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Abstract

The purpose of this article is to elaborate an axiomatic set theory expressed
in a first order language in which the pseudo-constant Lambda, Λ, denoting the
void has been introduced. The introduction of Λ into the first order language
of set theory allows to build the empty set from the void by means of the axiom
of the parts. On a conceptual level, taking into account Λ makes it possible to
redefine the concept of set and to give the empty set a positive definition and
a status of emblematic set. On the other hand, the introduction of Λ into the
language of a set theory with an empty universe makes it possible to highlight
a zero-order logic different and probably more legitimate than the propositional
logic, which classicaly deserves the title of zero-order logic because of the absence
of quantification on propositional variables. The presence of Λ within a formal
language for a theory without elements of type 1 or higher highlights a zero-
order logic where quantification is possible on type-0 element. The semantics of
such a language will appear empty, but will be the opportunity to introduce the
pre-truth value Empty.
In a first order theory with a non-empty universe, the interpretation of Lambda
as a pseudo-constant and of Empty as a pre-truth value, i.e. as different from the
”neither... nor” would let the possibility to work with a standard logic rather
than with a paracomplete one.

First Lambda will be defined conceptually. After that will be described a
zero-order logic based on Lambda for a theory with an empty universe. Then
the highlighting of the pre-truth value ”Empty” will follow. The second sec-
tion will be about the description of first-order language and theory taking into
account the pseudo-constant Λ, about the axiom of the void, and about the con-
struction of the empty set and that of a hierarchical universe from Λ. Finally,
we will pay attention to the conceptual importance and consequences of Lambda.

Keywords: cut, void, potential, pre-element, pseudo-constant, zero-order
logic, Empty, pre-truth value, empty set, relative nothing.

1 Lambda

1.1 Short history of the genesis of the idea of Lambda

The initial questioning was: does a hierarchy of empty sets exist, in the same
way that a hierarchy of infinite sets was highlighted by Cantor thanks to the
definition of equipotence? The answer seems to be yes, thanks to the introduc-
tion of a predicate of potentiality that allows to build a relation of potential
membership. This will be the object of another article.
Anyway, potential membership implies potential and it appeared that this po-
tential could be identified with a void, a relative void different from the empty
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set and symbolized by the Greek letter Lambda in capital form, Λ. For our
purpose, it appeared that Λ could be identified with a cut and could constitue a
condition of possibility of sets. In a more fundamental way, cuts could also con-
stitute a condition of possibility of the formal language in which the set theory
is developed.
The next section is an attempt at defining this astonishingly multi-faceted no-
tion.

1.2 Definition and Specificities of Lambda

1.2.1 Cuts as conditions of possibility of the language itself

Even if the interpretation of Lambda as condition of possibility of the formal
language in which the set theory is developed is not the object of this article, it
can help to grasp its very true nature. The definition of a formal language, and
more generally of the most part of natural languages, consist in a vocabulary, a
syntax and a semantics. The basic constituent of a language is the alphabet. An
alphabet consist in letters, sounds or symbols. But there is maybe something
more fundamental than letters, sounds or symbols. We cannot have different
symbols without cuts. Cuts are abstract separators. With respect to the
language, the alphabet is constituted not only of letters, but also of (abstract)
cuts which make it possible to have at least two different letters, and even one
letter; indeed, the letters a and b, for example, are different from each other
thanks to the cut that allows to create two different letters; and each of these
letters are different from a cut! From another perspective, cuts can be seen as
what makes it possible for a letter to be expressed in a finite time.

1.2.2 Void as condition of possibility of sets

Now, and this is the real object of this article, cuts play a fundamental role in
contexts larger than a language’s building. Indeed, cuts prove essential in set
theory as separators between elements of the theory, i.e. sets, and as constituents
of sets. Even if abstract, cuts have a more concrete aspect in set theory than in
language. Indeed, in set theory, cuts can be assimilated to a void.
The void,a in the sense of an abstract vacant space, is a pre-element and con-
stitutes the only non-elementb of the theories defined in this article. In a set

aIn French, the same word vide is used for the various English terms ”emptiness”, ”vacuum”
and ”void”. It is extremely difficult to give privilege to one of these different acceptations.
Intuitively, ”emptiness” would seem to be the more appropriate term for a set theory concept,
but it is too empty, too abstract : one cannot say that one fills in an emptiness; but this
concept will reveal useful for qualifying a pre-truth value; ”vacuum” contains very interesting
properties like potentiality and the idea of a vacant space that one can fill in, it also highlights
the fact that we are dealing with a kind of abstract physics, but it is too concrete, too
specifically physically connoted; ”void” is closer to what we mean by ”vide” : vacant space
that one can fill in, it contains the idea of potentiality with the best compromise between
abstract and concrete (in a mereological sense) aspects of Lambda. Let’s be notice that we
avoid right away exclusive use of the concept of ”nothing” to which Russell assimilates the
empty set, in the chapter ”Classes” of ”The Indefinables of Mathematics”, where he makes
no use of any of the three words we have analysed.

bIn axiomatic set theory like ZFC that will be a reference for this work, every element is
a set : ∀x(x is a set). The property ” being a set ” is defined as follows : x is a set iff x is a
class and ∃y(x ∈ y). Every set is a class or a collection; the reverse is not true. The notions
of class or collection don’t belong to the Lambda theory, they are used for convenience. The
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theory with a non-empty universe, the void, denoting a vacant space, a poten-
tial, and as a cut, represents a condition of possibility of the elements of the
theory.
In theories where the universe is empty, the void is just a potential.
We will start to formalize Lambda for this particular case.

