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Fig. 7.9: HIL simulation

models, 128 MB of global memory to exchange data with the host compu-

ter and 2 MB of flash memory. The I/O boards can be programmed using

Matlab/Simulink and Real Time Interface (RTI).

The program developed is executed with a fixed step 1 ms and a fourth

order Runge Kutta algorithm. The 1 ms time step selected is smaller than

the vehicle (seconds), fuel cell (20 ms for the model used) and battery (10 ms

for the battery used) time constant, and can therefore capture the dynamic

operation of any system involved. Smaller time steps could lead to heavy

experimental data files (e.g. over 1 million samples were recorded for each

signal captured during the test carried out.) Figs. 7.9 and 7.10 present the

layout and photograph of the whole HIL simulation.

7.4.2.1. Energy management modes (EMM)

In a hybrid system, a wide range of control schemes could be implemen-

ted, depending on the objective: maximum range, minimum fuel consum-

ption, minimum SoC variation, etc. This wide range of control schemes is

due to the hybrid nature of the system, with one source able of supplying
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long term load (fuel cell) and another source capable of supplying shorter

term loads (energy storage system). With these different time windows, con-

trol schemes may benefit one system but penalize the other. Therefore, some

type of compromise should be reached.

In this Thesis, two different and representative EMM of how a control

scheme affects each system will be applied: the first one will reduce the hy-

drogen consumption and efficiently recharge the battery, whilst the second

one will keep the battery SoC within an established interval. Of course, other

control schemes could be tested.

For EMM 1, the fuel cell output will vary between two different levels

(one low level to reduce the fuel consumption and the maximum power point

when the load current surpasses 100 A) while supplying the load and rechar-

ging the battery with the profile shown in Fig. 7.11. Fig. 7.11 presents this

charge profile, in which the values are selected based on previous experiences

with the battery.

If the load current is smaller than the rated fuel cell current the battery

starts a recharge cycle. The charge current depends on the battery SoC, as

for increasing SoCs the battery voltage increases. The recommended char-

ging voltage limit for this battery, as specified by the manufacturer, is 14.4

V. Due to the fact that the charge efficiency decreases dramatically for high
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Fig. 7.11: Fuel cell recharge current to the battery

SoCs, the SoC is kept between 40 %-60 %, as in this interval there is no risk

of overcharge or battery depletion, which would contribute to shorten the

battery life due to gasification or sulphatation phenomena. The 60 % upper

limit for the SoC also assures that the battery will be always ready to accept

power peaks during regenerative breaking.

For EMM 2, the fuel cell will be kept at its maximum power point, both

during the vehicle power following and during the battery recharge. Hence,

the battery will have to deal with the peak transients. If during the driving

cycle the battery voltage surpasses the manufacturer recommendation (max.

14.4 V or 1.2 p.u.) the control system will reduce the fuel cell reference (37.78

A or 2 p.u.) in order to reduce the charge regime or force the battery into a

discharge cycle, which in both cases will lower the battery voltage.

In general, for both EMMs, depending on the drive cycle, the battery

could exceed the maximum 100 % SoC if a low load or high regenerative

breaking takes place. Hence, if the maximum SoC is exceeded the fuel cell

reference will be reduced in order to force the battery into a discharge cycle.

Also, the fuel cell will be in continuous operation, even during short stops,

in order to recharge the battery. However, if the stop time exceeds 5 minutes

the control system will stop the fuel cell. Moreover, if during the stop time

the battery SoC exceeds the 80 %, the fuel cell will also stop.
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Fig. 7.12: NEDC driving cycle and downsized power (10:1)

7.5. HIL experimental results

To test the p.u. HIL simulation presented, a driving cycle is applied to

the simulated system. The New European Driving Cycle (NEDC) simulates

during 1225 seconds an urban and suburban route with frequent stops, as it

can be seen in Fig. 7.12. The maximum speed is 120 km/h.

