
BoostC C Compiler
for PICmicro

Reference Manual

V1.18

Index
BoostC compiler.. 7

Introduction... 7
BoostC Compiler specification.. 7

Base Data types ...7
Special Data types ...7
Special Language Features ..7
Code Production and Optimization Features ... 7
Debugging features ...8
Full MPLAB integration ...8
Librarian.. 8
Code Analysis... 8

Installation .. 9
Compilation model and toolchain... 11

Preprocessor.. 11
Compiler.. 11
Linker...12
Librarian.. 12
Differences with C2C compilation model.. 12

MPLAB integration.. 13
Features...13
Setting the MPLAB Language Tool Locations.. 13
Creating a project under MPLAB IDE... 15
Using ICD2.. 19

Command line options... 20
BoostC command line... 20
Optimization..20
BoostLink command line...21

-rb.. 21
-swcs... 21
-isrnoshadow... 22
-isrnocontext.. 22
libc Library .. 22

Code entry points... 22
SourceBoost IDE... 23
Preprocessor... 24
Directives... 24

#include... 25
#define... 26
#undef... 27
#if, #else, #endif.. 28
#ifdef.. 29
#ifndef.. 30
#error... 31
#warning.. 32

Pragma directives... 33
#pragma DATA.. 34
#pragma CLOCK_FREQ... 35
#pragma OPTIMIZE... 36

C language.. 38
Program structure... 38

Data types... 38
Base data types... 38
Structures and unions.. 38
Typedef... 39

Page 2 SourceBoost Technologies BoostC™ Manual

Enum... 39
Code size vs Data Types... 39
Rom... 40
Volatile... 40
Static... 41
Constants.. 41

Strings... 41
Variables..42

Register mapped variables.. 42
Bit access.. 42

Arrays.. 42
Pointers... 42

Strings as function arguments... 43
Operators.. 43

Arithmetic... 43
Arithmetic Operator Examples... 44
Assignment.. 45
Assignment Operator Examples.. 45
Comparison Operator Examples.. 49
Logical Operator Examples... 52
Bitwise Operator Examples... 54
Conditional Examples.. 56

Program Flow... 58
Program Flow Examples.. 58

Inline assembly...60
User Data.. 62

Functions.. 62
Inline functions... 62
Special functions... 62
General functions and interrupts.. 62

Dynamic memory management.. 63
C language superset... 65

References as function arguments.. 65
Function overloading... 65
Function templates.. 66

Parametric timing functions.. 67
void delay_us(unsigned char t).. 67
void delay_10us(unsigned char t).. 67
void delay_100us(unsigned char t).. 67
void delay_ms(unsigned char t)... 67
void delay_s(unsigned char t).. 67

System Libraries... 68
General purpose functions..68

clear_bit(var, num)... 68
set_bit(var, num).. 68
test_bit(var, num)... 68
MAKESHORT(dst, lobyte, hibyte).. 68
LOBYTE(dst, src).. 68
HIBYTE(dst, src).. 68
void nop(void).. 68
void clear_wdt(void)... 68
void sleep(void)... 68

String and Character Functions..69
void strcpy(char *dst, const char *src)
void strcpy(char *dst, rom char *src).. 69
void strncpy(char *dst, const char *src, unsigned char len)
void strncpy(char *dst, rom char *src, unsigned char len).. 69
unsigned char strlen(const char *src)
unsigned char strlen(rom char *src)... 69
signed char strcmp(const char *src1, const char *src2)

BoostC™ Manual SourceBoost Technologies Page 3

signed char strcmp(rom char *src1, const char *src2)
signed char strcmp(const char *src1, rom char *src2)
signed char strcmp(rom char *src1, rom char *src2)... 69
signed char stricmp(const char *src1, const char *src2)
signed char stricmp(rom char *src1, const char *src2)
signed char stricmp(const char *src1, rom char *src2)
signed char stricmp(rom char *src1, rom char *src2)... 69
signed char strncmp(char *src1, char *src2, unsigned char len)
signed char strncmp(rom char *src1, char *src2, unsigned char len)
signed char strncmp(char *src1, rom char *src2, unsigned char len)
signed char strncmp(rom char *src1, rom char *src2, unsigned char len).. 69
signed char strnicmp(char *src1, char *src2, unsigned char len)
signed char strnicmp(rom char *src1, char *src2, unsigned char len)
signed char strnicmp(char *src1, rom char *src2, unsigned char len)
signed char strnicmp(rom char *src1, rom char *src2, unsigned char len)... 69
void strcat(char *dst, const char *src)
void strcat(char *dst, rom char *src).. 69
void strncat(char *dst, const char *src, unsigned char len)
void strncat(char *dst, rom char *src, unsigned char len).. 69
char* strpbrk(const char *ptr1, const char *ptr2)
char* strpbrk(const char *src, rom char *src)... 70
unsigned char strcspn(const char *src1, const char *src2)
unsigned char strcspn(rom char *src1, const char *src2)
unsigned char strcspn(const char *src1, rom char *src2)
unsigned char strcspn(rom char *src1, rom char *src2)... 70
unsigned char strspn(const char *src1, const char *src2)
unsigned char strspn(rom char *src1, const char *src2)
unsigned char strspn(const char *src1, rom char *src2)
unsigned char strspn(rom char *src1, rom char *src2)... 70
char* strtok(const char *ptr1, const char *ptr2)
char* strtok(const char *src, rom char *src)... 70
char* strchr(const char *src, char ch).. 70
char* strrchr(const char *src, char ch)... 70
char* strstr(const char *ptr1, const char *ptr2)
char* strstr(const char *src, rom char *src).. 70

Conversion Functions..70
unsigned char sprintf(char* buffer, const char *format, unsigned int val)... 70
int strtoi(const char* buffer, char** endPtr, unsigned char radix)... 71
long strtol(const char* buffer, char** endPtr, unsigned char radix);.. 72
int atoi(const char* buffer).. 72
long atol(const char* buffer) .. 72
char* itoa(int val, char* buffer, unsigned char radix).. 72
char* ltoa(long val, char* buffer, unsigned char radix)... 72

Lightweight Conversion Functions.. 73
void uitoa_hex(char* buffer, unsigned int val, unsigned char digits).. 73
void uitoa_bin(char* buffer, unsigned int val, unsigned char digits).. 73
void uitoa_dec(char* buffer, unsigned int val, unsigned char digits).. 73
unsigned int atoui_hex(const char* buffer)... 73
unsigned int atoui_bin(const char* buffer).. 73
unsigned int atoui_dec(const char* buffer).. 73

Character ..73
char toupper(char ch).. 73
char tolower(char ch)... 73
char isdigit(char ch)... 73
char isalpha(char ch)... 74
char isalnum(char ch).. 74
char isblank(char ch)... 74
char iscntrl(char ch)... 74
char isgraph(char ch)... 74
char islower(char ch)... 74
char isprint(char ch)... 74
char ispunct(char ch)... 74

Page 4 SourceBoost Technologies BoostC™ Manual

char isspace(char ch).. 74
char isupper(char ch)... 75
char isxdigit(char ch)... 75
void* memchr(const void *ptr, char ch, unsigned char len).. 75
signed char memcmp(const void *ptr1, const void *ptr2, unsigned char len)... 75
void* memcpy(void *dst, const void *src, unsigned char len)... 75
void* memmove(void *dst, const void *src, unsigned char len).. 75
void* memset(void *ptr, char ch, unsigned char len).. 75

Miscellaneous Functions ..75
unsigned short rand(void).. 75
void srand(unsigned short seed)... 75
max(a, b)... 75
min(a, b).. 76

I2C functions...76
i2c_init, i2c_start, i2c_restart, i2c_stop, i2c_read, i2c_write
(for more information look into i2c_driver.h and i2c_test.c files) ... 76

RS232 functions... 76
uart_init, kbhit, getc, getch, putc, putch
(for more information look into serial_driver.h and serial_test.c files) ... 76

LCD functions... 76
lcd_setup, lprintf, lcd_clear, lcd_write, lcd_funcmode, lcd_datamode
(for more information look into lcd_driver.h and lcd.c files) ... 76

Flash functions... 76
short flash_read(short addr).. 76
void flash_loadbuffer(short data)... 76
void flash_write(short addr)... 76

EEPROM functions...76
char eeprom_read(char addr).. 76
void eeprom_write(char addr, char data)... 76

ADC functions...77
short adc_measure(char ch).. 77

One wire bus functions... 77
char oo_busreset().. 77
short oo_get_data()... 78
char oo_read_scratchpad().. 78
void oo_start_conversion().. 78
char oo_conversion_busy()... 78
char oo_wait_for_completion()... 78

Technical support... 79
BoostC Support Subscription...79
Licensing Issues ... 79
General Support... 79

Legal Information... 80

BoostC™ Manual SourceBoost Technologies Page 5

This page is intentionally left blank.

Page 6 SourceBoost Technologies BoostC™ Manual

BoostC compiler

Introduction
Thank you for choosing BoostC. BoostC is our next generation C compiler that
works with PIC16, PIC18 and some PIC12 processors.

This ANSI C compatible compiler supports features like source level symbolic
debugging, signed data types, structures/unions and pointers.

The BoostC compiler can be used within our SourceBoost IDE (Integrated
Development Environment), or it can be integrated into Microchip MPLAB.

BoostC Compiler specification

Base Data types

Size Type name Specification

1 bit bit, bool boolean
8 bit char signed, unsigned
16 bit short, int signed, unsigned
32 bit long signed, unsigned

Special Data types
• Single bit - single bit data type for efficient flag storage.
• Fixed address - fixed address data types allow easy access to target device

registers.
• Read only - code memory based constants.

Special Language Features
• References as function arguments.
• Function overloading.
• Function templates.

Code Production and Optimization Features
• ANSI 'C' compatible - Makes code highly portable.
• Produces optimized code for both PIC16 (14bit core) and PIC18 (16bit core)

targets.
• Support for Data Structures and Unions - Data structures and arrays can

be comprised of base data types or other data structures. Arrays of base
data types or data structures can be created.

• Support for pointers - pointers can be used in "all the usual ways".
• Inline Assembly - Inline assembly allows hand crafted assembly code to be

used when necessary.

BoostC™ Manual SourceBoost Technologies Page 7

• Inline Functions - Inline functions allows a section of code to be written as
a function, but when a reference is made to it the inline function code is
inserted instead of a function call. This speeds up code execution.

• Eliminates unreachable (or dead) code - reduces code memory usage.
• Removal of Orphan (uncalled) functions - reduces code memory usage.
• Minimal Code Page switching - code where necessary for targets with

multiple code pages.
• Automatic Banks Switching for Variables - allows carefree use of

variables.
• Efficient RAM usage - local variables in different code sections can share

memory. The linker analyzes the program to prevent any clashes.
• Dynamic memory management.

Debugging features
• Source Level and Instruction Level Debugger - linker Generates COF file

output for source level debugging under SourceBoost Debugger.
• Step into, Step over, Step out and Step Back – these functions operate

both at source level and instruction level.
• Multiple Execution Views - see where the execution of the code is at

source level and assembly level at the same time.
• Monitoring variables - variables can be added to the watch windows to

allow there values to be examined and modified. There is no need to know
where a variable is stored.

Full MPLAB integration
• Use of the MPLAB Project Manager within MPLAB IDE.
• Creation and Editing of source code from within MPLAB IDE.
• Build a project without leaving MPLAB IDE environment.
• Source level debugging and variable monitoring using:

• MPLAB simulator;
• MPLAB ICD2;
• MPLAB ICE2000.

Librarian
• Allows generation of library files - this simplifies management and control

of regularly used, shared code.
• Reduce compilation time - using library files reduces compilation time.

Code Analysis
• Call tree view - SourceBoost IDE can display the function call tree.
• Target Code Usage - From the complete program, down to Function level

the code space usage can be viewed in SourceBoost IDE.
• Target RAM Usage - From the complete program, down to Function level

the RAM usage can be examined and reviewed in SourceBoost IDE.

Page 8 SourceBoost Technologies BoostC™ Manual

Installation
The BoostC compiler cannot be downloaded or installed on its own. BoostC is part
of the SourceBoost software package that includes the SourceBoost IDE and other
Language Suites. It is available for download from our site
http://www.sourceboost.com

When you buy a license, you will activation code(s) and detailed instructions on
how to activate the compiler and other tools you have licensed.

To install SourceBoost IDE and BoostC on your system, please follow these simple
steps:

• Execute the installer sourceboost.exe and follow on-screen directions.

