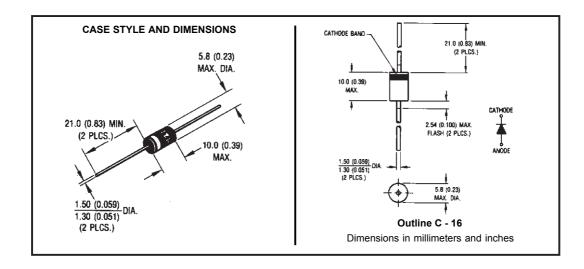
International IOR Rectifier

31DQ05 31DQ06

SCHOTTKY RECTIFIER

3.3 Amp


Major Ratings and Characteristics

Characteristics	Values	Units
I _{F(AV)} Rectangular waveform	3.3	А
V _{RRM}	50/60	٧
I _{FSM} @tp=5 µs sine	340	А
V _F @3 Apk, T _J = 25°C	0.62	V
T _J	-40 to 150	°C

Description/ Features

The 31DQ.. axial leaded Schottky rectifier has been optimized for very low forward voltage drop, with moderate leakage. Typical applications are in switching power supplies, converters, free-wheeling diodes, and reverse battery protection.

- Low profile, axial leaded outline
- High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance
- Very low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability
- Lead-Free plating

Document Number: 93320 www.vishay.com

Voltage Ratings

Part number	31DQ05	31DQ06	
V _R Max. DC Reverse Voltage (V)	50	60	
V _{RWM} Max. Working Peak Reverse Voltage (V)	50	60	

Absolute Maximum Ratings

	Parameters	31DQ	Units	Conditions		
I _{E(AV)}	Max. Average Forward Current	3.3	Α	50% duty cycle @ T _C = 40°C, re	C, rectangular wave form	
, ,	* See Fig. 4					
I _{FSM}	Max. Peak One Cycle Non-Repetitive	340	Α	5μs Sine or 3μs Rect. pulse	Following any rated load condition and with	
	Surge Current *See Fig. 6	55	_ A	10ms Sine or 6ms Rect. pulse	rated V _{RRM} applied	
E _{AS}	Non-Repetitive Avalanche Energy	5.0	mJ	T _J = 25 °C, I _{AS} = 1 Amps, L = 10 mH		
I _{AR}	Repetitive Avalanche Current	1.0	Α	Current decaying linearly to zero in 1 µsec		
				Frequency limited by $T_J \text{ max. } V_A = 1.5 \text{ x } V_R \text{ typical}$		

Electrical Specifications

	Parameters		31DQ	Units		Conditions	
V_{FM}	Max. Forward	Voltage Drop	0.62	V	@ 3A	T - 25°C	
	* See Fig. 1	(1)	0.78	V	@ 6A	$T_J = 25 ^{\circ}\text{C}$	
			0.54	V	@ 3A	T = 425 °C	
			0.65	V	@ 6A	T _J = 125 °C	
I _{RM}	Max. Reverse	Leakage Current	2	mA	T _J = 25 °C	\/ = rated \/	
	* See Fig. 2	(1)	15	mA	T _J = 125 °C	$V_R = \text{rated } V_R$	
C _T	Typical Junctic	on Capacitance	160	pF	$V_R = 5V_{DC}$, (test signal range 100Khz to 1Mhz) 25°C		
L _s	Typical Series	Inductance	9.0	nΗ	Measured lead to lead 5mm from package body		
dv/dt	Max. Voltage F	Rate of Change	10000	V/µs	(Rated V _R)		

⁽¹⁾ Pulse Width < 300 μ s, Duty Cycle <2%

Thermal-Mechanical Specifications

	.				
	Parameters	31DQ	Units	Conditions	
T_J	Max. Junction Temperature Range (*)	-40 to 150	°C		
T _{stg}	Max. Storage Temperature Range	-40 to 150	°C		
R _{thJA}	Max. Thermal Resistance Junction to Ambient	80	°C/W	DC operation Without cooling fins	
R _{thJL}	Typical Thermal Resistance Junction to Lead	34	°C/W	DC operation	
wt	Approximate Weight	1.2 (0.042)	g (oz.)		
	Case Style	C-16			

 $[\]frac{\text{(*) } \frac{\text{dPtot}}{\text{dTj}}}{\text{dTj}} < \frac{1}{\text{Rth(j-a)}} \text{thermal runaway condition for a diode on its own heatsink}$

