Accumulateur à stratification

Accumulateur solaire à stratification

Accumulateur à stratification et eau chaude sanitaire instantanée

Accumulateur à stratification et module

Préparateur d'eau chaude sanitaire

La gestion perfectionnée de l'énergie

Possibilités flexibles d'utilisation

Les systèmes d'accumulateurs de Froling s'associent parfaitement à une chaudière à granulés, à bois déchiqueté ou bûches, mais également à d'autres sources de chaleur, comme par exemple une chaudière fioul ou gaz. L'accumulateur solaire à stratification, l'accumulateur solaire à stratification et eau chaude sanitaire instantanée H3 ainsi que l'accumulateur solaire à stratification et module FW permettent une intégration efficace dans une installation solaire où l'énergie solaire est toujours traitée en priorité grâce à la gestion de chaudière intelligente assurée par la commande Lambdatronic de Fröling.

Systèmes d'accumulateurs

Gestion moderne de l'énergie

Chaque système de chauffage doit être dimensionné pour la période la plus froide de l'année. Cependant, la puissance totale de la chaudière est rarement nécessaire. Pendant la majeure partie de la période de chauffage, la chaleur moyenne prélevée est inférieure à 50 % de la puissance calorifique nominale. Pour exploiter l'énergie de façon économique et écologique, on met donc en œuvre un accumulateur.

Dimensionnement et fonctionnement

Dimensions généreuses pour un maximum de confort

L'utilisation d'un accumulateur, en particulier associé à une chaudière à granulés, apporte des avantages considérables, p. ex. les intervalles entre les chargements sont plus longs, la durée de vie est aussi plus longue, la consommation en combustibles est moindre, tout comme les émissions. Le calcul du volume nécessaire pour l'accumulateur dépend de nombreux facteurs et doit être effectué par un professionnel.

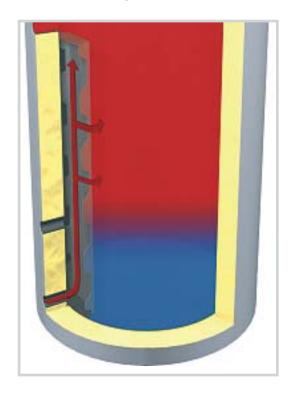
Il n'est pas obligatoire, mais cependant recommandé, d'utiliser un accumulateur dans les installations à granulés et bois déchiqueté. Un accumulateur à stratification est lui aussi avantageux, car il permet p. ex. de réduire les démarrages du brûleur, de prolonger la durée de vie et de réduire les émissions.

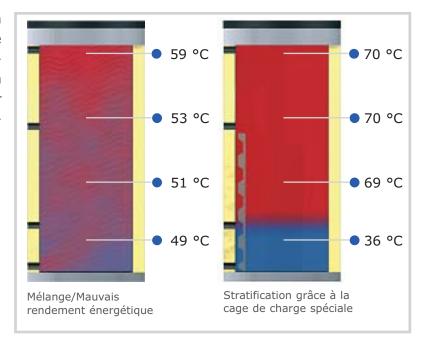
Pour une estimation approximative du volume de l'accumulateur, il est possible d'appliquer la règle empirique suivante :

Chaudières à bûches

Volume recommandé pour l'accumulateur : env. 50 - 100 l/kW*

Chaudières à granulés/ bois déchiqueté

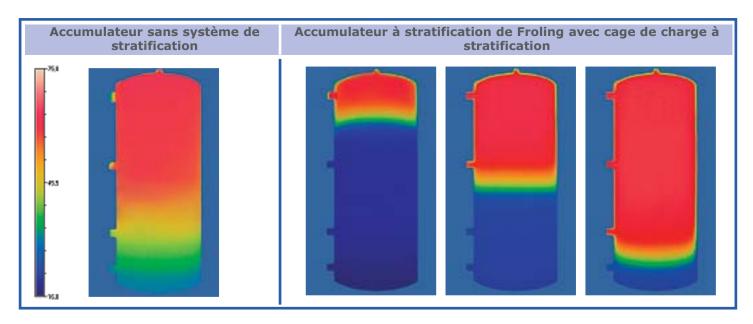

Volume recommandé pour l'accumulateur : env. 25 - 35 l/kW*


^{*)} Lors du calcul du volume de l'accumulateur, tenir également compte des réglementations, directives et normes applicables dans le pays. Pour connaître les directives de subventionnement en fonction de votre région, consultez www.froeling.com.

Systèmes d'accumulateurs

Stratification précise dans l'accumulateur

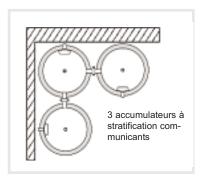
Le fonctionnement optimal est régi par la stratification précise dans l'accumulateur, ce qui permet de restituer le plus d'énergie possible. Une cage de charge à stratification conçue tout spécialement permet d'obtenir cet effet sur tous les accumulateurs à stratification de Froling.