2 Zero-order logic with Lambda or Lambda-0
logic

Zero-order logic will be here reconsidered and the use of Lambda formalized.
The language described in this chapter is intended for a set theory with no
element of type 1 or higher, with no... set, i.e. with an empty universe of
discourse. Lambda only, which is a (pre-) element of type 0, is taken into
account. The use of Lambda in a theory with an empty universe is a very special
case. Indeed, here, Lambda does not play the role of cut, it is not a condition of
possibility, since there is no element. So, Lambda, as a void, is just a potential
and has only a passive role. It is classicaly admitted that Propositional Calculus
deserves the title of zero-order logic because of the absence of quantification on
propositional variables. If we suppose a theory where the only (pre) element is
the potential, we can elaborate a logic that will deserve the title of zero-order
logic because quantification will be on type zero (pre-)element. The introduction
of the pseudo-constant Lambda of type 0 among logical symbols leads to the
highlighting of a zero-order logic where quantification is possible on variables
that will be instantiated by Lambda denoting the pseudo-object ”void”, the
only (pre-)element of type zero.c

2.1 Syntax of zero-order logic and theory with Lambda

2.1.1 Vocabulary

Logical symbols

- Only one pseudo-variable-constant of type 0: Λ. This is a pseudo-constant
for ”nothing”, for a blank, for the void. As Λ constitutes the only possible
instantiation of a variable in the zero-order logic, it can play both the role of a
variable and of a pseudo-constant.
In addition, it makes it possible to make the distinction between 0-order vari-
able (Λ) and first-order variables x, y, z....
- A set of functions, each of some valence (or arity) ≥ 0 which are expressed by
lowercase letters f, g, h.
- Symbols denoting logical operators: ∨,∧,⇒,⇔,¬.
- symbols denoting quantifiers: ∀, ∃.
- Left and right parenthesis: (, ).
- Identity or equality symbol: =. Syntactically it behaves like a binary predi-
cate.d

property ” x is a class ” is defined as follows : x is a class iff (x = ∅ ∨ ∃z(z ∈ x)). Lambda
isn’t the empty set nor a non-empty set, thus it is not a class and consequently it is not a set.
But we will see that its treatment in the theory is legitimate as a pre-class.

cWe have an ”objectualist” position.
dActually, the equality symbol in not necessary
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- The pre-Truth constant E for ”empty” (this is not the ”neither true nor false”).

So we have two kinds of logical constants: the propositional connectives/operators
and the pseudo-constant Lambda. On the other hand, we don’t have the Truth
constants T for ”true” and F for ”false”, operators of valence 0.

Non-logical symbols

- As we work in the frame of an axiomatic set theory, we have only one relation
symbol of arity (valence) 2: ∈.

- A set of function symbols, each of some valence ≥ 0, which are denoted by
lowercase letters f, g, h,... . Function symbols of valence 0 are called constant
symbols, and are often denoted by lowercase letters at the beginning of the
alphabet a, b, c,... .
These non-logical symbols constitute the signature Σ of our language.

2.1.2 Language : Formation Rules

Terms
- The pseudo-variable-constant Lambda is a term.
- Any expression f(t1, ..., tn) of n ≥ 1 arguments (where each argument ti is a
zero-order term and f is a function symbol of valence n) is a term.
- Closure clause: nothing else is a term.

Well-formed formulas

- Simple and complex predicates: if P is a relation of valence ≥ 1 and the ai are
terms, then P (a1, ..., an) is well-formed. If equality is considered as part of the
logic, then (a1 = a2) is well-formed. All such formulas are said to be atomic.
In this respect, the only atomic formula are Λ ∈ Λ and Λ = Λ.
- Inductive clause 1: if ϕ is a wff , then ¬φ is a wff .
- Inductive clause 2: if ϕ and ψ are wffs, then are ϕ∧ψ, ϕ∨ψ, ϕ ⇒ ψ, ϕ ⇔ ψ.
- Inductive clause 3: if ϕ is a wff and Λ is a variable, then ∀Λϕ and ∃Λϕ are
wffs.e

2.2 Semantics of Lambda-0 language

It is clear that neither deductive nor modeling approach is possible in a Lambda-
0 theory. Indeed, the atomic formulas Λ ∈ Λ and Λ = Λ being empty formulas,
the complex formulas built from them are empty: ϕ ∧ ψ, ϕ ∨ ψ, ¬ϕ, ϕ ⇒ ψ,
ϕ ⇔ ψ, ∀Λϕ, ∃Λϕ are empty expressions. This can be seen in at least two
ways: one can consider that the zero-order logic language contain a variable
that can be instantiated by Lambda only; in this case, Lambda plays the role
both of a variable and of a pseudo-constant. Or one can consider that Lambda
denotes the absence of variable: as Lambda is the only (pseudo-)constant of

eThese are not vacuous quantifier as in, for example, ∀x(P (y) ⇒ Q(y)).
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the zero-order logic, there is no need for variables. Empty formulas lead to the
highlighting of the notion of ”Empty”, which is not a value but a pre-value. It
is important to note that it is not equivalent to the ”neither true nor false” of
the paracomplete logic. Empty will reveal essential in semantics of Lambda-1
theory.
We will see that a first order formula considered from the perspective of its
zero-order structure reveals the skeleton of the formula, i.e. when all variables
are instantiated by the pseudo-object, the pre-element Lambda only: we have a
concatenation of logical constants and non logical operators (∈ and =). So the
semantics of the zero-order logic is empty !
The domain D of M is empty, which does not prevent to give assignment to
Lambda.
Only one possible assignment α: α[Λ 7→ Λ](Λ) = Λ.

2.3 Lambda-0 calculus

We have an empty calculus consisting in a simple concatenation of logical op-
erators. Logical constants applied to formulas that contain only the Lambda
pseudo-constant probably provide the true zero-order logic, which therefore is
not the traditional propositional calculus. Our zero-order logic is a trivial logic
where formulas are semantically empty.
Syntactically, we have T ` Λ; semantically, T |= Λ

No truth values but the pre-truth value Empty is associated with our 0-order
calculus.
The crucial question now is: what is the interest of Lambda if neither proof
theory nor model theory make sense for our zero-order theory? First, it makes
it possible to highlight the true zero-order logic, which is not propositional
calculus. Secondly, it allows the introduction of the pre-value ”Empty”, E. It is
essential to understand that ”Empty” is not a third value, but a ”pre-value”; it
is not equivalent to the ”neither true nor false” since we are in a situation where
we have no reference values! Also, Empty is not to be confused with ”vacuous
truths” either. Thirdly, Lambda becomes useful when considered in the frame
of a first-order theory. Indeed, the possibility to quantify on the 0-order (pre-
)element Lambda, allows us (as we will see in section 4) to construct the empty
set in a positive way.

2.4 Propositional calculus

Propositional calculus is traditionally assimilated to the zero-order logic because
of the absence of quantification on propositional variables. Actually, it is the
nature of the object of the logic that must determine its degree. Lambda is much
simpler than the individual object of the 1st order logic; this is not the case for
propositions. Quantification is possible in zero-order logic, but it is empty be-
cause the variables can be instantiated by Lambda denoting the pseudo-object,
the pre-element ”void”, only, which is a relative nothing ! In the frame of lan-
guages for theories that include Lambda, propositional calculus gives the basic
structure of the logics, including the zero-order logic. Propositional calculus
becomes the fundamental structure of the logic.
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3 First-order logic and theory with Lambda or
Lambda-1 logic and theory

The following chapters will describe the syntax and the semantics of a 1st order
language for a theory where the Lambda pseudo-constant denoting the void
plays an active role. Let us note this: in the zero-order theory described above,
the universe was empty but here the language described is intended for a set
theory with a non-empty universe of discourse.
Now Lambda is not used to say that there is nothing in the universe, but to
denote the nothing. If Lambda was just used to say that the universe is empty,
it could not be used in a theory where the universe of discourse is not emtpy!

