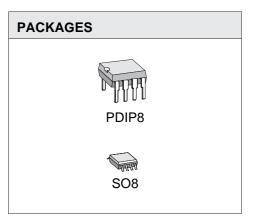
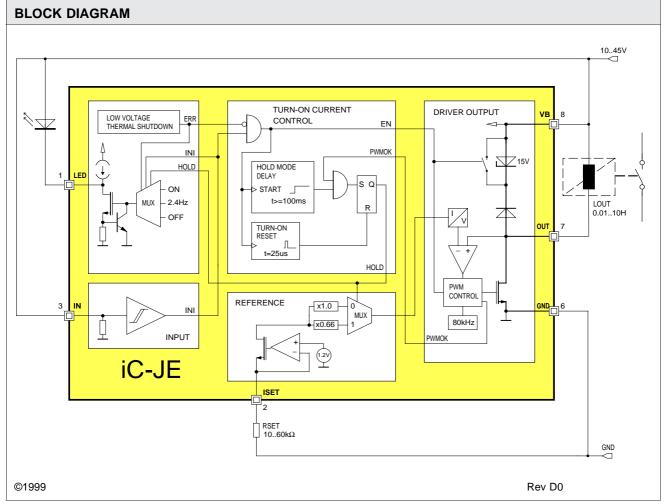
iC-JE

PWM RELAY/SOLENOID DRIVER




FEATURES

- ♦ Wide operating voltage range of 10..45Vdc
- ♦ PWM control for coil currents of 40..300mA
- Coil current for energize and hold modes set by an external resistor
- Coil current monitored during energize mode, detection of load breakage and voltage errors
- Automatic current reduction after 100ms to reduce the power consumption in hold mode
- The internal free-wheeling alteration function supports PWM operation and quick demagnetizing during shutdown
- Status report given at the current-limited LED output
- Shutdown with excessive temperature and low voltage
- Integrated oscillator needs no external components
- PWM frequency is beyond audible range
- Protective circuitry against damage by ESD
- Minimum space requirements, few external components

APPLICATIONS

- PWM drive for inductive loads (e.g. relays, electrovalves)
- Relay low/high-side switch

iC-JE

PWM RELAY/SOLENOID DRIVER

Rev D0, Page 2/10

DESCRIPTION

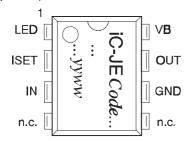
iC-JE is a PWM driver for inductive loads, such as relay coils, solenoid valves and small DC motors.

The setpoint for the coil current is preset with the help of the RSET external resistor. 60..300mA can be set for energize mode which then automatically drop to 2/3 of this value (40..200mA) during hold mode. The device is switched to hold mode after 100ms provided that the set coil current is obtained during energizing (PWMOK= 1).

The changeover between energize and hold modes is suitable for typical relay drives which require a powerful initial energizing current which can then be reduced after closing the air gap in a magnetic circuit. The quadratic dependence on the current intensity means that the power dissipation of the system is more than halved through this reduction.

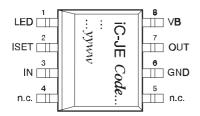
The output current is measured with zero loss at the power transistor's ON resistance and compared to the setpoint. In order to maintain this setpoint, the switch-on time of the coil driver is modulated by the pulse width. The internal flyback diode maintains the current during the switching pauses. The switching frequency of ca. 80kHz is provided by the internal oscillator.

The device is shutdown by a lo signal at input IN or the removal of the power supply; the current reduction in the coil is supported by the changeover of the free-wheeling circuit. The Zener diode now active permits higher free-wheeling voltages and thus a quicker demagnetizing of the coil.


The status indicator LED is constantly on when hold mode is functioning correctly and flashes with low voltage, excessive temperature or when the coil current in energize mode has not reached the setpoint. The driver output is shutdown with low voltage or excessive temperature.

The device is protected against destruction by ESD.