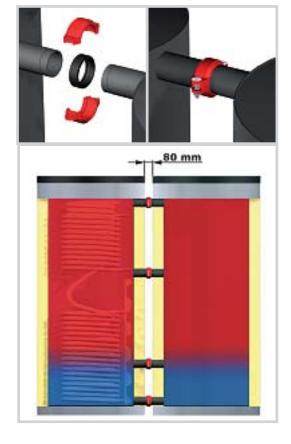
L'eau qui entre (p. ex. en retour-alimentation) monte par la cage de charge à stratification et se loge là où une température identique règne. Cela permet de garantir que les zones d'eau chaude conservent une température constante.

En outre, cette cage de charge développée tout spécialement permet une stratification au centimètre près de la température et garantit un rendement énergétique maximal pour des coûts de fonctionnement moindres.

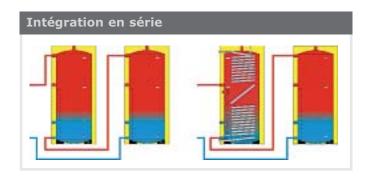
Comparaison par thermographie de la stratification dans les accumulateurs



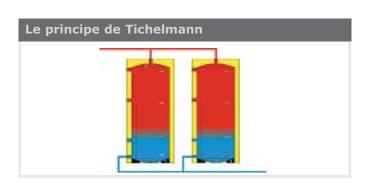
Pose simple


Accumulateurs à stratification communicants

Grâce à leurs dimensions calculées de manière intelligente, les accumulateurs à stratification de Froling se logent facilement dans la chaufferie. Et pour les pièces à plafond bas, Froling a encore une autre solution.


Dans ce cas, vous pouvez relier entre eux jusqu'à quatre accumulateurs de faible hauteur et de diamètres plus petits pour les faire « communiquer ». Ce système est un véritable atout de part la stratification exacte de la température dans tous les accumulateurs. Le montage simple et rapide à une distance de seulement 80 mm est également un atout supplémentaire.

En plus d'une mise en place en série, il est aussi possible de monter les accumulateurs à stratification en diagonale. Dans ce cas, des accouplements décalés de 90° sont posés sur l'accumulateur à stratification situé au milieu.



Liaison en série des accumulateurs à stratification

Pour agrandir une configuration existante d'accumulateurs à stratification déjà installés, on en intègre plusieurs en série car il est possible d'une part, d'associer des accumulateurs à stratification de différentes tailles et d'autre part, de pallier des distances plus importantes ou des obstacles physiques.

L'intégration d'une installation solaire est possible à tout moment sur ce type de système.

Il est aussi possible de relier entre eux plusieurs accumulateurs à stratification selon le principe de Tichelmann. Pour pouvoir garantir un chargement et déchargement réguliers de tous les accumulateurs à stratification, il faut prévoir au préalable un système parfaitement régulé pour cette variante d'intégration.

Systèmes d'accumulateurs

Des systèmes efficaces pour chaque besoin

Avec sa gamme complète d'accumulateurs, Froling a la solution idéale à pratiquement chaque besoin. Les accumulateurs à stratification de Froling permettent de gérer intelligemment la chaleur et d'apporter un chauffage d'appoint optimal. Si une installation solaire est intégrée au système, Froling propose des solutions d'intégration idéales avec l'accumulateur solaire à stratification, l'accumulateur solaire à stratification et eau chaude sanitaire instantanée H3 et l'accumulateur solaire à stratification et module FW.

Le préparateur d'eau chaude sanitaire Unicell NT-S assure une préparation efficace de l'eau chaude sanitaire et permet d'utiliser l'énergie solaire à cet effet. En outre, Froling propose des solutions globales compactes pour la chaufferie, grâce aux accumulateurs à stratification et eau chaude sanitaire instantanée avec collecteur d'eau sanitaire intégré, et grâce aussi à l'accumulateur à stratification à module, qui comprend un module pour eau douce.

Types d'accumulateurs

Aperçu des systèmes d'accumulateurs de Froling

	Accumulateur à stratification	Accumulateur solaire à stratification	Accumulateur à stratification et eau chaude sanitaire instantanée H2	Accumulateur solaire à stratification et eau chaude sanitaire instantanée H3	Accumulateur à s tratification et module FW	Accumulateur solaire à stratification et module FW	Préparateur d'eau chaude sanitaire Unicell NT-S
Accumuler la chaleur excédentaire	1	1	V	1	1	1	
Stratification précise pour un rendement énergétique amélioré à moindres coûts	√	1	1	1	1	1	
Isolation thermique efficace sans CFC sur toute la périphérie	1	1	1	1	1	1	
Association communicante d'accumula- teurs en cas d'espace réduit	1	√	√	√	√	√	
Combinaison possible avec d'autres générateurs de chaleur	1	J	1	1	1	1	✓
Intégration de l'énergie solaire		1		1		1	√
Préparation de l'eau sanitaire			1	1	1	1	/
Accumulateur à stratification avec pré- paration ECS intégrée			/	√	√	/	
Accumulateur solaire à stratification avec préparation ECS intégrée, en un seul produit				✓		√	
Vous trouverez plus d'informations à ce sujet	Page 9	Page 9	Page 13	Page 13	Page 17	Page 17	Page 21

Accumulateur à stratification/ Accumulateur solaire à stratification

Avec l'accumulateur solaire à stratification de Froling, vous intégrez efficacement l'énergie solaire dans votre système.