3.1 Syntax of First-order logic with Lambda

3.1.1 Vocabulary

Alphabet (set of all symbols of the language)

Logical symbols
- An infinite set of variables, symbolized by lowercase letters at the end of the
alphabet x, y, z....
- The only pseudo-constant of type 0: Λ. This is a pseudo-constant for ”noth-
ing”, for a blank, for the void. The void is a pseudo-object. Lambda denotes this
pre-element. In 1st-order language, Lambda plays the role of a pseudo-constant
only; its role of 0-order variable is absorbed by 1st-order variables x, y, z....
- A set of functions, each of some valence (or arity) ≥ 0 expressed by lowercase
letters f, g, h.
- Symbols denoting logical operators: ∨,∧,⇒,⇔,¬.
- symbols denoting quantifiers: ∀, ∃.
- Left and right parenthesis: (, ).
- Identity or equality symbol: =. Syntactically it behaves like a binary predi-
cate.
- The truth constants T for ”true” and F for ”false”, operators of valence 0.
- The pre-truth constant E for ”empty”.
- The logical constants > (tautology), and ⊥ (antilogy).f

Non-logical symbols
- A set of constants, type-1 elements, symbolized by lowercase letters at the
beginning of the alphabet: a, b, c....
- As we work in the frame of an axiomatic set theory, we have only one relation
(predicate) symbol of arity (valence) 2: ∈.

- A set of function symbols, each of some valence ≥ 0, which are represented by
lowercase letters f, g, h,... . Function symbols of valence 0 are called constant
symbols, and are often represented by lowercase letters at the beginning of the
alphabet a, b, c,... .

fIn first-order theories, tautologies constitue a proper subset of logical validities.
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These non-logical symbols constitute the signature Σ of our logic. Our first
order logic with its signature constitutes the langage ` of our theory Γ.

3.1.2 Language : formation Rules

Terms
The set of terms is recursively defined by the following rules:
- The pseudo-constant Lambda is a term.
- Any constant is a term.
- Any variable is a term.
- Any expression f(t1, ..., tn) of n ≥ 1 arguments (where each argument ti is a
zero-order term and f is a function symbol of valence n) is a term.
- Closure clause: nothing else is a term.
The variable Lambda is absorbed by the type-1 variables x, y, z...

Well-formed formulas
Let us recall that the Lambda-1 language here developed is devoted to axiomatic
set theory, where the binary operator of membership ∈ is the only relation-
predicate.g Concerning atomic formulas, the variables at the right side of the
operator must range over a set of (pre-)elements of type equal or greater than
that of the (pre-)elements of the set over which the variables at the left side of
the operators range. In other words, we cannot instantiate the right part of the
relation with Lambda if the left member represents a set. In all other cases,
1st-order variables x, y, z... can be instantiated by a set only. On the other hand,
by default, the variable Lambda is absorbed by the type-1 variables x, y, z...
The expression x ∈ Λ is not a wff. The expression Λ ∈ Λ is legitimate but
empty. We will see that the expression Λ ∈ x is always true.
Concerning the equality symbol, the left and the right members of the relation
must be of the same type or degree.
The set of well-formed formulas (wffs or just formulas) is recursively defined by
the following rules:
- The following expressions are atomic formulas: x ∈ y, x = y.
- Simple and complex predicates: if P is a relation of valence ≥ 0 and the ai

are terms, then P (a1, ..., an) is well-formed. If equality is considered as a part
of the logic, then (a1 = a2) is well-formed. All such formulas are said to be
atomic.
- Inductive clause 1: if ϕ is a wff , then ¬φ is a wff .
- Inductive clause 2: if ϕ and ψ are wff , then ϕ∧ψ, ϕ∨ψ, ϕ ⇒ ψ, ϕ ⇔ ψ are
wffs.
- Inductive clause 3: if ϕ is a wff and x is a variable, then ∀xϕ and ∃xϕ are
wffs.
- Closure clause: nothing else is a wff .
A sentence is a well-formed formula with no free variable of any sort.

Free and bound variables
- Atomic formulas: if ϕ is an Atomic formula, then x is free in ϕ if and only if
x occurs in ϕ.
- Inductive clause I: x is free in ¬ϕ if and only if x is free in ϕ.

gs = t is an abbreviation for ∀x(s ∈ x ⇔ t ∈ x) ∧ ∀x(x ∈ s ⇔ x ∈ t).
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- Inductive clause II: x is free in (ϕ ⇒ ψ) if and only if x is free in either ϕ or
ψ.
- Inductive clause III: x is free in ∀y ϕ if and only if x is free in ϕ and x is
different than y.
- Closure clause: x is bound in f if and only if x occurs in f and x is not free in
f.

Substitution
If t is a term and f is a formula possibly containing the variable x, then f[t/x]
is the result of replacing all free instances of x by t in f .
This replacement results in a formula that logically follows the original one
provided that no free variable of t becomes bound in this process. If some free
variable of t becomes bound, then to substitute t for x it is first necessary to
change the names of bound variables of f to something other than the free
variables of t.

3.1.3 Lambda language

Let’s take the language of the set theory `(∈,=). The class of the well-formed
formulas (wff) of the theory is the class obtained starting from the atomic
formulas x ∈ y and x = y, by means of the following rules: if ϕ and ψ are wff,
then ϕ ∧ ψ, ϕ ∨ ψ, ¬φ, ϕ ⇒ ψ, ϕ ⇔ ψ, ∀xϕ and ∃xϕ are wffs too. Here one
uses a 1st order logic.h The language of the Lambda theory is the language of
set theory (∈, =) admitting blanks, empty/vacant spaces, (identified by our Λ)
under certain conditions, in the atomic formulas.
The set theory for which our first-order language is defined obeys the following
principle: the Lambda pseudo-constant denotes a pre-element and this only
pre-element of the theory (the void) is of a type lower than that of a set and it
constitutes the only possible syntactic case outside the type-1 elements, i.e. sets,
without having to add something to the language and to the theory (contrary
to what happens when one adds ur-elements to the theory). Being of a degree
lower than that of a set, the pre-element or pseudo-object ”void” cannot contain
an object of order 1 or higher,i in other words, it cannot be put at the right side
of the membership relation if the left side is instantiated by a set, but it can
belong to any set. We will note the Lambda language `(Λ,∈, =).

