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Language

• , =, (constant)

• First-order language



Abbreviations

• *x x 

• *x x 

• -set set that contains



Theory

• x(x x) (1)

• x((x = ) ( x)) (2) (contraposition of 1)

• x(x ( x)) (3) (dual of 2)

• x( (x )) (4)

• x(x x) (5) (1 + 4)



-axioms

• Extensionality: x y( z((z x z y) x = y))

• Triple: x y z( t(t z t = x t = y t = ).

Or x y z(x z y z) + separation.

• Union: x y u(u y z(z x u z))

• Power Set: x y( z(( t(t z t x) z) 
z y) y)



-axioms

• Separation Scheme: p1,…,pn x y z(z y 
(z x ( (z, p1,…,pn) z = )))

• Replacement Scheme: p1,…,pn

( x y z(( (x, y, p1,…,pn) (x, z, p1,…,pn)) 
y = z) x y z(z y u(u x ( (u, 

z, p1,…,pn)) z = )))

• Infinity: x y(y x y {y} x)

• Regularity: x( y(y y x y(y 
y x z(z z y z x)))



*-axioms

• Extensionality: *x *y( *z((z x z y) x 
= y))

• Triple: *x *y *z(x z y z) + separation.

• Union: *x *y *u(u y *z(z x u z))

• Power Set: *x *y( *z(( *t(t z t x) 
z) z y) y)



*-axioms

• Separation Scheme: *p1,…,pn *x *y *z(z 
y (z x ( (z, p1,…,pn))))

• Replacement Scheme: p1,…,pn

( *x *y *z(( (x, y, p1,…,pn) (x, z, 
p1,…,pn)) y = z) *x *y *z(z y 

*u(u x ( (u, z, p1,…,pn)))))

• Infinity: *x *y(y x y {y} x)

• Regularity: *x( *y(y x) *y(y x 
*z(z y z x)))



ZF  Universe: , ,=



ZF  Universe: , ,=



Transitive Closure

• U



Transitive Closure

• TC(x) =def. {x} [{x, x, ²x, ³x,…}]

• {x, x, ²x, ³x,…} = x (x) (²x)…

• {0, 1, 2, 3…} = 

• We get the transitive closure by replacement 
scheme.



Lambda-Universe and ZF-Universe

• U



Terminology

• is « the Nothing », « the Void ».

• is the class of sets, i.e. the class of x such
that z TC(x)(z z).



Lambda-Universe

• ᄼ = ᄼ

• = 

• Trick: normal , : x x of ; x x of 

• : restricted , : *x x of ; *x x 
of , i.e. x, x of such that x .



Consequences (to be checked)

• Be a ZF axiom: * is true ( * all the 
quantifiers are *).

• *x( x)

• z x x 



EXT* and EXT

• EXT* true. Proof:

• We must show that: ( x y( z(z x z y) 
x = y))* *x *y( *z(z x z y) x 

= y)

• Preliminary: is transitive: a b ‘’ ’’ a 
‘’ ’’ .

• x, y ‘’ ’’ x , y 

• Notation: x ⌆ y means that x and y have same
elements and are equal by the bottom.



• Phenomenon: if x, y and (x ⌆ y) , then (x 
⌆ y) (in ZF universe), so x = y.



Terms

• Term: {x| (x,…)} in the language: , =, .

• Don’t forget we work in , , =. 

• What about ‘’{x| (x…)} ‘’?

• {x| (x,…)} is a ‘’a’’ such that: (hope) y(y a 
(y…)) - in 

• Probably less effective a-terms.



Terms

• {x| (x,…)}* is a ‘’b’’ such that: (hope) *y(y 
b *(y…)) - in 

• To be checked (very probable): (ZF)*, all the 
standard operations of ZF.



Example of term

• { } = ens. (in )

• { } =def. {x|x = }

• Two ways to get { }:

(1) pairing + separation:

- pairing: with x = y = , we know that z.

- Separation: we keep from z the x such that x = 
and we have the singleton of Lambda.



{ }

(2) axiom of the parts applied to :

y z( t(t z t ) z y)

As nothing is in , nothing can be in z, so z has 
to be « nothing » ( ), and y must contain :   
y = ( ) = { }.

( ) is the only set containing only « nothing », 
that is ( ) = ens. .



Example of checking of ZF axiom in

• Axiom of pairing: ( x y z t(t z (t = x t = 
y)))* *x *y *z *t(t z (t = x t = y))

• Thanks to separation, we are sure that the set 
contains ; so « pairing » must become « triple ».

• The true triple in : {x, y, }

• We are sure that {x, y, } is in thanks to TC.

• What is {x, y, }? It is the standard pair with in 
addition.



