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The factor in large parentheses is equal to F? — w? + z'(E2 + w2)e, and we
can absorb the positive coefficient into € to get E? — w? + ie.
Now it is convenient to change integration variables to

Z(E) = ¢(E) + $ : (7.7)
Then we get

Furthermore, because eq. (7.7) is just a shift by a constant, Dg = Dx. Now
we have
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Now comes the key point. The path integral on the second line of
eq. (7.9) is what we get for (0[0)y in the case f = 0. On the other hand,
if there is no external force, a system in its ground state will remain in its
ground state, and so (0]0) ;=9 = 1. Thus (0]0) s is given by the first line of
eq. (7.9),
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We can also rewrite (0|0)¢ in terms of time-domain variables as
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Note that G(t—t') is a Green’s function for the oscillator equation of motion:

(% 4 oﬂ) Gt —t) = 5(t ) . (7.13)

This can be seen directly by plugging eq.(7.12) into eq. (7.13) and then
taking the e — 0 limit. We can also evaluate G(t —t’) explicitly by treating
the integral over E on the right-hand side of eq. (7.12) as a contour integral
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in the complex E plane, and then evaluating it via the residue theorem.
The result is

Gt —t) = iexp(f@'wﬁ ). (7.14)

Consider now the formula from section 6 for the time-ordered product
of operators. In the case of initial and final ground states, it becomes
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Using our explicit formula, eq. (7.11), we have
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We can continue in this way to compute the ground-state expectation value
of the time-ordered product of more Q(t)’s. If the number of Q(t)’s is odd,
then there is always a left-over f(¢) in the prefactor, and so the result is
zero. If the number of Q(t)’s is even, then we must pair up the functional
derivatives in an appropriate way to get a nonzero result. Thus, for exam-

ple,
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More generally,
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pairings
PROBLEMS
7.1) Starting with eq. (7.12), do the contour integral to verify eq. (7.14).

7.2) Starting with eq. (7.14), verify eq. (7.13).