PACKAGES PDIP8, SO8 to JEDEC Standard


PIN CONFIGURATION PDIP8

(top view)

PIN CONFIGURATION SO8

(top view)

PIN FUNCTIONS

No. Name Function

I	LED	State monitor
2	ISET	PWM Reference Current
		(setpoint adjustment)

3 IN Input

4 n.c.

5 n.c.

6 GND Ground7 OUT PWM Output

8 VB +10 to 45V Supply Voltage

Rev D0, Page 3/10

ABSOLUTE MAXIMUM RATINGS

Values beyond which damage may occur; device operation is not guaranteed.

Item	Symbol	Parameter	Conditions	Fig.			Unit
					Min.	Max.	
G001	V(VB)	Voltage at VB			-0.3	48	V
G002	I(VB)	Current in VB			-350	6	mA
G003	V(OUT)	Voltage at OUT			-0.3	60	V
G004	I(OUT)	Output Current in OUT			-6	350	mA
G005	V(LED)	Voltage at LED			-0.3	VB	V
G006	I(LED)	Current in LED			-6	8	mA
G007	V(ISET)	Voltage at ISET			-0.3	48	V
G008	I(ISET)	Current in ISET			-6	6	mA
G009	V(IN)	Voltage at IN			-0.3	48	V
G010	I(IN)	Current in IN			-6	6	mA
TG1	Tj	Junction Temperature			-40	150	°C
TG2	Ts	Storage Temperature			-40	150	°C

THERMAL DATA

Operating Conditions: VB= 10..45V, LOUT= 0.01..10H, RSET= $10..60k\Omega$

Item	Symbol	Parameter	Conditions	Fig.				Unit
					Min.	Тур.	Max.	
T1	Та	Operating Ambient Temperature Range			-25		80	°C
T2	Rthja	Thermal Resistance Chip / Ambient	PDIP8 package				110	K/W
Т3	Rthja	Thermal Resistance Chip / Ambient	SO8 package				140	K/W

ELECTRICAL CHARACTERISTICS

Operating Conditions: VB= 10..45V, LOUT= 0.01..10H, RSET= 10k..60k Ω , Tj= -25..125°C, unless otherwise noted. LED connected or pin LED linked to GND.

ltem	Symbol	Parameter	Conditions	Tj	Fig.		ı		Unit
				°C		Min.	Тур.	Max.	
Total	Device								
001	VB	Permissible Supply Voltage Range				10		45	V
002	I(VB)	Supply Current in VB	Outputs OUT, LED disabled			0.5		2	mA
003	I(VB)	Supply Current in VB	Output OUT enabled			0.5		3	mA
004	Vc()lo	Clamp Voltage lo at all Pins	I()= -4mA, other Pins open			-1.4		-0.3	V
005	Vc()hi	Clamp Voltage hi at VB, IN, ISET	I()= 4mA, other Pins open			48	57		V
006	Vc()hi	Clamp Voltage hi at OUT	I(OUT)= 4mA, other Pins open			60	71		V
007	Vc()hi	Clamp Voltage hi at LED vs. VB	Vc()hi= V(LED)-V(VB) I(LED)= 4mA, other Pins open			0.3		1.4	V
Drive	r Output O	UT							
101	Vs()lo	Saturation Voltage lo	I(OUT)= 200mA		1		360	600	mV
102	Vs()lo	Saturation Voltage lo	I(OUT)= 300mA		1		550	850	mV
103	PWMthi	Permissible Energizing Current			1			300	mA
104	PWMthi	Permissible Hold Current			1	40			mA
105	Isc()	Short-circuit Current	V(OUT)= VB			0.6	1	1.7	Α
106	Vc()hi	Clamp Voltage hi at PWM-Free-Wheeling	Vc()hi= V(OUT)-VB; IN= hi, I(OUT)= 200mA		1		1	1.5	V
107	Vc()hi	Clamp Voltage hi at PWM-Free-Wheeling	Vc()hi= V(OUT)-VB; IN= hi, I(OUT)= 300mA		1		1.4	2	V
108	Vc()off	Clamp Voltage hi at Turn-off	Vc()hi= V(OUT)-VB; IN: hi→lo, I(OUT)= 200mA		1	12	15	17	V
109	IIK()	Leakage Current	IN= Io, V(OUT)= 0VB				1	10	μΑ
110	twon()min	Minimum PWM Turn-on Duration	IN= hi, ISET open		1	250		1000	ns
111	C()	Permissible Load Capacitance						1	nF
Input	IN								
201	Vt()on	Threshold Voltage hi				2.6	2.85	3.2	V
202	Vt()off	Threshold Voltage Io				1.7	2.0	2.3	V
203	Vt()hys	Hysteresis	Vt()hys= Vt()on-Vt()off			0.7	0.85	1.1	V
204	lpd()	Pull-down Current	V(IN)= 445V			50	100	200	μА
205	Rpd()	Pull-down Resistor	V(IN)= 04V			20	50	80	kΩ
206	tp(IN- OUT)	Turn-on Delay	IN: lo→hi					20	μs
207	tp(IN- OUT)	Turn-off Delay	IN: hi→lo					10	μs
208	tp(VB- OUT)	Turn-on Delay when VB is powered up	IN= VB, VB= VBoff \rightarrow VBon					40	μs
209	tp(IN- LED)	Delay Time from IN to LED (with light permanently on)	PWMOK= 1 before tpPMWlo			65	100	135	ms
210	tp(IN- LED)	Delay Time from IN to LED (with light flashing)	PWMOK= 0			130	200	270	ms

