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Un oscillateur est un amplificateur contre réactionné dans des conditions instables. Si A(p) est
la fonction de transfert de l'amplificateur et B(p) celle de la contre-réaction, la fonction de
transfert en boucle fermée est :

HBF( p) =
A( p)

1+ A(p)B( p)

+
- A(p)

B(p)

ve(p) vs(p)

I.1. Conditions d'oscillation

Si A(p)B(p)=-1 le dénominateur s'annule et la fonction de transfert est infinie, ce qui peut
s'interpréter en considérant que la tension de sortie est non nulle alors que la tension d'entrée
est nulle. Dans certaines circonstances cet ensemble peut constituer un oscillateur. Un
amplificateur opérationnel avec son entrée inverseur à la masse et rebouclé sur son entrée
non-inverseur est par exemple dans ces conditions d'instabilité, mais ne constitue pas un
oscillateur. La tension sortie se sature à +Vsat et le système est stable (d'un point de vue
électrique). Ceci est dû au fait que les conditions d'instabilité sont vérifiées à fréquence nulle.
En d'autres termes le montage "oscille" à fréquence nulle; mais l'appellation générale
d'oscillateur n'inclue pas ce type de comportement, elle est réservée aux montages qui
délivrent un signal périodique à fréquence non nulle.
Ainsi pour réaliser un oscillateur il faut tout d'abord que la condition d'instabilité soit vérifiée
à fréquence non nulle, sans l'être à fréquence nulle. Ces conditions s'écrivent encore :

A( p)B( p) = 1

arg A( p)( )+ arg B(p)( ) = (2k + 1)π
 
 
 

et sont appelées conditions limites d'oscillation de Barkhausen.
Il est impossible de satisfaire rigoureusement à ces conditions, à cause des incertitudes sur les
composants et des variations en fonction du temps et de la température.
Supposons que les conditions de Barkhausen soient vérifiées pour la phase à la pulsation ω0,
et analysons l'influence de variations ε des gains |A(p)| et |B(p)|.

• Pour |A(jω0)B(jω0)| = 1-ε, avec ε réel positif, si un signal sinusoïdal apparaît en entrée
avec l'amplitude e à la pulsation ω0  (une composante du bruit thermique par
exemple), il va être amplifié puis ré-injecté en entrée avec l'amplitude (1-ε)e. Il va
être à nouveau amplifié en (1-ε)2e , (1-ε)3e et ainsi de suite. Cette suite étant
convergente vers zéro le bruit s'atténue et disparaît.

• Pour |A(jω0)B(jω0)| = 1+ε, avec ε réel positif, le même bruit va être amplifié et ré-injecté
à l'entrée avec l'amplitude (1+ε)e puis (1+ε)2e , (1+ε)3e et ainsi de suite. La suite étant
divergente l'amplitude du signal augmente de façon exponentielle, un signal
sinusoïdal divergent apparaît à la pulsation ω0 .

Ces différents comportements se retrouvent sur le lieu de Nyquist (figure IV.1).
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Figure IV.1 : Différentes formes de
signal de sortie possible en
fonction du lieu de Nyquist Re A( p) B(p)( )

Im A( p)B(p)( )

Point critique : Conditions
limites de Barkhausen
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Ainsi pour qu'un signal oscillant puisse apparaître il est nécessaire que le système vérifie pour
une certaine pulsation ω0