• Please pay attention to the integration dialog:

To integrate BoostC with MPLAB, choose the correct Microchip installation
directory, then click on “Integrate” before stepping to the next installation
wizard dialog.

• The rest of the installation process is straightforward. At the end,
SourceBoost IDE is ready to be used on your system. Should any difficulty
arise, please double check your system configuration and mail all details
to support@sourceboost.com

BoostC™ Manual SourceBoost Technologies Page 9

mailto:support@sourceboost.com
mailto:support@sourceboost.com
http://www.sourceboost.com/

• Please note: if the installation step “MPLAB Integration” is skipped, the
necessary MPLAB integration files will be installed to the \mplab
subdirectory of the chosen SourceBoost installation directory. These files
can always be manually copied to the correct location – please see the
“MPLAB Integration” section later in this manual.

Page 10 SourceBoost Technologies BoostC™ Manual

Compilation model and toolchain

Preprocessor
The preprocessor pp.exe is automatically invoked by the compiler.

Compiler
There are actually two separate compilers: one for pic16 and one for pic18 targets.

When you work under SourceBoost IDE, there is no need to specify which one to
use: the IDE picks the correct compiler based on the selected target.

The output of the compiler is one or more .obj files, that are further processed by
librarian or linker, in order to get a .lib or .hex file.

BoostC™ Manual SourceBoost Technologies Page 11

Linker
BoostLink Optimizing Linker links .obj files generated by compiler into a .hex file
that is ready to send to target. It also generates some auxiliary files used for
debugging and code analysis.

Librarian
Librarian is built into BoostLink linker executable and gets activated by -lib
command line argument. There is a dedicated box in the Option dialog inside
SourceBoost IDE that changes project target to library instead of hex file.

To create a target independent library, include boostc.h instead of system.h into
the library sources. This way no target specific information (like target dependent
constants or variables mapped to target specific registers) is included into the
library. Note that this is the only case in which system.h does not be included into
the code.

Differences with C2C compilation model
The main difference between BoostC and our previous generation C2C compiler is
that the latter had a built-in linker and created an .asm file needing to be
assembled using an external assembler (like MPASM), while the BoostC toolsuite
doesn't need any external tools and directly generates the target .hex file.

Another difference is in how compilers handle read-only variables located in code
memory. BoostC uses the special data type specifier 'rom', while C2C placed any
variable defined as 'const' into code memory.

Page 12 SourceBoost Technologies BoostC™ Manual

MPLAB integration
BoostC C compiler can be integrated into Microchips MPLAB integrated
development environment (IDE). The MPLAB integration option should be selected
during the SourceBoost software package installation.

Please note: in case the installation step “MPLAB Integration” was skipped, the
files in the <SourceBoost>\mplab directory can be manually copied into

<MPLAB IDE>\Third Party\MTC Suites for MPLAB 7.x, or

<MPLAB IDE>\LegacyLanguageSuites for MPLAB 6.x.

In the above examples, <MPLAB IDE> refers to the MPLAB installation directory
and <SourceBoost> refers to the SourceBoost IDE and compilers installation
directory.

Features
When BoostC is integrated into MPLAB IDE it allows the following:

• Use of the MPLAB Project Manager within MPLAB IDE.
• Creation and Editing of source code from within MPLAB IDE.
• Build a project without leaving MPLAB IDE.
• Source level debugging and variable monitoring using: MPLAB simulator,

MPLAB ICD2, MPLAB ICE2000.

Setting the MPLAB Language Tool Locations
Note: this process only needs to be performed once.

The procedure below specifies paths assuming the default installation folder has
been used for the SourceBoost software package.

1. Start MPLAB IDE.

2. Menu Project Set Language Tool Locations.
Note: if BoostC C compiler does not appear in the Registered Tools list, then
the integration process during the SourceBoost installation was not
performed or was unsuccessful.

BoostC™ Manual SourceBoost Technologies Page 13

3. Set BoostC C compiler for PIC16 location:

4. Now set BoostLink Linker location:

Page 14 SourceBoost Technologies BoostC™ Manual

5. Set BoostC C compiler for PIC18 location:

6. Eventually, set BoostLink Linker location in the PIC18 tree:

Creating a project under MPLAB IDE
Before attempting to do this, please ensure that the “Setting the MPLAB
language tool locations” process illustrated in the above section has been
successfully performed.

BoostC™ Manual SourceBoost Technologies Page 15

The following steps will help you create a project under MPLAB IDE, that will be
built using the BoostC C compiler, compiling for a PIC16 Target.

1. Menu Project New. Enter a project name and directory.
Note: this can be an existing directory containing a SourceBoost IDE project.

2. Menu Project Select Language Toolsuite. Select the BoostC C
Compiler for PIC16.

3. Menu File New. Type code into the Untitled window.
Note: If you already have Source Files, steps 2 and 3 can be skipped.

Page 16 SourceBoost Technologies BoostC™ Manual

4. Menu File Save As. Locate the project folder using the Save As dialog
box.

5. Add the test.c source file to the project by right clicking on Source Files in
the project tree – as shown below.

BoostC™ Manual SourceBoost Technologies Page 17

6. Add the libc.pic16.lib file (found in the C:\Program Files\SourceBoost\Lib
folder) to the project by right clicking on Library Files in the project tree.

7. Check the final project. It should look as below:

8. Menu Project Build (or press the build button on the tool bar). The code
should then be built.

You can now use the MPLAB simulator, ICD2 or ICE to run the code, or a
programmer to program a device. Please refer to the “Using ICD2” section of this
document before using ICD2 to avoid potential problems.

For ease of project browsing, you can also add the project header files to the
project tree in the same way as the source files where added.

Page 18 SourceBoost Technologies BoostC™ Manual

Using ICD2
The are a few things to be aware of when using or planning using ICD2:

1. RAM usage: ICD2 uses some of the target devices RAM, leaving less room
for the actual application.

In order to reserve the RAM required by ICD2, and prevent Boost Linker
from using it, the icd2.h header file must be included in the source code, eg:
#include <system.h>
#include <icd2.h> // allocates RAM used by ICD2

void main()
{
 while(1);
}

2. SFR usage: ICD2 uses some Special Function Registers. This prevents the
use of some peripheral devices when using ICD2 to debug code.

Important: It is down the user to ensure that the ICD2 special function
registers are not accessed. On some targets these registers reside at the
same address as other peripheral device special function registers. Please
check the documentation provided in the MPLAB IDE help for ICD2 resource
usage in order to prevent problems.

3. Break point overrun: Due to timing skew in the target device (caused by
instruction prefetch), execution will pass the instruction address where a
breakpoint is set before it stops.

BoostC™ Manual SourceBoost Technologies Page 19

Command line options
To get full list of BoostC compiler and BoostLink linker command line options run
compiler or linker from command line.

BoostC command line
BoostC Optimizing C Compiler Version 6.xx
http://www.sourceboost.com
Copyright(C) 2004-2006 Pavel Baranov
Copyright(C) 2004-2006 David Hobday

Licensed to <license info>

Usage: boostc.pic16.exe [options] files

Options:
 -t name target processor (default name=PIC16F648A)
 -On optimization level (default n=1)
 n=0 - optimization turned off
 n=1 - optimization turned on
 n=a - aggressive optimization turned on
 n=p - 32 bit long promotion turned on
 -Wn warning level (default n=1)
 n=0 - no warnings
 n=1 - some warnings
 n=2 - all warnings
 -Werr treat warnings as errors (default off)
 -i debug inline code (default off)
 -Su disable initialization of uninitialized static variables
 -d name define 'name'
 -m generate dependencies file (default off)
 -v verbose mode turned on (default off)
 -I path1;path2 additional include directories

Optimization
Code optimization is controlled by -O command line option and #pragma.

Optimize flags:
-O0 no or very minimal optimization
-O1 regular optimization (this option is recommended for most applications)
-Oa aggressive optimization (produces shorter code and optimizes out some

variables - this can make debugging more difficult!)
-Op promotes results of some 16 bit operations to 32 bits (can result in

more efficient code is some cases).

Page 20 SourceBoost Technologies BoostC™ Manual

BoostLink command line
BoostLink Optimizing Linker Version 6.xx
http://www.sourceboost.com
Copyright(C) 2004-2006 Pavel Baranov
Copyright(C) 2004-2006 David Hobday

Licensed to <license info>

Usage: boostlink.pic.exe [options] files
Options:
 -t name target processor
 -On optimization level 0-1 (default n=1)
 n=0 - no optimization
 n=1 - pattern matching and bank switching optimize on
 -v verbose mode
 -d path directory for project output
 -p name project (output) name for multiple .obj file linking
 -ld path directory for library search
 -rb address ROM base (start) address to use
 -rt address ROM top (end) address to use

 -swcs s1 s2 s3 Use software call stack. Hardware stack is allocated by
 specifying stack depths s1,s2,s3 (optional)
 s1 = main and task routines hardware stack allocation
 s2 = ISR hardware stack allocation
 s3 = PIC18 low priority ISR hardware stack allocation

 -isrnoshadow ISR No use of Shadow registers
 -isrnocontext ISR No context Save/restore is added to ISR(PIC18 only)

Switches for making libraries:
 -lib make library file from supplied .obj and .lib files
 -p name project (library output file) name

-rb

This command line option causes the code generated by the linker to start at the
address specified. Boot loaders often reside in the low area of ROM.

Example

-rb 0x0800

-swcs

This command line option to the linker tells it to use a software call stack in
addition to the hardware call stack. This allows subroutine calls deeper than the
call hardware call stack of the PIC. A function call that is made on the software call
stack uses an extra byte of RAM to hold the return point number. This option must
be used when using Novo RTOS. Where possible the hardware stack is used for
efficiency. By specifying the amount of hardware stack to use for main and tasks
(Novo tasks), ISR (interrupt service routine) and low priority ISR (PIC18 only),
allows control over when the software call stack is use instead of the hardware call
stack. The software call stack is applied to functions higher up in the call tree, so
calls lower down the call tree still use the hardware call stack. If no hardware stack
depths are specified, then the software stack is only used in functions that contain
or call functions that contain a Novo RTOS Sys_Yield() function.

BoostC™ Manual SourceBoost Technologies Page 21

Example:

-swcs 6 2

Main routine will use hardware call stack up to a depth of 6 and then start using
software call stack. Interrupt routine will use hardware call stack up to a depth of 2
and start using software call stack.

-isrnoshadow

This command line switch tells the linker not to use the PIC18 shadow registers for
interrupt service routine (ISR) context saving. This option is required as a work
around for silicon bugs in some PIC18's.

-isrnocontext

This option only works with PIC18's. When use this prevents the linker adding
extra code for context saving. This allow the programmer to generate their own
minimal ISR context saving code, or have none at all.

Example:
// Context saving example
// Assumes that the ISR code will only modify w and and bsr

// create context saving buffer at fixed address
char context[2]@0x0000;

void interrupt()
{

asm movff _bsr, _context
asm movwf _context+1
....
asm movwf _context+1
asm movff _bsr, _context

}

libc Library

When a project is being linked, SourceBoost IDE adds libc.pic16.lib or
libc.pic18.lib to the linker command line, if it can find this library in its default
location.
The libc library contains necessary code for multiplication, division and dynamic
memory allocation. It also includes code for string operations.

Code entry points
Entry points depend on the code address range using by the BoostLink linker. By
default, the linker uses all available code space, but it's also possible to specify
code start and end addresses that linker should use through linker command line
options.

For PIC16:

Page 22 SourceBoost Technologies BoostC™ Manual

Reset (main) entry point <code start> + 0x00
Interrupt entry point <code start> + 0x04

For PIC18:
Reset (main) entry point <code start> + 0x00
Interrupt entry point <code start> + 0x08
Low priority ISR entry point <code start> + 0x18

SourceBoost IDE
The SourceBoost IDE is thoroughly covered in a separate manual.

BoostC™ Manual SourceBoost Technologies Page 23

Preprocessor
The pp.exe preprocessor is automatically invoked by the compiler. It executes a
series of parametrized text substitutions and replacement (macro processing),
besides evaluating special directives.

All preprocessor directives start with a '#'. Non standard directives are always
contained in statements with a leading ANSI keyword #pragma, so to avoid
potential conflicts when porting code to other compilers and/or with advanced
source analysis tools (lint, static checkers, code formatters, flow analyzers and so
on).

