
Lambda Theory Model

Co-consistency of Lambda theory
with ZF(C) theory

laurent.dubois@ulb.ac.be

Language

• , =, (constant)

• First-order language

Abbreviations

• *x x

• *x x

• -set set that contains

Theory

• x(x x) (1)

• x((x =) (x)) (2) (contraposition of 1)

• x(x (x)) (3) (dual of 2)

• x((x)) (4)

• x(x x) (5) (1 + 4)

-axioms

• Extensionality: x y(z((z x z y) x = y))

• Triple: x y z(t(t z t = x t = y t =).

Or x y z(x z y z) + separation.

• Union: x y u(u y z(z x u z))

• Power Set: x y(z((t(t z t x) z)
z y) y)

-axioms

• Separation Scheme: p1,…,pn x y z(z y
(z x ((z, p1,…,pn) z =)))

• Replacement Scheme: p1,…,pn

(x y z(((x, y, p1,…,pn) (x, z, p1,…,pn))
y = z) x y z(z y u(u x ((u,

z, p1,…,pn)) z =)))

• Infinity: x y(y x y {y} x)

• Regularity: x(y(y y x y(y
y x z(z z y z x)))

*-axioms

• Extensionality: *x *y(*z((z x z y) x
= y))

• Triple: *x *y *z(x z y z) + separation.

• Union: *x *y *u(u y *z(z x u z))

• Power Set: *x *y(*z((*t(t z t x)
z) z y) y)

*-axioms

• Separation Scheme: *p1,…,pn *x *y *z(z
y (z x ((z, p1,…,pn))))

• Replacement Scheme: p1,…,pn

(*x *y *z(((x, y, p1,…,pn) (x, z,
p1,…,pn)) y = z) *x *y *z(z y

*u(u x ((u, z, p1,…,pn)))))

• Infinity: *x *y(y x y {y} x)

• Regularity: *x(*y(y x) *y(y x
*z(z y z x)))

ZF Universe: , ,=

ZF Universe: , ,=

Transitive Closure

• U

Transitive Closure

• TC(x) =def. {x} [{x, x, ²x, ³x,…}]

• {x, x, ²x, ³x,…} = x (x) (²x)…

• {0, 1, 2, 3…} =

• We get the transitive closure by replacement
scheme.

Lambda-Universe and ZF-Universe

• U

Terminology

• is « the Nothing », « the Void ».

• is the class of sets, i.e. the class of x such
that z TC(x)(z z).

Lambda-Universe

• ᄼ = ᄼ

• =

• Trick: normal , : x x of ; x x of

• : restricted , : *x x of ; *x x
of , i.e. x, x of such that x .

Consequences (to be checked)

• Be a ZF axiom: * is true (* all the
quantifiers are *).

• *x(x)

• z x x

EXT* and EXT

• EXT* true. Proof:

• We must show that: (x y(z(z x z y)
x = y))* *x *y(*z(z x z y) x

= y)

• Preliminary: is transitive: a b ‘’ ’’ a
‘’ ’’ .

• x, y ‘’ ’’ x , y

• Notation: x ⌆ y means that x and y have same
elements and are equal by the bottom.

• Phenomenon: if x, y and (x ⌆ y) , then (x
⌆ y) (in ZF universe), so x = y.

Terms

• Term: {x| (x,…)} in the language: , =, .

• Don’t forget we work in , , =.

• What about ‘’{x| (x…)} ‘’?

• {x| (x,…)} is a ‘’a’’ such that: (hope) y(y a
(y…)) - in

• Probably less effective a-terms.

Terms

• {x| (x,…)}* is a ‘’b’’ such that: (hope) *y(y
b *(y…)) - in

• To be checked (very probable): (ZF)*, all the
standard operations of ZF.

Example of term

• { } = ens. (in)

• { } =def. {x|x = }

• Two ways to get { }:

(1) pairing + separation:

- pairing: with x = y = , we know that z.

- Separation: we keep from z the x such that x =
and we have the singleton of Lambda.

{ }

(2) axiom of the parts applied to :

y z(t(t z t) z y)

As nothing is in , nothing can be in z, so z has
to be « nothing » (), and y must contain :
y = () = { }.

() is the only set containing only « nothing »,
that is () = ens. .

Example of checking of ZF axiom in

• Axiom of pairing: (x y z t(t z (t = x t =
y)))* *x *y *z *t(t z (t = x t = y))

• Thanks to separation, we are sure that the set
contains ; so « pairing » must become « triple ».

• The true triple in : {x, y, }

• We are sure that {x, y, } is in thanks to TC.