3.2 Proof Theory

3.2.1 Inference rules

An inference rule is a function from sets of (well-formed) formulas, called premises,
to sets of formulas called conclusions. In most well-known deductive systems,
inference rules operate on a set of formulas and give a single conclusion.

hConcerning the language, we always use a first order logic, at the price of some minor
specifications, among which are some restrictions on the use of Lambda in the atomic formulas,
and with the option of not introducing a general variable which can be instantiated by a set
constant or Lambda. We have highlighted the zero-order logic which underlies the 1st order
logic.

iThe logic of the potential will establish that Lambda can contain higher order elements
but only potentially, at a potential level. We are working here at an effective level.
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For instance, the classical inference rule, modus ponens, states that if ϕ and
ϕ ⇒ ψ are both theorems, then ψ is a theorem. This can be written as following;
if T ` ϕ and T ` ϕ ⇒ ψ, then T ` ψ.

3.2.2 Axioms

Here follows a description of the axioms of first-order logic. As explained above,
a given first-order theory has further, non-logical axioms. The following logical
axioms characterize our first-order logic of this article.

Quantifiers axioms
Quantifier axioms change according to how the vocabulary is defined, how the
substitution procedure works, what the formation rules are and which inference
rules are used. Here follows a specific example of these axioms:

PRED-1: (∀xZ(x)) ⇒ Z(t)
PRED-2: Z(t) ⇒ (∃x(Z(x))
PRED-3: (∀x(W ⇒ Z(x))) ⇒ (W ⇒ ∀(x)Z(x))
PRED-4: (∀(x)(Z(x) ⇒ W )) ⇒ (∃xZ(x) ⇒ W )

Equality and its axioms

There are several different conventions for using equality (or identity) in first-
order logic. The various conventions all give essentially the same results even if
they differ in terminology.
The most common convention is to consider the equality symbol as primitive
and to add the axioms for equality to the axioms for first-order logic. This is
the option we chose. The equality axioms are
- x = x (reflexivity)
- x = y ⇒ f(..., x, ...) = f(..., y, ...) for any function f
- x = y ⇒ (P (..., x, ...) ⇒ P (..., y, ...)) for any relation P (Leibniz’s law)
where P is a metavariable ranging over wffs of the object language. Leibniz’s law
is sometimes called ”the principle of substitutivity”, ”the indiscernibility of iden-
ticals”, or ”the replacement property”. The above forms are axiom schemata:
they specify an infinite set of axioms of the above forms, called their instances.
Notice that the second schema involving the function symbol f is (equivalent
to) a special case of the last schema, namely x = y → (f(..., x, ...) = z →
f(..., y, ...) = z). From the above axioms both symmetry and transitivity for
equality follow. Moreover, by the symmetry of equality, the right hand side of
the last schema (Leibniz’s law) could be strengthened to a biconditional.
In theories with no function symbols and a finite number of relations, it is
possible to define equality in terms of these relations, by defining the two terms
s and t to be equal if any relation is unchanged by changing s to t in any
argument. This is the case of the Lambda-1 theory, which is a set theory with
one relation ∈; we may define s = t to be an abbreviation for ∀x(s ∈ x ⇔ t ∈
x) ∧ ∀x(x ∈ s ⇔ x ∈ t). This definition of equality then automatically satisfies
the axioms for equality. In this case, one should replace the usual axiom of
extensionality, ∀x∀y(∀z(z ∈ x ⇔ z ∈ y) ⇒ x = y), by ∀x∀y(∀z(z ∈ x ⇔ z ∈
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y) ⇒ ∀z(x ∈ z ⇔ y ∈ z)), i.e. if x and y have the same elements, then they
belong to the same sets

3.3 Semantics of Lambda-1 Theory

3.3.1 Interpretation

The (logico-mathematical) interpretation of our formal language will assign a
denotation to each non-logical constant or pseudo-constant occurring in lan-
guage (L) or formulas (F). To individual constants it assigns individuals (from
some universe of discourse); to the pseudo-constant Lambda, it assigns the void ;
to predicates of degree 1 it assigns properties (more precisely sets) ; to predicates
of degree 2 it assigns binary relations of individuals; to predicates of degree 3
it assigns ternary relations of individuals, and so on; and to sentential letters it
assigns truth-values.
More precisely, an interpretation of our formal language L or of a sentence F of
L, consists of a non-empty domain D (i.e. a non-empty set) as the universe of
discourse together with an assignment that associates with each n-ary operation
or function symbol of L or of F an n-ary operation with respect to D (i.e. a
function from Dn into D); with each n-ary predicate of L or of F an n-ary
relation among elements of D and (optionally) with some binary predicate I of
L, the identity relation among elements of D.
In this way an interpretation provides meaning or semantic values to the terms
or formulas of the language. The study of the interpretations of formal languages
is called formal semantics. In mathematical logic an interpretation is a mathe-
matical object that contains the necessary information for an interpretation in
the former sense.
The symbols used in our formal language include variables, logical constants,
quantifiers and punctuation symbols as well as the non-logical constants and
the pseudo-constant Lambda. The interpretation of a sentence or of a language
therefore depends on which non-logical constants it contains. Languages of
the sentential (or propositional) calculus allow sentential symbols as non-logical
constants. Languages of the first order predicate calculus allow, in addition,
predicate symbols and operation or function symbols. We will see how to take
into account Lambda in the interpretation of our Lambda-1 language.

3.3.2 First-order structures or models

The model is a pair 〈D, I〉, where D is a set of elements called the domain of
discourse while I is an interpretation of the elements, the non-logical terms of
the signature (constants, pseudo-constant, functions and predicates).
The domain D is a set of elements;
The interpretation I is a function that assigns something to constants, pseudo-
constant, functions and predicates:
- each constant symbol c is assigned a value of the domain I(c)
- the pseudo-constant Lambda is assigned the pre-value ”void” or ”nothing”
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I(Λ) of the domain
- each function symbol f of arity n is assigned a function I(f) from Dn to D
- each predicate symbol P of arity n is assigned a relation I(P ) over Dn or,
equivalently, a function from Dn to True,False. Thus each predicate symbol is
interpreted by a Boolean-valued function on D.

