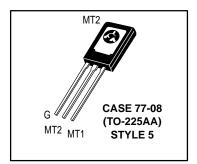

Sensitive Gate Triacs Silicon Bidirectional Thyristors


... designed primarily for full-wave ac control applications, such as light dimmers, motor controls, heating controls and power supplies; or wherever full-wave silicon gate controlled solid-state devices are needed. Triac type thyristors switch from a blocking to a conducting state for either polarity of applied anode voltage with positive or negative gate triggering.

- Sensitive Gate Triggering Uniquely Compatible for Direct Coupling to TTL, HTL, CMOS and Operational Amplifier Integrated Circuit Logic Functions
- Gate Triggering 4 Mode 2N6071A,B, 2N6073A,B, 2N6075A,B
- Blocking Voltages to 600 Volts
- All Diffused and Glass Passivated Junctions for Greater Parameter Uniformity and Stability
- Small, Rugged, Thermopad Construction for Low Thermal Resistance, High Heat Dissipation and Durability

MAXIMUM RATINGS (T_J = 25° C unless otherwise noted.)

Rating	Symbol	Value	Unit
*Peak Repetitive Off-State Voltage(1) (Gate Open, T _J = 25 to 110°C) 2N6071A,B 2N6073A,B 2N6075A,B	VDRM	200 400 600	Volts
*On-State Current RMS (T _C = 85°C)	l _{T(RMS)}	4	Amps
*Peak Surge Current (One Full cycle, 60 Hz, T _J = -40 to +110°C)	ITSM	30	Amps
Circuit Fusing Considerations (t = 8.3 ms)	l ² t	3.7	A ² s
*Peak Gate Power	PGM	10	Watts
*Average Gate Power	PG(AV)	0.5	Watt
*Peak Gate Voltage	V _{GM}	5	Volts

*Indicates JEDEC Registered Data.

1. V_{DRM} for all types can be applied on a continuous basis. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

Preferred devices are Motorola recommended choices for future use and best overall value.

REV 1

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
*Operating Junction Temperature Range	Тj	-40 to +110	°C
*Storage Temperature Range	T _{stg}	-40 to +150	°C
Mounting Torque (6-32 Screw) ⁽¹⁾	—	8	in. lb.

*Indicates JEDEC Registered Data.

1. Torque rating applies with use of compression washer (B52200F006). Mounting torque in excess of 6 in. Ib. does not appreciably lower case-to-sink thermal resistance. Main terminal 2 and heatsink contact pad are common.

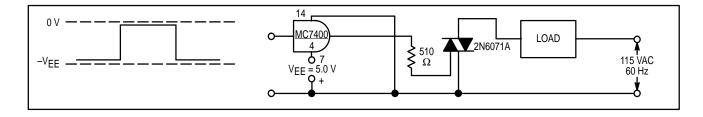
For soldering purposes (either terminal connection or device mounting), soldering temperatures shall not exceed +200°C, for 10 seconds. Consult factory for lead bending options.

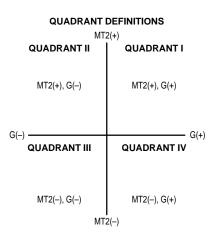
THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Thermal Resistance, Junction to Case	R _{θJC}	3.5	°C/W
Thermal Resistance, Junction to Ambient	$R_{ heta JA}$	75	°C/W

*Indicates JEDEC Registered Data.

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted.)


Characteristic	Symbol	Min	Тур	Max	Unit
*Peak Blocking Current (V _D = Rated V _{DRM} , gate open, T _J = 25°C) (T _J = 110°C)	IDRM			10 2	μA mA
*On-State Voltage (Either Direction) (I _{TM} = 6 A Peak)	VTM	—	—	2	Volts
*Peak Gate Trigger Voltage (Continuous dc) (Main Terminal Voltage = 12 Vdc, $R_L = 100$ Ohms, $T_J = -40^{\circ}C$) MT2(+), G(+); MT2(-), G(-) All Types MT2(+), G(-); MT2(-), G(+) (Main Terminal Voltage = Rated V _{DRM} , $R_L = 10$ k ohms, $T_J = 110^{\circ}C$) MT2(+), G(+); MT2(-), G(-) All Types MT2(+), G(-); MT2(-), G(+)	VGT	 0.2 0.2	1.4 1.4 —	2.5 2.5 —	Volts
*Holding Current (Either Direction) (Main Terminal Voltage = 12 Vdc, Gate Open, $T_J = -40^{\circ}C$) (Initiating Current = 1 Adc) 2N6071A,B, 2N6073A,B, 2N6075A,B ($T_J = 25^{\circ}C$) 2N6071A,B, 2N6073A,B, 2N6075A,B	Ч			30 15	mA
Turn-On Time (Either Direction) (I _{TM} = 14 Adc, I _{GT} = 100 mAdc)	ton	-	1.5	—	μs
Blocking Voltage Application Rate at Commutation @ V_{DRM} , $T_J = 85^{\circ}C$, Gate Open, $I_{TM} = 5.7$ A, Commutating di/dt = 2.0 A/ms	dv/dt(c)	-	5	—	V/µs