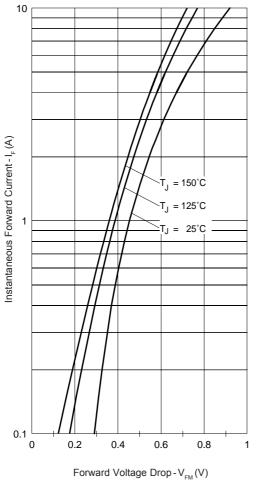


Fig. 1 - Max. Forward Voltage Drop Characteristics

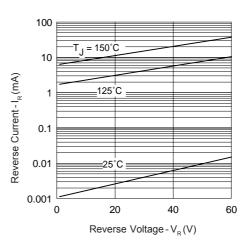


Fig. 2 - Typical Values Of Reverse Current Vs. Reverse Voltage

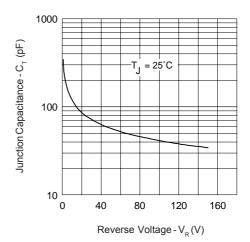


Fig. 3 - Typical Junction Capacitance Vs. Reverse Voltage

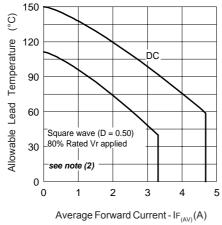


Fig. 4 - Max. Allowable Lead Temperature Vs. Average Forward Current

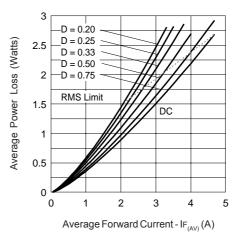


Fig. 5 - Forward Power Loss Characteristics

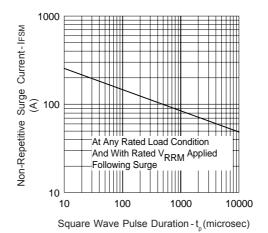
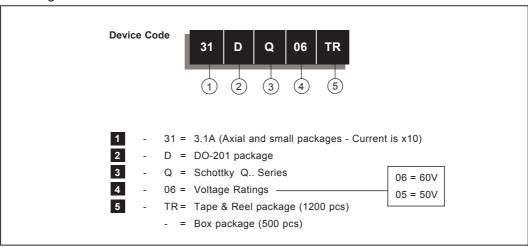



Fig. 6 - Max. Non-Repetitive Surge Current

$$\begin{aligned} \textbf{(2)} \; & \text{Formula used: } \textbf{T}_{\text{C}} = \textbf{T}_{\text{J}} - (\text{Pd} + \text{Pd}_{\text{REV}}) \, \textbf{x} \, \textbf{R}_{\text{thJC}}; \\ & \text{Pd} = \text{Forward Power Loss} = \textbf{I}_{\text{F(AV)}} \, \textbf{x} \, \textbf{V}_{\text{FM}} \textcircled{@} (\textbf{I}_{\text{F(AV)}} / \, \textbf{D}) \; \; (\text{see Fig. 6}); \\ & \text{Pd}_{\text{REV}} = \text{Inverse Power Loss} = \textbf{V}_{\text{R1}} \, \textbf{x} \, \textbf{I}_{\text{R}} (\textbf{1} - \textbf{D}); \, \textbf{I}_{\text{R}} \textcircled{@} \, \textbf{V}_{\text{R1}} = 80\% \; \text{rated V}_{\text{R}} \end{aligned}$$

Bulletin PD-2.305 rev. F 11/04

Ordering Information Table

Data and specifications subject to change without notice. This product has been designed and qualified for Industrial Level and Lead-Free.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7309

11/04

Vishay

Notice

The products described herein were acquired by Vishay Intertechnology, Inc., as part of its acquisition of International Rectifier's Power Control Systems (PCS) business, which closed in April 2007. Specifications of the products displayed herein are pending review by Vishay and are subject to the terms and conditions shown below.

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

International Rectifier[®], IR[®], the IR logo, HEXFET[®], HEXSense[®], HEXDIP[®], DOL[®], INTERO[®], and POWIRTRAIN[®] are registered trademarks of International Rectifier Corporation in the U.S. and other countries. All other product names noted herein may be trademarks of their respective owners.

Document Number: 99901 www.vishay.com
Revision: 12-Mar-07 1