Lambda rules

Some remarks about Lambda are required. The different cases of interpretation
of an atomic formula where ”∈” occurs are recursively defined by the following
rules (with x, y 6= Λ):

- Clause 1: Λ ∈ Λ is empty according to the semantics of zero-order logic (see
supra);
- Clause 2: x ∈ Λ is forbidden; it is not a wff;
- Clause 3: Λ ∈ x is always true by the Axiom of Ante-element (see infra);
- Clause 4: x ∈ y is let to evaluation 〈M,α〉;
- Closure clause: there is no other possible type of combination.

The model also includes an interpretation of the signature. Since the elements
of the signature are function symbols and predicate symbols, the interpretation
gives the ”value” of functions and predicates.

Empty and non-empty formulas

We have seen that the (empty) semantics of the zero-order logic based on
Lambda included the only pre-value Empty. The semantics of first-order lan-
guage based on Lambda cannot be satisfied with this sole pre-value. Classical
truth values True and False are indispensable. But what about Empty? Is it
to be included into the set of classical values in order to constitute a trivalent
logic? No, it is not necessary! Actually, we have three possibilities:
- a paracomplete logic with True, False and Empty (in this case, Empty is equiv-
alent to the ”neither true nor false”)
- Empty is absorbed by False
- Empty replace False
In this article, we chose the second option; empty formulas will be assimilated
to false formulas.
With these restrictions, a standard logic will be sufficient as it is the case in set
theories including ur-elements. Let us recall that Lambda is a kind of ur-ur-
element.

3.3.3 Evaluation

The evaluation of a formula consists in a model, with its domain and assignment,
and an interpretation of the value of the variables.

11



A formula evaluates to True, False or Empty given the model and an interpre-
tation of the value of the variables. Such an interpretation α associates every
variable to a value of the domain.
The evaluation of a formula under the model M = 〈D, I〉 and an interpretation
α of the variables is defined from the evaluation of a term under the same
pair. Note that the model itself contains an interpretation (which evaluates
constants, pseudo-constant, functions, and predicates); we additionally have,
separated from the model, an interpretation. So, with the interpretation of the
model and the variable assignment, we have:
- every constant is assigned its value according to the interpretation of the
model, that is, the value I(c) of c;
- the pseudo-constant Lambda is assigned its value I(Λ) of Λ, i.e. the void, the
relative nothing;
- every variable is associated its value according to α;
- a term f(t1, ..., tn) is associated the value given by the interpretation of the
function and the interpretation of the terms: if (v1, ..., vn) are the values associ-
ated to (t1, ..., tn), the term is associated the value I(f)(v1, ..., vn) ; recall that
I(f) is the interpretation of f, and so is a function from DntoD.

Next, each formula is assigned a truth value. The inductive definition used to
make this assignment is called the T-schema.

1. Atomic formulas (1). A formula P (t1, ..., tn) is associated the value
true or false depending on whether 〈v1, ..., vn〉 ∈ I(P ), where v1, ..., vn are
the evaluation of the terms t1, ..., tn and I(P ) is the interpretation of P ,
which by assumption is a subset of Dn.

2. Atomic formulas (2). A formula t1 = t2 is assigned true if t1 and t2
evaluate to the same object of the domain of discourse.

3. Logical connectives. A formula in the form ¬φ, φ → ψ, etc. is eval-
uated according to the truth table for the connective in question, as in
propositional logic.

4. Existential quantifiers. A formula ∃xφ(x) is true according to M and
α if there exists an evaluation α′ of the variables that only differs from
α regarding the evaluation of x and such that ϕ is true according to the
interpretation M and the variable assignment α′. This formal definition
captures the idea that ∃xφ(x) is true if and only if there is a way to choose
a value for x such that ϕ(x) is satisfied.

5. Universal quantifiers. A formula ∀xφ(x) is true according to M and α
if ϕ(x) is true for every pair composed by the interpretation M and some
variable assignment α′ that differs from α only on the value of x. This
captures the idea that ∀xφ(x) is true if every possible choice of a value for
x causes ϕ(x) to be true.

12



If a formula does not contain free variables, and so is a sentence, then the initial
variable assignment does not affect its truth value. In other words, a sentence
is true according to M and α if and only if it is true according to M and any
other variable assignment α′.

Evaluation process

More formally, given an alphabet of predicates and functions (constants will be
assimilated to 0-arity functions, Λ being in this case a pseudo-function), each
with its respective arity, P1, ..., Pi, ..., f1, ..., fi, ..., an interpretation of our first
order language is

I = (∆I , P I
1 , ..., P I

i , ..., f I
1 , ..., f I

i , ...) (1)

where:
- ∆I is the domain (set of objects)
- if Pi is a k-arity predicate, then P I

i ⊆ ∆I × ...×∆I (k times)
- if fi is a k-arity function, then f I

i : ∆I × ...×∆I −→ ∆I (k times)
- if fi is a constant or a pseudo-constant(i.e., 0-arity function), then f I

i : () −→
∆I (i.e., denotes exactly one object or the pseudo-object ”void”, ”relative noth-
ing” of the domain)

Let V ars be a set of individual variables, then given an interpretation I, an
assignment is a function
α : V ars −→ ∆I

that assigns to each variable x ∈ V ars an object α(x) ∈ ∆I .
We can extend the notion of assignment to terms by defining a function α :
Terms −→ ∆I inductively :
- α(x) = α(x), if x ∈ V ars
- α(f(t1, ..., tk)) = f I(α(t1), ..., α(tk))

In any case, the instanciation of a variable by Lambda must be taken into ac-
count.

For constants α(c) = cI .
We say that a formula φ is true in an interpretation I and an assignment α,
writen I, α |= φ :

- I, α |= P (t1, ..., tk) if (α(t1), ..., α(tk)) ∈ P I ;
- I, α |= ¬φ if I, α 2 φ;
- I, α |= φ ∧ ψ if I, α |= φ and I, α |= ψ;
- I, α |= φ ∨ ψ if I, α |= φ or I, α |= ψ;
- I, α |= φ ⇒ ψ if I, α |= φ implies I, α |= ψ;
- I, α |= ∃xφ if for some a ∈ ∆I , we have I, α[x 7→ a] |= φ;
- I, α |= ∀xφ if for every a ∈ ∆I , we have I, α[x 7→ a] |= φ.

A formula φ that is not true is either false or empty. In this article, empty is
equivalent to false.
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Note that α[x 7→ a] stands for the new assignment obtained from α as follows :

α[x 7→ a](x) = a
α[y 7→ a](y) = α(y) with (y 6= x)

for constants, α(c) = cI .

