DEGREE OF ENTANGLEMENT FOR TWO QUBITS

sum. However, the definition of P(u;,v,), as well as the
choice of the value of A, is ad hoc.

In the conception presented here, the state at the output of
U, and U, is written as |¥)=a|u;,v)+ aslu,v,)
+ asluy, 1)+ ayslu,,v,), so that

P(uy,v))=|aay*—|ayas]* +A
=(lajay = |aras])(Jayay|+[aras]) +A. (10)

If we choose the phases of the elements of U; and U, such
that sin ®=0, where ®=0,+ 0,+ ¢, + ¢, (see Appendix),
then both @ a4 and a,a; are real positive quantities and
P(uy,v))=A*Pp(a;a,+ a,as)/2; the quantity + (@ ay
+ a,a3)/2 fluctuates as the parameters of U; and U, are
changed. The value of A should thus be chosen to be equal to
the maximum absolute value of this latter quantity, which is
1/4 when |a;|=]|ay4| and |a@,|=|a;|. One can show that the
choice of U; and U, that leads to the above condition is the
same one that leads to the results provided in Refs. [12] and
[13], which were related to interferometric complementari-
ties but not to the degree of entanglement. The authors in
Ref. [13] found that V,,=2k,k,, so that the measurement
of two-particle visibility is tantamount to a measurement of
the degree of entanglement Py .

Note also that the visibilities of the singles rates (the one-
particle visibilities) are all given by /1 —P EZ’ so that in the
context of our present construction, the complementarity of
one- and two-particle visibilities [12,13] follows immedi-
ately from the normalization of the state vector.

Another interesting conclusion emerges from the follow-
ing considerations. The state |¥,) offers no welcher-weg
(which-way) information about the two particles since each
particle considered separately is in a maximally mixed state,
whereas |¥ ) provides definite welcher-weg information
about the two particles. Thus, the complementarity of one-
and two-particle visibilities is the two-particle counterpart of
the well-known complementarity for a single particle: that of
welcher-weg information and interference visibility. In Ref.
[13], the authors noted the similarity between these two
complementarity relationships. The significance of this simi-
larity is now clear.

We conclude that the proposed decomposition of Eq. (3)
provides the underlying foundation for several seemingly
different definitions of the degree of entanglement of a pure
bipartite state of two qubits.
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APPENDIX: PROPERTIES OF THE DECOMPOSITION

Apply the most general local unitary transformation U
=U,®U, to the general bipartite state expressed in the
Schmidt decomposition in Eq. (2):

a; —a by —b,
- LU= , Al
Ylar o oat o p¥ b Al
where |a;|*+]ay)*=1 and |b[*+|by[*=1; and a;

=la;le’, b;=|b;le’®, j=12; such that |x;)—a;lu;)
+a¥|u,), and so on. After transformation, the state in Eq.
(2) may then be written as

|W)=B1lui,v1)+ Baoluy,v2) + Bslus,v 1)+ Baluz,v,),
(A2)

where B1=ka b+ Kya,by, Br=kKia1bF—Kkya,bF, B3
=K1a5b— K,aFhy, By=K1aFbF + kyafbT . If we impose
the conditions 8;=0 and B,=pf,, we have k,|a,|b,]
=ky|ay|by], lallby[=la,l|bs], 6+ ¢@1=6,+¢,. Solving
the first two relationships, we obtain |a,|=|b,]
=K, /(K +Ky) and |a,|=|b,|=K,/(k,+K,); we then
have B,=B4=(p/vV2)e (O17¢D and B,=\1—pre/h1=¢2),
where p?>=2k, k,. Since the Schmidt coefficients are unique
for any given state, the parameter p is also unique. We absorb
the phases into the definition of U; and U, given in Eq. (A1)
and thereby finally obtain the result given in Eq. (5). We can
similarly impose the conditions 8,=0 and B,=p, in Eq.
(A2) to obtain the result given in Eq. (6). A similar analysis,
but used for a different purpose, is the starting point of Ref.
[14].

The parameter p may also be expressed in terms of the
coefficients of |¥) in Eq. (1). A maximally entangled state
takes the form |W,)=e'?(a,|00)+a,|01)—a}|10)
+af|11)), whereas a factorizable state takes the form
|W)=b]00)+b,|01)+b3|10)+by[11), where 7y is a
phase, |a|?+|a,|*=1/2, and b,bys—b,b;=0. The coeffi-
cients of |¥) in Eq. (1) may be written in terms of the coef-
ficients of |W,) and |V¥y), using Eq. (3), as «; =pea,
+\1—p-e'?b, and similarly for a,, a3, and a,. It readily
follows that

1 ) .
oo, — a2a3=§p22’27+p V1=p2e' " (a\by+akb,

—a2b3+a;‘b2). (A3)
The expression in parentheses on the right-hand side of Eq.
(A3) is precisely the orthogonality condition (W ,|W ;)=0. It
follows that |aay— ayas|=(1/2)p?, completing the proof
of Eq. (8).
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