WEBENCH ${ }^{\circledR}$ Transformer Report

Design : 4878393/26 UCC28C44DR
UCC28C44DR 48.0V-56.0V to 12.00 V @ 2.0A
\# Name

1. Core Part Number Value
2. Core Manufacturer

B66417G0000X197
3. Coil Former Part Number

B66418W1008D001
4. Coil Former Manufacturer

TDK

Transformer Electrical Diagram

Primary

Turns	29
AWG	27
Layers	2
Strands	2
Insulation Type	Heavy Insulated Magnet Wire

Auxiliary

Turns	15
AWG	28
Layers	1
Strands	2

Insulation Type
Heavy
Insulated Magnet Wire

Secondary

AWG 28

Layers 2
Strands 3
Insulation Type Triple Insulated

Transformer Construction Diagram

Winding Instruction

Winding	AWG		Turns	
		Winding Orientation		
Primary First $1 / 2$	27	15		Clockwise
Auxiliary	28	15	Counter Clockwise	
Triple Insulated Secondary	28	13	Counter Clockwise	
Primary Second $1 / 2$	27	14	Clockwise	

Transformer Parameters

\# Name	Value
1. Lpri	8.5E-5H
2. Inductance Factor(AI)	102 nH
3. Npri	29
4. Nsec	13
5. Naux	15
6. Core Type	EFD20/10/7
7. Core Material	N97
8. Bmax	0.25 T
9. Switching Frequency	99.31 kHz
10. DMax	0.4
11. lpk (Primary)	2.62A
12. Irms(Primary)	1.04 A
13. lpk (Secondary)	5.84A
14. Irms (Secondary)	2.83A

Design Assistance

1. UCC28C44 Product Folder : http://www.ti.com/product/UCC28C44 : contains the data sheet and other resources.

Texas Instruments' WEBENCH simulation tools attempt to recreate the performance of a substantially equivalent physical implementation of the design. Simulations are created using Texas Instruments' published specifications as well as the published specifications of other device manufacturers. While Texas Instruments does update this information periodically, this information may not be current at the time the simulation is built. Texas Instruments does not warrant the accuracy or completeness of the specifications or any information contained therein. Texas Instruments does not warrant that any designs or recommended parts will meet the specifications you entered, will be suitable for your application or fit for any particular purpose, or will operate as shown in the simulation in a physical implementation. Texas Instruments does not warrant that the designs are production worthy.
You should completely validate and test your design implementation to confirm the system functionality for your application prior to production.
Use of Texas Instruments' WEBENCH simulation tools is subject to Texas Instruments' Site Terms and Conditions of Use. Prototype boards based on WEBENCH created designs are provided AS IS without warranty of any kind for evaluation and testing purposes and are subject to the terms of the Evaluation License Agreement.

