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If 2"=u,+1iv,, then ztl=wu, ,+w,., where

3.7.23  Upp 1 =2U,— YV} Vnp1=T0p+Yln
Az and Fz" are called harmonic polynomials.

1 2 az—1y
J7.24 —=r==
31 PP
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Roots
3.7.26 zt=+/z=riet®=rt cos 39+irt sin 36

The
The principal

If —#<8<r this is the principal root.
other root has the opposite sign.
root is given by

3.7.21  2=[Fr+2)R+id¢r—a)=ustiv where
2uv=y and where the ambiguous sign is taken to
be the same as the sign of y.

3.7.28 zt/m=pt/me*/* (principal root if —x<{6<7).
Other roots are ri/me!0+2®\/n (p—1.2 3, . . ., n—1).
Inequalities

3.7.29 ||z —|z|| <|a1x 2| <|z]+ |2

Complex Functions, Cauchy-Riemann Equations

f(&)=f@+iy)=u(z,y)+w(z,y) whereu(z,y), »(z, y)
are real, is analytic at those points z=z-+1y at
which

3.7.30 23 oy ow
If z=re*,
ou 1w 1ou_

Laplace’s Equation

The functions u(z,y) and o(z,y) are called
harmonic functions and satisfy Laplace’s equation:

Cartesian Coordinates

Q'u |, d*u_ % o

3.7.32 PR ax2+ 0
Polar Coordinates

af, % o

3733 1o +a02 ar< >+aoz

3.8. Algebraic Equations
Solution of Quadratic Equations

3.8.1 Given az*+bz-+¢=0,

b 1
2uim (g gy € = —tac,
2+ 2=—bla, 212,=¢cla

If ¢>0, two real roots,
g=0, two equal roots,
¢<0, pair of complex conjugate roots.

Solution of Cubic Equations

3.8.2 Given 22+ a2+ a2+ a,==0, let

11
g=3 —5 &; r=¢ * (@0~ 3ao)———

If ¢#+72>>0, one real root and a pair of complex
conjugate roots,

@+7*=0, all roots real and at least two are
equal,

¢*+7<0, all roots real (irreducible case).

Let
si=[r+ (@4, s;=[r—(¢+)}
then

a.
21=(81182) _gz

(81+82) —8,)

S YL L L)

If z;, 2, 2; are the roots of the cubic equation
Zi+2t2=—as
2z, tazt22=0
212223= — g
Solution of Quartic Equations

3.8.3 Given 24,22+ a2 +a,2+a,=0, find the
real root u, of the cubic equation
ud— @t (@183 — 4a0)u — (] + Qo — 4a0:) =0

and determine the four roots of the quartic as
solutions of the two quadratic equations

gy
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If all roots of the cubic equation are real, use
the value of u, which gives real coefficients in the
*quadratic cquation and select signs so that if

A 0,8+ 2+ a2+ ae= (22 +pi2+ ) (@ + Pz + @),
then
Dt Pr=as, iPet Q1+ =0, Die+ P21 =01, (1=
If 2, 2, 25, 2, are the roots,
22=—0y 224221== — 0,

Zz 1R 3=y, 2123232, Qy.

3.9. Successive Approximation Methods
General Comments

3.9.1 Let z=z, be an approximation to z=¢
where f(£)=0 and both 2, and £ are in the interval
e<zr<b. We define

zn+1=xn+0;|f(zn)

Then, if f/(x)>0 and the constants ¢, are
negative and bounded, the sequence z, converges
monotonically to the root .

If ¢,=c=constant<0 and f’(z)>0, then the
process converges but not necessarily monotoni-
cally.

(n=1,2, .. ).

Degree of Convergence of an Approximation Process

3.9.2 Let z;, z;, 73, . . . be an infinite sequence
of approximations to a number £, Then, if

‘wn-H - £I<A|Z,.-— E‘k)

where 4 and & are independent of n, the sequence
is said to have convergence of at most the kth
degree (or order or index) to £ If k=1 and
A<1 the convergence is linear; if k=2 the con-
vergence is quadratic.

n=1,2,...

Regula Falsi (False Position)

3.9.3 Given y=f(z) to find £ such that f(¢)=0,
choose 7, and z; such that f(z;) and f(z;) have
opposite signs and compute

1__(11—10) fl_flxo"foxl'

(fi—fo) fi—fo
Thgn continue with z, and either of 7, or z, for
which f(xo) or f(z,) is of opposite sign to f(x,).

Regula falsi is equivalent to inverse linear inter-
polation.

=T

*See page 1.

Method of Iteration (Successive Substitution)

3.9.4 The iteration scheme wy,=F(x) will
converge to a zero of x=F(zr) if

(1) |F'()|<¢<1 for agxz<h,

(P —a

Newton’s Method of Successive Approximations

3.9.5
Newton’s Rule

If 2=z, is an approximation to the solution
z=¢ of f(x)=0 then the sequence

— J(x)
Tep1= xz“m

will converge quadratically to z=¢: (if instead of
the condition (2) above),

(1) Monotonic convergence, f(xo)f’’(x0)>0
and f'(z), f"'(z) do not change sign in the
interval (z;, £), or

(2) Oscillatory convergence, f(xo)f" (20)<0
and f’(z), f/’(x) do not change sign in the
interval (zg, ), 2, <E<ay.

Newton’s Method Applied to Real nth Roots

3.9.6 Given z"=N, if z, is an approximation
z=NV" then the sequence

N

2:;:_1-}-(77,— l)z,c]

ol
S by
will converge quadratically to .

1
If n=2, Ik+l=§ (mgk'*‘xk)l

Tin=3, xm=§ (%;+2zk)-

Aitken’s 3-Process for Acceleration of Sequences

3.9.7 If x;, 241, *iy2 are three successive iterates
in a-sequence converging with an error which is
approximately in geometric progression, then

2
= __(Ik—zk+l)2__zkrk+2"xk+l,
L Y O

Az.tk=zk—212k+‘+l‘k +2

is an improved estimate of z. In fact, if z,=z-*

O(X\*) then z=2+0(X\¥), \<1.