Rev D0, Page 5/10

ELECTRICAL CHARACTERISTICS

Operating Conditions: VB= 10..45V, LOUT= 0.01..10H, RSET= 10k..60k Ω , Tj= -25..125°C, unless otherwise noted. LED connected or pin LED linked to GND.

tem	Symbol	Parameter	Conditions	Tj	Fig.				Unit
				°C		Min.	Тур.	Max.	
State	Monitor L	ED							
301	lpd()	Pull-down Current	V(LED)= 5VVB			3	5	8	mA
302	Vs()lo	Saturation Voltage lo	I(LED)= 200μA					0.4	V
303	lpu()	Pull-up Current	V(LED)= 0V(VB-1V)			-20	-100	-300	μΑ
304	VBlo	Permissible Supply Voltage for Monitoring Function				6		45	V
305	VBon	Turn-on Threshold at VB				7.6	8	8.4	V
306	VBoff	Undervoltage Threshold at VB	decreasing voltage VB			7.1	7.5	7.9	V
307	VBhys	Hysteresis	VBhys= VBon-VBoff			200	500	800	mV
308	Toff	Thermal Shutdown Temperature				130	140	150	°C
309	Ton	Thermal Lock-on Threshold	decreasing temperature			110	120	130	°C
310	Thys	Thermal Shutdown Hysteresis	Thys= Toff-Ton			10	20	30	°C
311	f()	Flash Frequency on Error	ERR= hi or PWMOK= 0 VB= 645V			1.8	2.4	3.6	Hz
Refer	ence ISET	1	1						
401	V()	Reference Voltage				1.14	1.20	1.26	V
402	lsc()	Short-Circuit Current	V(ISET)= 0V			-2.5	-1.8	-0.3	mA
403	K1	Transfer Value for Energizing Current RSET= K1 / I(OUT)start	I(OUT)start= 60150mA			2900	3250	3600	ΑΩ
404	K1	Transfer Value for Energizing Current RSET= K1 / I(OUT)start	I(OUT)start= 150300mA			2900	3250	3600	ΑΩ
405	CRrel	Relative Current Ratio It(OUT)hold / It(OUT)start (Trigger Thresholds Ratio: Hold vs. Energize Mode)	I(OUT)start= 60150mA		1	63	66	69	%
406	CRrel	Relative Current Ratio It(OUT)hold / It(OUT)start (Trigger Thresholds Ratio: Hold vs. Energize Mode)	I(OUT)start= 150300mA		1	63	66	69	%
407	K2	Transfer Value for Hold Current RSET= K2 / I(OUT)hold	I(OUT)hold= 40100mA			1930	2160	2400	ΑΩ
408	K2	Transfer Value for Hold Current RSET= K2 / I(OUT)hold	I(OUT)hold= 100200mA			1930	2160	2400	ΑΩ
Oscil	lator								
501	fosc	Oscillator Frequency			1	60	80	120	kHz
Turn-	on Curren	t Control	•						
601	tpPWMlo	Hold Mode Propagation Delay	PWMOK= 1 before tpPWMlo			65	100	135	ms

