
Article: Sylvain Mahé contact@sylvainmahe.site

Une radiocommande avec Nrf24l01p.h

Nrf24l01p.h permet de transmettre de manière multidirectionnelle (applications
multiceivers, soit plusieurs tranceivers) des informations (sur 32 bits quelles qu'elles soient)
sur la bande fréquence des 2.4GHz entre plusieurs périphériques (deux ou plus).

Le composant utilisé est le nRF24L01+, ce matériel est un tranceiver pour
émetteur/récepteur, la classe que je propose ici pilote ce composant et
permet des applications multiceivers (réseau d'émetteurs/récepteurs),
autorisant les projets les plus ambitieux notamment en robotique.

Le composant nRF24L01+ communique en SPI avec le microcontrôleur.

Ports des automates programmables concernés par le SPI:

Automate programmable MODULABLE M20:
- Port 11 (PB2) = SS (slave select)
- Port 12 (PB3) = MOSI (master output slave input)
- Port 13 (PB4) = MISO (master input slave output)
- Port 14 (PB5) = SCK (serial clock)

Automate programmable MODULABLE M32:
- Port 5 (PB4) = SS (slave select)
- Port 6 (PB5) = MOSI (master output slave input)
- Port 7 (PB6) = MISO (master input slave output)
- Port 8 (PB7) = SCK (serial clock)

Dans les exemples qui suivent, il s'agit de montrer le plus simplement possible (pour la
compréhension du lecteur) un émetteur et un récepteur distinct (sans créer de confusion et
donc sans évoquer le coté multiceiver):

Mais sachez que la programmation de multiples émetteurs/récepteurs
s'effectue exactement de la même façon, avec les fonctions employés
dans les exemples (transmit et receive), de manière complètement
transparente pour le programmeur via l'utilisation de la classe
Nrf24l01p.h.

Ci-dessous, un premier périphérique nommé "émetteur" envoi des données à un deuxième
montage appelé "récepteur".

Exemple d'émetteur:

Retour

Suite

www.sylvainmahe.site

LE SITE
de Sylvain Mahé
contact@sylvainmahe.site



#include "../module/1284p/Nrf24l01p.h"

int main()
{

Nrf24l01p myChannel = Nrf24l01p (1);
unsigned char increment = 0;

Nrf24l01p::start (5, 32, 1524003746, true);

while (true)
{

myChannel.transmit (increment);

if (increment < 255)
{

increment++;
}
else
{

increment = 0;
}

}

return 0;
}

Dans cet exemple, un objet myChannel de type Nrf24l01p est déclaré, en paramètre est
indiqué le canal 1 sur lequel communiquer les informations (il y a 64 canaux en tout). À la
ligne suivante une variable de type unsigned char (8 bits non signés) est déclarée avec une
valeur de 0, elle va servir à incrémenter un nombre entier.

Puis, le composant nRF24L01+ est démarré en appelant la fonction statique start prenant
plusieurs paramètres:
- Le 1er paramètre 5 est le numéro du port de l'automate programmable sur lequel est
connectée la broche SS (slave select) du composant nRF24L01+.

Ce paramètre est utile lorsque vous souhaitez connecter en SPI différents
composants en série ou en parallèle avec le microcontrôleur.

- Le 2ème paramètre 32 est le numéro du port de l'automate programmable laissé libre (en
l'air) relié en interne au convertisseur analogique/numérique du microcontrôleur. Ce port sert
au système anti-collisions qui utilise du bruit analogique pour générer de l'aléatoire. Si vous ne
souhaitez pas utiliser le système anti-collisions, indiquez 0 en paramètre.

Le système anti-collisions de la classe Nrf24l01p.h permet d'éviter que
plusieurs (deux ou plus) nRF24L01+ ne se transmettent des données
exactement au même moment. Il est vivement conseillé dans le cadre d'une
communication multidirectionnelle d'activer le système anti-
collisions en sélectionnant un port approprié.

Ports des automates programmables concernés par l'analogique:

Automate programmable MODULABLE M20:
- Port 15 (PC0)
- Port 16 (PC1)
- Port 17 (PC2)
- Port 18 (PC3)
- Port 19 (PC4)
- Port 20 (PC5)

Automate programmable MODULABLE M32:
- Port 25 (PA7)
- Port 26 (PA6)
- Port 27 (PA5)
- Port 28 (PA4)
- Port 29 (PA3)
- Port 30 (PA2)
- Port 31 (PA1)
- Port 32 (PA0)

Retour

Suite

www.sylvainmahe.site

LE SITE
de Sylvain Mahé
contact@sylvainmahe.site



- Le 3ème paramètre 1524003746 correspond à la clé unique qui permet de sécuriser la
communication entre plusieurs (deux ou plus) nRF24L01+.

