Lambda Theory Model

Co-consistency of Lambda theory with ZF(C) theory

laurent.dubois@ulb.ac.be

Language

- \in , =, Λ (constant)
- First-order language

Abbreviations

- $\forall \mathbf{x} \equiv \forall \mathbf{x} \neq \Lambda$
- $\exists \mathbf{x} \equiv \exists \mathbf{x} \neq \Lambda$
- Λ -set = set that contains Λ

Theory

- $\forall x (x \neq \Lambda \Longrightarrow \Lambda \in x)$ (1)
- $\forall x((x = \Lambda) \lor (\Lambda \in x))$ (2) (contraposition of 1)
- $\neg \exists x (x \neq \Lambda \land \neg (\Lambda \in x))$ (3) (dual of 2)
- $\forall x(\neg(x \in \Lambda))$ (4)
- $\forall x(x \neq \Lambda \Leftrightarrow \Lambda \in x)$ (5) (1 + 4)

σ -axioms

- Extensionality: $\forall x \forall y (\forall z ((z \in x \Leftrightarrow z \in y) \Rightarrow x = y))$
- Triple: $\forall x \forall y \exists z (\forall t(t \in z \Leftrightarrow t = x \lor t = y \lor t = \Lambda))$. Or $\forall x \forall y \exists z (x \in z \land y \in z) + separation$.
- Union: $\forall x \exists y \forall u (u \in y \Longrightarrow \exists z (z \in x \land u \in z))$
- Power Set: $\forall x \exists y (\forall z ((\forall t (t \in z \Longrightarrow t \in x) \land \Lambda \in z)))$ $\Rightarrow z \in y) \land \Lambda \in y)$

σ -axioms

- Separation Scheme: $\forall p_1, ..., p_n \forall x \exists y \forall z (z \in y \Leftrightarrow (z \in x \land (\Phi(z, p_1, ..., p_n) \lor z = \Lambda)))$
- Replacement Scheme: $\forall p_1,...,p_n$ $(\forall x \forall y \forall z((\Phi(x, y, p_1,...,p_n) \land \Phi(x, z, p_1,...,p_n)))$ $\Rightarrow y = z) \Rightarrow \forall x \exists y \forall z(z \in y \Leftrightarrow \exists u(u \in x \land (\Phi(u, z, p_1,...,p_n)) \lor z = \Lambda)))$
- Infinity: $\exists x \forall y (y \in x \Rightarrow y \cup \{y\} \in x)$
- Regularity: $\forall x (\exists y (y \neq \Lambda \land y \in x \Longrightarrow \exists y (y \neq \Lambda \land y \in x \Rightarrow \exists y (y \neq \Lambda \land y \in x \land \neg \exists z (z \neq \Lambda \land z \in y \land z \in x)))$

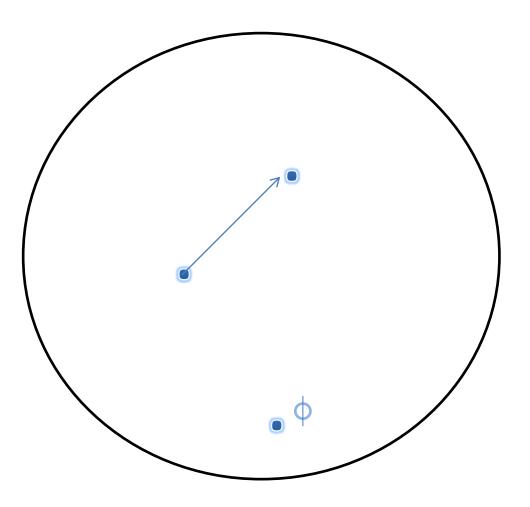
σ^* -axioms

- Extensionality: $\forall x \forall y (\forall z((z \in x \Leftrightarrow z \in y) \Rightarrow x = y))$
- Triple: $\forall x \forall y \exists z (x \in z \land y \in z) + separation.$
- Union: $\forall x \exists y \forall u (u \in y \Rightarrow \exists z (z \in x \land u \in z))$
- Power Set: $\forall x \exists y (\forall z ((\forall t (t \in z \Rightarrow t \in x) \land \Lambda \in z) \Rightarrow z \in y) \land \Lambda \in y)$