ELECTRICAL CHARACTERISTICS: Diagrams

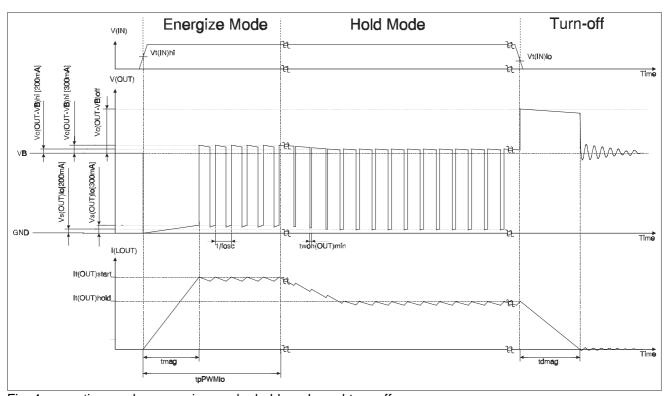


Fig. 1: operation modes: energize mode, hold mode and turn-off

$$t_{mag} \approx \frac{It(OUT)_{start} \times LOUT}{VB}$$
 (1)

$$t_{dmag} \approx \frac{It(OUT)_{hold} \times LOUT}{V_c(OUT - VB)_{hi}}$$
 (2)

APPLICATIONS INFORMATION

Setting the coil current

The following equations can be given for the energize and hold modes of the PWM control using Electrical Characteristics Nos. 403 to 408:

$$RSET = \frac{K1}{I(OUT)_{start}}$$
 (3)

$$RSET = \frac{K2}{I(OUT)_{hold}}$$
 (4)

Example: For a relay with a starting current of 100mA (66mA hold current) RSET is calculated as:

$$RSET = \frac{3250\Omega A}{0.1A} = 32.5k\Omega \tag{5}$$

Application circuits:

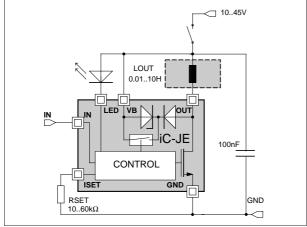


Fig. 2: driver/relay combination activated via the external control input IN.

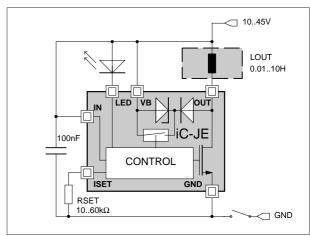


Fig. 3: driver/relay combination activated via the supply pin GND.

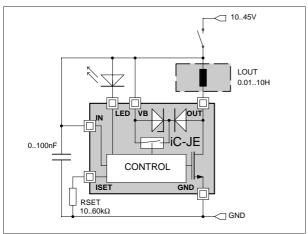


Fig. 4: driver/relay combination activated via the supply pin VB.

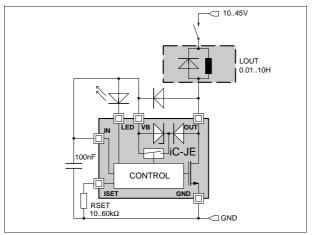


Fig. 6: low-side driver for an external relay with a flyback diode.

