

A Practical Guide to High-Speed Printed Circuit Board Layout

John Ardizzoni Analog Devices Dennis Falls
Avnet Electronics Marketing

Agenda

- Overview
- Schematic
- Location, location, location
- Trust no one
- Power supply bypassing
- Parasitics
- Ground and power planes
- Packaging
- RF Signal routing and shielding
- Checking the layout
- Summary

Overview

- PCB layout is one of the last steps in the design process and often one of the most critical
- High-speed circuit performance is heavily dependant on layout
- A high-performance design can be rendered useless due to a poor or sloppy layout
- Today's presentation will help:
 - Improve the layout process
 - Ensure expected circuit performance is achieved
 - Reduce design time
 - Lower cost
 - Lower stress for you and the PCB designer

The World Leader in High Performance Signal Processing Solutions

Schematic

Schematic

- The strength of any structure (including PCB's) is only as good as the foundation on which it built upon!
- A good layout starts with a good Schematic!
- Schematic flow and content
- Include as much information as you can
- What should you include?

Items to Include on a Schematic

- Notes
- Component tolerances and case sizes
- Part numbers (internal/external/alternative)
- Board stack up
- Tests or alignment procedures
- Power dissipation
- Controlled impedance and line matching
- Component de-rating
- Thermal requirements
- Keep outs
- Mechanical considerations
- Critical component placement
- Warning flags
- What ever else you can think of!

Schematic

The World Leader in High Performance Signal Processing Solutions

Location, location, location!

Location, Location, Location

- Just as in real estate location is everything!
- Input/output and power connections are typically defined...Everything else is undefined
 - Critical component placement
 - Signal routing
 - Circuit and component proximity

The World Leader in High Performance Signal Processing Solutions

- If you're doing your own layout, that's one thing.
- ♦ If you're not

- If you're doing your own layout, that's one thing.
- ♦ If you're not
 - Don't assume the CAD group is going to read your mind and get it right!

- If you're doing your own layout, that's one thing.
- ♦ If you're not
 - Don't assume the CAD group is going to read your mind and get it right!
 - In the end you're responsible for making it work!

- If you're doing your own layout, that's one thing.
- ♦ If you're not
 - Don't assume the CAD group is going to read your mind and get it right!
 - You're responsible for making it work!
- When working with the CAD Group

- If you're doing your own layout, that's one thing.
- ♦ If you're not
 - Don't assume the CAD group is going to read your mind and get it right!
 - You're responsible for making it work!
- When working with the CAD Group
 - Make sure you and the designer are on the same page

- If you're doing your own layout, that's one thing.
- ♦ If you're not
 - Don't assume the CAD group is going to read your mind and get it right!
 - You're responsible for making it work!
- When working with the CAD Group
 - Make sure you and the designer are on the same page
 - Brief circuit explanation

- If you're doing your own layout, that's one thing.
- ♦ If you're not
 - Don't assume the CAD group is going to read your mind and get it right!
 - You're responsible for making it work!
- When working with the CAD Group
 - Make sure you and the designer are on the same page
 - Brief circuit explanation
 - Critical component placement

- If you're doing your own layout, that's one thing.
- ♦ If you're not
 - Don't assume the CAD group is going to read your mind and get it right!
 - You're responsible for making it work!
- When working with the CAD Group
 - Make sure you and the designer are on the same page
 - Brief circuit explanation
 - Critical component placement
 - Input/Output connections

- If you're doing your own layout, that's one thing.
- ♦ If you're not
 - Don't assume the CAD group is going to read your mind and get it right!
 - You're responsible for making it work!
- When working with the CAD Group
 - Make sure you and the designer are on the same page
 - Brief circuit explanation
 - Critical component placement
 - Input/Output connections
 - Board outline drawing and stack up

- If you're doing your own layout, that's one thing.
- ♦ If you're not
 - Don't assume the CAD group is going to read your mind and get it right!
 - You're responsible for making it work!
- When working with the CAD Group
 - Make sure you and the designer are on the same page
 - Brief circuit explanation
 - Critical component placement
 - Input/Output connections
 - Board outline, stack up
 - Tell them to call you if they have a question!