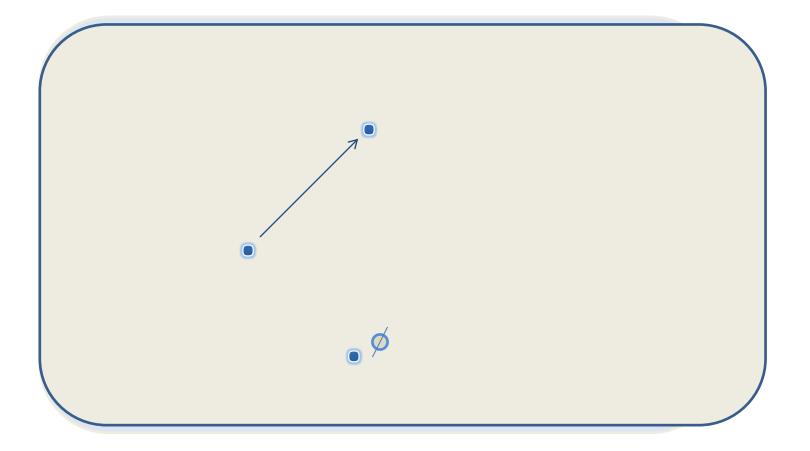
σ^* -axioms

- Separation Scheme: $\forall p_1, ..., p_n \forall x \exists y \forall z (z \in y \Leftrightarrow (z \in x \land (\Phi(z, p_1, ..., p_n))))$
- Replacement Scheme: $\forall p_1,...,p_n$ $(\forall^*x\forall^*y\forall^*z((\Phi(x, y, p_1,...,p_n) \land \Phi(x, z, p_1,...,p_n)) \Rightarrow y = z) \Rightarrow \forall^*x\exists^*y\forall^*z(z \in y \Leftrightarrow \exists^*u(u \in x \land (\Phi(u, z, p_1,...,p_n)))))$
- Infinity: $\exists *x \forall *y (y \in x \Rightarrow y \cup \{y\} \in x)$
- Regularity: $\forall *x(\exists *y(y \in x) \Rightarrow \exists *y(y \in x \land \neg \exists *z(z \in y \land z \in x)))$

