
pulse width is twice the propagation time through the
coupled region PLUS one rise time! Note that the rise
time of the driving pulse is exactly two ns. The
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coupled region is two ns long; twice that is four ns.
The backward crosstalk pulse in Figure 6 is six ns
from start to finish-twice the coupled region (4) plus
one rise time (2).

The reason is this. As the very first part of the driven
signal enters the coupled region, the backward
crosstalk signal begins to form. As the very first part of
the driven signal arrives at the far end of the coupled
region, it generates a backward pulse component that
is twice the coupled region behind the first. It is the
length of the coupled region later, and it is the length
of the coupled region further away from the beginning.

critical length the backward pulse width is a triangle. If the
coupled region is shorter than the critical length, the width
follows the same rule as before, but the crosstalk signal
does not have time to rise to its maximum value.

This, then, illustrates the fundamental rule: The
backward pulse increases in amplitude with the length
of the coupled region until the critical length, then it
rises no further. The pulse width is twice the coupled
region plus one rise time.
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Figure 7 - Simulation results for three coupled lengths, 3" (a), 6" (b),
and 12" (c).

impedance at the near end, the backward crosstalk
pulse travels back to it (Figure 8a) but then is
completely dissipated at that point. There is no
forward reflection. If, on the other hand, the trace is
shorted at the near end, Figure 8b, then there is a
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100% negative reflection of the backward pulse. Note
that the pulse at the far end of the victim trace in
Figure 8b is exactly the same shape and amplitude as
the pulse in Figure 6, but opposite in sign. (There is
no signal at the near end of the victim trace in Figure
8b, of course, because the trace is shorted at that
point!)

Clearly, the magnitude (and even the polarity) of the
crosstalk signal depends on the termination at the
near end of the victim line. Any devices that exist on
that portion of the line (including another device driver
at the beginning of the victim line) contribute to that
loading. And those devices may present different
loading characteristics depending on their state (i.e.
"on" or "off" or "high" or "low"). This makes estimating
and troubleshooting crosstalk issues that much
tougher.

SEPARATION AND HEIGHT ABOVE PLANE

The two primary ways to reduce crosstalk are well
known:é route traces close to their reference plane,
and spread the traces further apart. Figure 9 simulates
each of these effects. If the trace separation increases
from five mils to ten mils, the magnitude of the
backward crosstalk signal reduces as shown in Figure
9a. If the reference plane is brought closer to the
traces (from ten mils to five mils) the magnitude also
reduces, as shown in Figure 9b. It should be noted
that when the trace is placed closer to the reference
plane, the characteristic impedance drops. Therefore,
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the terminating resistors were adjusted accordingly.

MORE TYPICAL DRIVER

All the simulations so far have been with

the special ramp driver described in
Figure 5b. There are some slight
changes when we do the simulation
using a more typical high-speed device
model. Figure 10 illustrates the model
with a driver selected from the
EASY.MOD library, the CMOS 3.3V
ULTRAfast device. Figure 11 illustrates
the results of this model for the same
stripline trace configuration used in
Figure 6. As is apparent, the results are
very similar.

It gets more interesting when we do this
simulation on the microstrip (top) layer
(Figure 12). The stackup is as shown in
Figure 2. The trace impedance has
changed because the geometry is now

Figure 9a and 9b - The magnitude of the crosstalk pulse decreases
with increasing separation, Figure 9a (top), and with decreasing
height above the underlying plane, Figure 9b (bottom).
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Figure 10 - Stripline simulation with a more conventional driver model.
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Figure 11 - Simulation result of the stripline model of Figure 10.
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backward direction. Thus, there is a well-defined
backward crosstalk signal but no forward crosstalk
signal. But in a microstrip environment, the two
forward components do not perfectly cancel. Thus
there is a net forward crosstalk signal that can
appear in microstrip environments that almost never
occurs in stripline environments.
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the propagation speed has changed.” The

simulation result is as shown in Figure 13.

The simulation is similar to that in Figure 11 except

for the sharp negative-going pulse at the far end of

the victim trace. This is the forward crosstalk pulse.

Recall from the article referenced in Footnote 1,

there are two coupling effects that take place in a

crosstalk situation, capacitive and inductive.
Capacitive coupling sends signal components in
both directions in the victim trace, but inductive
coupling only sends a signal component in the
backward direction. In a stripline environment, the
two components almost perfectly cancel in the
forward direction, but reinforce each other in the
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Figure 12 - Microstrip model with a more typical driver model.

Figure 13 - Simulation result of the model in Figure 12.

The article referenced in Footnote 1 also points out
that

the backward crosstalk signal is relatively constant in
magnitude and has a pulse width twice as wide as the
propagation time down the coupled region, but the
forward crosstalk signal has an amplitude that continually
increases as the coupled region increases and has a
fixed pulse width equal to the rise time (or the fall time) of
the aggressor signal.8

This result is illustrated in Figure 14, where three
simulations are shown. The simulations are
identical except for the length of the coupled region
(six, 12 and 24 inches respectively.)