( ) ( )A j B jω ω0 0 1>

C'est la condition d'oscillation.
Mais néanmoins, le signal qui apparaît à la pulsation ω0  est divergent, son amplitude croît
exponentiellement. Donc à partir d'une certaine amplitude l'amplificateur sort de sa plage de
fonctionnement linéaire. Il apparaît une distorsion, comme par exemple un écrétage du signal
en sortie de l'amplificateur. A partir de là le fonctionnement ne peut plus être décrit par une
analyse linéaire standard, on utilise des méthodes spécifiques aux systèmes non linéaires, dont
la plus simple est la méthode du premier harmonique.
Intuitivement, le comportement de l'oscillateur dépend de la composante du signal à la
pulsation d'oscillation ω0, appelé aussi fondamental ou premier harmonique. Les harmoniques
suivants crées par la distorsion à 2ω0, 3ω0 ... ne font que déformer le signal. Par ailleurs
lorsque le signal sinusoïdal est déformé par l'amplificateur l'amplitude du premier harmonique
(ω0) est réduite par rapport à la valeur qu'elle aurait si l'amplificateur était en régime linéaire.
Donc pour le premier harmonique le gain équivalent du système diminue lorsque l'amplitude
augmente.
Revenons au signal sinusoïdal divergent. A partir d'une certaine amplitude l'amplificateur
rentre en régime non linéaire, et de ce fait le gain équivalent pour le premier harmonique
diminue. A partir d'une certaine amplitude le gain de boucle sera rigoureusement égal à 1.

( ) ( )Aeq j B jω ω0 0 1=

Le système est alors dans les conditions de Barkhausen. Et le système est stable (stable au
sens de l'électronique, c'est à dire en régime permanent). En effet si l'amplitude du signal
augmente encore, alors la distorsion s'accentue et le gain de boucle du premier harmonique
devient inférieur à 1 (cas 1-ε précédent) et le signal décroît. Si au contraire l'amplitude du



Fonctions électroniques : Les oscillateurs sinusoïdaux Etienne Gheeraert 4/19

signal vient à diminuer, alors l'amplificateur retourne vers son régime linéaire, le gain devient
supérieur à 1 (cas 1+ε précédent) et l'amplitude augmente à nouveau.

Pour clarifier les idées prenons l'exemple d'un oscillateur sinusoïdal basse fréquence, le pont
de Wien à amplificateur opérationnel.
Le circuit est composé d'un amplificateur réalisé avec un amplificateur opérationnel associé à
deux résistances R1 et R2, et d'un réseau de contre-réaction RC (Figure IV.2).

Figure IV.2: Schéma électrique d'un pont
de Wien. Pour l'étude du
fonctionnement R1 est reliée à un
générateur de tension ve.
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Pour étudier son fonctionnement on suppose que la résistance R1 est reliée à un générateur de
tension d'entrée ve. L'écriture de relations simples permet de mettre en évidence la contre-
réaction :
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La pulsation est normalisée par rapport à la pulsation propre de la fonction de transfert vf/vs.
Par analogie avec la relation vs(p) = A(p)(ve(p)-B(p)vs(p)), la première équation fait apparaître
les gains de la chaîne directe A(p) et de la contre réaction B(p):

A p( ) = −α

B p( ) = 1 + 1

α
 
 
  

 
 pn

1+ 3pn + pn
2

 

 
 
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Figure IV.3 : Schéma bloc équivalent du pont de
Wien Les nombres en italique indiquent le
gain du bloc dans les conditions de
Barkhausen (α=2 et pn=1)
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Le montage peut donc se mettre sous la forme du schéma-bloc de la figure IV.3. Les
conditions de Barkhausen s'écrivent A(p)B(p) + 1 = 0, et mènent après calcul aux relations
suivantes :

α = 2

pn = 1

 
 
 

Le système peut donc osciller à la pulsation normalisée pn=1 (c'est à dire ω0=1/RC) avec une
tension d'entrée nulle (R1 reliée à la masse, comme indiqué sur la figure IV.2) si le gain de
l'amplificateur est ajusté à α=2. Dans ces conditions le gain de la chaîne directe est égal à -2,
et le gain de la contre-réaction à 1/2. Les gains des trois blocs sont indiqués en italique sur la
figure IV.3.

En pratique le gain α est ajusté en remplaçant R2 par une résistance variable. Néanmoins le
gain ne peut être rigoureusement ajusté à 2, donc il est ajusté à une valeur légèrement
supérieure de façon à ce qu'une oscillation puisse apparaître. La figure IV.4 représente les
fichiers de description du circuit en vue d'une simulation, et la figure IV.5 représente le lieu
de Nyquist de la boucle ouverte dans le cas α=2.2. Lorsque le lieu est parcouru dans le sens
des pulsations croissantes le point critique est laissé à droite. D'après le critère de Cauchy le
montage en boucle fermée sera instable.