C'est à vous de choisir cette clé unique, plus le nombre est complexe et plus
la communication sera sécurisée et protégée contre les parasites, mais il faut
reconnaître que n'importe quel nombre sur 32 bits différent de 0 avec
seulement quelques chiffres, est largement suffisant.

- Le 4ème paramètre true indique d'émettre à la puissance maximale (0dBm). Une valeur sur
false serait la puissance minimale (-18dBm), ce qui peut être suffisant en communication
courte distance (par exemple en intérieur).

Puis dans la boucle while, la fonction transmit de l'objet myChannel est utilisée pour
transmettre une information 32 bits à un autre nRF24L01+. Dans ce cas c'est la valeur de la
variable increment qui est transmise, variable dont la valeur est incrémentée aux lignes
suivantes.

Ce petit bout de programme est simple, mais il permet déjà d'assurer une
communication 2.4GHz efficace et sécurisée entre deux nRF24L01+.

Envoyer la valeur d'une variable qui s'incrémente au cours du temps peut servir à programmer
simplement un système à tolérance de pannes (fail-safe) sur la partie récepteur du montage.
En effet, si la valeur reçue ne s'incrémente plus pendant un certain temps (1 seconde par
exemple), il peut être alors intéressant de déclencher une mise au neutre des servo-moteurs,
une coupure de la motorisation d'un aéronef, une procédure de vol automatisée par gyroscope,
etc...

Exemple de récepteur:

#include "../module/1284p/Nrf24l01p.h"

int main()
{

Nrf24l01p myChannel = Nrf24l01p (1);
unsigned char increment = 0;

Nrf24l01p::start (5, 32, 1524003746, true);

while (true)
{

myChannel.receive();

//myChannel.data sont les données reçues sur ce canal:
increment = myChannel.data;

}

return 0;
}

Dans cet exemple le seul changement notable est l'appel de la fonction receive de l'objet
myChannel afin de recevoir les informations émises, en l'occurrence ici la valeur de la
variable incrémentée dans le montage coté émetteur.

Connexions (nRF24L01+ sur automates programmables):

- Broches VDD (+3.3V) sur broche +3.3V disponible via un régulateur de
tension adapté.
- Broches VSS (GND) sur broche GND disponible.
- Broche CSN (slave select) sur port SS ou tout autre port d'entrée/sortie
disponible.
- Broche MOSI (master output slave input) sur port MOSI.
- Broche MISO (master input slave output) sur port MISO.
- Broche SCK (serial clock) sur port SCK.

Retour

Suite

www.sylvainmahe.site

LE SITE
de Sylvain Mahé
contact@sylvainmahe.site



Attention, le composant nRF24L01+ fonctionne avec une tension de +3.3V,
il convient donc d'utiliser un régulateur de tension adapté !

La classe Nrf24l01p.h dispose d'une fonction reset ce qui permet de
remettre à l'état false les variables received et transmitted. Ces variables
sont utiles pour savoir si une ou plusieurs données ont été reçues ou
transmises avec succès. La variable data (qui correspond aux données
reçues) est également réinitialisée à 0.

Une fonction statique stop existe également et permet d'éteindre le circuit
d'émission/réception du composant nRF24L01+, un nouvel appel à la
fonction start permet de redémarrer le circuit.

Récapitulatif des fonctions et variables de cette classe:

signed long data = 0;
bool received = false;
bool transmitted = false;
Nrf24l01p (const unsigned char ADDRESS);
static void start (const unsigned char PIN_SS, const unsigned char PIN_ANTI_COLLISION, const unsigned lo
void receive();
void transmit (const signed long DATA);
void reset();
static void stop();

Exemple d'un système R/C 5 voies:

Dans l'exemple suivant, 4 potentiomètres (2 par manche) sont connectés aux ports 25, 26, 27,
et 28 de l'automate programmable. Ce sont des GPIO connectées au convertisseur
analogique/numérique du microcontrôleur. Un interrupteur est également connecté au port 1
de l'automate programmable, ce qui va servir d'interrupteur de coupure moteur dans ce cas
précis.

Les 4 potentiomètres et l'interrupteur servent d'interface utilisateur entre
l'homme et la machine.

5 objets de type Nrf24l01p (correspondants aux 5 voies) servent à transmettre les valeurs
brutes des 4 potentiomètres et de l'interrupteur (respectivement des valeurs allants de 0 à
1023 pour les potentiomètres et 0 ou 1 pour l'interrupteur).

