OCO~NOOUTAWNPE

/

D:\elec\pic\ProgrammesPic\final\final-1.c

/* Programme de la carte de sécurité
/* INRIA Rhone-Alpes - service SED

/* COLOMBAN Romain Stage DUT 2004

/

/
*/
*/
*/

// définition du PIC
#pragma chip PIC16F877
#include "intl6cxx.h™

// définition des entrées-sorties

#pragma char PORT_S @
#pragma char PORT_E @
#pragma char PORT_AU @

#pragma bit AR_UR @ PO

#pragma bit voy_marche @PORT_S.5

#pragma bit rearm @ PO

char codage (void);

PORTD

PORTC
PORTB

RT_S.4

RT_E.O

char flags_AU,n,PORT_AU_Temp;

/

L1177777777777777777777//777//77///777//77

/* programme d"interrp

ution

*/

L1177777777777777777777//777//7/77//777///777

#pragma origin 4

interrupt int_server(void)

{
int_save_registers
ifC(INTE){
iT(INTF){
INTE =
INTF =

//front sur BO (Arrét d"urgence global)

0;
0-

PORT_S :codaée(); ////// Mise a jour sorties //////

AR_UR =
i

int_restore_reg

// placer les include
#include "delay.h"

1;
isters

ici

L1117 77777777777777777777/7/////7/77777/77/

/* codage de l"erreur

*/

L1117 77777777777777777777/7/////77/77777/77/

char codage(void)

flags_AU =

0;
PORT_AU_Temp = PORT_AU & OXFE;
n = 0; ////// Test entrée active //////
i F(PORT_AU_Temp 1=0)

{

switch

case 1:

case 2:

case 3:

case 4:

case 5:

case 6:

case 7:

while(!'PORT_AU_Temp.0)

{

n++;
PORT_AU_Temp /= 2; //décalage a droite

}

(n) ////// Codage sorties //////

flags_AU
break;

flags_AU
break;

flags_AU
break;

flags_AU
break;

flags_AU
break;

flags_AU
break;

flags_AU

15;

10;

12;

//normalement rien

//Arrét logiciel

//Drive Enabled

//Arrét d"urgence

//FDC_Pelvis

//FDC_jDroite

//FDC_jGauche
1

D:\elec\pic\ProgrammesPic\final\final-1.c

78 break;

79 default:

80 flags_AU = 15; //mauvaise détection
81 break:;

82 }

83 return flags_AU;

84 3}

85

86 L1117777777777777777777777//////77777777/7

87 /* programme principal */

88 L1117 777777777777777777777//////77/777/777

89 void main(void)

90 {

91 OPTION = bin(11000000);

92 ADCON1 = 0xO06; //pas d"analogique
93

94 PORTA = 0;

95 TRISA = O3

96 PORTB = 0O;

97 TRISB = OxFF;

98 PORTC = 0O;

99 TRISC = Ox01;

100 PORTD = 0O;

101 TRISD = O;

102

103 AR_UR = 0;

104 flags_AU = 0;

105

106 DelayMs(255); //tempo de 2s au démarrage

107 DelayMs(255);
108 DelayMs(255);
109 DelayMs(255);
110 DelayMs(255);
111 DelayMs(255);
112 DelayMs(255);
113 DelayMs(255);

115 INTF = O;
116 INTE 1; //interruption RBO active
117 GIE = 1; // Global interrupt enable
118
119 if(PORT_AU 1=0) //test au démarrage
120 {
121 INTF = 1;
122 1}
123 while(1)
124 {
125 if(Iflags_AU) ////7/7/7 Arrét d urgence ? //////
126 { //oui
127 if(rearm) ////// Réarmement ? //////
128 { //oui
129 /*while(rearm){} //attente rearm = 0 */
130 if(!PORT_AU) ////// Plus de défauds ? //////
131 { //oui
132 flags_AU = 0; ////// Redémarrage du robot //////
133 PORT_S = 0O;
134 INTF = O
135 INTE = 1;
136 }
137 else //non
138 {
139 PORT_S = codage():
140 AR_UR = 1;
141 }
142 } //non
143 voy_marche=!voy_marche; ////// Clignottement voyant //////
144 DelayMs(255);
}

145

146 else //non(normal, mettre ici le test des potentiometres)
147 {

148 voy_marche = 1; //7//// Allume voyant //////

149 }

150 1}

151 1}