A la mise sous tension du montage les transitoires de tension ou le bruit présent dans le circuit
vont induire une composante à la pulsation ω0, qui va être amplifiée. La simulation du schéma
électrique ci-dessus permet de faire apparaître ces premiers instants (figure IV.6). Dès que
l'amplitude du signal de sortie atteint les tensions de saturation de l'ampli-op la distorsion du
signal apparaît, et l'amplitude des oscillations se stabilise. Dans ces conditions le gain du
premier harmonique Aeq, c'est à dire le rapport de l'amplitude de la composante à ω0 du signal
de sortie sur le l'amplitude du signal à l'entrée de l'amplificateur, est rigoureusement égal à 2.
Dans la pratique on n'a pas accès à la tension d'entrée de l'amplificateur, on a juste accès à la
tension de contre-réaction vf. Le gain équivalent attendu vs/vf est alors de 3, comme indiqué
sur la figure IV.3.

La figure IV.7 représente les spectres du signal d'entrée de l'amplificateur (vf,) et du signal de
sortie (vs) en régime permanent d'oscillation, pour un gain de α=2.2. Le rapport des
amplitudes des premiers harmoniques est de 9.535dB soit 2.997. Aux erreurs de mesure près
c'est le gain attendu dans les conditions de Barkhausen. La distorsion a donc réduit le gain de
sa valeur initiale en régime linéaire de 3.2 à 3.0 en régime non linéaire.

Si on augmente de gain de l'amplificateur α, l'amplitude du signal de sortie va augmenter de
façon à augmenter la distorsion et ainsi réduire le gain du premier harmonique. Pour des
grandes valeurs de α le signal de sortie sera proche d'un signal carré. Si on réduit le gain α, la
distorsion sera réduite, mais de petites variations des valeurs des résistances (induites par une
variation de température par exemple) risquent de faire passer le gain α à une valeur inférieure
à 2 et d'éteindre l'oscillation. Par exemple la simulation du circuit avec un gain de α=2.05
montre que la distorsion en sortie est réduite à THD=-34.8dB, alors qu'elle était de THD=-
25.4dB pour α=2.2.

Pour analyser plus précisément le comportement de l'oscillateur, comme par exemple
déterminer l'amplitude des oscillations, il faut utiliser une méthode d'analyse des systèmes
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non linéaires, comme la méthode du premier harmonique (voir Mainguenaud 74 par
exemple).

Wien.nsx

R1 0 NMOINS 10k
R2 NMOINS OUT 22k
C1 OUT N1 100n
R3 N1 NPLUS 10k
C2 NPLUS 0 100n
R4 NPLUS 0 10k
X1 NPLUS NMOINS VCC VEE OUT LF351

Wien.pat

* Description des alimentations
VCC VCC 0 15
VEE VEE 0 -15
VIN IN 0 0 AC 1 0

* Librairie de models:
.LIB LF351.CKT

* Directives de simulation
.AC LIN 100 10 1K
.TRACE  AC VR(AB)
.TRACE  AC VI(AB)

Figure IV.4:  Fichiers de description du circuit pour simulation SMASH. Le fichier
wien.nsx est le fichier de netlist, il contient la description du montage seul, c'est à
dire la description des composants avec leurs connections. Le fichier wien.pat
décrit lui l'ensemble des sources et générateurs éventuels qui sont reliés au
montage, les modèles des composants utilisés et l'ensemble des directives
nécessaires à la simulation. Le circuit simulé ici utilise un ampli-op Texas
Instruments LF351 alimenté en +15/-15V, avec un gain de α=R2/R1=2.2. La
fréquence d'oscillation est prévue à 159 Hz.