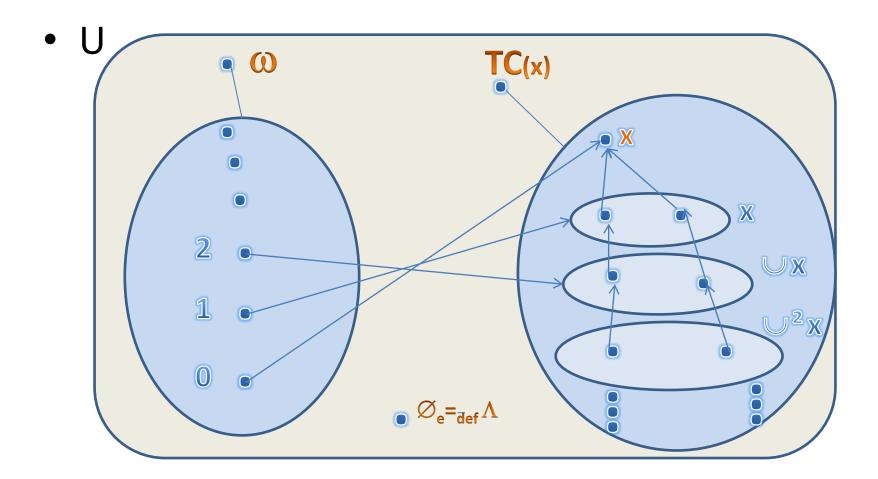
ZF Universe: U,∈,=



ZF Universe: $U_{i,\in,=}$



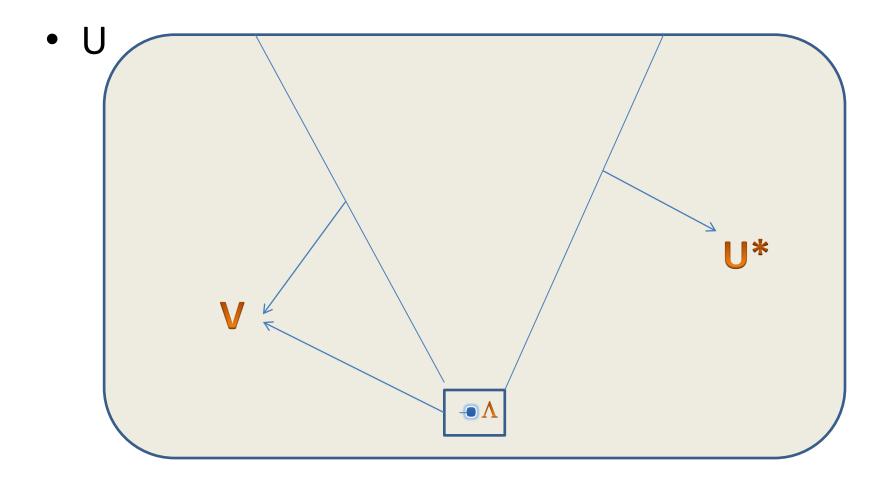
Transitive Closure



Transitive Closure

- TC(x) = $def. \{x\} \cup [\bigcup \{x, \bigcup x, \bigcup^2 x, \bigcup^3 x, ...\}]$
- $\bigcup \{x, \bigcup x, \bigcup^2 x, \bigcup^3 x, ...\} = x \cup (\bigcup x) \cup (\bigcup^2 x) ...$
- {0, 1, 2, 3...} = ω
- We get the transitive closure by replacement scheme.

Lambda-Universe and ZF-Universe



Terminology

• Λ is « the Nothing », « the Void ».

• U* is the class of sets, i.e. the class of x such that $\forall z \in TC(x)(z \neq \Lambda \Rightarrow \Lambda \in z)$.

Lambda-Universe

- V, $\in \mathcal{N}_V$, $= \mathcal{N}_V$
- $V = U^* \cup \{\Lambda\}$
- Trick: normal \forall , \exists : \forall **x** \equiv \forall **x** of V; \exists **x** \equiv \exists **x** of V
- : restricted \forall , \exists : \forall * $x \equiv \forall x$ of U*; \exists * $x \equiv \exists x$ of U*, i.e. $\forall x$, $\exists x$ of V such that $x \neq \Lambda$.

Consequences (to be checked)

- Be σ a ZF axiom: σ^* is true ($\sigma^* \equiv$ all the quantifiers are *).
- $\forall * x (\Lambda \in x)$
- $\exists z \in x \leftrightarrow x \neq \Lambda$

EXT* and EXT

- EXT* true. Proof:
- We must show that: $(\forall x \forall y (\forall z (z \in x \Leftrightarrow z \in y) \Rightarrow x = y))^* \equiv \forall^* x \forall^* y (\forall^* z (z \in x \Leftrightarrow z \in y) \Rightarrow x = y)$
- Preliminary: U* is transitive: $a \in b \ " \in " U^* \Rightarrow a$ " $\in " U^*$.
- x, y " \in " U* \Rightarrow x \neq Λ , y \neq Λ
- Notation: x = y means that x and y have same elements and are equal by the bottom.

• Phenomenon: if $x, y \in U^*$ and $(x \equiv y)_{U^*}$, then $(x \equiv y)$ (in ZF universe), so x = y.

Terms

- Term: {x | $\phi(x,...)$ } in the language: \in , =, Λ .
- Don't forget we work in $V, \in, =$.
- What about "{x| $\phi(x...)$ } "?
- {x | $\phi(x,...)$ } is a "a" such that: (hope) $\forall y(y \in a \Leftrightarrow \phi(y...))$ in V_{\cdot}
- Probably less effective a-terms.