L'émetteur:

Retour

Suite

www.sylvainmahe.site

LE SITE
de Sylvain Mahé
contact@sylvainmahe.site



#include "../module/1284p/AnalogRead.h"
#include "../module/1284p/GpioRead.h"
#include "../module/1284p/Nrf24l01p.h"

int main()
{

AnalogRead stickThrottle = AnalogRead (25);
AnalogRead stickPitch = AnalogRead (26);
AnalogRead stickRoll = AnalogRead (27);
AnalogRead stickYaw = AnalogRead (28);
GpioRead buttonCut = GpioRead (1, true, 20);
Nrf24l01p channelThrottle = Nrf24l01p (1);
Nrf24l01p channelPitch = Nrf24l01p (2);
Nrf24l01p channelRoll = Nrf24l01p (3);
Nrf24l01p channelYaw = Nrf24l01p (4);
Nrf24l01p channelCut = Nrf24l01p (5);

Nrf24l01p::start (5, 32, 1524003746, true);

while (true)
{

stickThrottle.read();
stickPitch.read();
stickRoll.read();
stickYaw.read();
buttonCut.read();

channelThrottle.transmit (stickThrottle.value);
channelPitch.transmit (stickPitch.value);
channelRoll.transmit (stickRoll.value);
channelYaw.transmit (stickYaw.value);
channelCut.transmit (buttonCut.continuous);

}

return 0;
}

L'exemple suivant est la partie récepteur du montage. 5 objets de type PwmWrite sont
utilisés pour générer des signaux PWM ce qui permet de faire fonctionner 4 servo-moteurs:
- Le 1er pour les gaz (throttle).
- Le 2ème pour l'axe de tangage (pitch).
- Le 3ème pour l'axe de rouli (roll).
- Le 4ème pour l'axe de lacet (yaw).

Une fois reçues avec les fonctions receive, les valeurs brutes sont transformées à l'aide de la
classe Math.h (qui permet de créer entre autre des courbes) en valeurs adaptées PWM
(modulation de la largeur d'impulsion en microsecondes) afin de les envoyer aux servo-
moteurs par les ports 1, 2, 3, et 4 de l'automate programmable.

Le récepteur:

Retour

Suite

www.sylvainmahe.site

LE SITE
de Sylvain Mahé
contact@sylvainmahe.site



#include "../module/1284p/Nrf24l01p.h"
#include "../module/1284p/PwmWrite.h"
#include "../module/1284p/Math.h"

int main()
{

Nrf24l01p channelThrottle = Nrf24l01p (1);
Nrf24l01p channelPitch = Nrf24l01p (2);
Nrf24l01p channelRoll = Nrf24l01p (3);
Nrf24l01p channelYaw = Nrf24l01p (4);
Nrf24l01p channelCut = Nrf24l01p (5);
PwmWrite servoThrottle = PwmWrite (1);
PwmWrite servoPitch = PwmWrite (2);
PwmWrite servoRoll = PwmWrite (3);
PwmWrite servoYaw = PwmWrite (4);

Nrf24l01p::start (5, 32, 1524003746, true);
PwmWrite::start (50);

while (true)
{

channelThrottle.receive();
channelPitch.receive();
channelRoll.receive();
channelYaw.receive();
channelCut.receive();

if (channelCut.data == true)
{

servoThrottle.us (1000);
}
else
{

servoThrottle.us (Math::curve (0, channelThrottle.data, 1023, 1000
servoPitch.us (Math::curve (0, channelPitch.data, 1023, 1000, 2000
servoRoll.us (Math::curve (0, channelRoll.data, 1023, 1000, 2000
servoYaw.us (Math::curve (0, channelYaw.data, 1023, 1000, 2000, 

}
}

return 0;
}

La 5ème voie (cut) permet la coupure des gaz quel que soit la position du manche de gaz,
c'est une des sécurités fondamentales notamment en aéromodélisme.

À ce propos, je ne pourrais être tenu pour responsable si vous faites une
mauvaise utilisation de mes exemples !

Ce qui signifie que vous utilisez ma programmation en toute connaissance de cause et en règle
avec la loi en vigueur dans votre pays (notamment en ce qui concerne les lieux de vols
autorisés, les fréquences et puissances d'émissions des radio-émetteurs, etc...).

Libre à vous d'explorer les possibilités de MODULE afin d'utiliser et de
modifier ces exemples pour vos applications !

En l'occurrence je pense au retour air/sol de la pression atmosphérique et de la température à
l'aide du baromètre BMP180 et de la classe Bmp180.h, de l'utilisation des gyroscopes
MPU6050 et BNO055 à l'aide des classes Mpu6050.h et Bno055.h, de l'ajout de trims, d'un
écran de contrôle, d'une alarme batterie faible, d'une temporisation, de réglages divers
(courbes, double débattements), etc... (voir mon projet de radiocommande section
"Fabrications et diverses réalisations" en page d'accueil).

design du site: sylvain mahé

Retour

Suite

www.sylvainmahe.site

LE SITE
de Sylvain Mahé
contact@sylvainmahe.site