Directives
The following directives are supported by pp:

#include

#define

#undef

#if

#else

#endif

#ifdef

#ifndef

#error

#warning

These directives are individually explained in the following pages.

Page 24 SourceBoost Technologies BoostC™ Manual

#include

Syntax: #include <filename.h>
or
#include “filename.h”

Elements: filename is any valid PC filename. It may include standard drive
and path information.
In the event no path is given, the following applies:

a) If filename appears between “”, the directory of the projects is
searched first.

b) If the delimiters <> are used, only the IDE include path list is
searched for filename.

If the file is not found, an error will be issued and compilation shall
stop.

Purpose: Text from the include file filename.h is inserted at the point of the
source where this directive appears, at compile time.

Examples: #include <system.h>

BoostC™ Manual SourceBoost Technologies Page 25

#define

Syntax: #define id statement

or

#define id(a, b...) statement

Elements: id is any valid preprocessor identifier.

statement is any valid text.

a, b and so on are local preprocessor identifiers, that in the given
form model a function's formal parameters, separated by commas.

Purpose: Both forms produce a basic string replacement of id with the given
text. Replacement will take place from the point where the #define
statement appears in the program, and below.

The second form represents a preprocessor pseudo-function. The
local identifiers are positionally matched up with the original text,
and are replaced with the text passed to the macro wherever it is
used.

Examples: #define LEN 16
#define LOWNIBBLE(x) ((x) & 0x0F)
...

a = 69;

le = a + LEN; // becomes le = a + 16;

b = LOWNIBBLE(a); // same as b = a & 0x0F;

Page 26 SourceBoost Technologies BoostC™ Manual

#undef

Syntax: #undef id

Elements: id is any valid preprocessor identifier previously defined via #define.

Purpose: Starting with the line where this directive appears, id will no more
have meaning for the preprocessor, i.e. a subsequent #ifdef id shall
evaluate to logical FALSE.

Please note that id can then be reused and assigned a different
value.

Examples: #define LEN 16
#define LOWNIBBLE(x) ((x) & 0x0F)
...
a = 69;
le = a + LEN; // becomes le = a + 16;

#undef LEN // LEN is not recognized anymore by pp
...

#define LEN 24 /* This is now valid and does not cause
“double definition attempt” errors. */

BoostC™ Manual SourceBoost Technologies Page 27

#if, #else, #endif

Syntax: #if expr
 code
#else
 code
#endif

Elements: expr is any valid expression using constants, standard operators
and preprocessor identifiers.
code is one or more valid C source code line.

Purpose: The preprocessor evaluates the constant expression expr and, if it
is non-zero, will process the lines up to the optional #else or the
#endif. Otherwise the optional #else branch code will be processed,
if present.

The latter two preprocessor directives are also used with specialized
forms of the #if directive (see #ifdef, #ifndef).

NOTE: expr cannot contain C variables ! Only constant expressions
and operators can be used.

Examples: // Conditionally initialize a RAM variable

#if STARTDELAY > 20
 slow = 1;
#else
 slow = 0;
#endif

Page 28 SourceBoost Technologies BoostC™ Manual

#ifdef

Syntax: #ifdef id
 code
#endif

Elements: id is any valid preprocessor identifier.

code is one or more lines of valid C source code.

Purpose: When the preprocessor encounters this directive, it evaluates
whether the identifier id is in its symbol table (eg previously
specified within a #define statement).
In case id is defined, the lines of code between #ifdef and #endif
(or an optional #else, if present) will be processed.

In the opposite case, code statements between #ifdef and #endif
will be ignored by the compiler.

NOTE: id can not be a C variable ! Only preprocessor identifiers
created via #define can be used.

Examples: #define DEBUG
...

#ifdef DEBUG
 printf(“Reached test point #1”);
#endif

BoostC™ Manual SourceBoost Technologies Page 29

#ifndef

Syntax: #ifndef id
 code
#endif

Elements: id is any valid preprocessor identifier.

code is one or more lines of valid C source code.

Purpose: When the preprocessor encounters this directive, it evaluates
whether the identifier id is in its symbol table (eg previously
specified within a #define statement).

In case id is not defined, the lines of code between #ifndef and
#endif (or an optional #else, if present) will be processed.

In the opposite case, code statements between #ifndef and
#endif will be ignored by the compiler.

NOTE: id can not be a C variable ! Only preprocessor identifiers
created via #define can be used.

Examples: #ifndef DEBUG
 printf(“Debug disabled !”);
#else
 printf(“Reached test point #1”);
#endif

Page 30 SourceBoost Technologies BoostC™ Manual

#error

Syntax: #error text

Elements: text is any valid text.

Purpose: When the preprocessor encounters this directive, it stops
compilation and issues and error. The user supplied text is
printed as an informational message.

This directive is useful when coupled with the expression checking
features of the preprocessor, to validate the coherence of
configuration choices and defines made elsewhere in the sources
and include files (or on the command line).

Examples: #ifndef PWM_DEFAULT
 #error “MUST define a default value for speed !”
#endif

BoostC™ Manual SourceBoost Technologies Page 31

#warning

Syntax: #warning text

Elements: text is any valid text.

Purpose: When the preprocessor encounters this directive, it forces the
compiler to issue a warning. The user supplied text is printed as
an informational message.

This directive is useful when coupled with the expression checking
features of the preprocessor, to validate the coherence of
configuration choices and defines made elsewhere in the sources
and include files (or on the command line).

Examples: #ifndef NODEADDR
 #warning “ADDR not defined, will enter dynamic mode.”
#endif

Page 32 SourceBoost Technologies BoostC™ Manual

Pragma directives
Specific BoostC preprocessor directives all follow the ANSI keyword #pragma, so
to avoid potential conflicts when porting code to other compilers and/or with
advanced source analysis tools (lint, static checkers, code formatters, flow
analyzers and so on).

The following directives are supported by pp:

#pragma DATA

#pragma CLOCK_FREQ

#pragma OPTIMIZE

These directives are individually explained in the following pages.

BoostC™ Manual SourceBoost Technologies Page 33

#pragma DATA

Syntax: #pragma DATA addr, d1, d2, ... “label”

Elements: addr is any valid code memory address.

d1, d2... are 8-bit integer constants.

“label” is an optional text label used to reference data.

Purpose: User data can be placed at a specific location using this construct.
In particular, this can be used to specify target configuration word
or to set some calibration/configuration data into on-chip eeprom.

Examples: #pragma DATA 0x200, 0xA, 0xB, "test"
//Set PIC16 configuration word
#pragma DATA 0x2007, _HS_OSC & _WDT_OFF & _LVP_OFF
//Put some data into eeprom
#pragma DATA 0x2100, 0x12, 0x34, 0x56, 0x78, "ABCD"

Page 34 SourceBoost Technologies BoostC™ Manual

#pragma CLOCK_FREQ

Syntax: #pragma CLOCK_FREQ Frequency_in_Hz

Elements: Frequency_in_Hz is the processor's clock speed.

Purpose: The CLOCK_FREQ directive tells the compiler under what clock
frequency the code is expected to run.

Note: delay code generated by the linker is based on this figure.

Examples: //Set 20 MHz clock frequency
#pragma CLOCK_FREQ 20000000

BoostC™ Manual SourceBoost Technologies Page 35

#pragma OPTIMIZE

Syntax: #pragma OPTIMIZE “Flags”

Elements: Flags are the optimization flags also used on the command line.

Purpose: This directive sets new optimization, at function level.
It must be used in the global scope and applies to the function
that follows this pragma.

The pragma argument should be enclosed into quotes and is
same as argument of the -O compiler command line options.

Empty quotes reset the optimization level previously set by this
pragma.

This is the current list of valid optimization flags:

0
1
a
p

no or very minimal optimization
regular optimization (recommended)
aggressive optimization
promotes results of some 16 bit operations to 32 bits

Examples: //Use aggressive optimization for function 'foo'
#pragma OPTIMIZE "a"

void foo()
{
 ...
}

Page 36 SourceBoost Technologies BoostC™ Manual

This page is intentionally left blank.

BoostC™ Manual SourceBoost Technologies Page 37

C language
This section of the manual contains a condensed list of BoostC C compiler features.
It is in no way intended to replace a complete C language manual or ANSI/ISO
specification. It is targeted, instead, at the already expert C programmer that
needs a quick reference of BoostC and its peculiarities due to the specific PIC
target platform.

Program structure
Every source file should include the general system header file, that in turn
includes target specific header (containing register mapped variables specific for
this target), some internal functions prototypes needed for code generation and
string manipulation function prototypes:

#include <system.h>

Data types

Base data types

Size Type

1 bit bit, bool

8 bits char, unsigned char, signed char

16 bits short, unsigned short, signed short

16 bits int, unsigned int, signed int

32 bits long, unsigned long, signed long

The difference between bit and bool data types is in the way how an expression
(longer than 1 bit) is assigned to a bit or bool operands.

• bit operands receive the least significant bit of the right side expression;

• bool operands receive the value of the right side expression casted to bool.

For example:
bool a;
bit b;
char x;
...
a = x & 2; // 'a' will be 'true' if the bit #1 in 'x' is set
 // and 'false' otherwise

b = x & 2; // 'b' will always be false, because bit #0
 // (the least significant bit) in the expression
 // result is zero - regardless of the value of 'x'

Structures and unions

Both struct and union keywords are supported.

Page 38 SourceBoost Technologies BoostC™ Manual

Typedef

New names for data types can be defined using typedef operation:

typedef unsigned char uchar;

Enum

Enumerated data types are an handy type of automatically defined constant series.
The declaration assigns a value of zero to the first symbolic constant of the list,
and the assigns subsequent values (automatically incremented) to the following
constants.

The user can, as well, arbitrarily assign numerical (signed) values at the beginning
as well as in the middle of the series. Values following an explicit assignment use
that value as a base and keep on incrementing from that point.

The data type for an enum type or typedef variable is, as per ANSI definition, the
smaller type that can contain the absolute maximum value of the constant series.

enum ETypes { E_NONE=0, E_RED, E_GREEN, E_BLUE };

// Same as :
// #define E_NONE 0
// #define E_RED 1
// #define E_GREEN 2
// #define E_BLUE 3

Code size vs Data Types

Be sure to always use the smallest data types possible. The rule is simple: the
bigger data types are used, the bigger code will be generated.
Thus, always follow these rules of thumb:

• Use char (8-bit or byte) as the default, everywhere;

• Use short or int (16-bit or word) for common arithmetic, counters and to hold
ADC conversion results on advanced cores (with 10-bit or more internal ADC).

• Only as a as last resort, and only where absolutely necessary, use long (32-bit,
dword) variables.

Another rule that also affects the size of produced code, though in a much smaller
degree, is about sign.

Use unsigned data types wherever you can, and signed only when necessary.
Unsigned math always generates smaller (and typically faster) code than signed.

BoostC™ Manual SourceBoost Technologies Page 39

Rom

Strings or arrays of data can be placed into program memory.

Such variables are declared using regular data types and rom storage specifier.

Such rom variables must be initialized within declaration:
rom char *text = "Test string"; // text with trailing zero
rom char *ptr = "\0x64\11\12"; // 4 bytes: 0x64, 0x0B, 0x0C, 0x00
rom char *data = { 0x64, 11, 12 }; // 3 data bytes: 0x64, 0x0B, 0x0C

Please keep in mind that the rom storage specifier has several limitations:

• rom can be used with char data types only;
• there is no implicit cast between rom and regular data types. Though BoostC

will not generate an explicit error for such a cast, it is expected that the
operand should be casted back to its original type.
If this is not done, the resulting code will behave unpredictably.

• a rom pointer is internally limited to 8-bits: the constant array size is thus
limited to 256 elements. This is coherent with smaller cores constraints;

• access to rom elements has to be done exclusively through the [] operators
and they cannot be referenced with substring pointer initialized at
runtime. Please keep in mind that rom variables must always and exclusively
be initialized within declaration;

Example of wrong referencing with a runtime initialized pointer:
/*
Part of the following code is WRONG and will FAIL because BoostC cannot
dynamically create the pointer to mystr[OFFSET] when the mystr array is
located in ROM.
*/

rom char *mystr = "Str_one \0 Str_two \0";

/* WRONG: a rom pointer must be initialized in declaration */
rom char *substr;

 substr = &mystr[OFFSET]; //** WRONG **
 cc = substr[0]; //** WRONG **

 cc = mystr[OFFSET]; // Correct

Volatile

The volatile type specifier should be used with variables that:

a) Can be changed outside the normal program flow, and

b) Should not receive intermediate values within expressions.