Terms

- $\{x \mid \phi(x,...)\}^*$ is a "b" such that: (hope) $\forall *y(y \in b \Leftrightarrow \phi^*(y...))$ in U^{*}.
- To be checked (very probable): (ZF)*, all the standard operations of ZF.

Example of term

- $\{\Lambda\} = \emptyset_{ens.}$ (in U*)
- $\{\Lambda\} =_{def.} \{\mathbf{x} \mid \mathbf{x} = \Lambda\}$
- Two ways to get $\{\Lambda\}$:

(1) pairing + separation:

- pairing: with x = y = Λ , we know that $\Lambda \in z$.
- Separation: we keep from z the x such that x = Λ and we have the singleton of Lambda.

$\{\Lambda\}$

- (2) axiom of the parts applied to Λ :
- $\exists y \forall z (\forall t (t \in z \Longrightarrow t \in \Lambda) \Longrightarrow z \in y)$
- As nothing is in Λ , nothing can be in z, so z has to be « nothing » (Λ), and y must contain Λ : $y = \wp(\Lambda) = {\Lambda}.$
- $\wp(\Lambda)$ is the only set containing only « nothing », that is $\wp(\Lambda) = \emptyset_{ens.}$.

Example of checking of ZF axiom in $\ensuremath{\mathbb{U}}^*$

- Axiom of pairing: $(\forall x \forall y \exists z \forall t (t \in z \Leftrightarrow (t = x \lor t = y)))^* \equiv \forall^* x \forall^* y \exists^* z \forall^* t (t \in z \Leftrightarrow (t = x \lor t = y))$
- Thanks to separation, we are sure that the set contains Λ ; so « pairing » must become « triple ».
- The true triple in U^* : {x, y, Λ }
- We are sure that {x, y, Λ } is in U^* thanks to TC.
- What is {x, y, Λ }? It is the standard pair with Λ in addition.

• $\forall x \forall y \exists z \forall t (t \in z \Leftrightarrow (t = x \lor t = y \lor t = \Lambda))$

Set of the parts

- $\mathfrak{S}^*a =_{def.} \{ b \cup \{\Lambda\} | b \text{ in } U \} \cup \{\Lambda\} \}$
- General rule (to be checked) for $\{x | \phi(x,...)\}^*$ (this element is always in U^{*}, so different from Λ): $\{x \cup \{\Lambda\} | \phi(x,...)\} \cup \{\Lambda\}$ and x in U^{*}.
- A bit harder: what about \wp a? That means set of the parts in V rather than in U*.
- Preliminary: " $x \subset y$ ": $x \subset y \Leftrightarrow \forall t ((t \in x \Rightarrow t \in y) \land \Lambda \in x)$

Set of the parts

- We have seen that $\wp(\Lambda) = \{\Lambda\}$.
- From there, we can use the general rule $\{x \cup \{\Lambda\} | \phi(x,...)\} \cup \{\Lambda\}$ as in U* to get all other sets of the parts.

Current operations

- I \cap tersection and \cup nion are wrong in U^{*} and trivially true in V:
- $z = (x \cap y) \Leftrightarrow \forall t(t \in z \Leftrightarrow (t \in x \land t \in y))$
- $z = (x \cap y)^* \Leftrightarrow z = x \cap^* y$
- $(\forall t(t \in z \Leftrightarrow (t \in x \land t \in y)))^* \Leftrightarrow \forall^*t(t \in z \Leftrightarrow (t \in x \land t \in y))$
- $z = (x \cup y) \Leftrightarrow \forall t(t \in z \Leftrightarrow (t \in x \lor t \in y))$
- $z = (x \cup y)^* \Leftrightarrow z = x \cup^* y$
- $(\forall t(t \in z \Leftrightarrow (t \in x \lor t \in y)))^* \Leftrightarrow \forall^*t(t \in z \Leftrightarrow (t \in x \lor t \in y))$
- It can not function in U^* since it excludes Λ of z.
- A solution: $z = \{t | \phi(t,...)\} \cup \{\Lambda\}$ and t in U^* . Ad hoc?
- No problem in $V: \Lambda$ is taken into account.