Le système de stratification éprouvé assure une exploitation optimale de l'énergie solaire comme chauffage d'appoint.

Détails et exemples d'installation

1 Caractéristique : Isolation haute performance (100 mm)

Avantages: • Isolation thermique maximale

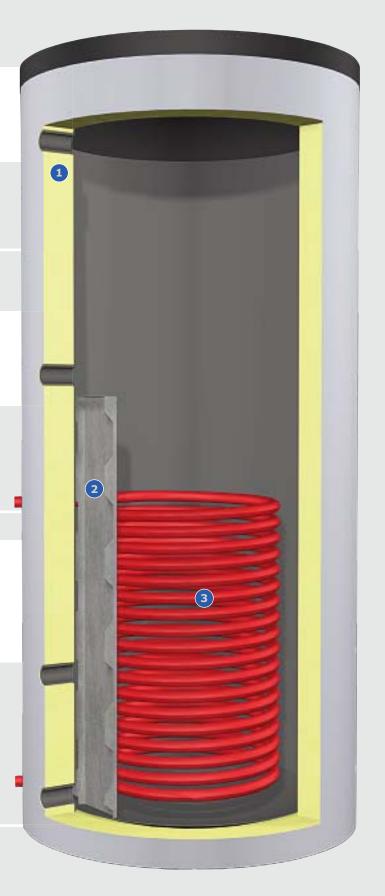
• Pertes par rayonnement faibles

L'isolation de qualité avec l'enveloppe extérieure garantit une parfaite isolation thermique et de faibles pertes par rayonnement et assure une efficacité maximale.

2 Caractéristique : Système de stratification éprouvé

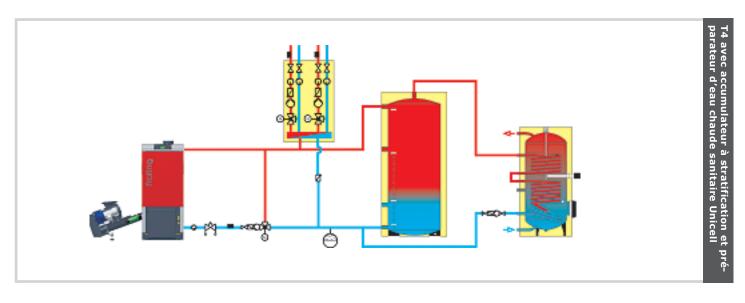
Avantages: • Rendement énergétique maximal

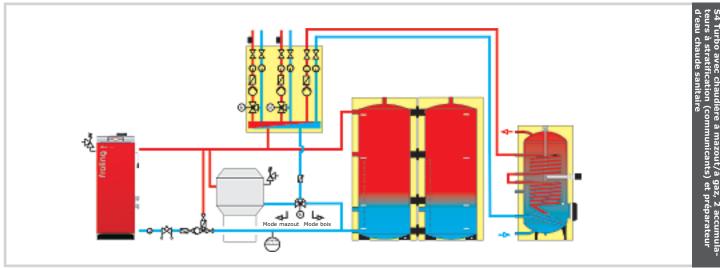
• Débit élevé

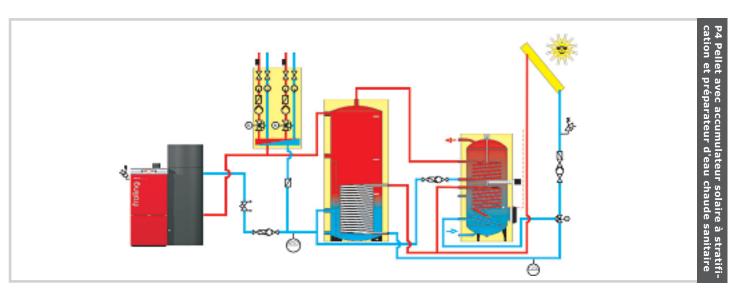

Le système de stratification éprouvé garantit une stratification exacte de la température dans l'accumulateur. Vous obtenez ainsi un rendement énergétique inégalé et un débit accru.

3 Caractéristique : Collecteur solaire haute performance

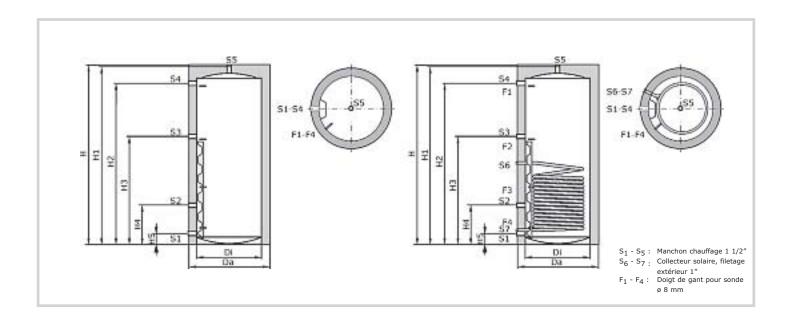
(uniquement pour l'accumulateur solaire à stratification)


Avantages : • Intégration parfaite de l'énergie


Le collecteur solaire haute performance assure un chargement complet du volume total de l'accumulateur en cas de forte production d'énergie en solaire. En cas de faible rayonnement solaire et de basses températures fournis par le système solaire, ce chargement est logé dans la zone inférieure, ce qui permet de préchauffer la zone froide.