The World Leader in High Performance Signal Processing Solutions

 Bypassing is essential to high speed circuit performance

- Bypassing is essential to high speed circuit performance
- Capacitors right at power supply pins

- Bypassing is essential to high speed circuit performance
- Capacitors right at power supply pins
 - Capacitors provide low AC impedance to ground
 - Provide local charge storage for fast rising/falling edges

- Bypassing is essential to high speed circuit performance
- Capacitors right at power supply pins
 - Capacitors provide low AC impedance to ground
 - Provide local charge storage for fast rising/falling edges
- Keep trace lengths short

EQUIVALENT DECOUPLED POWER LINE CIRCUIT RESONATES AT:

$$f = \frac{1}{2\pi\sqrt{LC}}$$

$$f = 500kHz$$

- Bypassing is essential to high speed circuit performance
- Capacitors right at power supply pins
 - Capacitors provide low AC impedance to ground
 - Provide local charge storage for fast rising/falling edges
- Keep trace lengths short

SMALL SERIES RESISTANCE CLOSE TO IC REDUCES Q

- Bypassing is essential to high speed circuit performance
- Capacitors right at power supply pins
 - Capacitors provide low AC impedance to ground
 - Provide local charge storage for fast rising/falling edges
- Keep trace lengths short
- Close to load return
 - Helps minimize transient currents in the ground plane

- Bypassing is essential to high speed circuit performance
- Capacitors right at power supply pins
 - Capacitors provide low AC impedance to ground
 - Provide local charge storage for fast rising/falling edges
- Keep trace lengths short
- Close to load return
 - Helps minimize transient currents in the ground plane
- Values
 - Individual circuit performance

- Bypassing is essential to high speed circuit performance
- Capacitors right at power supply pins
 - Capacitors provide low AC impedance to ground
 - Provide local charge storage for fast rising/falling edges
- Keep trace lengths short
- Close to load return
 - Helps minimize transient currents in the ground plane
- Values
 - Individual circuit performance
 - Maintains low AC impedance

- Bypassing is essential to high speed circuit performance
- Capacitors right at power supply pins
 - Capacitors provide low AC impedance to ground
 - Provide local charge storage for fast rising/falling edges
- Keep trace lengths short
- Close to load return
 - Helps minimize transient currents in the ground plane
- Values
 - Individual circuit performance
 - Maintains low AC impedance
 - Multiple resonances

- Bypassing is essential to high speed circuit performance
- Capacitors right at power supply pins
 - Capacitors provide low impedance AC return
 - Provide local charge storage for fast rising/falling edges
- Keep trace lengths short
- Close to load return
 - Helps minimize transient currents in the ground plane
- Values
 - Individual circuit performance
 - Maintains low AC impedance
 - Multiple resonances
- Ferrite beads

The World Leader in High Performance Signal Processing Solutions

Parasitics

Parasitics

- Parasite An organism that grows, feeds, and is sheltered on or in a different organism while contributing nothing to the survival of its host.
- Parasitics in high-speed PCB's, can destroy circuit performance!

Parasitics

- ◆ PCB parasites take the form of undesired capacitors, inductors and resistors embedded within the PCB
- ◆ Parasitics are extremely difficult to remove from a PCB
- Prevention is the best method to minimize parasitics

Amplifiers Fower Hanagement Professor

Trace/Pad Capacitance

K = relative dielectric constant A = area in cm² d = spacing between plates in cm

Trace/Pad Capacitance

$$C = \frac{kA}{11.3d}$$

K = relative dielectric constant
A = area in cm²
d = spacing between plates in cm

Example: Pad of SOIC

L = 0.2cm W = 0.063cm

K = 4.7

 $A = 0.0126 \text{cm}^2$

d = 0.073cm

C = 0.072pF

Trace/Pad Capacitance

$$C = \frac{kA}{11.3d}$$

K = relative dielectric constant
A = area in cm²
d = spacing between plates in cm

Example: Pad of SOIC

L = 0.2cm W = 0.063cm

K = 4.7

 $A = 0.0126 \text{cm}^2$

d = 0.073cm

C = 0.072pF

Reduce Capacitance

- 1) Increase board thickness or layers
 - 2) Reduce trace/pad area
 - 3) Remove ground plane

Amplifiers Power Management Processor

Approximate Trace Inductance

STRIP INDUCTANCE =
$$0.0002L$$
 $\left[ln \left(\frac{2L}{W+H} \right) + 0.2235 \left(\frac{W+H}{L} \right) + 0.5 \right] \mu H$

