

Dossier technique

Dossier technique

Description

Le détecteur d'obstacle doit avertir le conducteur d'un deux-roues d'un obstacle immédiat (moins de 1m) par un signal sonore répétitif (espacement des bips proportionnel à la distance) et par une indication lumineuse (barre-graphe de 6 DELs).

Il utilise un capteur à infrarouge pour la détection et un buzzer pour le signal sonore.

Caractéristiques

Paramètre	Valeur(s)	Tolérance
Distance de détection	De 20 à 150 cm	+- 5cm
Fréquence du signal sonore	Réglable de 500Hz à 3000Hz	5%
Espacement des bips sonores	10ms / cm	5%
Bargraphe à LED	6 LED (2 vertes et 4 rouges)	Pas de 20 cm (de 20cm à 1m)
Alimentation extérieure	9V (pile alcaline 6LR61) Autonomie de la pile	20% (à déterminer expérimentalement)
Dimensions cartes	70x100 mm	2%
Dimensions boitier	144x76x30 mm	2%

Affichage

Conditions de tests : La carte n°2 peut être déconnectée et l'alimentation de la carte n°1 est assurée par l'USB.

Distance	LED6 (rouge)	LED5 (rouge)	LED4 (rouge)	LED3 (rouge)	LED2 (verte)	LED1 (verte)
<=20cm	ON	ON	ON	ON	ON	ON
>20 et <= 40 cm	OFF	ON	ON	ON	ON	ON
>40 et <= 60 cm	OFF	OFF	ON	ON	ON	ON
>60 et <= 80 cm	OFF	OFF	OFF	ON	ON	ON
>80 et <= 100 cm	OFF	OFF	OFF	OFF	ON	ON
>100cm	OFF	OFF	OFF	OFF	OFF	ON

DetecteurObstacles-DossierTechnique	Dossier technique	1/7	
			1

Dossier technique

Calibrage

Le calibrage de l'appareil comporte deux réglages :

1. La fréquence du signal généré pour le buzzer est réglable de 500 et 3000Hz. Ce réglage est obtenu en appuyant sur le bouton poussoir S1 et en agissant simultanément sur le potentiomètre P1. La valeur de la fréquence doit être compatible avec la plage de fréquence de la datasheet du buzzer. Celleci est mesurable à l'aide d'un oscilloscope ou d'un fréquencemètre sur le point test TP1.

Dans le but de faciliter la calibration future de notre système avec un simple multimètre : Il convient d'établir pour chaque carte, la courbe de la fréquence en fonction de la tension modulée par le potentiomètre P1 (10 points de mesures).

2. **L'étalonnage de l'affichage du bargraphe**. Il est obtenu en agissant simultanément sur le potentiomètre P1 et le bouton poussoir S2. Lors de ce réglage, il faut positionner un obstacle de couleur blanche à 20 cm du capteur et ajuster la position angulaire de P1 de façon à être en limite d'allumage de la LED6 (toutes les LED allumées).

Qualification du système

Validation de la conformité du système

Valider la conformité de l'affichage et de la modulation sonore (espacement entre les bips sonores) en fonction de la distance de l'obstacle.

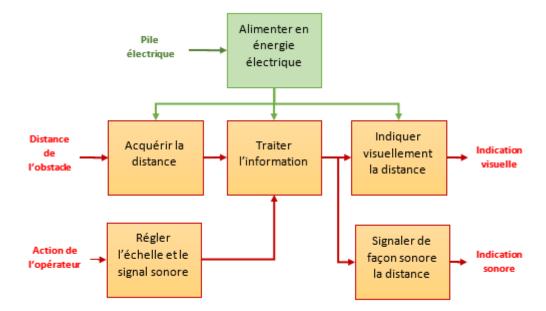
Distance (cm)	20	30	40	50	60	70	80	90	100	110	120	130	150
LED allumées													
Espacement bips sonores (ms)													

Synthèse de la qualification du lot de cartes

 Établir des statistiques dans un tableur sur l'ensemble des 15 cartes selon les critères vérifiés préalablement et indiquer les éventuels dysfonctionnements relevés.

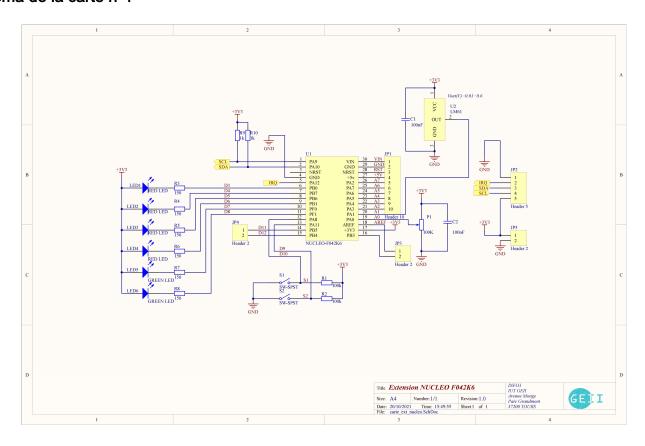
15 cartes contrôlées	Alimentation	Capteur GP2Y	Bargraphe	Signalisation sonore	Fonctionnement global
Nombre OK					
Pourcentage					

Communiquer par courriel aux professeurs concernés le bilan de ces statistiques avec une rédaction adaptée.