Closed formulas For closed formulas, or sentences, we can straightforwardly
define what it means for φ to be true in an interpretation, written I |= φ,
without mentioning the assignment, since the assignment α does not play any
role in verifying I, α |= φ.

Open formulas Open formulas are strongly related to queries. Let φ be
a FOL query with free variables (x1, ..., xk), sometimes written φ(x1, ..., xk);
given an interpretation I, the needed assignments are those that map the vari-
ables x1, ..., xk, and only those. One will sometimes write such assignment ex-
plicitly: i.e., α(xi) = ai(i = 1, ..., k), is written simply as 〈a1, ..., ak〉. Now
we define the answer to a query φ(x1, ..., xk) as follows : φ(x1, ..., xk)I =
{(a1, ..., ak)|I, 〈a1, ..., ak〉 |= φ(x1, ..., xk)}.
We will also use the notation: φI , keeping the free variables implicit, and φ(I)
making apparent that φ becomes a function from interpretation to set of tuples.

FOL boolean query A FOL boolean query is a FOL query without free
variables. Hence the answer to a boolean query φ() is as follows

φ()I = {()|I, 〈〉 |= φ()}.

Such an answer is 〈〉 if I |= φ and ∅ if I¬ |= φ. As an obvious convention we
read 〈〉 as true and ∅ as false.

3.3.4 Validity, satisfiability, and logical consequence

If a sentence φ evaluates to True under a given interpretation M , one says that
M satisfies φ; this is denoted M |= φ. A sentence is satisfiable if there is some
interpretation under which it is true.
Satisfiability of formulas with free variables is more complicated, because an
interpretation on its own does not determine the truth value of such a formula.
The most common convention is that a formula with free variables is said to
be satisfied by an interpretation if the formula remains true regardless which
individuals from the domain of discourse are assigned to its free variables. This
has the same effect as saying that a formula is satisfied if and only if its universal
closure is satisfied.
A formula is logically valid (or simply valid) if it is true in every interpretation.
These formulas play a role similar to tautologies in propositional logic.
A formula φ is a logical consequence of a formula ψ if every interpretation that
makes ψ true also makes φ true. In this case one says that φ is logically implied
by ψ. More formally:
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- Satisfiability : φ is satisfiable iff there is an I and α such that I, α |= φ;
unsatisfiable otherwise; and if φ is satisfiable, then φ 6= ∅, i.e. the query returns
some tuples.
- Validity : φ is valid iff for all I and α, we have I, α |= φ; and if φ is valid, then
φI = ∆IX...X∆I , i.e., the query returns all the tuples of I.
- Logical implication : φ logically implies ψ, written φ |= ψ iff for all I and
α, if I, α |= φ, then I, α |= ψ; and if φ logically implies ψ, then φI ⊆ ψI for
all I, written φ ⊆ ψ, i.e., the answer to φ is contained in that of ψ in every
interpretation; this is called query containment.
- Logical equivalence : φ is logically equivalent to ψ, iff for all I and α, I, α |= φ
iff I, α |= ψ, i.e. φ |= ψ and ψ |= φ; and if φ is logically equivalent to ψ, then
φI = ψI for all I, written φ = ψ, i.e., the answer to the two queries is the
same in every interpretation. This is called query equivalence and corresponds
to query containment in both directions.

There are analogous tasks if we have axioms, i.e., constraints on the admissible
interpretations.

3.3.5 First-order theories, models and elementary classes

A first-order theory consists in a set of axioms in a particular first-order signa-
ture. The set of axioms is often finite or recursively enumerable, in which case
the theory is called effective. Some authors require theories to also include all
logical consequences of the axioms.
A first-order structure that satisfies all sentences in a given theory is said to
be a model of the theory. An elementary class is the set of all structures
satisfying a particular theory. These classes are a main subject of study in
model theory.
Many theories have an intended interpretation, a certain model that is kept in
mind when studying the theory. For example, the intended interpretation of
Peano arithmetic consists of the usual natural numbers with their usual oper-
ations. However, the LöwenheimSkolem theorem shows that most first-order
theories will also have other, nonstandard models.
A theory is consistent if it is not possible to prove a contradiction from the
axioms of the theory. A theory is complete if, for every formula in its signature,
either that formula or its negation is a logical consequence of the axioms of the
theory.
Gödel’s incompleteness theorem shows that effective first-order theories that
include a sufficient portion of the theory of the natural numbers can never be
both consistent and complete.

3.4 Lambda-1 calculus

Classicaly, first-order predicate calculi properly extend propositional calculusj.
Within the Lambda theory, this is not really the case. First-order calculus here
extends Lambda-0 calculus, which itself extends propositional calculus. But as
we have seen, Lambda-0 calculus is empty. In general, propositional calculus is
the calculus of reference for any language. If a propositional calculus is defined

jFor simplicity, by a predicate calculus we always mean one that is sound and complete
with respect to classical model theory.
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with a suitable set of axioms (or axiom schemata) and modus ponens as single
rule of inference (this can be done in many ways), then a predicate calculus can
be defined from it by adding the ”universal generalization” inference rule. It
will be the case for our Lambda-1 calculus as it was the case for our Lambda-0
calculus, which also is a predicate calculus but of order 0! As axioms and rules
for the predicate calculus with equality we take:
- laws of thought: identity, non-contradiction, excluded middle
- all tautologies of the propositional calculus;
- the quantifier axioms, given above;
- the above axioms for equality;
- modus ponens;
- universal generalization.
- It is necessary to mention that an expression stating that a set belongs to Λ
is not legitimate: ∀x∀y(x ∈ y ⇒ (x 6= Λ ∧ y 6= Λ) ∨ (x = Λ ∧ y 6= Λ)). An
expression such that x ∈ Λ with x 6= Λ is not a wff . The expression Λ ∈ Λ is
empty!
As ”PC” is generally reserved for Propositional Calculus, ’quantificational cal-
culus’ would be a more appropriate label for our Lambda-1 calculus. A sentence
is defined to be provable (demonstrable) in the calculus if it can be derived from
the axioms of the predicate calculus by repeatedly applying its inference rules.
In other words: all axioms of the calculus are provable (in the calculus); if the
premises of an inference rule are provable, then so is the conclusion. If T is a
set of formulas and f a single formula, we define a derivation of f from T (in
the calculus), in symbols T `Q Cϕ (we often omit the subscript), as a list of
formulas ϕ1, ..., ϕn such that ϕn = ϕ and each ϕi either

(i) is an axiom; or
(ii) follows from previous ϕj , ϕk (possibly j = k) by a rule of inference.
If T ` ϕ then for some finite T ′ ⊆ T we have T ′ ` ϕ. The fact that a sentence is
always provable from a finite set of sentences, - if it is provable from any set at
all -, is a consequence of the fact that every derivation in the system is a finite
list of formulas. Notice that provability is a special case of derivability from the
empty set of premises. In this sense, each calculus K gives rise to a derivability
relation `K . Since we are taking ’predicate calculus’ to mean one that is sound
and complete with respect to classical model theory, each calculus gives rise to
the same derivability relation (taken extensionally).