All dimensions are in mm

Approximate Trace Inductance

STRIP INDUCTANCE =
$$0.0002L$$
 $\left[ln \left(\frac{2L}{W+H} \right) + 0.2235 \left(\frac{W+H}{L} \right) + 0.5 \right] \mu H$

All dimensions are in mm

Example

L= 25.4mm

W = .25mm

H = .035mm (1oz copper)

Strip Inductance = 28.8nH

At 10MHz $Z_L = 1.86 \Omega$ a 3.6% error in a 50 Ω system

Approximate Trace Inductance

STRIP INDUCTANCE = 0.0002L
$$\left[ln \left(\frac{2L}{W+H} \right) + 0.2235 \left(\frac{W+H}{L} \right) + 0.5 \right] \mu H$$

All dimensions are in mm

Example

L= 2.54cm =25.4mm

W = .25mm

H = .035mm (1oz copper)

Strip Inductance = 28.8nH

At 10MHz Z_L = 1.86 Ω a 3.6% error in a 50 Ω system

Minimize Inductance

- 1) Use Ground plane
 2) Keep length short (hal
- 2) Keep length short (halving the length reduces inductance by 44%)
 - 3) Doubling width only reduces inductance by 11%

Via Parasitics

Via Inductance

$$L \approx 2h \left[\ln \left(\frac{4h}{d} \right) + 1 \right] nH$$

L = inductance of the via, nH

H = length of via, cm

D = diameter of via, cm

Given:

H= 0.157 cm thick board,

D = 0.041 cm

L ~ 1.2nh

Via Capacitance

$$C \approx \frac{0.55\varepsilon_r T D_1}{D_2 - D_1} pF$$

 D_2 = diameter of clearance hole in the ground plane, cm

 D_1 = diameter of pad surrounding via, cm

T = thickness of printed circuit board, cm

 \mathcal{E}_r = relative electric permeability of circuit board material

C = parasitic via capacitance, pF

Given:

T = 0.157cm,

 $D_1 = 0.071$ cm

 $D_2 = 0.127$

C ~ 0.51pf

Via Cross Section

Amplifiers Power Management Processor

Capacitor Parasitic Model

C = Capacitor

 R_P = insulation resistance

 R_S = equivalent series resistance (ESR)

L = series inductance of the leads and plates

 R_{DA} = dielectric absorption

 C_{DA} = dielectric absorption

Resistor Parasitic Model

R = Resistor

C_P = Parallel capacitance

L= equivalent series inductance (ESL)

Amplifiers Power Management Processor

Low Frequency Op Amp Schematic

Amplifiers convergement Professor

High Speed Op Amp

Schematic PAD PAD PAD TRACE PAD PAD TRACE = PAD V_I O_______TRACE PAD PADŢ PAD |

High Speed Op Amp

http://www.analog.com/en/design-tools/dt-multisim-spice-program-download/design-center/index.html

Amplifiers Power Management Processor

Stray Capacitance Simulation Schematic

Amplifiers Power Management Processor

Frequency Response with 2pF Stray Capacitance

Stray Inductance

Parasitic Inductance Simulation Schematic

Pulse Response With and Without Ground Plane

Amplifiers Power Handgement Processor

Transient Response AD8009 1GHz Current Feedback Amplifier

Small Changes Can Make a Big Difference!

Circuit A Circuit B

Amplifiers Power Management Professors DSP

Improper Use of Scope Probe Ground Clip

Effect of Clip Lead Inductance

Amplifiers Power Management Processor

Proper Grounding for Scope Probe in High-Speed Measurments

Small Changes Make Big Differences

25% reduction in ringing duration and amplitude

The World Leader in High Performance Signal Processing Solutions

Ground and Power Planes

Ground and Power Planes Provide

- ◆ A common reference point
- Shielding
- Lower noise
- Lower resistance
- Lower impedance
- Reduces parasitics
- Heat sink
- Power distribution

Ground Plane

Input Connector Wrong Way Clock Analog **D**igital rcuitry Circuitry Circuitry **Sensitive Analog Circuitry Disrupted by Digital Supply Noise INCORRECT** ANALOG **DIGITAL** V_{D} **CIRCUITS CIRCUITS** V_{IN} **GND REF**

Wrong Way Clock Circuitry Circuitry ircuitry **Sensitive Analog Circuitry Disrupted by Digital Supply Noise INCORRECT** ANALOG **DIGITAL** V_{D}^{-} **CIRCUITS CIRCUITS** V_{IN} **GND REF**

Grounding Example:

- Top layer is solid ground.
- Bottom has a trace/transmission line connecting the RF connector to the load.
- Return current flows in the top layer ground plane directly above the trace on the opposite side.