For example, if a bit variable is mapped to a port pin, it is a good programming
practice to declare such variable as volatile.

Code generated for expressions with volatile variables is a little longer when
compared to 'regular' code:

Page 40 SourceBoost Technologies BoostC™ Manual

volatile bit pinB1@0x6.1; //declare bit variable mapped to pin 1, port B

Currently compiler generates different code only for expressions that assign values
to volatile bit variables. Also volatile variables are not checked for being initialized.

Static

Both global and local variables can be declared as static. This limits their scope to
the current module.

Constants

Constants can be expressed in binary, octal, decimal and hexadecimal forms:

0bXXXX
or
XXXXb

binary number, where X is either 1 or 0

0XXXX octal number, where X is a number between 0 and 7
XXXX decimal number, where X is a number between 0 and 9
0xXXXX hexadecimal number, where X is a number between 0 and 9

or A and F

Strings
Besides regular characters, strings can include escape sequences:

\nn ASCII character, value nn is decimal

\xnn ASCII character, value nn is hexadecimal

\a ASCII character 0x07 (ALERT)

\b ASCII character 0x08 (Backspace)

\t ASCII character 0x09 (Horizontal Tab)

\r ASCII character 0x0A (LF, Line Feed)

\v ASCII character 0x0B (Vertical Tab)

\f ASCII character 0x0C (Form Feed)

\n ASCII character 0x0D (CR, Carriage Return)

\\ ASCII character 0x5C (the «\» character)

\' ASCII character 0x27 (the «'» character)

\" ASCII character 0x22 (the «"» character)

\? ASCII character 0x3F (the «?» character)

BoostC™ Manual SourceBoost Technologies Page 41

Variables
Variables can be declared and used in the standard ANSI C way.
The linker will place variables at specific addresses. BoostLink analyzes the call and
scope trees, so that it can re-use the same pool of RAM memory locations for
variables that don't collide with each other, being used disjointly by unrelated
routines active at different times.

This is a very effective way to minimize data memory usage.

Register mapped variables

Variables can be forced to be placed at certain addresses. Syntax is the same as in
the legacy C2C compiler:

char var@<addr>;

where <addr> is an hex or decimal address.
This technique is used to access target specific registers from code.
Please note that system header files already contain all target specific registers, so
there is no need to define them again in the user's code.

Bit variables can also have fixed addresses. Their address includes bit position and
can be made in 2 forms:

bit b; //variable will be placed by linker at arbitrary position
bit b1@0x40.1; // dotted: access bit 1 of register 0x40
bit b2@0x202; // bit offset: access bit 2 of register 0x40 (0x40*8 + 2)

Bit access

Besides 'bit' variables, individual bits of every variable can be accessed using the '.'
operator:

char var;
var.2 = 1; //set bit 2 of variable 'var'

Arrays
Arrays can have any number of dimensions. The only constraint is that an array
must fit into a single RAM bank.

Pointers
Pointers can be used in the standard general way, the only exception being
variables declared with the rom storage specifiers, that can only be accessed
through the [] operators.

Page 42 SourceBoost Technologies BoostC™ Manual

Strings as function arguments

If a function has one or more char* arguments, it can be called with a constant
string passed as an argument.
The compiler will reuse the same RAM memory allocated for such arguments when
several similar calls are made within same code block.
For example, the code below will use the same memory block to temporarily store
the strings "Date" and "Time":
...
foo("Date");
foo("Time");
...

Operators
If an operation result is not explicitly casted, it is promoted by default to 16 bit
precision. For example, given the following expression:

long l = a * 100 / b; //'a' and 'b' are 16 bit long variables

the result of the multiplication will be stored in a 16-bit long (word) temporary
variable, that will be then divided by b. This 16-bit long result will eventually be
stored in l. This is the ANSI 'C' standard behavior.

This behavior can be changed using the -Op compiler command line option or a
local #pragma OPTIMIZE directive.
When this optimization is applied to the given expression, the multiplication result
will be promoted to 32-bit long (dword) temporary variable, that will then be
divided by b: the result, that is now 32 bit long, will eventually be stored in l.

Arithmetic

+ - * / % ++ --

BoostC™ Manual SourceBoost Technologies Page 43

Arithmetic Operator Examples

// + is a binary operator. It is used to add or produce
// the arithmetic sum of two operands.

// Example:

c = a + b;
// or

c = 5 + 7; // After the operation c = 12

// - is a binary operator. It is used to subtract or produce
// the difference of two operands. In other words, the second
// operand is subtracted from the first operand.

// Example:

c = a - b;
// or

c = 18 – 12; // After the operation c = 6

// * is a binary operator. It is used to multiply or produce
// the arithmetic product of two operands.

// Example:

c = a * b;
// or

c = 5 * 7; // After the operation c = 35

// / is a binary operator. It is used to divide or produce
// the quotient of two operands. In other words, the first
// operand is divided by the second operand.

// Example:

c = a / b;
// or

c = 24 / 8; // After the operation c = 3

// % is a binary operator. It is used to produce the modulus
// or remainder when two operands are divided.

// Examples:

c = a % b;
// or

c = 25 % 8; // After the operation c = 1

C = 17 % 3; // 17 % 3 = 5 with a remainder of 2
 // After the operation c = 2

c = 17 % 4; // 17 % 4 = 4 with a remainder of 1
 // After the operation c = 1

Page 44 SourceBoost Technologies BoostC™ Manual

// ++ is a unary operator. It is used for pre-incrementing
// or post-incrementing an operand.

// Examples:

X = 10;
c = x++; // Post-increment.

 // After the operation x = 11, c = 10

X = 10;
c = ++x; // Pre-increment.

 // After the operation x = 11, c = 11

// -- is a unary operator. It is used for pre-decrementing
// or post-decrementing an operand.

// Examples:

x = 10;
c = x--; // Post-decrement.

 // After the operation x = 9, c = 10

x = 10;
c = --x; // Pre-decrement.

 // After the operation x = 9, c = 9

Assignment

= += -= *= /= %= &= |= ^= <<= >>=

Assignment Operator Examples

// = is the ASSIGN operator. The value of the variable or
// expression on the right side of the equal is assigned
// to the variable on the left side of the equal.

// Examples:

x = 3; // Whatever was in the variable x
 // has been replaced with 3.

x = 2 + 4; // Whatever was in the variable x
 // has been replaced with 6.

c = x + y; // If x has a value of 12 and y has a value of 16.
 // Whatever was in the variable c will
 // be replaced with 28.

BoostC™ Manual SourceBoost Technologies Page 45

// += is the combined ADD and ASSIGN operator. The variable
// on the left side of the operator will be added to the
// variable or expression on the right side. The result is
// then assigned to the variable on the left side of the
// operator.

// Examples:

x += 2; // If x has an initial value of 14. After
 // the operation x will be 16.

c += x + y; // If c has an initial value of 10 and x has
 // the value 12 and y has the value 16.
 // After the operation c will be 38.

// -= is the combined SUBTRACT and ASSIGN operator. The variable
// or expression on the right side of the operator will be
// subtracted from the variable on the left side. The result
// is then assigned to the variable on the left side of the
// operator.

// Examples:

x -= 2; // If x has an initial value of 14. After
 // the operation x will be 12.

c -= x + y; // If c has an initial value of 38 and x has
 // the value 12 and y has the value 16.
 // After the operation c will be 10.

// *= is the combined MULTIPLY and ASSIGN operator. The variable
// on the left side of the operator will be multiplied by the
// variable or expression on the right side. The result is
// then assigned to the variable on the left side of the
// operator.

// Examples:

x *= 2; // If x has an initial value of 14. After
 // the operation x will be 28.

c *= x + y; // If c has an initial value of 10 and x has
 // the value 12 and y has the value 16.
 // After the operation c will be 280.

Page 46 SourceBoost Technologies BoostC™ Manual

// /= is the combined DIVIDE and ASSIGN operator. The variable
// on the left side of the operator will be divided by the
// variable or expression on the right side. The result
// is then assigned to the variable on the left side of
// the operator.

// Examples:

x /= 2; // If x has an initial value of 14. After
 // the operation x will be 7.

c /= x + y; // If c has an initial value of 280 and x has
 // the value 12 and y has the value 16.
 // After the operation c will be 10.

// %= is the combined MODULUS and ASSIGN operator. The variable
// on the left side of the operator will be divided by the
// variable or expression on the right side. The result,
// which is a remainder only, is then assigned to the
// variable on the left side of the operator.

// Examples:

x %= 2; // If x has an initial value of 15. After
 // the operation x will be 1.

y %= 7; // If y has an initial value of 17. After
 // the operation y will be 3.

c %= x + y; // If c has an initial value of 19 and x has
 // the value 4 and y has the value 3.
 // After the operation c will be 5.

// &= is the combined BITWISE-AND and ASSIGN operator. The variable
// on the left side of the operator will be ANDed on a bit-by-bit
// basis with the variable or constant on the right side. The
// result is then assigned to the variable on the left side of
// the operator.

// Examples:

x &= y; // If x has an initial value of 14 and y has the
 // value 5. After the operation x will be 4.

c &= 0x07; // If c has an initial value of 0x0E. After
 // the operation c will be 0x06.

y &= 0b11110001; // If y has an initial value of 0b10001111.
 // After the operation y will
 // be 0b10000001.

BoostC™ Manual SourceBoost Technologies Page 47

// |= is the combined BITWISE-OR and ASSIGN operator. The variable
// on the left side of the operator will be ORed on a bit-by-bit
// basis with the variable or constant on the right side. The
// result is then assigned to the variable on the left side of
// the operator.

// Examples:

x |= y; // If x has an initial value of 14 and y has the
 // value 5. After the operation x will be 15.

c |= 0x07; // If c has an initial value of 0x0E. After
 // the operation c will be 0x0F.

y |= 0b11110000; // If y has an initial value of 0b10001110.
 // After the operation y will
 // be 0b11111110.

// ^= is the combined BITWISE-XOR and ASSIGN operator. The variable
// on the left side of the operator will be XORed on a bit-by-bit
// basis with the variable or constant on the right side. The
// result is then assigned to the variable on the left side of
// the operator.

// Examples:

x ^= y; // If x has an initial value of 14 and y has the
 // value 5. After the operation x will be 11.

c ^= 0x07; // If c has a value of 0x0E. After the
 // operation c will be 0x09.

y ^= 0b11111000; // If y has an initial value of 0b00011110.
 // After the operation y will
 // be 0b11100110.

// <<= is the combined SHIFT-LEFT and ASSIGN operator. The variable
// on the left side of the operator will be shifted left by the
// number of places indicated by the variable or constant on
// the right. The result is then assigned to the variable on
// the left side of the operator.

// Examples:

x <<= y; // If x has an initial value of 14 and y has the
 // value 2. After the operation x will be 56.

c <<= 0x01; // If c has an initial value of 0x0E. After the
 // operation c will be 0x1C.

y <<= 0b00000010; // If y has an initial value of 0b00011110.
 // After the operation y will
 // be 0b01111000.

Page 48 SourceBoost Technologies BoostC™ Manual

// >>= is the combined SHIFT-RIGHT and ASSIGN operator. The
// variable on the left side of the operator will be shifted
// right by the number of places indicated by the variable
// or constant on the right. The result is then assigned to
// the variable on the left side of the operator.

// Examples:

x >>= y; // If x has an initial value of 14 and y has the
 // value 2. After the operation x will be 3.

c >>= 0x01; // If c has an initial value of 0x0E. After the
 // operation c will be 0x07.

y >>= 0b00000010; // If y has an initial value of 0b00011110.
 // After the operation y will
 // be 0b00000111.

Comparison

== != < <= > >=

Comparison Operator Examples

// == is a binary operator. It is used to see if one operand
// IS equal to another operand.

// Example1:

if(x == y) // If c has an initial value of 0, and
{ // x has the value 8 and y has the value 8.
 c = x + y; // The final value for c will be 16.
}

// Example2:

if(x == y) // If c has an initial value of 0, and
{ // x has the value 8 and y has the value 5.
 c = x + y; // The final value for c will be 0.
}

// != is a binary operator. It is used to see if one operand
// is NOT equal to another operand.