Figure IV.5: Lieu de Nyquist de la boucle ouverte du pont de Wien pour un gain de α=2.2
(simulation)

VI(AB)

Small signal analysis: wienbo.nsx ; single ; 27/8/98 ; 17:09:44
Scaling:X=VR(AB) -1 -800m -600m -400m -200m 0

-600mV

-400mV

-200mV

0V

200mV

400mV

600mV

Im(AB)

Re(AB)Point critique

f =10 Hz

f=1 kHz
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BH4(V(NPLUS))

BH4(V(OUT))

FFT wien.nsx ; all ; 1/9/98 ; 11:14:44

Scaling:0 400 800 1.2K

-120

-80

-40

0

-120

-80

-40

0

1er harmonique = -1.75dB
THD = -25.4 dB

1er harmonique = 7.785 dB
THD = -21 dB

Figure IV.6: Apparition du signal oscillant dans le pont de Wien  à la mise sous tension
(signal V(OUT)). Avant t=90ms le signal est sinusoïdal divergent (de la forme
exp(+αt)sin(ωt), avec α>0). A partir de t=90ms le signal est écrêté par les tensions
de saturation de l'amplificateur opérationnel (+13.5 et -13.5V) et le système entre
en régime permanent.

Figure IV.7: Transformée de Fourier discrète du signal de sortie de l'amplificateur
opérationnel V(OUT) et du signal de contre-réaction V(NPLUS) en régime permanent
(Simulation SMASH). La fenêtre d'apodization est Blackman-Harris 4 (BH4). L'amplitude
du premier harmonique (en dB) ainsi que le taux de distorsion total THD est indiqué. La
faible amplitude des harmoniques pairs indique que le signal reste symétrique.

V(OUT)

Transient analysis: wien.nsx ; all ; 1/9/98 ; 11:09:10

Scaling:40m 80m 120m 160m
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I.2. Stabilisation de l'amplitude des oscillations

Dans l'exemple ci-dessus du pont de Wien la stabilisation des oscillations par écrétage produit
un signal de sortie avec un taux de distorsion important. Pour réduire la distorsion, on
introduit volontairement une non linéarité "douce" dans le système pour stabiliser le signal
avant saturation de l'amplificateur opérationnel. Dans le pont de Wien par exemple la
résistance R2 peut être remplacée par une thermistance RTH à coefficient de température
négatif. A température ambiante celle-ci doit avoir une valeur RTH>2R1 de façon à assurer
l'apparition des oscillations. L'amplitude du signal augmentant le courant dans la thermistance
augmente, ce qui l'échauffe et fait diminuer sa valeur. Le système sera stable lorsque la valeur
de la thermistance sera égale à 2R1. L'oscillation obtenue dans ces conditions est extrêmement
pure.
Pour rendre l'amplificateur non linéaire on peut aussi placer en parallèle sur sa résistance de
contre-réaction un élément non linéaire en fonction de la tension, comme par exemple deux
diodes Zener en série (figure IV.8).

Figure IV.8: Amplificateur à ampli-op mis en
régime non linéaire par diodes Zener.
Lorsque la tension aux bornes de R2 est
telle que les diodes Zener se mettent à
conduire la résistance équivalente du
circuit de contre-réaction diminue, donc
le gain de l'amplificateur diminue.

R1

R2

ve 
vs

DZ2 DZ1

Une autre solution souvent employée est de mesurer la tension moyenne du signal de sortie et
de modifier le gain de l'amplificateur en fonction de celle-ci (Figure IV.9). La tension
moyenne est mesurée par le réseau D1, D2, C1 et C2, et est appliquée à la grille du transistor
MOS. Celui-ci jouant le rôle d'une résistance commandée en tension, il constitue avec la
résistance R un atténuateur d'entrée. Lorsque l'amplitude du signal augmente, la résistance
équivalente du MOS diminue et de ce fait le gain de la contre-réaction est réduit.