Accumulateur à stratification/ Accumulateur solaire à stratification


Exemples d'installation

Caractéristiques techniques

Dimensions	700 ¹⁾	850	1000	1500	1800	2200
H Hauteur de l'accumulateur (avec isolation) [mm]	1660	1960	2170	2190	2195	2650
H1 Hauteur de l'accumulateur (sans isolation) [mm]	1647	1950	2160	2180	2185	2640
H2 Départ [mm]	1430	1730	1940	1940	1940	2395
H3 Départ [mm]	914	1090	1300	1325	1325	1780
H4 Retour [mm]		470	470	500	500	500
H5 Retour [mm]	130	130	130	180	180	180
Di Diamètre de l'accumulateur (sans isolation) [mm]	785	785	785	960	1090	1090
Da Diamètre de l'accumulateur (avec isolation) [mm]	985	985	985	1160	1290	1290
Largeur de pose minimale [mm]	800	800	800	980	1120	1120
Hauteur minimale (hauteur de basculement) [mm]	1750	2000	2220	2250	2300	2720

Cara	ctéristiques techniques		700 ¹⁾	850	1000	1500	1800	2200
Cont	enance ECS de l'accumulateur à stratifi	cation [I]	700	830	1000	1400	1800	2200
Conte	nance ECS de l'accumulateur solaire à stratif	ication [I]	-	812	982	1379	1776	2176
Press	sion de service autorisée	[bar]	3	3	3	3	3	3
Temp	pérature de service autorisée	[°C]	95	95	95	95	95	95
Poids	;	[kg]	130	140	155	210	230	280
Poids	avec collecteur solaire ²⁾	[kg]	-	185	200	268	288	338
(p ₂)	Surface de chauffage du collecteur so	olaire [m²]	-	3	3	4	4	4
laire ²⁾	Contenance du collecteur solaire	[1]	-	18	18	24	24	24
so	Surface du collecteur solaire (optimale/maxi	male) [m²]	-	8 / 12	8 / 12	12 / 16	12 / 16	12 / 16
Collecteur	Pression de service autorisée	[bar]	-	16	16	16	16	16
	Température de service autorisée	[°C]	-	110	110	110	110	110
ပိ	Raccordements (filetage extérieur)	[pouce]	-	1	1	1	1	1

Disponible uniquement comme accumulateur à stratification!
 Collecteur solaire raccordable uniquement avec un accumulateur solaire à stratification

Accumulateur pour eau chaude sanitaire H2/H3

L'association parfaite

Sur l'accumulateur solaire à stratification et eau chaude sanitaire instantanée H3, deux collecteurs solaires haute performance permettent en outre d'intégrer efficacement l'énergie solaire. Le collecteur à tube inox ondulé ECS fonctionne avec l'accumulateur et refroidit la partie inférieure de celui-ci par préchauffage de l'ECS. Les basses températures de la partie inférieure de l'accumulateur permettent d'avoir une température de retour peu élevée au niveau du capteur solaire et ainsi une utilisation efficace de l'énergie solaire (jusqu'à 70 % de rendement solaire en plus, en fonction du type de collecteur).

Détails et exemples d'installation

1 Caractéristique : Isolation haute performance (100 mm)

Avantages: • Isolation thermique maximale

• Pertes par rayonnement faibles

L'isolation de qualité avec l'enveloppe extérieure garantit une parfaite isolation thermique et de faibles pertes par rayonnement et assure une efficacité maximale.

2 Caractéristique : Système de stratification éprouvé

Avantages: • Rendement énergétique maximal

• Débit élevé

Le système de stratification garantit une stratification exacte des températures dans l'accumulateur. Vous obtenez ainsi un rendement énergétique inégalé et un débit accru.

3 Caractéristique : Collecteur en tube inox ondulé

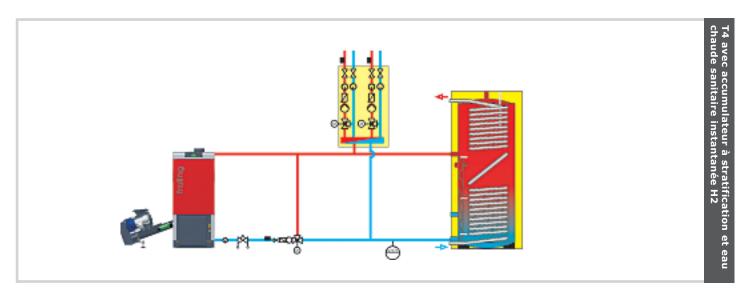
Avantages: • Eau douce sans légionellose