3.4.1 Provable identities

¬∀xP (x) ⇔ ∃x¬P (x)
¬∃xP (x) ⇔ ∀x¬P (x)
∀x∀yP (x, y) ⇔ ∀y∀xP (x, y)
∃x∃yP (x, y) ⇔ ∃y∃xP (x, y)
∀xP (x) ∧ ∀xQ(x) ⇔ ∀x(P (x) ∧Q(x))
∃xP (x) ∨ ∃xQ(x) ⇔ ∃x(P (x) ∨Q(x))
P ∧ ∃xQ(x) ⇔ ∃x(P ∧Q(x)) (where x must not occur free in P )
P ∨ ∀xQ(x) ⇔ ∀x(P ∨Q(x)) (where x must not occur free in P )
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3.4.2 Additional inference rules

With respect to deduction, we will use the following inference rules:
- modus ponens
- universal instantiation
- existential instantiation
- universal generalization
- existential generalization

3.4.3 Axioms of the theory

In set theory defined in this article, the cuts take the form of the void.
As we have said in the introduction, the void, the potential, in the sense of an
abstract vacant space, is a pre-element and constitutes the only non-element of
our theory. Denoting a vacant space, the void, assimilated to a cut, represents
a condition of possibility of the elements of the theory.

Internal and external cut
With respect to set theory, the void-potential, as an internal and an external
cut,k is a condition of possibility of sets. As an internal cut, it makes it pos-
sible for a set to contain elements; as an external cut, it makes it possible to
distinguish two different sets.l Without the internal cut that the void repre-
sents, a set would be an atom, an ur-element. Now, the void is a condition of
possibility of an ur-element too, but as an external cut only. The void belongs
to the empty set and to any nonempty set (∀x(x 6= Λ ⇒ Λ ∈ x)).
This is the fundamental axiom of Λ-1 theory. This void, denoted by Lambda,

is thus not a set but it is not the absolute nothing either.m Its potential aspect
distinguishes it from the absolute void. As a potential, the void of the Lambda
theory is a relative void; the absolute void is that towards which the relative
void tends.n

Axiom of the void
The fundamental axiom of Lambda-1 theory is the axiom of the void or of the
potential or of the condition or of the pre-element:
Axiom of pre-element: ∀x(x 6= Λ ⇒ Λ ∈ x).
In particular, Λ ∈ ∅ ⊆ x.
This expresses the idea that Lambda is not a set and will allow to give a positive
definition of the empty set, as we will see in the next section.
Lambda is the only thing for which it is not possible not to belong to any set
precisely because it is not a thing; it is a sub-thing, a pre-element, a potential,
contrary to ur-elements, for example, which are real things, elements, even if of

kSimilarities and differences with Dedekind cuts will be studied in another paper.
lEvery element can play the role of a cut compared to the other elements, from which it

is different, but then it is a 1st order cut. Lambda constitutes a zero-order cut because it
denotes a potential, the condition of possibility of the elements.

mWhile the empty set is not nothing, neither absolute nor relative, Lambda does not denote
the absolute nothing, but rather a relative nothing.

nThe assimilation of the void to a potential naturally leads to the elaboration of a logic of
the potential. This is the subject of a further article.
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a type/nature different from that of sets.

Additional axioms
axiom of Extensionality: ∀x∀y(∀z(z ∈ x ⇔ z ∈ y) ⇒ x = y),
axiom of Pairing: ∀x∀y(∃z(x ∈ z ∧ y ∈ z),
axiom Schema of Separation: ∀X∀p∃Y ∀u(u ∈ Y ⇔ u ∈ X ∧ ϕ(u, p)),
axiom of Union: ∀X∃Y ∀u(u ∈ Y ⇔ ∃z(z ∈ X ∧ u ∈ z)),
axiom of Power Set: ∀x∃y(∀z(∀t(t ∈ z ⇒ t ∈ x) ⇒ z ∈ y)),
axiom of Infinity: ∃S(∅ ∈ S ∧ ∀x(x ∈ S ⇒ x ∪ x ∈ S)),
axiom Schema of Replacement, ∀x∀y∀z(ϕ(x, y, p) ∧ ϕ(x, z, p) ⇒ y = z) ⇒
∀X∃Y ∀y(y ∈ Y ⇔ (∃x ∈ X)ϕ(x, y, p)),
axiom of Regularity: ∀x(∃y(y ∈ x ∧ ¬∃z(z ∈ y ∧ z ∈ x))),
axiom of Choice: ∀X(X 6= ∅ ∧ ∅ /∈ X) ⇒ (∃f : X → ∪Y ∈XY, ∀x ∈ X, f(x) ∈ x).

4 The Empty Set as Power set of Lambda

The most remarkable result of the use of the void and the description of the
zero-order logic in a set theory context is the construction of the empty set by
means of the axiom of the parts applied to Lambda.

4.1 Empty Set Theorem

Theorem 1. ∅ = ℘(Λ)

Proof. By the axiom of the ante-element, Lambda belongs to every set: ∀x(x
is a set ⇒ Λ ∈ x), in particular Λ ∈ ∅. Lambda is thus not a set: ∀x(x is a
set ⇒ Λ 6= x). So no set is included in the void, since the void is not a set:
¬∃x(x ⊆ Λ), which involves that : ¬(∅ ⊆ Λ); consequently, Lambda does not
have parts and the set of its parts is the empty set : ∅ = ℘(Λ)

Lambda has no property of set and most Λ-formulas applying to sets will be
false, but the axiom of the parts, which is, with the axiom of infinity, the only
constructive axiom, and which describes an overset, can be applied to Lambda
as it can be applied to second order elements in the frame of a second-order
theory, and of course to first-order elements. And this is made possible by
the zero-order logic that allows to consider Λ as a legitimate instanciation of a
variable x in a quantified formula; Lambda denotes the pseudo-object ”void”,
the sub-thing ”relative nothing” or ”potential”.
Let’s elaborate this. The axiom of the parts says: ∀x∃y(∀z((z ⊆ x) ⇒ z ∈ y)).
More rigorously, ∀x∃y(∀z(∀t(t ∈ z ⇒ t ∈ x) ⇒ z ∈ y)). If we instantiate
Λ for x, there would be a priori only two possibilities of instantiation for z:
Lambda itself and the empty set. If we consider z = ∅, we have for Λ,∃y(for
∅(Λ ∈ ∅ ⇒ Λ ∈ Λ) ⇒ ∅ ∈ y). But it is not possible because Lambda is
not a set; so nothing is included in Lambda. In any case, Λ ∈ Λ is empty and
makes the implication empty. So, for Λ,∃y(Λ), and ℘(Λ) = ∅; if z = Λ, we have
(Λ ∈ Λ ⇒ Λ ∈ Λ) ⇒ Λ ∈ y.