C2

R2

(ve )
vs C1

D1

D2

réseau de
contre-réaction

R1

R
vf

Figure IV.9: Amplificateur à ampli-op mis en régime non linéaire par transistor MOSFET
en résistance variable.
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Ces méthodes de contrôle de l'amplitude des oscillations sont principalement appliquées aux
oscillateurs à amplificateurs opérationnels. Lorsqu'un transistor est utilisé comme
amplificateur ses non linéarités intrinsèques suffisent pour stabiliser les oscillations tout en
conservant un taux de distorsion acceptable.

,,� /HV�RVFLOODWHXUV�j�UpVHDX�5&

Les oscillateurs de ce type utilisent un réseau de contre-réaction à composants R et C. Les
plus courants sont le pont de Wien, qui a été décrit dans le paragraphe précédent, et
l'oscillateur à ligne à retard.

II.1. Oscillateur à ligne à retard

Un réseau RC série induit un déphasage de la forme

ϕ ω n( )= − arctanω n( )
F jωn( ) = 1

1 + ω n
2

 

 
 

 
 

 où ω n représente la pulsation normalisée ω n =
ω

ω 0
= RCω

En cascadant au moins 3 réseaux RC on peut donc obtenir un déphasage de 180°. Si un
amplificateur compense l'atténuation introduite par les réseaux RC, et induit lui-même un
déphasage de 180° (amplificateur inverseur), le gain en boucle ouverte vérifiera les conditions
d'oscillation.

Exemple: oscillateur à 3 réseaux RC

C

R
R

C

R R1

R2

C

Figure IV.10:  Schéma de principe d'un oscillateur à retard de phase à 3 réseaux RC.
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Il existe une grande variété de montages utilisant un réseau de contre-réaction de type LC. Le
plus utilisé est le montage Colpitts.

III.1. L'oscillateur Colpitts

Pour mieux appréhender le fonctionnement de cet oscillateur il faut revenir au fonctionnement
du résonateur LC. Considérons un simple circuit LC parfait dans des conditions hors-
équilibre, le condensateur étant initialement chargé et le courant étant nul.

L

C

i

La décharge du condensateur induit un
courant i dans le circuit. Ce courant induit
alors la magnétisation de la self. L'énergie
électrostatique du condensateur est
convertie en énergie magnétique dans la
self.

L

C

i

Une fois la self magnétisée et le
condensateur déchargé, le courant
s'inverse. L'échange d'énergie est alors de
la self vers le condensateur, le système
revient à l'état de départ. La pulsation
d'oscillation est de

ω0 =
1

LC

L

C1 C2

En coupant la capacité précédente en deux
capacités on obtient le schéma équivalent
ci-contre. Le fonctionnement est identique
et la fréquence de résonance est de

ω0 =
1

L

1

C1
+

1

C2

 

 
 

 

 
 
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L

C1 C2

i i
1

jC2ω0
i−

1

jC1ω0
i

En plaçant la masse entre les deux
capacités on obtient le schéma ci-contre,
qui est identique au précédent. A la
résonance le courant circule
alternativement de C1 vers C2. Lorsque C1

se décharge C2 se charge, et inversement.
Les tensions aux bornes des deux
condensateurs sont donc en opposition de
phase.

arg vC2( )− arg vC1( )= π

De plus le courant dans les deux
condensateurs étant identique, le rapport
des tensions est égal à l'inverse du rapport
des capacités:

vC2
vC1

=
C1
C2

Tout ceci est valable pour un réseau LC parfait en oscillation libre. En pratique le circuit est
alimenté par une source de tension (un amplificateur de tension), il n'est pas en oscillation
libre. Mais lorsque le système sera alimenté à sa fréquence propre il entrera en résonance, et il
aura un comportement proche de celui de l'oscillation libre.

L'oscillateur de type Colpitts tire partie de ces propriétés particulières du résonateur LC
(figure IV.11). Il utilise un amplificateur inverseur de gain A et le réseau de contre-réaction
que nous venons de décrire.

Figure IV.11: Principe de l'oscillateur de
type Colpitts.