// Example1:

if(x != y) // If c has an initial value of 0, and
{ // x has the value 8 and y has the value 5.
 c = x * y; // The final value for c will be 40.
}

// Example2:

if(x != y) // If c has an initial value of 0, and
{ // x has the value 8 and y has the value 8.
 c = x * y; // The final value for c will be 0.
}

BoostC™ Manual SourceBoost Technologies Page 49

// < is a binary operator. It is used to see if one operand
// is LESS than another operand.

// Example1:

if(x < y) // If c has an initial value of 0, and
{ // x has the value 40 and y has the value 65.
 c = y – x; // The final value for c will be 25.
}

// Example2:

if(x < y) // If c has an initial value of 0, and
{ // x has the value 65 and y has the value 40.
 c = y – x; // The final value for c will be 0.
}

// <= is a binary operator. It is used to see if one operand
// is LESS than or EQUAL to another operand.

// Example1:

if(x <= y) // If x has a value of 22 and y has a value of 33.
 set_bit(PORTA, LED_bit); // Turn LED ON
else
 clear_bit(PORTA, LED_bit); // Turn LED OFF

// In this example the LED will be turned ON.

// Example2:

if(x <= y) // If x has a value of 15 and y has a value of 8.
 set_bit(PORTA, LED_bit); // Turn LED ON
else
 clear_bit(PORTA, LED_bit); // Turn LED OFF

// In this example the LED will be turned OFF.

// Example3:

if(x <= y) // If x has a value of 46 and y has a value of 46.
 set_bit(PORTA, LED_bit); // Turn LED ON
else
 clear_bit(PORTA, LED_bit); // Turn LED OFF

// In this example the LED will be turned ON.

Page 50 SourceBoost Technologies BoostC™ Manual

// > is a binary operator. It is used to see if one operand
// is GREATER than another operand.

// Example1:

if(x > y) // If c has an initial value of 0, and
{ // x has the value 28 and y has the value 14.
 c = x / y; // The final value for c will be 2.
}

// Example2:

if(x > y) // If c has an initial value of 0, and
{ // x has the value 14 and y has the value 28.
 c = x / y; // The final value for c will be 0.
}

// >= is a binary operator. It is used to see if one operand
// is GREATER than or EQUAL to another operand.

// Example1:

if(x >= y) // If x has a value of 25 and y has a value of 10.
 set_bit(PORTA, LED_bit); // Turn LED ON
else
 clear_bit(PORTA, LED_bit); // Turn LED OFF

// In this example the LED will be turned ON.

// Example2:

if(x >= y) // If x has a value of 8 and y has a value of 15.
 set_bit(PORTA, LED_bit); // Turn LED ON
else
 clear_bit(PORTA, LED_bit); // Turn LED OFF

// In this example the LED will be turned OFF.

// Example3:

if(x >= y) // If x has a value of 34 and y has a value of 34.
 set_bit(PORTA, LED_bit); // Turn LED ON
else
 clear_bit(PORTA, LED_bit); // Turn LED OFF

// In this example the LED will be turned ON.

Logical

&& || !

BoostC™ Manual SourceBoost Technologies Page 51

Logical Operator Examples

// && is a binary operator. It is used to determine if both operands
// are true. The operands are expressions that evaluate to true
// or false.

// Example1:

if((temp > 50) && (temp < 100))
 clear_bit(PORTA, ALARM_bit); // Turn alarm OFF
else
 set_bit(PORTA, ALARM_bit); // Turn alarm ON

// If temp has a value of 70 the alarm will be turned OFF.

// Example2:

if((temp > 50) && (temp < 100))
 clear_bit(PORTA, ALARM_bit); // Turn alarm OFF
else
 set_bit(PORTA, ALARM_bit); // Turn alarm ON

// If temp has a value of 105 the alarm will be turned ON.

// Example3:

if((temp > 50) && (temp < 100))
 clear_bit(PORTA, ALARM_bit); // Turn alarm OFF
else
 set_bit(PORTA, ALARM_bit); // Turn alarm ON

// If temp has a value of 25 the alarm will be turned ON.

Page 52 SourceBoost Technologies BoostC™ Manual

// || is a binary operator. It is used to determine if either
// operand is true. The operands are expressions that evaluate
// to true or false.

// Example1:

if((volt > 7) || (volt < 5))
 set_bit(PORTA, LED_bit); // Turn LED ON
else
 clear_bit(PORTA, LED_bit); // Turn LED OFF

// If volt has a value of 8 the LED will be turned ON.

// Example2:

if((volt > 7) || (volt < 5))
 set_bit(PORTA, LED_bit); // Turn LED ON
else
 clear_bit(PORTA, LED_bit); // Turn LED OFF

// If volt has a value of 6 the LED will be turned OFF.

// Example3:

if((volt > 7) || (volt < 5))
 set_bit(PORTA, LED_bit); // Turn LED ON
else
 clear_bit(PORTA, LED_bit); // Turn LED OFF

// If volt has a value of 4 the LED will be turned ON.

// ! is a unary operator. It is used to complement an evaluated
// operand. The operand is an expression that evaluates to
// true or false.

// Example1:

if(!(pressure > 120))
 clear_bit(PORTA, ALARM_bit); // Turn alarm OFF
else
 set_bit(PORTA, ALARM_bit); // Turn alarm ON

// If pressure has a value of 75 the alarm will be turned OFF.

// Example2:

if(!(pressure > 120))
 clear_bit(PORTA, ALARM_bit); // Turn alarm OFF
else
 set_bit(PORTA, ALARM_bit); // Turn alarm ON

// If pressure has a value of 125 the alarm will be turned ON.

Bitwise

& | ^ ~ << >>

BoostC™ Manual SourceBoost Technologies Page 53

Bitwise Operator Examples

// & is a binary operator. It is used to produce the logical product
// of two operands. The individual bits of two operands are ANDed
// together to produce the final results.

// Examples:

c = x & y; // If x has a value of 14 and y has a value
 // of 5. After the operation c will be 4.

x = y & 0x07; // If y has a value of 0x0E. After the
 // operation x will be 0x06.

x = y & 0b11110001; // If y has a value of 0b10001111.
 // After the operation x will
 // be 0b10000001.

// | is a binary operator. It is used to produce the logical sum of
// two operands. The individual bits of two operands are ORed
// together to produce the final results.

// Examples:

c = x | y; // If x has a value of 14 and y has a value
 // of 5. After the operation c will be 15.

x = y | 0x07; // If y has a value of 0x0E. After the
 // operation x will be 0x0F.

x = y | 0b11110000; // If y has a value of 0b10001110.
 // After the operation x will
 // be 0b11111110.

// ^ is a binary operator. It is used to produce the logical
// difference of two operands. The individual bits of two operands
// are XORed together to produce the final results.

// Examples:

x = y ^ 0x07; // If y has a value of 0x0E. After the
 // operation x will be 0x09.

x = y ^ 0b11111000; // If y has a value of 0b00011110.
 // After the operation x will
 // be 0b11100110.

Page 54 SourceBoost Technologies BoostC™ Manual

// ~ is a unary operator. It is used to produce the complement of an
// operand. The individual bits of the operand are complemented.
// The ones become zeros and the zeros become ones.

// Examples:

x = ~y; // If y has a value of 0x0E. After the
 // operation x will be 0xF1.

x = ~0b01010111; // After the operation x will
 // be 0b10101000.

// << is a binary operator. The operand on the left side of the
// operator will be shifted left by the number of places
// indicated by the operand on the right.

// Examples:

c = x << y; // If x has a value of 14 and y has a value
 // of 2. After the operation c will be 56.

x = y << 0x01; // If y has a value of 0x0E. After the
 // operation x will be 0x1C.

x = y << 0b00000010; // If y has a value of 0b00011110.
 // After the operation x will
 // be 0b01111000.

// >> is a binary operator. The operand on the left side of the
// operator will be shifted right by the number of places
// indicated by the operand on the right.

// Examples:

c = x >> y; // If x has a value of 14 and y has a value of 2.
 // After the operation c will be 3.

x = y >> 0x01; // If y has a value of 0x0E. After the operation
 // x will be 0x07.

x = y >> 0b00000010; // If y has a value of 0b00011110.
 // After the operation x will
 // be 0b00000111.

Conditionals

if / else statement
switch statement
? : ternary operator

BoostC™ Manual SourceBoost Technologies Page 55

Conditional Examples

// if / else is a two-way decision making statement. If the
// expression evaluates to true, the first statement
// will be executed. If it evaluates to false the
// second statement will be executed.

// Example1:

if(x > y) // If x has a value of 25 and y has a value of 10.
 set_bit(PORTA, LED_bit); // Turn LED ON
else
 clear_bit(PORTA, LED_bit); // Turn LED OFF

// In this example the LED will be turned ON.

// Example2:

if(x > y) // If x has a value of 8 and y has a value of 15.
 set_bit(PORTA, LED_bit); // Turn LED ON
else
 clear_bit(PORTA, LED_bit); // Turn LED OFF

// In this example the LED will be turned OFF.

Page 56 SourceBoost Technologies BoostC™ Manual

// switch is a multi-way decision making statement. The variable is
// compared with the different cases. The case that matches
// will have its statements executed.

// Example1:

switch(weight)
{
 case 5:
 set_bit(PORTA, red_LED); // Turn red LED ON
 clear_bit(PORTA, green_LED); // Turn green LED OFF
 break;
 case 10:
 set_bit(PORTA, green_LED); // Turn green LED ON
 clear_bit(PORTA, red_LED); // Turn red LED OFF
 break;
 default:
 clear_bit(PORTA, green_LED); // Turn green LED OFF
 clear_bit(PORTA, red_LED); // Turn red LED OFF
}

// If the 'weight' variable has a value of 5 the red LED will
// be turned ON and the green LED will be turned OFF.

// Example2:

switch(weight)
{
 case 5:
 set_bit(PORTA, red_LED); // Turn red LED ON
 clear_bit(PORTA, green_LED); // Turn green LED OFF
 break;
 case 10:
 set_bit(PORTA, green_LED); // Turn green LED ON
 clear_bit(PORTA, red_LED); // Turn red LED OFF
 break;
 default:
 clear_bit(PORTA, green_LED); // Turn green LED OFF
 clear_bit(PORTA, red_LED); // Turn red LED OFF
}

// If the 'weight' variable has a value of 10 the green LED will
// be turned ON and the red LED will be turned OFF.

// Example3:

switch(weight)
{
 case 5:
 set_bit(PORTA, red_LED); // Turn red LED ON
 clear_bit(PORTA, green_LED); // Turn green LED OFF
 break;
 case 10:
 set_bit(PORTA, green_LED); // Turn green LED ON
 clear_bit(PORTA, red_LED); // Turn red LED OFF
 break;
 default:
 clear_bit(PORTA, green_LED); // Turn green LED OFF
 clear_bit(PORTA, red_LED); // Turn red LED OFF
}

// If the 'weight' variable has any value other than 5 or 10,
// both the green and red LEDs will be turned OFF.

BoostC™ Manual SourceBoost Technologies Page 57

// ? : is an if/else operator. This operator can be used inside an
// expression to determine if a part of it is true or false.

// Example1: turn the LED ON turn the LED OFF

(volts > 5) ? set_bit(PORTA, LED_bit) : clear_bit(PORTA, LED_bit);

// If 'volts' has a value of 7 turn the LED ON.

// Example2: turn the LED ON turn the LED OFF

(volts > 5) ? set_bit(PORTA, LED_bit) : clear_bit(PORTA, LED_bit);

// If 'volts' has a value of 3 turn the LED OFF.

Program Flow
while
do / while
for
break
continue

Program Flow Examples

// while is a loop control construct. It controls the execution of
// a block of statements for as long as an expression evaluates
// to true. The expression is evaluated first and if true,
// executes the block. If it evaluates to false, stop the
// execution.

// Example1:

while(number > 0)
{
 factorial *= number; // 'factorial' is initialized to 1
 --number; // before entering the loop.
}

// If 'number' has a value of 3 'factorial' will become 6.
// factorial = 3 x 2 x 1 ;

// Example2:

while(number > 0)
{
 factorial *= number; // 'factorial' is initialized to 1
 --number; // before entering the loop.
}

// If 'number' has a value of 0, 'factorial' will stay
// equal to 1 because the loop was never entered.

Page 58 SourceBoost Technologies BoostC™ Manual

// do / while is a loop control construct. It controls the execution
// of a block of statements for as long as an expression
// evaluates to true. The block is executed at least once
// before the expression is evaluated. If it evaluates to
// false, stop the execution. If it evaluates to true,
// continue the execution.