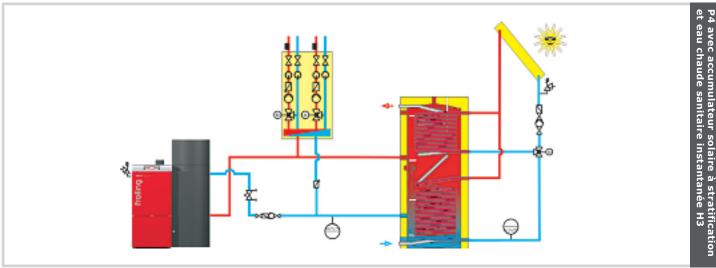
Le collecteur en tube inox ondulé fournit de l'eau douce sans légionellose et toujours chaude, chauffée selon le principe de circulation. Les mouvements qui se produisent à l'intérieur empêchent pratiquement tout dépôt en présence d'eau calcaire.

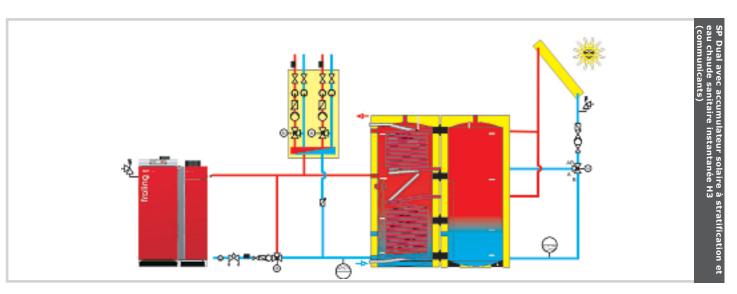

4 Caractéristique : Deux collecteurs solaires haute performance

(uniquement pour les accumulateurs solaires à stratification et eau chaude sanitaire instantanée H3)

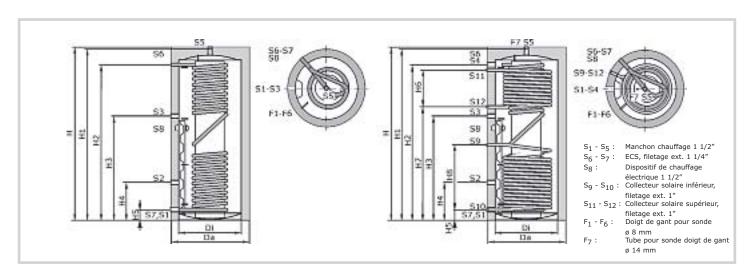
Avantages : • Intégration parfaite de l'énergie solaire


• Rendement énergétique maximal


Le collecteur solaire supérieur assure un chauffage rapide de l'accumulateur dans la zone de l'eau chaude et garantit la production d'eau chaude sanitaire au moyen de l'énergie solaire. Le collecteur inférieur assure un chargement complet du volume total de l'accumulateur en cas de forte production d'énergie en solaire. En cas de faible rayonnement solaire et de basses températures, l'énergie fournie par le système solaire est logée dans la zone inférieure, ce qui permet de préchauffer la zone froide.



Accumulateur pour eau chaude sanitaire H2/H3


Exemples d'installation

Caractéristiques techniques

Dimensions		700 ¹⁾	850	1000	1500
H Hauteur de l'accumulateur (avec isolation)	[mm]	1660	1960	2170	2190
H1 Hauteur de l'accumulateur (sans isolation)	[mm]	1647	1950	2160	2180
H2 Départ	[mm]	1430	1730	1940	1940
H3 Départ	[mm]	914	1090	1300	1325
H4 Retour	[mm]		470	470	500
H5 Retour	[mm]	130	130	130	180
Di Diamètre de l'accumulateur (sans isolation)	[mm]	785	785	785	960
Da Diamètre de l'accumulateur (avec isolation)	[mm]	985	985	985	116 0
Largeur de pose minimale	[mm]	800	800	800	980
Hauteur minimale (hauteur de basculement)	[mm]	1750	2000	2220	2250

Cara	ctéristiques techniques		700 ¹⁾	850	1000	1500
Conter	nance ECS de l'accumulateur à stratification et eau chaude sanitaire instantanée H2	[1]	665	815	957	1357
Conter	nance ECS de l'accumulateur solaire à stratification et eau chaude sanitaire instantanée	нз[І]	-	775	922	1315
Press	sion de service autorisée [[bar]	3	3	3	3
Temp	pérature de service autorisée	[°C]	95	95	95	95
Poids	de l'accumulateur à stratification et eau chaude sanitaire instantanée H2	[kg]	250	260	270	330
Poids o	de l'accumulateur solaire à stratification et eau chaude sanitaire instantanée H3	[kg]	-	290	305	360
е ₃	Surface de chauffage du collecteur solaire inférieur/supérieur	[m²]	-	3 / 2,5	3 / 2,5	4 / 2,5
solaire ²⁾	Contenance du collecteur solaire inférieur/supérieur	[1]	-	19 / 16	19 / 16	26 / 16
	Surface du collecteur solaire (optimale/maximale)	[m²]	-	8 / 12	8 / 12	12 /16
Collecteur	Pression de service autorisée	[bar]	-	16	16	16
l ec	Température de service autorisée	[°C]	-	110	110	110
ပိ	Raccordements (filetage extérieur) [po	uce]	-	1	1	1
<u>-i</u>	Surface de chauffage	[m ²]	5,4	6,0	6,6	6,6
sanitaire	Contenance en eau sanitaire	[1]	35	40	43	43
	Index de puissance	[NL]	1,4	1,9	2,5	3,8
d'eau	Puissance continue max. du collecteur(tv = 80 °C)	[kW]	55	60	75	75
Collecteur d'	Volume de soutirage avec primaire à 70 °C (accumulateur chargé) et 25 l/min. de quantité soutirée à 45 °C	[1]	1180	1290	1615	1615
ect	Pression de service autorisée	[bar]	6	6	6	6
ပိ	Raccordements (filetage extérieur) [po	uce]	1 1/4	1 1/4	1 1/4	1 1/4