L

C1 C2

- A

A la fréquence de résonance le déphasage introduit par la contre-réaction est de π. Sachant
que l'amplificateur induit lui-aussi un déphasage de π (il est inverseur), la condition
d'oscillation pour la phase arg HBO ω0( )( )= 2kπ  est remplie. En négligeant les impédances

d'entrée et de sortie de l'amplificateur, le gain de la boucle est à la résonance de

HBO ω0( )= A
C1
C2

Si A
C1
C2

> 1 la condition d'oscillation pour le gain sera remplie, le système oscillera.
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Dans la pratique ce montage est utilisé plutôt en hautes fréquences, et l'amplificateur est soit
transistor (bipolaire ou à effet de champ) soit une porte logique inverseur. Dans le cas
d'amplificateur à transistor à effet de champ le montage est représenté sur la figure IV.12.

Exemple: Oscillateur Colpitts à transistor à effet de champ

Figure IV.12: Oscillateur Colpitts
à transistor à effet de
champ.

RD=680Ω RB=100kΩ
C1=1nF C2=2.2nF
L=36.8µH VCC=5V
CL=100nF
N-JFET, gm=4mS pour VGD=0

Vcc

CL

RD
L

C1 C2C1
RB

CL

Le transistor à effet de champ est caractérisé par
— Une résistance d'entrée infinie
— une transconductance gm
— une impédance de sortie ρ

Les capacités CL sont des capacités de liaison, elles doivent avoir une impédance négligeable à la
fréquence de travail.
Pour étudier le comportement de la boucle ouverte on ouvre la boucle entre C2 et CL. Montrer que
le montage est équivalent au schéma de la figure IV.13 en régime de petits signaux. Donner les
valeurs des admittances y0, y1 et y2.
Calculer la fonction de transfert en boucle ouverte en fonction de gm, y0, y1 et y2.
Déterminer les conditions d'oscillation.

Figure IV.13: Schéma équivalent en petits
signaux.

ve vs
gm ve

y1

y0

y2
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Figure IV.14:  Diagramme de Bode des modules |V(OUT1)/VIN| et |V(OUT)/VIN| en boucle ouverte. VIN est la
tension de d'entrée appliquée à la grille du J-FET, V(OUT1) est la tension de sortie de l'amplificateur (Drain du
J-FET) et V(OUT) est la tension de sortie du pont LC. L'impédance d'entrée de l'amplificateur étant grande
(Ze~RG) il n'est pas nécessaire de charger la sortie du pont LC par cette impédance. A la fréquence
d'oscillation prévue le gain de la boucle ouverte est de 1.8dB. De plus on retrouve bien que
|V(OUT1)/VIN|~RDgm, (~2.7 ou 8.7dB) et que le gain du pont LC à la résonance est de

|V(OUT1)/V(OUT)|=C1/C2 (=1/2.2 ou -6.8dB).(Simulation)

Figure IV.15: Diagramme de Bode de la phase de la boucle ouverte. La phase est de 0 à la
fréquence d'oscillation prévue.
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Figure IV.16: Analyse transitoire de l'oscillateur en régime permanent. On verifie d'une
part que les deux tensions en entrée et en sortie du pont LC sont en opposition de
phase, et que le gain du pont LC est toujours de C1/C2=1/2.2. D'autre part le gain
de l'oscillateur a été reduit par la distorsion de 2.7 à 2.2 (la distorsion étant faible
on peut assimiler l'amplitude du signal à l'amplitude du premier harmonique).

Figure IV.17: Transformée de Fourier discrète du signal de sortie du pont LC  V(OUT)
permanent. La fenêtre d'apodization est Blackman-Harris 4 (BH4). Le taux de
distorsion total THD est de -68.1dB.