// Example1:

do
{
 factorial *= number; // 'factorial' is initialized to 1
 --number; // before entering the loop.

} while(number > 0);

// If 'number' has a value of 4 'factorial' will become 24.
// factorial = 4 x 3 x 2 x 1 ;

// Example2:

do
{
 factorial *= number; // 'factorial' is initialized to 1
 --number; // before entering the loop.

} while(number > 0);

// If 'number' has a value of 0, 'factorial' will become 0 because
// the loop was entered, before the expression was evaluated.

// for is a loop control construct. It controls the number of times
// a block of statements is executed. The construct has an
// initial value, a final value, and a loop-count value that is
// incremented each time after the block is executed.

// Example1:

for(volts = 0; volts < 7; volts++)
{
 sum += volts; // 'sum' is initialized to 0
} // before entering the loop.

// Upon exiting the loop 'sum' will have a value of 21.

// break is an option that can be used to exit out of a for-loop,
// based upon the evaluation of an expression.

// Example1:

for(volts = 0; volts < 7; volts++)
{
 if(volts == 5)
 break;

 sum += volts; // 'sum' is initialized to 0
} // before entering the loop.

// Upon exiting the loop 'sum' will have a value of only 10.

BoostC™ Manual SourceBoost Technologies Page 59

// continue is an option used to redirect a for-loop based upon the
// evaluation of an expression. If the expression evaluates
// to true, the block of statements will not be executed.

// Example1:

for(volts = 0; volts < 7; volts++)
{
 if(volts == 5)
 continue;

 sum += volts; // 'sum' is initialized to 0
} // before entering the loop.

// Upon exiting the loop 'sum' will have a value of only 16.
// 'sum' will only have the values 0, 1, 2, 3, 4, & 6 added together.

Goto

In the vast majority of programming books, the usage of 'goto' is heavily
deprecated. This is true for BoostC and PIC C coding as well: it should normally be
avoided.

There are, anyway, some very specific circumstances where it may still be useful:
to optimize early exit cases within complex nested control structures or to simplify
local error handling (it can somehow mimic try/catch exception handling syntax).
while(...)
{
 while(...)
 {
 while(...)
 {
 goto exit;
 }
 }
}
exit:

Inline assembly
Use the asm or _asm operators to embed assembly into C code.

Bank switching and code page switching code should NOT be added to inline
assembly code. The linker will add the appropriate Bank switching and code page
switching code.
The asm and _asm operators differ in that the compiler will not apply any
optimization for the assembly code used with the asm operator (will be assembled
as is), while with _asm all usual optimizations will be applied, including elimination
of dead code.

To refer to a C variable from inline assembly, simply prefix its name with an
underscore '_'. If a C variable name is used with the 'movlw' instruction, the
address of this variable is copied into W.
Labels are identified with a trailing semicolon ':' after the label name.

Page 60 SourceBoost Technologies BoostC™ Manual

asm
{
 start:
 btfsc _i, 4
 goto end
 btfss _b, 0
 goto iter
 ...
}

BoostC™ Manual SourceBoost Technologies Page 61

User Data

User data can be placed at the current location using the 'data' assembly
instruction followed by comma separated numbers or strings.
Example:

// Code below will place bytes 10,11,116,101,115,116,0
// at current code location
asm data 0xA, 0xB, "test"

Functions

Inline functions

Functions declared as inline are repeatedly embedded into the code for each
occurrence. When a function is defined as inline, its body must be defined before it
gets called for the first time.

Though any function can be declared as inline, procedures (functions with no
return value and a possibly empty argument list) are best suited to be used as
inline.

An heavy usage of inline functions obviously augments code size.

Special functions

void main(void)

Program entry point. This function is mandatory for every C program.

void interrupt(void)

Interrupt handler function. Is linked to high priority interrupts for PIC18 parts.

void interrupt_low(void)

Low priority interrupt handler, can be used only on the PIC18 family.

General functions and interrupts

Standard user functions are not thread-safe: their local variables are not saved
when function execution gets interrupted by an interrupt. This can lead to very
hard to trace errors.

To prevent this pitfall, the linker does not allow to call a given function from both
main() and interrupt threads.

If you really need to use same function in both threads, you need to duplicate its
code and assign a different name to the second copy.

Page 62 SourceBoost Technologies BoostC™ Manual

//This function gets called from main thread
void foo()
{
 ...
}

//Copy of 'foo' that will be called from interrupt thread
void foo_interrupt()
{
 ...
}

//Interrupt thread
void interrupt(void)
{
 ...
 foo_interrupt();
 ...
}

//Main thread
void main(void)
{
 ...
 foo();
 ...
}

Dynamic memory management
Dynamic memory management is used to dynamically create and destroy objects
at run time.
For example, this functionality may be needed when a program needs to keep
several data packets. Memory for this packets can also be allocated at compile
time, but this way the memory may not be available for other variables even if it's
not used.
The solution is to use dynamic memory allocation. Objects to store data are
created as soon as they are needed and destroyed after data gets processed.
This way all available target data memory is used most efficiently.

The amount of possible objects that can be allocated depends on the specific PIC
part at hand, and on the application.

When the application is built, the linker uses RAM memory left after allocation of
global and local variables as a heap. When some memory gets allocated at run
time by the 'alloc' call, it gets allocated from this heap. The bigger the heap, the
more run time objects can exist at any given time.

void* alloc(unsigned char size)

Dynamically allocate memory 'size' bytes long. Max size is 127 bytes. Returns
NULL if memory can't be allocated.

BoostC™ Manual SourceBoost Technologies Page 63

void free(void *ptr)

Free memory previously allocated by 'alloc'. Passing any other pointer will lead to
unpredictable results.

Page 64 SourceBoost Technologies BoostC™ Manual

C language superset
The BoostC compiler has some advanced features "borrowed" from C++ language.
These features allow to develop more flexible and powerful code, but their use is
merely optional.

References as function arguments
Function arguments can be references to other variables.
When such argument changes inside a function the original variable used in
function call changes too.
This is a very powerful way to alter the data flow without blowing up the generated
code:
void foo(char &n) //'n' is a reference
{
 n = 100;
}

void main(void)
{
 char a = 0;
 foo(a); //upon return 'a' will have value of 100
 ...
}

Function overloading
There can be more than one function in the same application having a given name.
Such functions must anyway differ by the number and type of their arguments:
void foo(void) //'foo' number 1
{
...
}

void foo(char *ptr) //'foo' number 2
{
...
}

void foo(char a, char b) //'foo' number 3
{
...
}

void main(void)
{
 foo(); //'foo' number 1 gets called
 foo("test"); //'foo' number 2 gets called
 foo(10, 20); //'foo' number 3 gets called
 ...
}

The compiler will generate internal references to the functions so that no
ambiguity is possible (name mangling), and will select which function will be
invoked for each call analyzing how many parameters are passed, as well as their
type.

BoostC™ Manual SourceBoost Technologies Page 65

Function templates
Functions can be declared and defined using data type placeholders.
This feature allows writing very general code (for example, linked lists handling)
that is not tied to a particular data type and, what may be more important, allows
the user to create template libraries contained in header files:

template <class T>
void foo(T *t)
{
...
}

void main(void)
{
 short s;
 foo<char>("test"); //'foo(char*)' gets called
 foo<short>(&s); //'foo(short*)' gets called
 ...
}

Page 66 SourceBoost Technologies BoostC™ Manual

Parametric timing functions
Most of software based timing functions are strictly dependent on clock speed.
As this parameter is usually well known at linking time, depending only on
hardware design and implementation, such functions can be dynamically
generated, once the clock frequency is correctly assigned with the CLOCK_FREQ
pragma.

These functions can be used in the standard way when writing any program for
BoostC.

void delay_us(unsigned char t)

(generated function) Delays execution for 't' micro seconds. Declared in boostc.h
This function gets generated every time a project is linked and is controlled by the
CLOCK_FREQ pragma. In some cases when clock frequency is too low it's not
physically possible to generate this function. If that's the case linker will issue a
warning.

void delay_10us(unsigned char t)

(generated function) Delays execution for 't*10' micro seconds. Declared in
boostc.h This function gets generated every time a project is linked and is
controlled by the CLOCK_FREQ pragma. In some cases, when clock frequency is
too low, it's not physically possible to generate this function.
If that's the case, the linker will issue a warning.

void delay_100us(unsigned char t)

(generated function) Delays execution for 't*100' micro seconds. Declared in
boostc.h This function gets generated every time a project is linked and is
controlled by the CLOCK_FREQ pragma. In some cases, when clock frequency is
too low, it's not physically possible to generate this function.
If that's the case, the linker will issue a warning.

void delay_ms(unsigned char t)

(generated function) Delays execution for 't' milli seconds. Declared in boostc.h
This function gets generated every time a project is linked and is controlled by the
CLOCK_FREQ pragma.

void delay_s(unsigned char t)

(generated function) Delays execution for 't' seconds. Declared in boostc.h This
function gets generated every time a project is linked and is controlled by the
CLOCK_FREQ pragma.

Note: The delays produced by these functions are generated using software delay
loops, therefore the delay may actually be larger than that specified if the delay
routine is interrupted by an interrupt.

BoostC™ Manual SourceBoost Technologies Page 67

System Libraries
A number of standard functions are included into BoostC installations. The number
of such functions isn't static. It increases from release to release as new features
are added. Most of these functions are declared in boostc.h (It's not recommended
to include boostc.h directly into your code. Instead include system.h which in turn
included boostc.h)

General purpose functions

clear_bit(var, num)

(macro) Clears bit 'num' in variable 'var'. Declared in boostc.h

set_bit(var, num)

(macro) Sets bit 'num' in variable 'var'. Declared in boostc.h

test_bit(var, num)

(macro) Tests if bit 'num' in variable 'var' is set. Declared in boostc.h

MAKESHORT(dst, lobyte, hibyte)

(macro) Makes a 16 bit long value (stored in 'dst') from two 8-bit long values (low
byte 'lobyte' and high byte 'hibyte'). 'dst' must be a 16-bit long variable. Declared
in boostc.h
 unsigned short res;
 MAKESHORT(res, adresl, adresh); //make 16 bit value from adresh:adresl
registers and write it into variable 'res'

LOBYTE(dst, src)

(macro) Gets low byte from 'src' and writes it into 'dst'. Declared in boostc.h

HIBYTE(dst, src)

(macro) Gets high byte from 'src' and writes it into 'dst'. 'src' must be a 16-bit long
variable. Declared in boostc.h

void nop(void)

(inline function) Generates one 'nop' instruction. Declared in boostc.h

void clear_wdt(void)

(inline function) Generates one 'clrwdt' instruction. Declared in boostc.h

void sleep(void)

(inline function) Generates one 'sleep' instruction. Declared in boostc.h

Page 68 SourceBoost Technologies BoostC™ Manual

String and Character Functions

void strcpy(char *dst, const char *src)
void strcpy(char *dst, rom char *src)

void strncpy(char *dst, const char *src, unsigned char len)
void strncpy(char *dst, rom char *src, unsigned char len)

(function) Copies zero terminated string 'src' into destination buffer 'dst'.
Destination buffer must be big enough for string to fit. Declared in string.h

unsigned char strlen(const char *src)
unsigned char strlen(rom char *src)

(function) Returns length of a string. Declared in string.h

signed char strcmp(const char *src1, const char *src2)
signed char strcmp(rom char *src1, const char *src2)
signed char strcmp(const char *src1, rom char *src2)
signed char strcmp(rom char *src1, rom char *src2)

signed char stricmp(const char *src1, const char *src2)
signed char stricmp(rom char *src1, const char *src2)
signed char stricmp(const char *src1, rom char *src2)
signed char stricmp(rom char *src1, rom char *src2)

(function) Compares two strings. Returns -1 if string #1 is less than string #2, 1 if
string #1 is greater than string #2 or 0 is string #1 is same as string #2. Declared
in string.h

signed char strncmp(char *src1, char *src2, unsigned char len)
signed char strncmp(rom char *src1, char *src2, unsigned char len)
signed char strncmp(char *src1, rom char *src2, unsigned char len)
signed char strncmp(rom char *src1, rom char *src2, unsigned char len)

signed char strnicmp(char *src1, char *src2, unsigned char len)
signed char strnicmp(rom char *src1, char *src2, unsigned char len)
signed char strnicmp(char *src1, rom char *src2, unsigned char len)
signed char strnicmp(rom char *src1, rom char *src2, unsigned char len)