• What is {x, y, }? It is the standard pair with in
addition.

• x y z t(t z (t = x t = y t =))

Set of the parts

• *a =def. {b { }|b in } { }

• General rule (to be checked) for {x| (x,…)}*
(this element is always in , so different from

): {x { }| (x,…)} { } and x in

• A bit harder: what about a? That means set
of the parts in rather than in .

• Preliminary: ‘’x y’’: x y t((t x t
y) x)

Set of the parts

• We have seen that () = { }.

• From there, we can use the general rule {x
{ }| (x,…)} { } as in to get all other sets
of the parts.

Current operations

• I tersection and nion are wrong in and trivially true in :
• z = (x y) t(t z (t x t y))
• z = (x y)* z = x * y
• (t(t z (t x t y)))* *t(t z (t x t y))
• z = (x y) t(t z (t x t y))
• z = (x y)* z = x * y
• (t(t z (t x t y)))* *t(t z (t x t y))
• It can not function in since it excludes of z.
• A solution: z = {t| (t,…)} { } and t in Ad hoc?
• No problem in : is taken into account.

• ⊨ ⊨ ???

• * ⊨ * ⊨

• Ma notation est-elle légale? Mes
raisonnements corrects?

• for Lambda theory

• * for Lambda theory with *, *

• ZF for ZF theory

Empty family intersection and union

• Particular cases: empty family intersection and
union.

• What does « empty family » mean?
• Classicaly: x { }X = ; x {}X = , x { }X = ;
x {}X = .

• In Lambda theory:
• x {{ }}X { } and { } = { }; x { }X  and
 =

• x {{ }}X { } and { } = { };  x { }X 
and  =

Empty family intersection and union

• In x {}X, if it is not true that x X for each X
of , then it must exist a X such that x X;
since there is no X in , no X puts at fault the
condition, so any X satisfies it, and the x’s
specified by the condition exhaust the
universe .

• Formally: X(x X) X (x X)

• The right side is read before the left side for
the interpretation.

Empty family intersection and union

• For x {}X: X(x X) X (x X)
• Left side is read first: no X, so X is false.
• Right side: no X, so X(x X) is false. So we have at least

X(x X). At the extreme, we have X (x X). There is
no X such that x X, so no X to contradict X (x X). So,

X (x X) is invalidated and x {}X = .
• Anomalies:
- Condition on  stronger than that on . If X (x X) is

true, X (x X) is true. If x {}X gives , x {}X must give
too.

-  : if x {}X = , x {}X = .
• Solution: in , X= ((x X)), so x { }X = . And x { }X =

.

Symmetric d\fference

• Symmetric d\fference needs slight change:

• (z = x \ y t(t z ((t x) ((t y) t =
))))*

• (t(t z ((t x) ((t y) t =))))*
*t(t z ((t x) ((t y) t =)))

• So does in lusion:

• x y t((t x t y) x)

Singleton of Lambda and Standard
Empty Set

We want to check the following equivalences for
sets:

• Do contain nothing do not contain anything
• Free of sets ({ }) free of sets and Lambda (ZF)
• How can we proceed? Sets in are standard (ZF)

sets to which has been added. So, { } is exactly
in the same relation with -sets as ZF with
standard sets.

Singleton of Lambda, Lambda and
Contradictory Property

• What about the standard definition of empty
set by means of a contradictory property?

{x : x x}

• Thanks to the disjunction added to the
comprehension axiom scheme, for any set x,
there is a set y that contains at least Lambda,
without the necessity for Lambda to satisfy
any property.

• So, {x : x x} is not a set and can define
Lambda: {x : x x} = .

A definition of Lambda

• In V, x y((y x)): x =
x(x =)

• x y(y x y =): x = { }

Behaviour of Lambda and of Standard
Empty Set

Lambda

• x y = { }

• x =

• x = x

• x \ = x

• x \ x = { }

• =

• =

• \ =

Standard Empty Set

• x y =

• x =

• x = x

• x \ = x

• x \ x =

• =

• =

• \ =

Why Lambda can not be assimilated to
Classical Empty Set

• Product and difference of x and y give { } and
not .

• Lambda belongs to any set while Empty set
and singleton of Lambda don’t.

• Lambda is not a set.

• Contradictory property does not help to
define a set since {x : x x} does not contain

.

• () gives (no set included in) and we
add to by the axiom of pre-element.

Representation of Lambda

• a is an element

• Lambda must be conceived and seen as the
free zone around the element(s).

Definition of Element, Pre-element
and Set

• x is an element x is a set

• x is a pre-element y(y is an element x
y)

• x is a set y(y x)