DetecteurObstacles-DossierTechnique	Dossier technique	2/7	ĺ
			1

Dossier technique

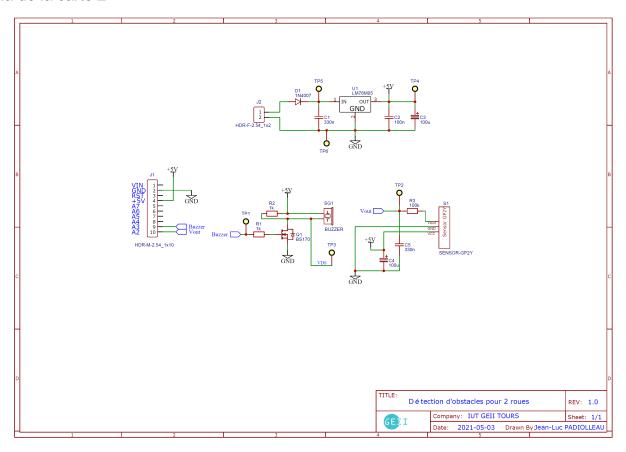
Schéma fonctionnel



Dossier technique

Schémas structurels

Schéma de la carte n°1



Dossier technique

Schéma de la carte 2

Dossier technique

Nomenclatures

Nomenclature de la carte n°1

Désignation \	/aleur	Répère	Qua ntité	Fabricant	Référence fabricant	Fournisseur	Code fournisseur
Condensateur céramique	330nF	C1,C5	2	WALSIN	206B334K250CT	Farnell	2497099
Condensateur céramique	100nF / 25V	C2	1	WALSIN	1206B104K250C T	Farnell	2497074
Condensateur électrochimique	100uF / 16V	C3,C4	2	Panasonic	ECA-1CHG101	Farnell	2981949
Diode de redressement	1N4007	D1	1	TAIWAN SEMICONDUCTO R	1N4007G R0	Farnell	2677362
Connecteur	HDR-M- 2.54 1x10	J1	1	MILL MAX	310-93-132-41- 001	Farnell	2678563
Bornier	pas 5,08mm 2 voies	J2	1	WEIDMULLER	PM5.08/2/90	Farnell	1131853
Transistor MOSFET	BS170	Q1	1	ONSEMI	BS170-D75Z	Farnell	2453831
Résistance CMS	1k	R1,R2	2	TE CONNECTIVITY	CRGCQ1206F1K 0	Farnell	2861583
Résistance	100k	R3	1	TE CONNECTIVITY	CRGCQ1206F10 0K	Farnell	2861607
Capteur de mesure de distance	150cm	S1	1	SHARP	GP2Y0A02YK0F	Farnell	9707891
Buzzer Electromagnétique	5V, 2.048KHZ	SG1	1	TDK	SD1209T5-A1	Farnell	3212606
Point test	1 voie 0,7mm	TP1,TP 2,TP3, TP4,TP 5,TP6	6	MULTICOMP	TEST-31	Farnell	1702007
Régulateur de tension 5V	LM78M05	U1	1	TEXAS INSTRUMENTS	LM78M05CDTX/ NOPB	Farnell	3008066

Nomenclature de la carte n°2

Désignation	Valeur	Répère	Qua ntité	Fabricant	Référence fabricant	Fournisseur	Code fournisseur
Condensateur céramique	100nF	C1, C2	2	MULTICOMP PRO	MCDTR10M50- 1-RH	Farnell	1186144
Connecteur sécable	Pas 2,54mm 10 points	JP1	1	MILL MAX	310-93-132-41- 001	Farnell	2678563
Connecteur sécable	Pas 2,54mm 5 points	JP2	1	MILL MAX	310-93-132-41- 001	Farnell	2678563
Connecteur sécable	Pas 2,54mm 2 points	JP3, JP4, JP5	3	MILL MAX	310-93-132-41- 001	Farnell	2678563
LED rouge	5mm	LED1, LED2, LED3, LED4	4	BROADCOM	HLMP-3762	Farnell	1003376
LED verte	5mm	LED5, LED6	2	BROADCOM	HLMP-3962	Farnell	2497345
Potentiomètre	100K	P1	1	BOURNS	3310Y-001-104L	Farnell	9353984
Résistance CMS	100k	R1, R2	2	MULTICOMP PRO	MCF 0.25W 100K	Farnell	9339078
Résistance CMS	150	R3, R4, R5, R6, R7, R8	6	MULTICOMP PRO	MCF 0.25W 150R	Farnell	9339175
Résistance CMS	1k	R9, R10	2	MULTICOMP PRO	MCF 0.25W 1K	Farnell	9339051
Bouton poussoir	Commutateur tactile	S1, S2	2	C&K COMPONENTS	PTS645SL43-2- LFS	Farnell	2435161
Microcontrôleur	NUCLEO-F042K6	U1	1	ST MICRO ELECTRONICS		Farnell	2500223
Capteur de température	LM61Z	U2	1	TEXAS INSTRUMENTS	LM61BIZ/NOPB	Farnell	3124191

DetecteurObstacles-DossierTechnique	Dossier technique	6/7	

Dossier technique

Implantation (circuits imprimés)

Carte n°1

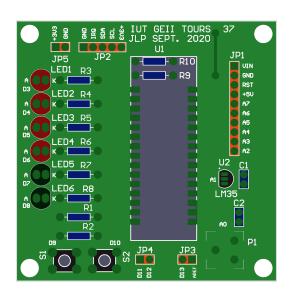
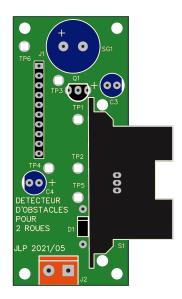
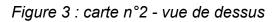




Figure 1 : Carte n°1 - vue de dessus

Figure 2 : Carte n°1 - vue de dessous

Carte n°2

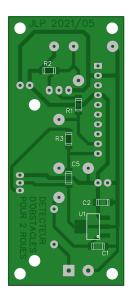


Figure 4 : carte n°2 - vue de dessous