
D:\elec\pic\ProgrammesPic\final\final-1.c

1 /**************************************/
2 /* Programme de la carte de sécurité  */
3 /* INRIA Rhone-Alpes - service SED    */
4 /* COLOMBAN Romain Stage DUT 2004     */
5 /**************************************/
6  // définition du PIC
7  #pragma chip PIC16F877
8  #include "int16cxx.h"
9  // définition des entrées-sorties
10  #pragma char PORT_S @ PORTD
11  #pragma char PORT_E @ PORTC
12  #pragma char PORT_AU @ PORTB
13
14  #pragma bit AR_UR @ PORT_S.4
15  #pragma bit voy_marche @PORT_S.5
16  #pragma bit rearm @ PORT_E.0
17
18  char codage (void);
19  char flags_AU,n,PORT_AU_Temp;
20
21   ////////////////////////////////////////
22  /* programme d'interrpution            */
23  /////////////////////////////////////////
24  #pragma origin 4
25  interrupt int_server(void)
26  {
27 int_save_registers
28 if(INTE){                  //front sur B0 (Arrêt d'urgence global)
29 if(INTF){
30                 INTE = 0;
31                 INTF = 0;
32         PORT_S =codage();  ////// Mise à jour sorties //////
33                 AR_UR = 1;
34         }}
35         int_restore_registers
36  }
37  // placer les include ici
38  #include "delay.h"
39
40  ////////////////////////////////////////
41  /* codage de l'erreur                 */
42  ////////////////////////////////////////
43  char codage(void)
44  {
45  flags_AU = 0;
46  PORT_AU_Temp = PORT_AU & 0xFE;
47 n = 0;        ////// Test entrée active //////
48                 if(PORT_AU_Temp !=0)
49                 {
50                         while(!PORT_AU_Temp.0)
51                         {
52                                n++;
53                                PORT_AU_Temp /= 2; //décalage à droite
54                         }
55                 }
56                 switch (n)    ////// Codage sorties //////
57                 {
58                 case 1:
59                         flags_AU = 15;      //normalement rien
60                         break;
61                 case 2:
62                         flags_AU = 1;      //Arrêt logiciel
63                         break;
64                 case 3:
65                         flags_AU = 2;      //Drive Enabled
66                         break;
67                 case 4:
68                         flags_AU = 4;      //Arrêt d'urgence
69                         break;
70                 case 5:
71                         flags_AU = 9;      //FDC_Pelvis
72                         break;
73                 case 6:
74                         flags_AU = 10;     //FDC_jDroite
75                         break;
76                 case 7:
77                         flags_AU = 12;     //FDC_jGauche

1



D:\elec\pic\ProgrammesPic\final\final-1.c

78                         break;
79                 default:
80                         flags_AU = 15;     //mauvaise détection
81                         break;
82                 }
83         return flags_AU;
84  }
85  
86  ////////////////////////////////////////
87  /* programme principal                */
88  ////////////////////////////////////////
89  void main(void)
90 { 
91  OPTION = bin(11000000);
92  ADCON1 = 0x06;                    //pas d'analogique
93
94  PORTA = 0;
95  TRISA = 0;
96  PORTB = 0;
97  TRISB = 0xFF;
98  PORTC = 0;
99  TRISC = 0x01;
100  PORTD = 0;
101  TRISD = 0;
102
103  AR_UR = 0;
104  flags_AU = 0;
105
106  DelayMs(255);     //tempo de 2s au démarrage
107  DelayMs(255);
108  DelayMs(255);
109  DelayMs(255);
110  DelayMs(255);
111  DelayMs(255);
112  DelayMs(255);
113  DelayMs(255);
114
115  INTF = 0;
116  INTE = 1;                         //interruption RB0 active
117  GIE = 1;            // Global interrupt enable
118
119  if(PORT_AU !=0)                   //test au démarrage
120  {
121  INTF = 1;
122  }
123  while(1)
124  {
125     if(!flags_AU)             ////// Arrêt d'urgence ? //////
126     {                                //oui
127         if(rearm)             ////// Réarmement ? //////
128         {                            //oui
129  /*while(rearm){}              //attente rearm = 0   */
130             if(!PORT_AU)      ////// Plus de défauds ? //////
131             {                        //oui
132  flags_AU = 0; ////// Redémarrage du robot //////
133  PORT_S = 0;
134  INTF = 0;
135                 INTE = 1;
136      }
137             else                 //non
138             {
139             PORT_S = codage();
140             AR_UR = 1;
141             }
142         }                            //non
143  voy_marche=!voy_marche;  ////// Clignottement voyant //////
144     DelayMs(255);
145      }
146     else                             //non(normal, mettre ici le test des potentiomètres)
147     {
148     voy_marche = 1;          ////// Allume voyant //////
149     }
150  }
151 }

2