- $\Gamma_{\Lambda} \vDash \bigcup \Longrightarrow \Gamma_{\Lambda} \vDash \cap ???$
- $\Gamma_{\Lambda}^* \neg \models \cap \Rightarrow \Gamma_{\Lambda}^* \neg \models \cup$
- Ma notation est-elle légale? Mes raisonnements corrects?
- Γ_{Λ} for Lambda theory
- Γ_{Λ}^{*} for Lambda theory with \forall^{*}, \exists^{*}
- $\Gamma_{\rm ZF}$ for ZF theory

Empty family intersection and union

- Particular cases: empty family intersection and union.
- What does « empty family » mean?
- Classicaly: $\bigcup_{x \in \{\emptyset\}} X = \emptyset; \bigcup_{x \in \{\}} X = \emptyset, \bigcap_{x \in \{\emptyset\}} X = \emptyset;$ $\bigcap_{x \in \{\}} X = U.$
- In Lambda theory:
- $\bigcup_{x \in \{\{\Lambda\}\}} X \equiv \bigcup \{\Lambda\} \text{ and } \bigcup \{\Lambda\} = \{\Lambda\}; \bigcup_{x \in \{\Lambda\}} X \equiv \bigcup \Lambda \text{ and } \bigcup \Lambda = \Lambda$
- $\bigcap_{x \in \{\{\Lambda\}\}} X \equiv \bigcap \{\Lambda\} \text{ and } \bigcap \{\Lambda\} = \{\Lambda\}; \bigcap_{x \in \{\Lambda\}} X \equiv \bigcap \Lambda$ and $\bigcap \Lambda = \Lambda$

Empty family intersection and union

- In ∩_{x∈{}}X, if it is not true that x ∈ X for each X of Ø, then it must exist a X such that x ∉ X; since there is no X in Ø, no X puts at fault the condition, so any X satisfies it, and the x's specified by the condition exhaust the universe U.
- Formally: $\forall X(x \in X) \equiv \neg \exists X \neg (x \in X)$
- The right side is read before the left side for the interpretation.

Empty family intersection and union

- For $\bigcup_{x \in \{\}} X: \exists X (x \in X) \equiv \neg \forall X \neg (x \in X)$
- Left side is read first: no X, so $\exists X$ is false.
- Right side: no X, so $\forall X(x \in X)$ is false. So we have at least $\neg \forall X(x \in X)$. At the extreme, we have $\forall X \neg (x \in X)$. There is no X such that $x \in X$, so no X to contradict $\forall X \neg (x \in X)$. So, $\neg \forall X \neg (x \in X)$ is invalidated and $\bigcup_{x \in \{\}} X = \emptyset$.
- Anomalies:
- Condition on \bigcap stronger than that on \bigcup . If $\neg \exists X \neg (x \in X)$ is true, $\neg \forall X \neg (x \in X)$ is true. If $\bigcap_{x \in \{\}} X$ gives $\bigcup, \bigcup_{x \in \{\}} X$ must give \bigcup too.
- $\bigcap \subset \bigcup$: if $\bigcup_{x \in \{\}} X = \emptyset$, $\bigcap_{x \in \{\}} X = \emptyset$.
- Solution: in V, $\exists X = \Lambda(\neg (x \in X))$, so $\bigcap_{x \in \{\Lambda\}} X = \Lambda$. And $\bigcup_{x \in \{\Lambda\}} X = \Lambda$.