THD = -68.1 dB
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III.2. L'oscillateur Clapp

Une amélioration sensible consiste à placer en série avec la self une capacité C3 (figure
IV.18). De cette façon la fréquence est très peu dépendante des impédances d'entrée et de
sortie de l'amplificateur, et vaut en première approximation

ω osc =
1

L

1

C1
+

1

C2
+

1

C3

 

 
 

 

 
 

Figure IV.18 Oscillateur Clapp à
transistor bipolaire.
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Rc
L

C1 C2

Vcc

C3
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IV.1. Les résonateurs à Quartz

Le quartz est la phase cristallographique hexagonale de la silice SiO2. Sa particularité est
d'être piézo-électrique. Cela signifie que l'application d'un champ électrique induit une
déformation du cristal. Inversement, l'application d'une contrainte au cristal induit un champ
électrique interne, et donc une différence de potentiel entre les extrémités du cristal.
L'application d'un champ électrique alternatif induira la vibration du cristal. Si la fréquence
est telle qu'une onde stationnaire existe dans le cristal, celui-ci entre en résonance.
L'amplitude des vibrations n'est alors limitée que par les pertes mécaniques, qui sont très
faible. Donc l'énergie mécanique emmagasinée à la résonance est très élevée. Vu de
l'extérieur, l'impédance équivalente du quartz est très dépendante de ces conditions de
résonance. L'allure générale de cette impédance ainsi que le schéma électrique équivalent sont
représentés sur la figure IV.19.

X(ω)

ω
ωs ωp

0

L

Cp

Cs r

ω s = 1

LCs

ω p =
1

L

1

Cs
+

1

Cp

 

 
 

 

 
 

 

 

 
 

 

 
 

Figure IV.19 Schéma électrique équivalent du quartz et allure de la réactance X (partie
imaginaire de l'impédance, Z=jX) en négligeant les pertes. La résistance r
représente les pertes mécaniques. Une réactance positive correspond à un
comportement inductif, et une réactance négative à un comportement capacitif.
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On distingue en fait deux fréquences de résonances, le première fs correspond à la fréquence
propre du circuit série LCs, et la seconde à la fréquence propre du circuit parallèle (LCs)//Cp.
Ces deux fréquences sont très proches. Néanmoins en pratique on utilise de préférence la
résonance série, qui est plus stable que la résonance parallèle. La valeur indiquée sur les
composants est d'ailleurs fs.
En dehors de la résonance le quartz se comporte comme un simple condensateur.
L'intérêt pour l'électronicien est que la résonance est une résonance de type mécanique, donc
beaucoup plus stable en fonction du temps, et ajustable avec une très grande précision (elle
dépend de la géométrie du cristal). De plus les pertes mécaniques sont très faibles, dans la
résistance en série avec la self est très faible, donc le coefficient de qualité est très élevé
(Q~10000). A titre de comparaison le coefficient de qualité d'une self bobinée est au mieux de
l'ordre de 100.

IV.2. L'oscillateur Colpitts à quartz

Le montage Colpitts consiste à placer comme réseau de contre réaction une self entre deux
capacités. Si on remplace la self par un résonateur à quartz le montage pourra osciller si le
quartz a un comportement inductif. Cela est vérifié dans la plage de pulsation entre ωs et ωp.
Par ailleurs la réactance de résonateur variant de 0 à l'infini (en négligeant les pertes) entre ces
deux fréquences, la self équivalente au quartz peut prendre toutes les valeurs. Il existera donc
une pulsation située entre ωs et ωp qui vérifiera les conditions d'oscillation pour la pulsation.
Donc si le gain de l'amplificateur est suffisant le montage oscillera à une pulsation comprise
entre ωs et ωp. Ces deux fréquences étant très proches (quelques ppm) la pulsation
d'oscillation est définie avec une très grande précision. Le principe de la contre-réaction est
identique à celui du réseau LC vu précédemment, à savoir à la pulsation de résonance un
déphasage de π et un gain de C1/C2 entre l'entrée et la sortie du réseau de contre-réaction.