Grounding Example: DC Current vs. AC Current:

- In a split or broken ground, the return currents follow the path of least impedance
- At DC, the current follows the path of least resistance
- As the frequency increases, the current follows the path of least inductance
- Since there is now a 'loop' the inductance can be quite high and the circuit can now propagate EMI/RFI

Amplifiers convergence Processor

Grounding Mixed Signal ICs: Single PC Board

Ground Plane Recommendations

- ◆ There is no single grounding method which is guaranteed to work 100% of the time!
- Remove ground plane under op amps to reduce parasitic capacitance
- At least one layer on each PC board MUST be dedicated to ground plane!
- Provide as much ground plane as possible especially under traces that operate at high frequency
- Use thickest metal as feasible (reduces resistance and provides improved thermal transfer)
- Use multiple vias to connect same ground planes together
- Do initial layout with split analog and digital ground planes
- Follow recommendations on device data sheet (read datasheet)
- Keep bypass capacitors and load returns close to reduce distortion
- Connect analog, digital and RF grounds at one point

The World Leader in High Performance Signal Processing Solutions

Packaging and Pinout

Op Amp Packaging and Pinout

- Packaging plays a large role in high-speed applications
 Smaller packages
 - Better at higher speeds
 - Less parasitics
 - Compact layout
- Analog Devices Low Distortion Pinout
 - Intuitively makes more sense
 - Compact layout
 - Streamline signal flow
 - Lower distortion

Op Amp SOIC Packaging

- ◆ Traditional SOIC-8 layout
- Feedback routed around or underneath amplifier

Op Amp SOIC Packaging

- ◆ Traditional SOIC-8 layout
- Feedback routed around or underneath amplifier

Pinout enables compact layout

LFCSP

- Pinout enables compact layout
- Lower distortion

- Pinout enables compact layout
- Lower distortion
- Improved thermal performance

- Pinout enables compact layout
- Lower distortion
- Improved thermal performance
- LFCSP
 - AD8099, AD8045, AD8000, ADA4899, ADA4857, ADA4817

Low distortion pinout enables compact and streamline layout

Low distortion pinout enable compact and streamline layout

The World Leader in High Performance Signal Processing Solutions

RF Signal Routing and Shielding

In This Section

- RF Components from Analog Devices
- PC Board Circuit Material Types and Minimizing Losses
- Microstrip and Stripline Transmission Lines
- Ground Plane Layout Considerations
- Developing a RF Printed Circuit Board
- Using Discrete Components with RF Devices
- Shielding of RF Circuit Boards

RF Components from Analog Devices

Analog Devices Components Requiring Matched RF Interfaces

- AD60x, AD8xxx and ADL533x series of RF/IF and Variable Gain Amplifiers
- ADF70xx and 702x series Radio Transmitters and Transceivers
- AD4xxx and ADF7xxx series of PLL Synthesizers and VCO's
- AD84xx and ADL53xx series of Modulators and Demodulators
- AD83xx and ADL539x series of Mixers and Multipliers
- AD83xx and ADL5519 series of Log Amps and Detectors
- AD836x and ADL550x series of RMS Detectors
- ADG9xx series of RF Switches

PC Board Circuit Material Type and Minimizing Losses

- PC board material selection is usually based on price verses performance
- Select PC board dielectric material to have the lowest loss tangent
- Some types of "FR4" dielectric materials are low loss below 8-10
 GHz
- PTFE(Teflon) dielectric material is usually used for the lowest loss at the higher RF and microwave frequency ranges, but at a much higher price
- Be sure that the correct impedance transmission line is used for the interconnection of the RF devices
- Use as wide of a transmission line as possible for the correct impedance, and try to keep it short to reduce "Skin Effect" losses
- Use high "Q", or low loss passive components for all RF matching, coupling, and bypassing requirements