Symmetric d\fference

- Symmetric d\fference needs slight change:
- $(z = x \setminus y \Leftrightarrow \forall t(t \in z \Leftrightarrow ((t \in x) \land ((t \notin y) \lor t = \Lambda))))*$
- $(\forall t(t \in z \Leftrightarrow ((t \in x) \land ((t \notin y) \lor t = \Lambda))))^* \Leftrightarrow \forall^*t(t \in z \Leftrightarrow ((t \in x) \land ((t \notin y) \lor t = \Lambda)))$

- So does in⊂lusion:
- $\mathbf{x} \subset \mathbf{y} \Leftrightarrow \forall \mathbf{t} ((\mathbf{t} \in \mathbf{x} \Rightarrow \mathbf{t} \in \mathbf{y}) \land \Lambda \in \mathbf{x})$

Singleton of Lambda and Standard Empty Set

We want to check the following equivalences for sets:

- Do contain nothing \equiv do not contain anything
- Free of sets ({ Λ }) = free of sets and Lambda (\emptyset_{ZF})
- How can we proceed? Sets in U* are standard (ZF) sets to which Λ has been added. So, { Λ } is exactly in the same relation with Λ -sets as $\emptyset_{\rm ZF}$ with standard sets.

Singleton of Lambda, Lambda and Contradictory Property

- What about the standard definition of empty set by means of a contradictory property?
 {x : x ≠ x}
- Thanks to the disjunction added to the comprehension axiom scheme, for any set x, there is a set y that contains at least Lambda, without the necessity for Lambda to satisfy any property.
- So, {x : x ≠ x} is not a set and can define Lambda: {x : x ≠ x} = Λ.

A definition of Lambda

• In V, $\exists x \forall y (\neg (y \in x)): x = \Lambda$ $\exists x (x = \Lambda)$

• $\exists x \forall y (y \in x \Longrightarrow y = \Lambda): x = \{\Lambda\}$

Behaviour of Lambda and of Standard Empty Set

Lambda

- $\mathbf{x} \frown \mathbf{y} = \{\Lambda\}$
- $\mathbf{x} \cap \Lambda = \Lambda$
- $\mathbf{x} \cup \Lambda = \mathbf{x}$
- $x \setminus \Lambda = x$
- $x \setminus x = \{\Lambda\}$
- $\Lambda \cap \Lambda = \Lambda$
- $\Lambda \cup \Lambda = \Lambda$
- $\Lambda \setminus \Lambda = \Lambda$

Standard Empty Set

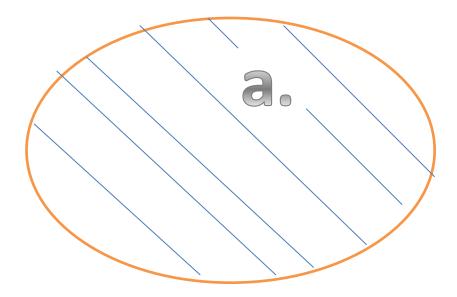
- x ∩ y = Ø
- $\mathbf{x} \cap \emptyset = \emptyset$
- $\mathbf{x} \cup \emptyset = \mathbf{x}$
- $\mathbf{x} \setminus \emptyset = \mathbf{x}$
- $x \setminus x = \emptyset$
- $\emptyset \cap \emptyset = \emptyset$
- $\emptyset \cup \emptyset = \emptyset$
- $\varnothing \setminus \varnothing = \varnothing$

Why Lambda can not be assimilated to Classical Empty Set

- Product and difference of x and y give $\{\Lambda\}$ and not $\Lambda.$
- Lambda belongs to any set while Empty set and singleton of Lambda don't.
- Lambda is not a set.
- Contradictory property does not help to define a set since {x : x ≠ x} does not contain Λ.
- $\wp(\Lambda)$ gives \varnothing (no set included in Λ) and we add Λ to \varnothing by the axiom of pre-element.

Representation of Lambda

- a is an element
- Lambda must be conceived and seen as the free zone around the element(s).



Definition of Element, Pre-element and Set

• x is an element \Leftrightarrow x is a set

 x is a pre-element ⇔ ∀y(y is an element ⇒ x ∈ y)

• x is a set $\Leftrightarrow \exists y(y \in x)$