• x y z t(t z (t = x t = y t = ))



Set of the parts

• *a =def. {b { }|b in } { }

• General rule (to be checked) for {x| (x,…)}* 
(this element is always in , so different from

): {x { }| (x,…)} { } and x in 

• A bit harder: what about a? That means set 
of the parts in rather than in .

• Preliminary: ‘’x y’’: x y t((t x t 
y) x)



Set of the parts

• We have seen that ( ) = { }. 

• From there, we can use the general rule {x 
{ }| (x,…)} { } as in to get all other sets 
of the parts.



Current operations

• I tersection and nion are wrong in and trivially true in :
• z = (x y) t(t z (t x t y))
• z = (x y)* z = x * y 
• ( t(t z (t x t y)))* *t(t z (t x t y))
• z = (x y) t(t z (t x t y))
• z = (x y)* z = x * y 
• ( t(t z (t x t y)))* *t(t z (t x t y))
• It can not function in since it excludes of z.
• A solution: z = {t| (t,…)} { } and t in Ad hoc?
• No problem in : is taken into account.



• ⊨ ⊨ ???

• * ⊨ * ⊨ 

• Ma notation est-elle légale? Mes 
raisonnements corrects?

• for Lambda theory

• * for Lambda theory with *, *

• ZF for ZF theory



Empty family intersection and union

• Particular cases: empty family intersection and 
union.

• What does « empty family » mean?
• Classicaly: x { }X = ; x {}X = , x { }X = ; 
x {}X = .

• In Lambda theory:
• x {{ }}X { } and { } = { }; x { }X  and 
 = 

• x {{ }}X { } and { } = { };  x { }X 
and  = 



Empty family intersection and union

• In x {}X, if it is not true that x X for each X 
of , then it must exist a X such that x X; 
since there is no X in , no X puts at fault the 
condition, so any X satisfies it, and the x’s
specified by the condition exhaust the 
universe .

• Formally: X(x X) X (x X)

• The right side is read before the left side for 
the interpretation. 



Empty family intersection and union

• For x {}X: X(x X) X (x X)
• Left side is read first: no X, so X is false.
• Right side: no X, so X(x X) is false. So we have at least 

X(x X). At the extreme, we have X (x X). There is
no X such that x X, so no X to contradict X (x X). So, 

X (x X) is invalidated and x {}X = .
• Anomalies:
- Condition on  stronger than that on . If X (x X) is

true, X (x X) is true. If x {}X gives , x {}X must give
too.

-  : if x {}X = , x {}X = .
• Solution: in , X= ( (x X)), so x { }X = . And x { }X = 

.



Symmetric d\fference

• Symmetric d\fference needs slight change:

• (z = x \ y t(t z ((t x) ((t y) t = 
))))*

• ( t(t z ((t x) ((t y) t = ))))* 
*t(t z ((t x) ((t y) t = ))) 

• So does in lusion:

• x y t((t x t y) x)



Singleton of Lambda and Standard 
Empty Set

We want to check the following equivalences for  
sets:

• Do contain nothing do not contain anything
• Free of sets ({ }) free of sets and Lambda ( ZF)
• How can we proceed? Sets in are standard (ZF) 

sets to which has been added. So, { } is exactly
in the same relation with -sets as ZF with
standard sets.



Singleton of Lambda, Lambda and 
Contradictory Property

• What about the standard definition of empty
set by means of a contradictory property?

{x : x x}

• Thanks to the disjunction added to the 
comprehension axiom scheme, for any set x, 
there is a set y that contains at least Lambda, 
without the necessity for Lambda to satisfy
any property. 

• So, {x : x x} is not a set and can define
Lambda: {x : x x} = .



A definition of Lambda

• In V, x y( (y x)): x = 
x(x = )

• x y(y x y = ): x = { }



Behaviour of Lambda and of Standard 
Empty Set

Lambda 

• x y = { }

• x = 

• x = x

• x \ = x

• x \ x = { }

• = 

• = 

• \ = 

Standard Empty Set

• x y = 

• x = 

• x = x

• x \ = x

• x \ x = 

• = 

• = 

• \ = 



Why Lambda can not be assimilated to 
Classical Empty Set

• Product and difference of x and y give { } and 
not .

• Lambda belongs to any set while Empty set 
and singleton of Lambda don’t.

• Lambda is not a set.

• Contradictory property does not help to 
define a set since {x : x x} does not contain

.

• ( ) gives (no set included in ) and we
add to by the axiom of pre-element.



Representation of Lambda

• a is an element

• Lambda must be conceived and seen as the 
free zone around the element(s).



Definition of Element, Pre-element
and Set

• x is an element x is a set

• x is a pre-element y(y is an element x 
y)

• x is a set y(y x)