Microstrip and Stripline Transmission Lines

- 50 ohm interfaces are most often used between most "integrated"
 RF devices
- Interconnects less than 1/20 of a wavelength long can usually be made without a matched transmission line
- Avoid long microstrip lines as they could become "antennas" (microstrip) and radiate RF
- To minimize coupling to the transmission line, DO NOT place other traces or ground plane closer than three times of the dielectric height
- Use proper technique for making bends in microstrip lines
- Locate the microstrip lines on the component side of the board if possible

Microstrip Transmission Lines

Microstrip

Controlled Impedance Line Cross Section

- Advantages:
- Transmission line on outside layer of board
- Easy to attach components to trace
- Components can be placed at different locations along the line to aid in tuning
- Aid in RF testing as you are able to measure levels along the line
- Disadvantages:
- Slightly higher loss
- Not shielded and could radiate RF signal

$$Z_o = \frac{87}{\sqrt{\varepsilon_r} + 1.41} \ln \left[\frac{5.98H}{(0.8W + T)} \right]$$

Stripline Transmission Lines

Stripline

Controlled Impedance Line Cross Section

- Advantages:
- Lower loss at higher microwave frequencies
- Shielded transmission line, no RF radiation from board
- Disavantages:
- Requires vias to connect to line
- No ability to connect tuning or termination components to line
- No access to line to make adjustments or connections to line for RF testing
- Higher PCB cost

$$Z_{o}(\Omega) = \frac{60}{\sqrt{\varepsilon_{r}}} \ln \left[\frac{1.9(B)}{(0.8W + T)} \right]$$

Microstrip and Stripline Transmission Lines

- Bends in Microstrip and Stripline
- In order to preserve a constant impedance around a bend, some general layout rules MUST be followed
- DO NOT make a right angle bend as shown
- A right angle bend can be made with a "swept" bend, or a "Mitered" bend
- Bends in a transmission line that are less than 90 degrees can also be mitered as shown

Ground Plane Layout Considerations

- Do NOT have breaks or voids in the RF ground plane under, or over RF transmission lines
- Ground plane Vias around the RF circuits should be spaced closer than 1/20 of a wavelength as a minimum, or closer if possible at the higher frequencies
- Use as large size vias as practical to minimize inductance
- "Stitch" the top and bottom ground planes together with as many vias as possible
- Signal and bias lines can be placed below RF ground plane layer followed by another "power" ground plane layer for the DC and digital returns
- Under components that require heat sinking, have solid ground plane with many closely spaced vias to transfer heat to all ground plane layers

Amplifiers Power Management Processors OSP

Ground Plane Layout Considerations

Developing a RF Printed Circuit Board

- Draw Schematic of circuit to be placed on the PC board
- Have data sheets on components to indicate pkg size, pinouts, etc.
- Determine location and orientation of active devices to optimize RF interfaces
- Place RF matching/terminating components around the device to provide the shortest possible connections
- Use as small of mounting pad as possible with discrete RF components to keep stray capacitance to a minimum
- Observe proper orientation of discrete components if placed next to each other to avoid coupling effects
- Separate inductors from each other in the layout, or place perpendicular to each other to prevent coupling of their magnetic fields
- Make sure that components that are connected to the ground plane have a via(s) as close to the end of the component as possible
- Use wide power traces if possible to lower DC losses and provide higher stray capacitance to ground(will also act as a RF bypass cap)

Draw layout of components to optimize parts placement and interconnections

Designing a RF Printed Circuit Board

- On multilayer circuit boards, use Stripline transmission lines if possible
- Route DC bias and signal traces on inner layers between the ground planes
- If required, place shielded enclosures around the RF stages on the board
- Be careful as to the physical size of the shielded enclosures, as it could become a resonate "cavity" at the higher frequencies

Traces going to or from shielded sections should be routed on inner layers
if possible

The World Leader in High Performance Signal Processing Solutions

Checking the Layout

Checking the Layout

- Design review
- Colleague review

97

Checking the Layout

- Design review
- Colleague
- Colored pencils
 - Old School
 - Helps trace signal path on schematic and PCB

Checking the Layout

- Design review
- Colleague
- Colored pencils
 - Old School
 - Helps trace signal path on schematic and PCB
- Sit with the designer when board corrections are made
 - Trust no one
 - A change in one area of the board could inadvertently change another part of the board

