A rendre le 07/11/2008

Exercice1

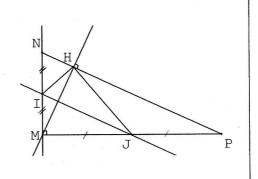
Sur la ci-dessous, ABC est un triangle, H le projeté orthogonal de A sur [BC] (voir figure),

$$\overrightarrow{BAH} = 45^{\circ}$$
, $\overrightarrow{HAC} = 30^{\circ}$ et $AH = 6cm$.

Le cercle & de diamètre [AH] et de centre O coupe (AB) en D et (AC) en E.

- 1. a. Calculer AB et AC.
 - b. Montrer que AE = $3\sqrt{3}cm$
- 2. Démontrer que $\widehat{AHE} = \widehat{ADE} = 60^{\circ}$.
- 3. a. Calculer BC (valeur exacte)
 - b. Sachant que

$$\frac{DE}{BC} = \frac{\sqrt{6}}{4}$$
, montrer que $DE = \frac{3}{2}(\sqrt{6} + \sqrt{2})cm$


- 4. On note F le point diamétralement opposé à D sur &.
 - a. Démontrer que $\widehat{DFE} = 75^{\circ}$.
 - b. Déduisez-en que sin $75^{\circ} = \frac{\sqrt{2}}{4} (\sqrt{3} + 1)$

LIZO O H					
α	0	30	45	60	90
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
COSα	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0

Exercice 4:

On considère le triangle MNP rectangle en M. On trace la hauteur de ce triangle issue de M. Elle coupe [NP] en H. I et J sont les milieux respectifs de [MN] et [MP].

- 1. Montrer que les triangles MIH et MJH sont des triangles isocèles respectivement en I et en J.
- **2.** Montrer que la droite (IJ) est la médiatrice du segment [MH].
- 3. En utilisant une symétrie axiale (à préciser), montrer que les droites (HI) et (HJ) sont perpendiculaires.

Exercice 3

Sur le polycopié distribué