Disponible uniquement en accumulateur à stratification et eau chaude sanitaire instantanée H2.
 Collecteur solaire uniquement avec l'accumulateur solaire à stratification et eau chaude sanitaire instantanée H3.

Accumulateur à stratification et module FW

La solution globale pour la chaufferie

Le collecteur solaire haute performance assure un chargement complet du volume total de l'accumulateur en cas de forte production d'énergie en solaire. Grâce au système de stratification TLS développé tout spécialement pour garantir la stratification optimale dans l'accumulateur, on obtient un débit plus important grâce aux zones d'eau chaude constantes.

Détails et exemples d'installation

1 Caractéristique : Isolation haute performance (100 mm)

Avantages: • Isolation thermique maximale

• Pertes par rayonnement faibles

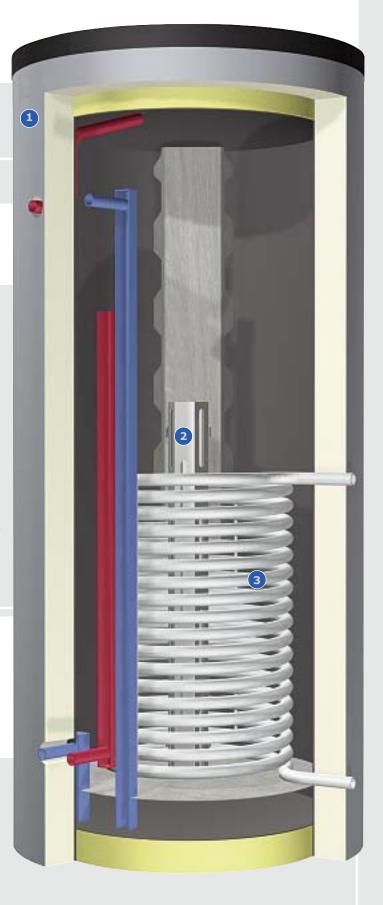
L'isolation de qualité avec l'enveloppe extérieure garantit une parfaite isolation thermique et de faibles pertes par rayonnement, et assure une efficacité maximale.

2 Caractéristique : Système de stratification TLS

Avantages: • Rendement énergétique maximal

• Débit élevé

Le système de stratification TLS développé spécialement garantit une stratification optimale des températures dans l'accumulateur. Grâce aux zones d'eau chaude stratifiées, un débit élevé est garanti. L'eau qui entre est freinée par le système de stratification TLS et stratifiée avec précision sous l'effet de l'accalmie. Cela entraîne une stratification constante des températures dans les zones d'eau chaude. Également, cela réduit les besoins en énergie (primaire) pour le chargement de l'accumulateur. En même temps, le volume de l'accumulateur nécessaire pour la mise à disposition de l'eau chaude sanitaire et les surfaces des collecteurs solaires nécessaires (pour l'accumulateur solaire à stratification et module) sont réduits. Le système de stratification TLS assure ainsi un rendement énergétique optimal.


3 Caractéristique : Collecteur solaire haute performance

(uniquement pour l'accumulateur solaire à stratification et module)

Avantages: • Intégration parfaite de l'énergie solaire

• Rendement énergétique maximal

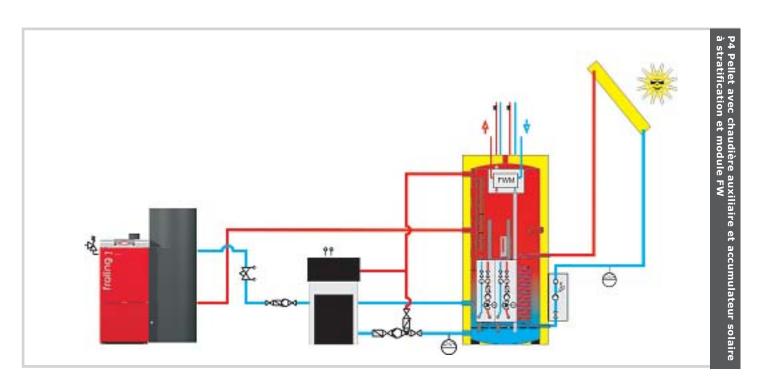
Le collecteur solaire assure un chauffage rapide de l'accumulateur dans la zone de l'eau chaude et garantit la production d'eau chaude sanitaire au moyen de l'énergie solaire. En cas de forte production d'énergie par l'installation solaire, le collecteur solaire assure un chargement complet du volume total ou le préchauffage de la zone froide.