(function) Compares first 'len' characters of two strings. Returns -1 if string #1 is
less than string #2, 1 if string #1 is greater than string #2 or 0 is string #1 is
same as string #2. Declared in string.h

void strcat(char *dst, const char *src)
void strcat(char *dst, rom char *src)

void strncat(char *dst, const char *src, unsigned char len)
void strncat(char *dst, rom char *src, unsigned char len)

(function) Appends zero terminated string 'src' to destination string 'dst'.
Destination buffer must be big enough for string to fit. Declared in string.h

BoostC™ Manual SourceBoost Technologies Page 69

char* strpbrk(const char *ptr1, const char *ptr2)
char* strpbrk(const char *src, rom char *src)

unsigned char strcspn(const char *src1, const char *src2)
unsigned char strcspn(rom char *src1, const char *src2)
unsigned char strcspn(const char *src1, rom char *src2)
unsigned char strcspn(rom char *src1, rom char *src2)

(function) Locates the first occurrence of a character in the string that doesn't
match any character in the search string. Declared in string.h

unsigned char strspn(const char *src1, const char *src2)
unsigned char strspn(rom char *src1, const char *src2)
unsigned char strspn(const char *src1, rom char *src2)
unsigned char strspn(rom char *src1, rom char *src2)

(function) Locates the first occurrence of a character in the string. Declared in
string.h

char* strtok(const char *ptr1, const char *ptr2)
char* strtok(const char *src, rom char *src)

(function) Breaks string pointed into a sequence of tokens, each of which is
delimited by a character from delimiter string. Declared in string.h

char* strchr(const char *src, char ch)

(function) Locates the first occurrence of a character in the string. Declared in
string.h

char* strrchr(const char *src, char ch)

(function) Locates the last occurrence of a character in the string. Declared in
string.h

char* strstr(const char *ptr1, const char *ptr2)
char* strstr(const char *src, rom char *src)

(function) Locates the first occurrence of a sub-string in the string. Declared in
string.h

Conversion Functions

unsigned char sprintf(char* buffer, const char *format, unsigned int val)

Outputs a numerical value to a string in the specified format. The buffer must be
long enough to hold the result. Only one numerical value can be output at a time.
Declared in stdio.h.

Format specified in the format string with the following format:

%[flags][width][radix specifier]

Page 70 SourceBoost Technologies BoostC™ Manual

Radix Example output Description

“%d” “-120” decimal signed integer

“%u” “150” decimal unsigned integer

“%o” “773” octal unsigned integer

“%X” “ABF1” hex unsigned integer

“%b” “101101” binary unsigned integer

Justification Example output Description

“%8d” “231 ” left justified, padded to 8 characters length

“%016u” “0000000000045102” left justified, padded with zeroes to 16
characters length

“%-8b” “ 10” right justified, padded 8 characters length

Display of
sign

Example output Description

“%+8d” “+972 “ left justified, padded 8 characters length,
signed always displayed

“% 8d” “ 765 “ left justified, padded 8 characters length,
positive signed displayed as ' '

Display of sign only applies to signed decimal radix. Radix and field width added
just to show complete format specification

Implementation of field width is non standard - If a justification width is specified
the width will be padded or truncated to match the width provided. The most
significant digits and sign maybe truncated. Standard implementations do not
truncate the output, which can cause unexpected buffer overrun.

int strtoi(const char* buffer, char** endPtr, unsigned char radix)

(Function) String to integer. A function that converts the numerical character
string supplied into a signed integer (16 bit) value using the radix specified. Radix
valid range 2 to 26.

buffer: Pointer to a numerical string.

endPtr: Address of a pointer. This is filled by the function with the address where
string scan has ended. Allows determination of where there is the first non-
numerical character in the string. Passing a NULL is valid and causes the end scan
address not to be saved.

BoostC™ Manual SourceBoost Technologies Page 71

radix: The radix (number base) to use for the conversion, typical values: 2
(binary), 8 (octal), 10 (decimal), 16 (hexadecimal).

Return: The converted value.

long strtol(const char* buffer, char** endPtr, unsigned char radix);

(Function) String to long integer. A function that converts the numerical character
string supplied into a signed long integer (32 bit) value using the radix specified.
Radix valid range 2 to 26.

buffer: Pointer to a numerical string

endPtr: Address of a pointer. This is filled by the function with the address where
string scan has ended. Allows determination of where there is the first non-
numerical character in the string. Passing a NULL is valid and causes the end scan
address not to be saved.

radix: The radix (number base) to use for the conversion, typical values: 2
(binary), 8 (octal), 10 (decimal), 16 (hexadecimal).

Return: The converted value.

int atoi(const char* buffer)

(Macro) ASCII to integer. A macro that converts the numerical character string
supplied into a signed integer (16 bit) value using a radix of 10.

buffer: Pointer to a numerical string.

Return: The converted value.

Note: Macro implemented as: #define atoi(buffer) strtoi(buffer, NULL, 10)

long atol(const char* buffer)

(Macro) ASCII to long integer. A macro that converts the numerical character
string supplied into a signed long integer (32 bit) value using a radix of 10.

buffer: Pointer to a numerical string.

Return: The converted value.

Note: Macro implemented as: #define atoi(buffer) strtoi(buffer, NULL, 10)

char* itoa(int val, char* buffer, unsigned char radix)

(Function) Integer to ASCII. function that converts an integer (16 bit) value into a
character string.

char* ltoa(long val, char* buffer, unsigned char radix)

(Function) Long integer to ASCII. function that converts an long integer (32 bit)
value into a character string.

Page 72 SourceBoost Technologies BoostC™ Manual

Lightweight Conversion Functions
The standard conversion functions offer a lot of flexibility at the cost of ROM, RAM
and execution time. For application that are short of RAM and ROM, or require
shorter execution time, it maybe desirable to use the following lightweight
functions.

void uitoa_hex(char* buffer, unsigned int val, unsigned char digits)

(Function) Unsigned integer to ASCII, hexadecimal representation. This function
converts a 16 bit unsigned integer into a hex value with leading zeros. The number
of digits is specified using by the digits parameter.

void uitoa_bin(char* buffer, unsigned int val, unsigned char digits)

(Function) Unsigned integer to ASCII, binary representation. This function converts
a 16 bit unsigned integer into a binary value with leading zeros. The number of
digits is specified using by the digits parameter.

void uitoa_dec(char* buffer, unsigned int val, unsigned char digits)

(Function) Unsigned integer to ASCII, decimal representation. This function
converts and 16 bit unsigned integer into a decimal value with leading zeros. The
number of digits is specified using by the digits parameter.

unsigned int atoui_hex(const char* buffer)

(Function) ASCII to unsigned integer, hexadecimal representation. This function
converts a hexadecimal string value into 16 bit unsigned integer.

unsigned int atoui_bin(const char* buffer)

(Function) ASCII to unsigned integer, binary representation. This function converts
a binary string value into 16 bit unsigned integer.

unsigned int atoui_dec(const char* buffer)

(Function) ASCII to unsigned integer, decimal representation. This function
converts a decimal string value into 16 bit unsigned integer.

Character

char toupper(char ch)

(function) Converts lowercase character to uppercase. Declared in ctype.h

char tolower(char ch)

(function) Converts uppercase character to lowercase. Declared in ctype.h

char isdigit(char ch)

(function) Checks if character 'ch' is a digit. Returns non zero if this is a digit.
Declared in ctype.h

BoostC™ Manual SourceBoost Technologies Page 73

char isalpha(char ch)

(function) Checks if character 'ch' is a letter. Returns non zero if this is a letter.
Declared in ctype.h

char isalnum(char ch)

(function) Checks if character 'ch' is a letter or a digit. Returns non zero if this is a
letter or a digit. Declared in ctype.h

char isblank(char ch)

(function) Returns a 1 if the argument is a standard blank character. All other
inputs will return a 0. The following are the standard blank characters:
' ' (space) or '\t' (horizontal tab). Declared in ctype.h

char iscntrl(char ch)

(function) Returns a 1 if the argument is a valid control character. All other inputs
will return a 0. Declared in ctype.h

char isgraph(char ch)

(function) Returns a 1 if the argument is a valid displayable ASCII character. All
other inputs will return a 0. Declared in ctype.h

char islower(char ch)

(function) Returns a 1 if the argument is a valid lower-case ASCII letter. All other
inputs will return a 0. Declared in ctype.h

char isprint(char ch)

(function) Returns a 1 if the argument is a valid printable ASCII character. All
other inputs will return a 0. Declared in ctype.h

char ispunct(char ch)

(function) Returns a 1 if the argument is a valid punctuation character. All other
inputs will return a 0. The following are the implemented punctuation characters:
! " # $ % & ' () * + , - . / : ; < = > ? @ [\] ^ _ ` { | } ~

char isspace(char ch)

(function) Returns a 1 if the argument is a standard white-space character. All
other inputs will return a 0. Declared in ctype.h. The following are the standard
white-space characters:

Character Description Character
ASCII code

Character Escape
sequence

space 0x20 ' '

horizontal tab 0x09 '\t'

vertical tab 0x0B '\v'

newline 0x0A '\n'

Page 74 SourceBoost Technologies BoostC™ Manual

Character Description Character
ASCII code

Character Escape
sequence

carriage return 0x0D '\r'

form feed 0x0C '\f'

char isupper(char ch)

(function) Returns a 1 if the argument is a valid upper-case ASCII letter. All other
inputs will return a 0. Declared in ctype.h

char isxdigit(char ch)

(function) Returns a 1 if the argument is a valid hexadecimal character. All other
inputs will return a 0. Declared in ctype.h

void* memchr(const void *ptr, char ch, unsigned char len)

(function) Locates the first character in memory. Declared in memory.h

signed char memcmp(const void *ptr1, const void *ptr2, unsigned char
len)

(function) Compares memory. Declared in memory.h

void* memcpy(void *dst, const void *src, unsigned char len)

(function) Copies memory. Declared in memory.h

void* memmove(void *dst, const void *src, unsigned char len)

(function) Moves memory. Declared in memory.h

void* memset(void *ptr, char ch, unsigned char len)

(function) sets memory. Declared in memory.h

Miscellaneous Functions

unsigned short rand(void)

(function) Generates pseudo random number. Declared in rand.h Defined in
rand.lib

void srand(unsigned short seed)

(function) Sets seed for pseudo random number generator. Declared in rand.h
Defined in rand.lib

max(a, b)

(Macro) Returns the value of the argument with the largest value.

BoostC™ Manual SourceBoost Technologies Page 75

min(a, b)

(Macro) Returns the value of the argument with the smallest value.

I2C functions

i2c_init, i2c_start, i2c_restart, i2c_stop, i2c_read, i2c_write
(for more information look into i2c_driver.h and i2c_test.c files)

RS232 functions

uart_init, kbhit, getc, getch, putc, putch
(for more information look into serial_driver.h and serial_test.c files)

LCD functions

lcd_setup, lprintf, lcd_clear, lcd_write, lcd_funcmode, lcd_datamode
(for more information look into lcd_driver.h and lcd.c files)

Flash functions

short flash_read(short addr)

(function) Reads flash content from address 'addr'. Works with PIC16F87X devices.
Declared in flash.h Defined in flash.pic16.lib

void flash_loadbuffer(short data)

(function) Stores 'data' in an internal buffer of 4 shorts long. Must be called four
times to fill the internal buffer. Data in this buffer is used by flash_write to store
data in flash. Works with PIC16F87X devices. Declared in flash.h Defined in
flash.pic16.lib

void flash_write(short addr)

(function) Writes data from an internal buffer into flash at address 'addr'. The
internal buffer that is 4 shorts long must be filled using 4 calls to flash_loadbuffer.
Works with PIC16F87X devices. Declared in flash.h Defined in flash.pic16.lib

EEPROM functions

char eeprom_read(char addr)

(function) Reads eeprom content from address 'addr'. Works with PIC16F87X
devices. Declared in eeprom.h Defined in eeprom.pic16.lib

void eeprom_write(char addr, char data)

(function) Writes 'data' into eeprom at address 'addr'. Works with PIC16F87X
devices. Declared in eeprom.h Defined in eeprom.pic16.lib

Page 76 SourceBoost Technologies BoostC™ Manual

ADC functions

short adc_measure(char ch)

(function) Reads ADC channel 'ch'. ADC must be initialized before using this
function. Works with PIC16F devices that have ADC units. Declared in adc.h
Defined in adc.pic16.lib

A sample ADC initialization can look like:
volatile bit adc_on @ ADCON0 . ADON; //AC activate flag

set_bit(adcon1, ADFM); // AD result needs to be right justified
set_bit(adcon1, PCFG0); // all analog inputs
set_bit(adcon1, PCFG1); // Vref+ = Vdd
set_bit(adcon1, PCFG2); // Vref- = Vss

set_bit(adcon0, ADCS1); // Select Tad = 32 * Tosc (this depends on the X-
tal here 10 MHz, should work up to 20 MHz)
clear_bit(adcon0, CHS0); // Channel 0
clear_bit(adcon0, CHS1); //
clear_bit(adcon0, CHS2); //
adc_on = 1; // Activate AD module

One wire bus functions

char oo_busreset()

(function) Resets the one wire bus. Declared in oo.h Defined in oo.pic16.lib and
oo.pic18.lib

Here is a typical scenario how to use the one wire library:
// To be able to use the one wire library two global bit variables need to
be declared in the code.
// These are the variables that control port pin ised for one wire
communication. For example
// if the one wire interface is connected to pin 6 of port B the
declaration will look like this:

#define OO_PORT PORTB
#define OO_TRIS TRISB
#define OO_PIN 6

volatile bit oo_bus @ OO_PORT . OO_PIN;
volatile bit oo_bus_tris @ OO_TRIS . OO_PIN;

...