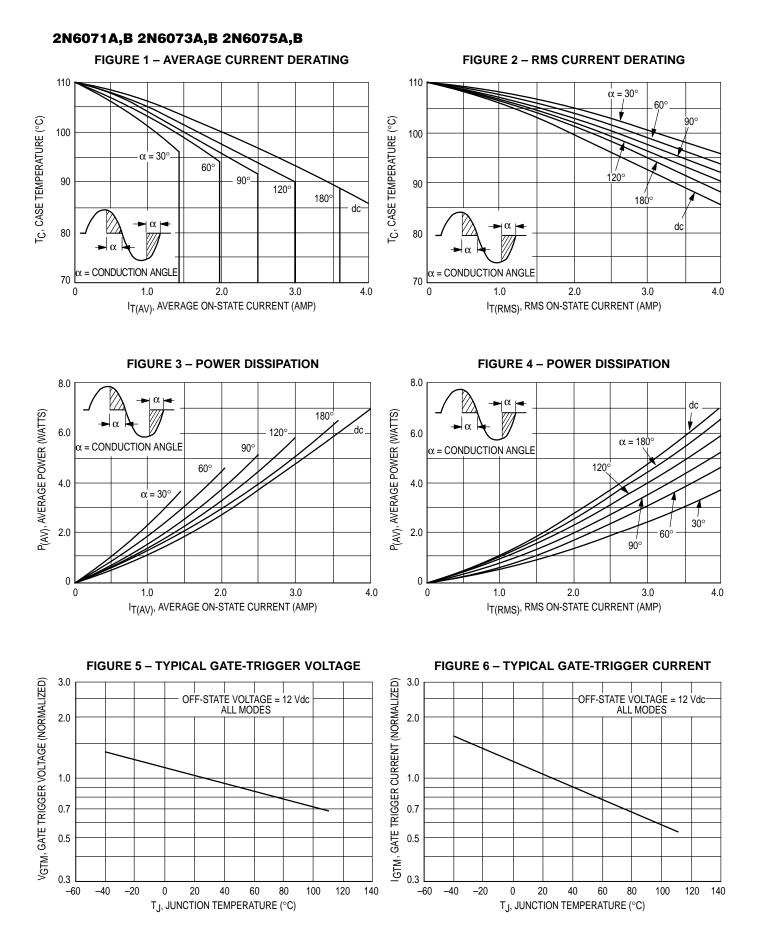

*Indicates JEDEC Registered Data.