The axiom of the empty set, such as found, for example, in ZF, is no longer
necessary. It can be reformulated in a positive way: ∃x(x is a set ∧∀y(y ∈ x ⇒

18



y = Λ)) or ∃x(x 6= Λ ∧ ∀y(y ∈ x ⇒ y = Λ)). In set notation: ∅ = {y : y = Λ}.
No use of a contradictory property. The empty set is the only set that contains
potential only. Other sets contain potential and elements.

Lambda is not included in Lambda, but by the axiom of the ante-element, it
belongs to any set.
Once again, thanks to the zero-order logic, the sub-object ”void”, ”potential”,
denoted by Lambda, is taken into account in the interpretation of the formulas.
The objection according to which the set of the parts of, for example, an ur-
element, is empty, doesn’t hold because an ur-element, contrary to Lambda,
doesn’t belong in a natural way to the set theory and to our theory. Thus, even
if the zero-order logic is a trivial logic, it leads to a remarkable result since it
makes it possible to build in a positive way the empty set.o

From there, by means of the axioms of the ZFC theory, the Lambda theory
allows the construction of the structure 〈Λ, X,∈〉.

4.2 Kernel-Structure

The cumulative hierarchy is a collection of sets Vα indexed by the class of or-
dinal numbers, in particular, Vα is the set of all sets having ranks less than
α. Thus there is one set Vα for each ordinal number α; Vα may be defined by
transfinite recursion as follows:

- Let V0 be ℘(Λ) = ∅.
- For any ordinal number β, let Vβ+1 be the power set of Vβ .
- For any limit ordinal λ, let Vλ be the union of all the V -stages so far:
Vλ :=

⋃
β<λ Vβ .

The class V is defined to be the union of all the V -stages: V :=
⋃

α Vα.

5 Conclusion

5.1 Synthesis

”Nothing” is added to set theory. The play on words means this: the intro-
duction of the pseudo-constant Lambda denoting the ”nothing”, the void, the
potential, in the language of set theory does not imply that some thing is added
to the theory. The nothing, the void is subjacent to the standard set theory
as a sub-thing, a pre-element; this is a sub-, a pseudo-object! According to the
context, the void will have a passive or an active role. In a set theory with an
empty universe, the void has a passive role; it is just a potential. Let us note
that the domain is empty with regard to the classical theory. In the frame of the
Lambda-0 theory, the domain is relatively empty since it contains the potential
as sub-/pre-object. In a set theory with a non-empty universe, the void has an
active role; it is not only a potential, but a cut, a condition of possibility of the
elements of the theory. The void as cut has two functions: as an internal cut, it
makes it possible for a set to contain elements, it is the fundamental constituent

oIf the empty set, which is the simplest set and the only set included in every set, is not
included in Lambda, Lambda cannot be a set.
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of any set, this is what is expressed by the axiom of the ante-element; as an
external cut, it makes it possible to have different sets; this is what can be more
specifically studied by formal ontology. So the content’s distinction between
sets is made possible by the more fundamental cuts. Cuts are so fundamental
that they constitute a condition of possibility of the language itself, enabling to
distinguish between letters of the alphabet, and between more complex elements
of the language; but this is a matter for linguistics. To take into account the
void in the language of a set theory with an empty universe made it possible to
highlight a zero-order logic different from the propositional logic. Contrary to
what is traditionnally alleged, quantification is possible in zero-order logic. We
quantify on Lambda, the 0-order symbol denoting the pre-element ”void”. The
semantics of the language based on this zero-order logic is empty. Deprived of
the classical truth values true and false, it stays on the pre-value Empty. As
for the Lambda-1 theory, it is satisfied with a standard logic if restrictions on
instanciations of variables are put; but no need of a trivalent or a paracomplete
logic! The prevalue Empty can be assimilated to False. Empty formulas will
be interpreted as false formulas. Now, one could consider a bivalent logic where
the values would be Empty and True (non-Empty). In this case, false formula
would be assimilated to empty formula. To take into account the void in the
language of a set theory with a non-empty universe made it possible to build
the empty set by means of the axiom of the parts applied to Lambda: ∅ = ℘(Λ).
As a pre-element, the case of Lambda must be considered without requiring the
introduction of a general variable into the language of the theory; it is what
the zero-order logic allows. According to us, the notion of ”set” acquires a real
ontological dimension. The Lambda theory legitimates and gives an emblem-
atic status to the empty set, now defined in a positive way, as the only set that
contains only potential, and makes it possible to redefine the concept of set: a
set is the expression of a potential. The Lambda theory also makes useless
the axiom of the empty set or the construction of the empty set by means of a
contradictory property. ”Something”, or rather a pseudo-thing belongs to the
empty set: the void, and the empty set is the only set to which belongs Lambda
only. The Lambda theory allows us to distinguish the void from the empty set,
solving what can be called the puzzle of Lambda as found in Russell. It also
allows us to distinguish the empty set from ur-elements, which are generally
considered as kinds of empty sets. No thing belongs to an ur-element, even not
Lambda, the relative nothing. This is why a ur-element is a kind of atom.

5.2 Prospects

So one can see that not only does the empty set exist, but that the void itself
is not exactly nothing : it is a relative nothing that constitutes a potential, and
as such a transcendental (pre-)element. Thus the Lambda theory makes it
possible to modify the opinion of the greek philosopher Parmenides who could
only bring himself to believe that there is but one way of not being; there are
at least two : the absolute void and the relative void, the absolute void being
that towards which the relative void tends. Finally, we will see in another paper
that the anomaly of the intersection of an empty collection is solved thanks
to Lambda; it is no longer necessary to restrict the intersection to non empty
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collections.p

For the theory, the balance in terms of investment and profits is clearly positive:
the investment is quasi-nul, the gains numerous.
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