Accumulateur à stratification et module FW

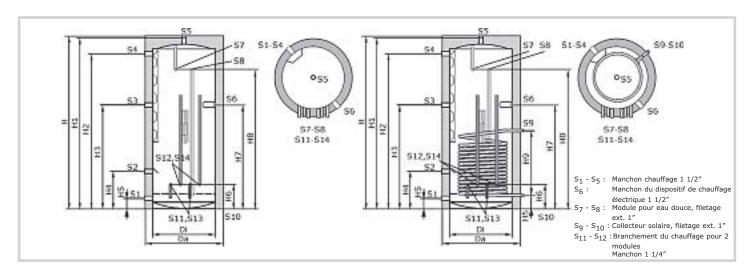
Module pour eau douce FWM

Le module pour eau douce FWM de Froling fournit à tout instant de l'eau chaude sanitaire et renouvelée, et il se distingue par de faibles pertes lors de la préparation. Selon le principe de circulation, l'eau est transportée dans l'échangeur de chaleur à plaques, depuis l'accumulateur à stratification, et régulée afin de permettre d'atteindre la température d'eau chaude sanitaire prédéfinie. Le thermostat détermine la température de départ dans l'échangeur de chaleur et réduit fortement l'entartrage dû à la chaleur.

Module de circulation (en option)


Le module de circulation à eau sanitaire, disponible en option, permet de fournir rapidement de l'eau chaude aux points de soutirage. La pompe de circulation peut être démarrée soit par un programmateur à réglage personnalisable, soit lors du soutirage (p. ex. lorsqu'on ouvre un robinet).

Module solaire (en option)


Associé à l'accumulateur solaire à stratification et module, le module solaire convient parfaitement pour être raccordé à un circuit solaire dont la surface des panneaux peut aller jusqu'à 12 m².

Exemple de raccordement

Caractéristiques techniques

Dimensions		1000	1500
H Hauteur de l'accumulateur (avec isolation)	[mm]	2170	2190
H1 Hauteur de l'accumulateur (sans isolation)	[mm]	2160	2180
H2 Départ	[mm]	1940	1940
H3 Départ	[mm]	1300	1325
H4 Retour	[mm]	470	500
H5 Retour	[mm]	130	180
Di Diamètre de l'accumulateur (sans isolation)	[mm]	785	960
Da Diamètre de l'accumulateur (avec isolation)	[mm]	975	1150
Largeur de pose minimale	[mm]	800	980
Hauteur minimale (hauteur de basculement)	[mm]	2220	2250

Cara	ctéristiques techniques		1000	1500
Conte	enance en ECS de l'accumulateur solaire à stratification	[1]	1000	1400
Conte	enance en ECS de l'accumulateur solaire à stratification et module FW	/ [1]	982	1379
Press	ion de service autorisée	[bar]	3	3
Temp	érature de service autorisée	[°C]	95	95
Poids	de l'accumulateur solaire à stratification	[kg]	182,5	229,5
Poids	de l'accumulateur solaire à stratification et module FW	[kg]	238	305
(1)	Surface de chauffage du collecteur solaire	[m²]	3	4
solaire¹)	Contenance du collecteur solaire	[1]	18	21
	Surface du collecteur solaire (optimale/maximale)	[m ^{2]]}	8 / 12	12 / 16
Collecteur	Pression de service autorisée	[bar]	16	16
lec lec	Température de service autorisée	[°C]	110	110
ပိ	Raccordements	[pouce]	1	1
Φ	Débit maximal (pour un soutirage à 45 °C)	[l/min]	30	30
douce	Débit total(pour une température en ballon de 80 °C et état de charge à 100 %)	[1]	1725	2160
p n	Index de puissance	[NL]	5,3	5,9
eau	Pression de service autorisée	[bar]	10	10
pour	Pompe de chargement	[V/Hz/W/A]	230 V/50 Hz	:/95 W/0,4 A
	Pompe de circulation	[V/Hz/W/A]	230 V/50 H	z/8 W/0,1 A
Module	Dimensions (I x h x p)	[mm]	400 x 80	00 x 330
Σ	Poids	[kg]	2	0

Préparateur d'eau chaude sanitaire

Utilisation de l'énergie solaire pour la préparation de l'ECS

Unicell NT-S de Froling permet d'utiliser efficacement l'énergie solaire dans le but de préparer l'eau chaude sanitaire. Pour ce faire, le collecteur inférieur à tuyau hélicoïdal se raccorde à l'installation solaire. La surface de chauffage supérieure permet d'assurer la continuité du chauffage par la chaudière et donc d'utiliser pendant toute l'année l'énergie des rayons du soleil. Le chauffage supplémentaire peut également se faire via une cartouche pour chauffage électrique disponible en option.