Next Steps

- Order Boards
- Build and test
- Evaluate performance
- Iterate and try again if required
- Successful High Speed/RF PCB design is a combination of education and experience

The World Leader in High Performance Signal Processing Solutions

Summary

Summary

- High speed PCB design requires deliberate thought and attention to detail!
- Load the schematic with as much information as possible
- Where you put individual components on the board is just as important as to where you put entire circuits
- Take the lead when laying out your board, don't leave anything to chance
- Use multiple capacitors for power supply bypassing
- Parasitics must be considered and dealt with
- Ground and Power planes play a key role in reducing noise and parasitics
- New packaging and pinout options allow for improved performance and more compact layouts
- There are many options for signal distribution, make sure you choose the right one for your application
- Check the layout and check it again
- Successful High Speed PCB design is a combination of education and experience and sometimes a little luck!

Summary

- Work directly with PC board designer as they most likely will not understand proper RF layout techniques
- Provide designer with a drawing of the location of the critical high frequency components and transmission lines
- Instruct the board designer that transmission line widths and lengths are very critical and must be exactly as calculated
- Place the components to minimize the length of RF interconnections
- Generally try to place components in a "straight line" to avoid feedback loops and instabilities
- Place circuit blocks such as oscillators, mixers, amplifiers in separate sections on the board if possible
- Do NOT mix digital, low level analog, or bias traces with RF interconnects to avoid unwanted coupling
- Locate the components operating at the highest frequencies close to board interconnects
- With the PC board designer, check, and recheck the layout before sending out for fabrication

References

- Ardizzoni, John "A Practical Guide to High-Speed Printed-Circuit-Board Layout"
- Ardizzoni, John, "<u>Keep High-Speed Circuit-Board Layout on Track</u>," EE Times, May 23, 2005.
- Brokaw, Paul, "An IC Amplifier User's Guide to Decoupling, Grounding, and Making Things Go Right for a Change," Analog Devices Application Note <u>AN-202</u>.
- Brokaw, Paul and Jeff Barrow, "Grounding for Low- and High-Frequency Circuits," Analog Devices Application Note AN-345.
- Buxton, Joe, "Careful Design Tames High-Speed Op Amps," Analog Devices Application Note <u>AN-257</u>.
- DiSanto, Greg, "Proper PC-Board Layout Improves Dynamic Range," EDN, November 11, 2004.
- Grant, Doug and Scott Wurcer, "Avoiding Passive-Component Pitfalls," Analog Devices Application Note AN-348
- Johnson, Howard W., and Martin Graham, <u>High-Speed Digital</u> <u>Design</u>, a Handbook of Black Magic, Prentice Hall, 1993.
- Jung, Walt, ed., Op Amp Applications Handbook, Elsevier-Newnes, 2005 available on Amazon.com
- Kester, Walt, <u>The Data Conversion Handbook</u>, Elsevier-Newnes, 2005 available on Amazon.com

References

- ◆ Hartley, Rick, "RF / Microwave PC Board Design and Layout"
- ◆ Reed, Dale, <u>RF and Microwave Basics Impact PCB Design</u>
- Mercer, Sean, "Minimizing RF PCB Electromagnetic Emissions," RF Design, January 1999.
- ◆ Fabian Kung Wai Lee, "Open notes on High-Speed Printed Circuit Board (PCB) Design (August 2008) " Available at http://persona.mmu.edu.my/~wlkung/ADS/ads.htm"
- ◆ Howe, Harlan, "Stripline Circuit Design"
- Rogers Corporation, "<u>A Low cost Laminate for Wireless</u> <u>Applications</u>," Microwave Journal, Sept 1996
- Rogers Corporation, "Microwave Impedance Calculator (MWIJ 1.0)"

Contact Information

John Ardizzoni Analog Devices, Inc. 804 Woburn Street Wilmington, MA 01887-1017

Email:

<u>john.ardizzoni@analog.com</u>

Dennis Falls

Avnet Electronics Marketing 9200 Indian Creek Parkway Suite 600

Overland Park, Kansas 66210

E-mail:

Dennis.falls@avnet.com

The World Leader in High Performance Signal Processing Solutions

Thank You