Although forward crosstalk is rarely a problem in
typical PCB designs (because the coupled length is
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Figure 14 - Simulation results when the coupled length is varied
from 6 to 12 to 24 inches.

rarely long enough to generate a significant signal),
many designers follow the rule that if crosstalk is a
performance issue or concern, all crosstalk sensitive
traces will be routed in a stripline environment. This
should be considered a conservative rule. Many
designers have no particular crosstalk problems when
routing in either environment.

OSCILLATING (AC) DRIVER

Up to now we have looked at simulations with a single
pulse driven down the trace. Some surprising things
can happen if we look at the more typical case of a
clock signal driven down the trace. Consider the
model shown in Figure 10 with the trace length
adjusted to six inches (one ns). Let's drive this model
with three different square wave frequencies, 300
MHz, 500 MHz, and 700 MHz, respectively. The
results are shown in Figures 15a, 15b, and 15c,
respectively. It is striking that there is no apparent
crosstalk signal when the clock rate is 500 MHz. That
does not mean that there is no crosstalk! The clock
half-cycle is one ns. At time equal one ns there is a
clock transition going in one direction. One ns later
there is a clock transition going in the other direction.
One ns later........ , etc. The time of these transitions
happens to coincide exactly with the trace length (one
ns). Thus, the crosstalk components caused by each
transition are canceling out. Imagine the difficulty of
troubleshooting a crosstalk problem when varying
frequencies are involved!
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Figures 15a, 15b, and 15c - Crosstalk effects can be an unexpected
function of frequency. Here are the results from the same model
driven by an aggressor signal of 300 MHz (a, top), 500 MHz (b,
middle), and 700 MHz (c, bottom). The larger waveform is the driver.
The smaller one is the resulting crosstalk signal.
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COUPLED OVER PARTIAL LENGTH

As a final simulation illustration, consider the case of
two traces which are coupled over only part of their
length. Figure 16 illustrates such a model. These are
simulated as microstrip traces to incorporate the
added complexity of a forward crosstalk pulse. The
entire propagation delay is nine inches (1,281.4 ns) ns
along the aggressor trace and 16 inches (2,287.3 ns)
along the victim trace. The result of this simulation is
shown in Figure 17. Note in particular that the forward
and backward crosstalk signals arrive at the far end of

the victim trace at significantly different times.

If you were an engineer and saw these traces on a
scope for a signal trace and for a (supposedly) quiet
adjacent trace, it would not be readily intuitive that
these signals were related! That is one of the
difficulties in troubleshooting crosstalk problems if you

typertyme UneSim V7.0 - [coupled aver part length CHO05.TLN] ==

Tl B PBrojet £ Yow Dol Lowsy  Sedato
| D - e 30 = 2 OFF

LT

Figure 16 - Simulation of a condition where the traces are coupled over only a portion of their

length.
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Figure 17 - Simulation result of the model in Figure 16.

are not familiar with what they look like or if you are
not sensitive to the possibility that they could even exist.

SUMMARY

HyperLynx LineSim is a very effective tool for
simulating crosstalk. It is equally effective for
simulating actual circuits and for simulating
hypothetical situations to see what the effects might
look like. Crosstalk effects are quite similar in
microstrip and in stripline environments, except
forward crosstalk can become an issue in the former.
Simulations can illustrate quite clearly the fundamental
rule that forward crosstalk grows continuously (for all
practical purposes) with increasing coupled length, but
its pulse width remains constant. Backward crosstalk,
on the other hand, rises quickly (within the critical
region) to a constant maximum amplitude, but has a
pulse width that increases with increasing coupled
length. The maximum amplitude,
and even its polarity, can be a
function of impedance loading at
the front (near end) of the victim
trace. Using a controlled driver
waveform, it is easy to show that
the backward crosstalk pulse
width is twice the propagation
time through the coupled region
plus one rise time. Finally, for AC
waveforms, there can be an
interaction between the period of
the waveform and the
propagation time through the
coupled region that can have a
very significant effect on the
resulting crosstalk signal.
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FOOTNOTES

1. "Crosstalk, Part 1; Understanding Forward vs
Backward," available at
http://www.mentor.com/pcb/techpapers/.

2. "Adjusting Signal Timing, Part 2; Crosstalk
Effects in Serpentine Traces," available at
http://www.mentor.com/pcb/techpapers/.

3. Information on reflection coefficients can be
found in a great many sources. See for example,
"Transmission Line Terminations; It's the End that
Counts," available at
http://www.mentor.com/pcb/techpapers/.
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4. This crosstalk signal is quite high because we
have structured an example with very strong
coupling (traces relatively far from their reference
plane and close to each other), and because
there is a 100% reflection here at the effectively
unterminated end of the transmission line.

5. This is the same critical length we talk about
with transmission lines. There are many, many
articles on this topic. See, for example,
"Propagation Times and Critical Length; How
They Interrelate," available at
http://www.mentor.com/pcb/techpapers/.

6. Brooks, Douglas, Signal Integrity Issues and
Printed Circuit Board Design, Prentice Hall, 2003,
Chapter 12.

7. "Microstrip Propagation Times; Slower than
We Think," available at
http://www.mentor.com/pcb/techpapers/.

8. Same as Footnote 1.
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