Figure IV.20: Oscillateur Colpitts à
quartz. Ce montage a une
excellente stabilité de phase (jitter
de phase faible). Il est pour cela
très utilisé comme horloge
d'échantillonnage ou référence de
phase.
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C1 C2

Vcc

Associé à une porte logique inverseur comme amplificateur (figure IV.21) c'est l'oscillateur
utilisé comme horloge dans la majorité des systèmes à microprocesseur.

Figure IV.21: Horloge à Quartz. La stabilité en
fréquence est aussi bonne que le montage à
transistor, mais la stabilité en phase est
moins bonne (jitter de phase plus
important). C1 C2
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On distingue principalement deux grandes familles de VCO en fonction de la fréquence
d'oscillation, les oscillateurs à varicap et les générateurs de fonction.

V.1. Les oscillateurs à varicap

Pour faire varier la fréquence d'oscillation en fonction d'une tension de commande, il suffit de
faire varier la valeur d'un des composants dont dépend la fréquence. Cette technique est
principalement utilisée à haute fréquence, pour les oscillateur sinusoïdaux à réseau LC ou à
quartz, où une diode varicap (varactor) est utilisée comme capacité commandée en tension.
Une diode pn polarisée en inverse est équivalente à une capacité. Cette capacité existe
physiquement dans la jonction, elle est composée du silicium type n neutre, de la zone de
transition (ou zone de charge d'espace, zone isolante qui se forme autour de l'interface entre
les deux types de semiconducteur) et du silicium de type p (figure IV.22). La largeur de la
zone de transition W dépend de la polarisation inverse appliquée, plus la polarisation est
importante et plus la largeur W est importante. La capacité de transition dépendant, comme
tout condensateur plan, de l'inverse de la distance entre les électrodes (ici la distance entre les
semiconducteurs neutres W), la capacité de transition dépend de la polarisation de la diode.
Toute diode pn peut donc être utilisée comme capacité variable. Néanmoins les diodes dite
varicap sont optimisées pour avoir une importante variation de la capacité de transition en
fonction de la polarisation inverse. L'ordre de grandeur de la capacité est de l'ordre de 10 à
quelques 100pF.

p n

zone de 
transition

W

CT

Polarisation inverse V
0

CT ≈
1

V

Figure IV.22  Capacité de transition d'une jonction pn. La largeur de la zone de transition

varie en W ≈ V , la capacité équivalente varie donc en CT ≈
1

V
.

La varicap est utilisée en parallèle sur une des capacités de l'oscilateur. Pour modifier la
polarisation inverse de celle-ci sans perturber le fonctionnement du montage on utilise parfois
le montage représenté sur la figure IV.23.
A noter que les varicaps sont aussi utilisées pour modifier la fréquence des oscillateurs à
quartz. La variation de fréquence est beaucoup plus faible, mais suffit dans certains cas.
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L

C1 C2

Polarisation
CL LC

Figure IV.23  Polarisation d'une diode
varicap. CL est une capacité de
liaison, qui isole l'oscilateur de la
polarisation continue. LC est une self
de liaison, appelée aussi self de choc,
qui isole la source de tension du signal
à haute fréquence de l'oscillateur.
Dans ce montage la varicap est placée
en // sur la capacité C2

V.2. Les générateurs de fonctions

A plus basse fréquence les capacités ont des valeurs beaucoup plus importantes et la petite
variation induite par la varicap est trop faible pour modifier de façon significative la
fréquence d'oscillation. Le problème est alors contourné en utilisant un autre type
d'oscillateur, l'oscillateur à relaxation, dont la fréquence est aisément contrôlable mais qui
génère un signal de forme d'onde triangulaire. Le signal triangulaire issu de cet oscillateur est
alors converti en un signal sinusoïdal par un conformateur à diodes. La distorsion obtenue est
néanmoins plus importante que pour un oscillateur sinusoïdal. Ce type d'oscillateur est
souvent appelé générateur de fonctions car les formes d'ondes carré, triangulaires et
sinusoïdale sont disponibles en sortie. Le circuit intégré MAX038 (Maxim) est par exemple un
générateur de fonctions qui fonctionne jusqu'à 20 MHz.
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