
sum. However, the definition of P̄(u1 ,v1), as well as the
choice of the value of A, is ad hoc.

In the conception presented here, the state at the output of
U1 and U2 is written as uC&5a1uu1,v1&1a2uu1,v2&
1a3uu2,v1&1a4uu2,v2& , so that

P̄~u1 ,v1!5ua1a4u2
2ua2a3u2

1A

5~ ua1a4u2ua2a3u!~ ua1a4u1ua2a3u!1A . ~10!

If we choose the phases of the elements of U1 and U2 such
that sin F50, where F5u11u21w11w2 ~see Appendix!,
then both a1a4 and a2a3 are real positive quantities and
P̄(u1 ,v1)5A6PE(a1a41a2a3)/2; the quantity 6(a1a4
1a2a3)/2 fluctuates as the parameters of U1 and U2 are
changed. The value of A should thus be chosen to be equal to
the maximum absolute value of this latter quantity, which is
1/4 when ua1u5ua4u and ua2u5ua3u. One can show that the
choice of U1 and U2 that leads to the above condition is the
same one that leads to the results provided in Refs. @12# and
@13#, which were related to interferometric complementari-
ties but not to the degree of entanglement. The authors in
Ref. @13# found that V1252k1k2 , so that the measurement
of two-particle visibility is tantamount to a measurement of
the degree of entanglement PE .

Note also that the visibilities of the singles rates ~the one-
particle visibilities! are all given by A12PE

2 , so that in the
context of our present construction, the complementarity of
one- and two-particle visibilities @12,13# follows immedi-
ately from the normalization of the state vector.

Another interesting conclusion emerges from the follow-
ing considerations. The state uCe& offers no welcher-weg
~which-way! information about the two particles since each
particle considered separately is in a maximally mixed state,
whereas uC f& provides definite welcher-weg information
about the two particles. Thus, the complementarity of one-
and two-particle visibilities is the two-particle counterpart of
the well-known complementarity for a single particle: that of
welcher-weg information and interference visibility. In Ref.
@13#, the authors noted the similarity between these two
complementarity relationships. The significance of this simi-
larity is now clear.

We conclude that the proposed decomposition of Eq. ~3!
provides the underlying foundation for several seemingly
different definitions of the degree of entanglement of a pure
bipartite state of two qubits.
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APPENDIX: PROPERTIES OF THE DECOMPOSITION

Apply the most general local unitary transformation U
5U1 ^ U2 to the general bipartite state expressed in the
Schmidt decomposition in Eq. ~2!:

U15F a1 2a2

a2* a1*
G , U25F b1 2b2

b2* b1*
G , ~A1!

where ua1u2
1ua2u2

51 and ub1u2
1ub2u2

51; and a j
5ua jue

iu j, b j5ub jue
iw j, j51,2; such that ux1&→a1uu1&

1a2*uu2&, and so on. After transformation, the state in Eq.
~2! may then be written as

uC&5b1uu1,v1&1b2uu1,v2&1b3uu2,v1&1b4uu2,v2& ,
~A2!

where b15k1a1b11k2a2b2 , b25k1a1b2*2k2a2b1* , b3
5k1a2*b12k2a1*b2 , b45k1a2*b2*1k2a1*b1* . If we impose
the conditions b350 and b15b4 , we have k2ua1ib2u
5k1ua2ib1u, ua1ib1u5ua2ib2u, u11w15u21w2 . Solving
the first two relationships, we obtain ua1u5ub2u
5Ak1 /(k11k2) and ua2u5ub1u5Ak2 /(k11k2); we then
have b15b45(p/&)e2i(u11w1) and b25A12p2e i(u12w2),
where p2

52k1k2 . Since the Schmidt coefficients are unique
for any given state, the parameter p is also unique. We absorb
the phases into the definition of U1 and U2 given in Eq. ~A1!
and thereby finally obtain the result given in Eq. ~5!. We can
similarly impose the conditions b250 and b15b4 in Eq.
~A2! to obtain the result given in Eq. ~6!. A similar analysis,
but used for a different purpose, is the starting point of Ref.
@14#.

The parameter p may also be expressed in terms of the
coefficients of uC& in Eq. ~1!. A maximally entangled state
takes the form uCe&5e ig(a1u00&1a2u01&2a2*u10&
1a1*u11&), whereas a factorizable state takes the form
uC f&5b1u00&1b2u01&1b3u10&1b4u11& , where g is a
phase, ua1u2

1ua2u2
51/2, and b1b42b2b350. The coeffi-

cients of uC& in Eq. ~1! may be written in terms of the coef-
ficients of uCe& and uC f&, using Eq. ~3!, as a15pe iga1
1A12p2e iwb1 and similarly for a2 , a3 , and a4 . It readily
follows that

a1a42a2a35

1
2

p2e i2g
1pA12p2e i~g1w !~a1b41a1*b1

2a2b31a2*b2!. ~A3!

The expression in parentheses on the right-hand side of Eq.
~A3! is precisely the orthogonality condition ^CeuC f&50. It
follows that ua1a42a2a3u5(1/2)p2, completing the proof
of Eq. ~8!.
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