With this driving cycle the power requested to the downsized fuel cell/battery

system is shown in Fig. 7.12. The maximum downsized power is 2500 W,

which corresponds to a real 25 kW of the original application. As the simu-

lation is carried out for a smaller system (10:1), the results presented are

expressed in per-unit values.

The simulated fuel cell current is measured by a current transducer at

the Sorensen DCS power source which emulates its behavior for both con-

trol schemes. The current profile is presented in per-unit values. For EMM

1 in Fig. 7.13 the fuel cell current varies between 1.2 p.u. and 2 p.u., which
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are the two levels established. There is also a third level at 0.5 p.u., which

corresponds to the battery recharge. For EMM 2 in Fig. 7.14 the fuel cell

is kept at a constant operation point (its maximum power transfer point),

which corresponds with a 2 p.u. current, when the current is referred to the

base system. These current values affect the hydrogen consumption, which

is 2.5e-3 l/s for EMM1 and 3.7e-3 l/s for EMM2. Due to the fact that this

constant operation of the fuel cell will affect the battery SoC and voltage,

the control system will measure continuously the battery voltage. It can be

observed in Fig. 7.14 that when the measured battery voltage surpasses 14.4

V (1.2 p.u.) the fuel cell current decreases in order to allow a battery dischar-

ge or reduce the recharge level. On the other hand, the bus voltage variation

for control scheme 1 is lower, as it varies between 0.87 and 1.2 p.u.

For both energy management modes the battery absorbs up to 5 p.u. The

battery is recharged both from the fuel cell during low loads or during the

regenerative braking. As the battery is reserved for the high peak currents,

the bus voltage presents a variation around 1.07 p.u. for EMM 1 and around

1.1 p.u. for EMM 2. The voltage variation is of 0.33 p.u. for EMM 1 and 0.37

p.u. for EMM 2. This voltage variation is a normal situation for a battery,

which needs to vary considerably its voltage in order to supply the current

demanded during the charge/discharge cycles. This voltage variation is not

so dramatic in other energy storage systems. For example, supercapacitors

can supply or absorb hundreds of amperes during very short time intervals

by just varying mV the supercapacitor voltage.

The battery absorbs the frequent regenerative braking and fuel cell cu-

rrent which keeps the battery SoC. However, the two different energy ma-

nagements affect the SoC in a considerable way. For EMM 1 the SoC does

not vary significantly during most part of the cycle, but collapses during the

suburban section. EMM 2 keeps the battery SoC within more appropriate

values: 40 % (0.4 p.u.) and 52 % (0.52 p.u.), which avoids the battery deple-

tion or overcharge.

The fuel cell power varies around 2.2 p.u., which corresponds to 550 W in

the downsized system and 5.5 kW in the real application. The battery power

can reach nearly 5 p.u., which is 1250 W in the downsized system and 12.5
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kW in the real system.

7.6. Conclusions

Hardware-in-the-loop simulation is a powerful tool for simulating sys-

tems with a high number of components, which may require a complex and

expensive setup. In this Thesis, HIL simulation has been applied to a fuel

cell/battery hybrid vehicle. Unlike other authors, the vehicle simulation does

not include an electric machine to reproduce the regenerative braking. A com-

bined control of a dc electronic load and dc power source allows to simulate

both the vehicle power requirement and regenerative braking. This vehicle

simulator can easily switch to a stationary load simulator by just changing

the programmed power cycle.

The hybrid fuel cell/battery system was setup as a combination of simu-

lated and real hardware systems. The fuel cell simulator can be setup with

a programmed dc power source which is able to reproduce the fuel cell vol-

tage and current evolution. On the other hand, the battery is a simple and

modular system which can be easily introduced as hardware.

The HIL simulation is carried out under a p.u. system, which allows to

downsize the whole test bench and to study the hybridization between simu-

lated fuel cell and battery and was successfully carried out for two different

control schemes.
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Fig. 7.13: Energy management mode 1
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