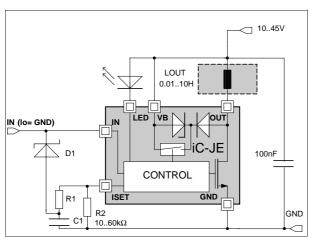


Fig. 8: activation via pin IN with an increased energizing current. An additional Schottky diode discharges C1 if IN is switched to low(GND).

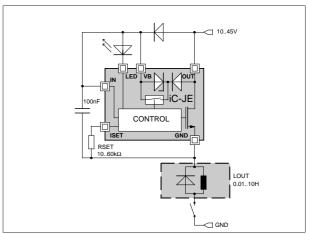


Fig. 5: high-side driver for an external relay with a flyback diode.

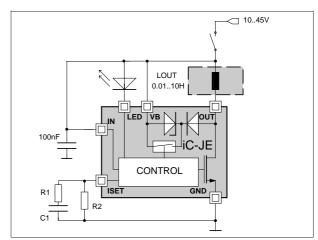


Fig. 7: increased energizing current due to the parallel RC-circuit.

DEMO BOARD

The iC-JE is equipped with a Demo Board for test purposes. The following figures show the wiring as well as the top and bottom layout of the test PCB.

The board comes with a strap between IN and SENSE1 (application equal to fig.4). The actual coil current can be measured by the voltage drop between SENSE1 and SENSE2 (1mV/mA).

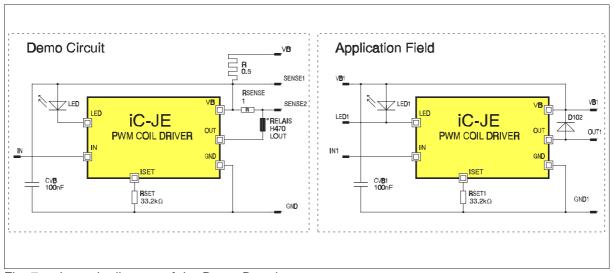


Fig. 7: schematic diagram of the Demo Board

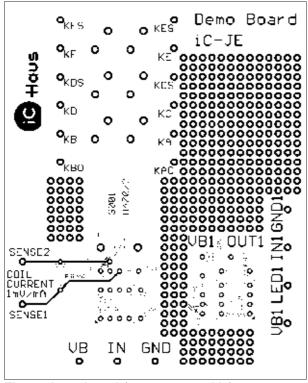


Fig. 8: demo board (components side)

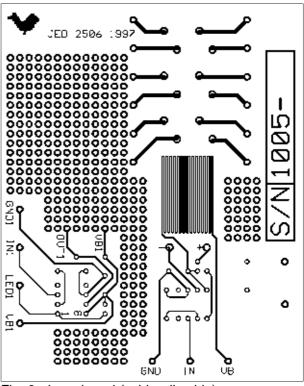


Fig. 9: demo board (solder dip side)

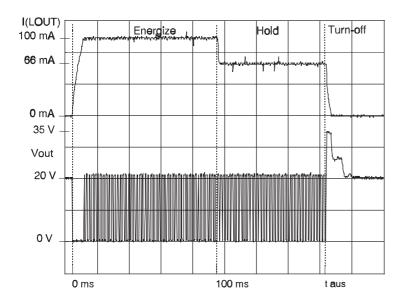


Fig. 10: oscilloscope graph of the demo circuit (sampled)

ORDERING INFORMATION

Туре	Package	Order designation
iC-JE iC-JE	PDIP8 SO8	iC-JE PDIP8 iC-JE SO8
JE Demo Board		JE Demo

For information about prices, terms of delivery, options for other case types, etc., please contact:

iC-Haus GmbH Am Kuemmerling 18 D-55294 Bodenheim GERMANY Tel +49-6135-9292-0 Fax +49-6135-9292-192 http://www.ichaus.com

This specification is for a newly developed product. iC-Haus therefore reserves the right to modify data without further notice. Please contact us to ascertain the current data. The data specified is intended solely for the purpose of product description and is not to be deemed guaranteed in a legal sense. Any claims for damage against us - regardless of the legal basis - are excluded unless we are guilty of premeditation or gross negligence.