// Reset the one wire bus
oo_busreset();

// Start the conversion (non-blocking function)
oo_start_conversion();

// Wait for completion, you could do other stuff here
// But make sure that this function returns zero before
// reading the scratchpad
if(oo_wait_for_completion())
{
 //handle conversion time out
}

BoostC™ Manual SourceBoost Technologies Page 77

// Read the scratchpad
if(oo_read_scratchpad())
{
 //handle conversion error
}

// And extract the temperature information
short data = oo_get_data();

short oo_get_data()

(function) Reads data from one wire bus. Declared in oo.h Defined in oo.pic16.lib
and oo.pic18.lib

char oo_read_scratchpad()

(function) Reads scratchpad. Declared in oo.h Defined in oo.pic16.lib and
oo.pic18.lib

void oo_start_conversion()

(function) Starts conversion. Declared in oo.h Defined in oo.pic16.lib and
oo.pic18.lib

char oo_conversion_busy()

(function) Checks if conversion is in progress. Returns 0 if no conversion is active.
Declared in oo.h Defined in oo.pic16.lib and oo.pic18.lib

char oo_wait_for_completion()

(function) Waits for a conversion to complete. Returns 0 if conversion completed
within 1 sec. Declared in oo.h Defined in oo.pic16.lib and oo.pic18.lib

Page 78 SourceBoost Technologies BoostC™ Manual

Technical support
For technical support, example projects and updates please refer to our website:
http://www.sourceboost.com

We operate a forum where technical and license issue problems can be posted.
This should be the first place to visit:

http://www.sourceboost.ipbhost.com/

BoostC Support Subscription
By buying a support subscription you will receive priority technical support via
email. This ensures that your query or problem will be at the front of the queue
and receive the highest priority attention.

BoostC Support Subscriptions are here:
http://www.sourceboost.com/Products/BoostC/BuyLicense/SupportSubscription.html

Licensing Issues
If you have licensing issues, then please send a mail to: support@sourceboost.com

General Support
For general support issues, please mail support@sourceboost.com

Always Pleased To Hear From You!

We are always pleased to hear your comments, this helps us to satisfy your needs.
Send mail to support@sourceboost.com or post your comments on the
SourceBoost Forum.

BoostC™ Manual SourceBoost Technologies Page 79

mailto:support@sourceboost.comoror
mailto:support@sourceboost.com
mailto:support@sourceboost.com
http://www.sourceboost.com/Products/BoostC/BuyLicense/SupportSubscription.html
http://www.sourceboost.ipbhost.com/
http://www.sourceboost.com/

Legal Information
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER
PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU
ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY
COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE
PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO
USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED
INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

THE AUTHOR RESERVES THE RIGHT TO REJECT ANY LICENSE (REGISTRATION) REQUEST WITHOUT
EXPLAINING THE REASONS WHY SUCH REQUEST HAS BEEN REJECTED. IN CASE YOUR LICENSE
(REGISTRATION) REQUEST GETS REJECTED YOU MUST STOP USING THE SourceBoost IDE, BoostC,
BoostC++, BoostBasic, C2C-plus, C2C++ and P2C-plus COMPILERS AND REMOVE THE WHOLE
SourceBoost IDE INSTALLATION FROM YOUR COMPUTER.

Microchip, PIC, PICmicro and MPLAB are registered trademarks of Microchip
Technology Inc.

BoostC and BoostLink are trademarks of SourceBoost Technologies.
Other trademarks and registered trademarks used in this document are the
property of their respective owners.

http://www.sourceboost.com
Copyright© 2004-2006 Pavel Baranov

Copyright© 2004-2006 David Hobday

Page 80 SourceBoost Technologies BoostC™ Manual

http://www.sourceboost.com/

	BoostC compiler
	Introduction
	BoostC Compiler specification
	Base Data types
	Special Data types
	Special Language Features
	Code Production and Optimization Features
	Debugging features
	Full MPLAB integration
	Librarian
	Code Analysis

	Installation
	Compilation model and toolchain
	Preprocessor
	Compiler
	Linker
	Librarian
	Differences with C2C compilation model

	MPLAB integration
	Features
	Setting the MPLAB Language Tool Locations
	Creating a project under MPLAB IDE
	Using ICD2

	Command line options
	BoostC command line
	Optimization
	BoostLink command line
	-rb
	-swcs
	-isrnoshadow
	-isrnocontext
	libc Library

	Code entry points

	SourceBoost IDE
	Preprocessor
	Directives
	#include
	#define
	#undef
	#if, #else, #endif
	#ifdef
	#ifndef
	#error
	#warning

	Pragma directives
	#pragma DATA
	#pragma CLOCK_FREQ
	#pragma OPTIMIZE

	C language
	Program structure
	Data types
	Base data types
	Structures and unions
	Typedef
	Enum
	Code size vs Data Types
	Rom
	Volatile
	Static
	Constants

	Strings
	Variables
	Register mapped variables
	Bit access

	Arrays
	Pointers
	Strings as function arguments

	Operators
	Arithmetic
	Arithmetic Operator Examples
	Assignment
	Assignment Operator Examples
	Comparison Operator Examples
	Logical Operator Examples
	Bitwise Operator Examples
	Conditional Examples

	Program Flow
	Program Flow Examples

	Inline assembly
	User Data

	Functions
	Inline functions
	Special functions
	General functions and interrupts

	Dynamic memory management

	C language superset
	References as function arguments
	Function overloading
	Function templates

	Parametric timing functions
	void delay_us(unsigned char t)
	void delay_10us(unsigned char t)
	void delay_100us(unsigned char t)
	void delay_ms(unsigned char t)
	void delay_s(unsigned char t)

	System Libraries
	General purpose functions
	clear_bit(var, num)
	set_bit(var, num)
	test_bit(var, num)
	MAKESHORT(dst, lobyte, hibyte)
	LOBYTE(dst, src)
	HIBYTE(dst, src)
	void nop(void)
	void clear_wdt(void)
	void sleep(void)

	String and Character Functions
	void strcpy(char *dst, const char *src)
void strcpy(char *dst, rom char *src)
	void strncpy(char *dst, const char *src, unsigned char len)
void strncpy(char *dst, rom char *src, unsigned char len)
	unsigned char strlen(const char *src)
unsigned char strlen(rom char *src)
	signed char strcmp(const char *src1, const char *src2)
signed char strcmp(rom char *src1, const char *src2)
signed char strcmp(const char *src1, rom char *src2)
signed char strcmp(rom char *src1, rom char *src2)
	signed char stricmp(const char *src1, const char *src2)
signed char stricmp(rom char *src1, const char *src2)
signed char stricmp(const char *src1, rom char *src2)
signed char stricmp(rom char *src1, rom char *src2)
	signed char strncmp(char *src1, char *src2, unsigned char len)
signed char strncmp(rom char *src1, char *src2, unsigned char len)
signed char strncmp(char *src1, rom char *src2, unsigned char len)
signed char strncmp(rom char *src1, rom char *src2, unsigned char len)
	signed char strnicmp(char *src1, char *src2, unsigned char len)
signed char strnicmp(rom char *src1, char *src2, unsigned char len)
signed char strnicmp(char *src1, rom char *src2, unsigned char len)
signed char strnicmp(rom char *src1, rom char *src2, unsigned char len)
	void strcat(char *dst, const char *src)
void strcat(char *dst, rom char *src)
	void strncat(char *dst, const char *src, unsigned char len)
void strncat(char *dst, rom char *src, unsigned char len)
	char* strpbrk(const char *ptr1, const char *ptr2)
char* strpbrk(const char *src, rom char *src)
	unsigned char strcspn(const char *src1, const char *src2)
unsigned char strcspn(rom char *src1, const char *src2)
unsigned char strcspn(const char *src1, rom char *src2)
unsigned char strcspn(rom char *src1, rom char *src2)
	unsigned char strspn(const char *src1, const char *src2)
unsigned char strspn(rom char *src1, const char *src2)
unsigned char strspn(const char *src1, rom char *src2)
unsigned char strspn(rom char *src1, rom char *src2)
	char* strtok(const char *ptr1, const char *ptr2)
char* strtok(const char *src, rom char *src)
	char* strchr(const char *src, char ch)
	char* strrchr(const char *src, char ch)
	char* strstr(const char *ptr1, const char *ptr2)
char* strstr(const char *src, rom char *src)

	Conversion Functions
	unsigned char sprintf(char* buffer, const char *format, unsigned int val)
	int strtoi(const char* buffer, char** endPtr, unsigned char radix)
	long strtol(const char* buffer, char** endPtr, unsigned char radix);
	int atoi(const char* buffer)
	long atol(const char* buffer)
	char* itoa(int val, char* buffer, unsigned char radix)
	char* ltoa(long val, char* buffer, unsigned char radix)

	Lightweight Conversion Functions
	void uitoa_hex(char* buffer, unsigned int val, unsigned char digits)
	void uitoa_bin(char* buffer, unsigned int val, unsigned char digits)
	void uitoa_dec(char* buffer, unsigned int val, unsigned char digits)
	unsigned int atoui_hex(const char* buffer)
	unsigned int atoui_bin(const char* buffer)
	unsigned int atoui_dec(const char* buffer)

	Character
	char toupper(char ch)
	char tolower(char ch)
	char isdigit(char ch)
	char isalpha(char ch)
	char isalnum(char ch)
	char isblank(char ch)
	char iscntrl(char ch)
	char isgraph(char ch)
	char islower(char ch)
	char isprint(char ch)
	char ispunct(char ch)
	char isspace(char ch)
	char isupper(char ch)
	char isxdigit(char ch)
	void* memchr(const void *ptr, char ch, unsigned char len)
	signed char memcmp(const void *ptr1, const void *ptr2, unsigned char len)
	void* memcpy(void *dst, const void *src, unsigned char len)
	void* memmove(void *dst, const void *src, unsigned char len)
	void* memset(void *ptr, char ch, unsigned char len)

	Miscellaneous Functions
	unsigned short rand(void)
	void srand(unsigned short seed)
	max(a, b)
	min(a, b)

	I2C functions
	i2c_init, i2c_start, i2c_restart, i2c_stop, i2c_read, i2c_write
(for more information look into i2c_driver.h and i2c_test.c files)

	RS232 functions
	uart_init, kbhit, getc, getch, putc, putch
(for more information look into serial_driver.h and serial_test.c files)

	LCD functions
	lcd_setup, lprintf, lcd_clear, lcd_write, lcd_funcmode, lcd_datamode
(for more information look into lcd_driver.h and lcd.c files)

	Flash functions
	short flash_read(short addr)
	void flash_loadbuffer(short data)
	void flash_write(short addr)

	EEPROM functions
	char eeprom_read(char addr)
	void eeprom_write(char addr, char data)

	ADC functions
	short adc_measure(char ch)

	One wire bus functions
	char oo_busreset()
	short oo_get_data()
	char oo_read_scratchpad()
	void oo_start_conversion()
	char oo_conversion_busy()
	char oo_wait_for_completion()

	Technical support
	BoostC Support Subscription
	Licensing Issues
	General Support

	Legal Information