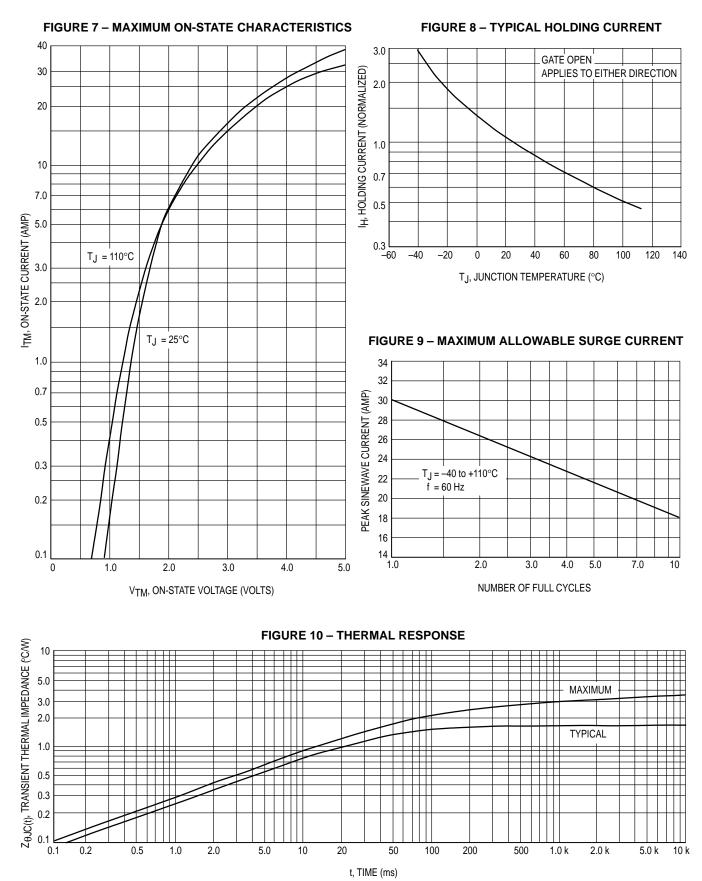
				QUADRANT (See Definition Below)			
Gate Trigger Current (Continuous dc) (Main Terminal Voltage = 12 Vdc, RL = 100 ohms) Maximum Value	Туре	^I GT @ Тј	l mA	II mA	III mA	IV mA	
	2N6071A 2N6073A	+25°C	5	5	5	10	
	2N6075A	-40°C	20	20	20	30	
	2N6071B 2N6073B	+25°C	3	3	3	5	
	2N6075B	-40°C	15	15	15	20	

*Indicates JEDEC Registered Data.

SAMPLE APPLICATION: TTL-SENSITIVE GATE 4 AMPERE TRIAC TRIGGERS IN MODES II AND III

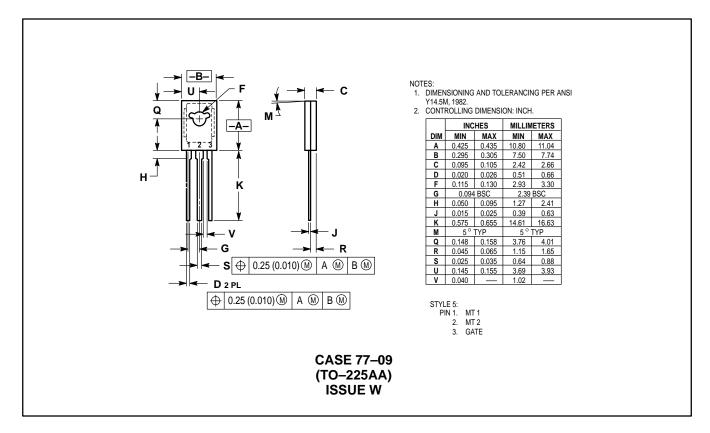
Trigger devices are recommended for gating on Triacs. They provide:


1. Consistent predictable turn-on points.


2. Simplified circuitry.

3. Fast turn-on time for cooler, more efficient and reliable operation.

IC Logic	Firing Quadrant						
Functions	I	Ш	ш	IV			
TTL		2N6071A Series	2N6071A Series				
HTL		2N6071A Series	2N6071A Series				
CMOS (NAND)	2N6071B Series			2N6071B Series			
CMOS (Buffer)		2N6071B Series	2N6071B Series				
Operational Amplifier	2N6071A Series			2N6071A Series			
Zero Voltage Switch		2N6071A Series	2N6071A Series				


SENSITIVE GATE LOGIC REFERENCE

Motorola Thyristor Device Data

PACKAGE DIMENSIONS

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for sugical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1–303–675–2140 or 1–800–441–2447

Customer Focus Center: 1-800-521-6274

 Mfax™: RMFAX0@email.sps.mot.com
 - TOUCHTONE 1–602–244–6609

 Motorola Fax Back System
 - US & Canada ONLY 1–800–774–1848

 - http://sps.motorola.com/mfax/

HOME PAGE: http://motorola.com/sps/

4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan. 81-3-5487-8488

JAPAN: Nippon Motorola Ltd.; SPD, Strategic Planning Office, 141,

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

Mfax is a trademark of Motorola. Inc.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.