Détails et caractéristiques techniques

1 Caractéristique : Isolation haute performance (100 mm)

Avantages: • Isolation thermique maximale

• Pertes par rayonnement faibles

L'isolation de qualité avec l'enveloppe extérieure garantit une parfaite isolation thermique et de faibles pertes par rayonnement et assure une efficacité maximale.

2 Caractéristique : Importantes surfaces de l'échangeur de chaleur

Avantages : • Rendement énergétique maximal

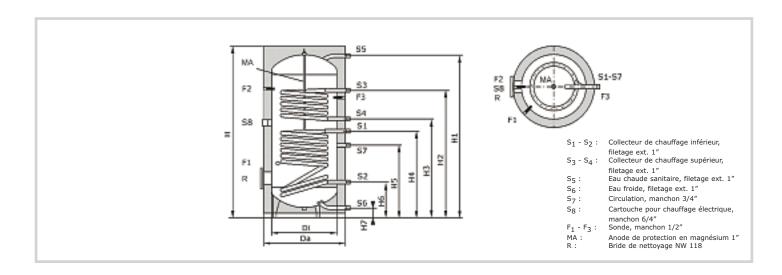
 Utilisation optimale de l'énergie solaire

En cas d'utilisation comme accumulateur solaire, la grande surface de chauffage inférieure est raccordée à l'installation solaire. La surface de chauffage supérieure permet d'assurer la continuité du chauffage par la chaudière et donc d'utiliser l'énergie des rayons du soleil sur toute l'année.

En cas d'utilisation uniquement via la chaudière, les deux collecteurs à tuyau hélicoïdal sont raccordés à la chaudière. La surface de l'échangeur de chaleur alors disponible et extraordinairement grande garantit un temps de charge court et un confort d'utilisation élevé.

3 Caractéristique : Branchement pour la cartouche pour chauffage électrique

En cas d'utilisation comme accumulateur solaire, le chauffage supplémentaire peut se faire via une cartouche pour chauffage électrique disponible en option.



Avantages : • Vidange complète de l'eau

• Nettoyage simple

Préparateur d'eau chaude sanitaire

Dimensions		200	300	500
H Hauteur du préparateur (avec isolation)	[mm]	1538	1555	1605
H1 Eau chaude sanitaire	[mm]	1433	1460	1514
H2 Départ de l'échangeur de chaleur en haut	[mm]	1029	1217	1301
H3 Retour de l'échangeur de chaleur en haut	[mm]	853	909	905
H4 Départ de l'échangeur de chaleur en bas	[mm]	693	814	820
Circulation H5	[mm]	773	1009	720
H6 Retour de l'échangeur de chaleur en haut	[mm]	253	330	248
Di Diamètre du préparateur (sans isolation)	[mm]	450	550	700
Da Diamètre du préparateur (avec isolation)	[mm]	550	650	800
Largeur de pose minimale	[mm]	550	650	800

Caractéristiques techniques		200	300	500
Contenance en eau chaude sanitaire	[1]	199	288	487
Contenance en eau du collecteur inférieur/supérieur	[1]	6,6 / 3,0	9,5 / 6,1	14 / 10,5
Surface de chauffage dans le collecteur inférieur/supérieur	[m²]	1,06 / 0,43	1,45 / 0,9	2,17 / 1,63
Pression de service autorisée côté eau de chauffage/eau chaude sanitaire	e [bar]	12 / 10	12 / 10	12 / 10
Température de service autorisée côté eau de chauffage/eau chaude sanitaire	[°C]	110 / 95	110 / 95	110 / 95
Poids	[kg]	104	135	193
Puissance max. continue du collecteur (tv = 90 °C) collecteur inférieur/supérieur	[kW]	39,8 / 16,3	54,2 / 34,8	80,5 / 60,5
Volume de soutirage avec primaire à 90 °C (préparateur chargé) et température de soutirage 60 °C	[l/h]	585 / 190	690 / 240	910 / 600
Volume de soutirage avec primaire à 90 °C (préparateur chargé) et température de soutirage 45 °C	[l/h]	941 / 425	1332 / 855	1978 / 1478
Débit d'eau de chauffage dans le collecteur inférieur/supérieur	[m³/h]	1,5 / 0,5	1,7 / 0,6	2,28 / 1,5

Systèmes d'accumulateurs efficaces

Systèmes d'accumulateurs Froling : la gestion innovante de l'énergie qui répond à toutes les exigences, ou presque

Peu importe qu'on veuille installer un nouveau système de chauffage ou moderniser le système existant. Les systèmes d'accumulateurs Froling offrent les conditions préalables optimales pour une utilisation économique de l'énergie, quelle que soit la situation. Grâce aux nombreuses possibilités disponibles, une adaptation peut se faire sans problème avec quasiment toutes les exigences spécifiques aux installations.

Une extension ultérieure ? Possible à tout moment!

Grâce à un système d'assemblage spécial et à la technique modulaire de régulation, des extensions peuvent être réalisées ultérieurement sans problème et à tout moment. Ainsi, l'investissement effectué aujourd'hui ne doit pas représenter un frein aux possibilités de demain.

Votre partenaire Froling:

