

Année Scolaire 2009-2010

MATHÉMATIQUES MPSI DS Nº 7 Samedi 27/03/2010 (4h)

Les candidats sont invités à porter une attention particulière à la rédaction: les copies illisibles ou mal présentées seront pénalisées. La référence des questions doit obligatoirement être mentionnée et les résultats doivent être encadrés.

La calculatrice et les formulaires sont interdits.

Exercice 1

Q1) Soient a, b deux entiers positifs premiers entre eux, et soient $r_1, r_2 \in \mathbb{N}$. On considère le système de congruences :

(S)
$$\begin{cases} n \equiv r_1 & [a] \\ n \equiv r_2 & [b] \end{cases}$$

- a) Justifier l'existence de deux entiers u et v tels que au + bv = 1.
- b) Soit $r_0 = aur_2 + bvr_1$. Montrer que r_0 est une solution de (S).
- c) En déduire que les solutions de (S) sont les entiers n tels que $n \equiv r_0$ [ab].

Q2) Application:

Une bande de 17 pirates dispose d'un butin composé de N pièces d'or d'égale valeur. Ils décident de se le partager également et de donner le reste au cuisinier (non pirate). Celui ci reçoit 3 pièces. Mais une rixe éclate et 6 pirates sont tués. Tout le butin est reconstitué et partagé entre les survivants comme précédemment; le cuisinier reçoit alors 4 pièces.

Dans un naufrage ultérieur, seuls le butin, 6 pirates et le cuisinier sont sauvés. Le butin est à nouveau partagé de la même manière et le cuisinier reçoit 5 pièces.

Quelle est alors la fortune minimale que peut espérer le cuisinier lorsqu'il décide d'empoisonner le reste des pirates?

Exercice 2

On note
$$F(X) = \frac{X^6 + 1}{(X+1)^3(X^2 + X + 1)} \in \mathbb{R}(X)$$
.

- **Q1)** Factoriser $X^6 + 1$ dans $\mathbb{R}[X]$, en déduire que F(X) est irréductible.
- **Q2)** Calculer E(X) la partie entière de la fraction F(X).
- **Q3**) Justifier l'existence des nombres a, b, c, α et β tels que :

$$F(X) = E(X) + \frac{a}{X+1} + \frac{b}{(X+1)^2} + \frac{c}{(X+1)^3} + \frac{\alpha X + \beta}{X^2 + X + 1}$$

Sans calculer a, b et c, déterminer α et β en expliquant la méthode.

Q4) Soit
$$H(X) = (X+1)^3 F(X) = \frac{X^6+1}{X^2+X+1}$$
.

- a) Montrer que pour x réel : $H(x) = c + b(x+1) + a(x+1)^2 + o((x+1)^2)$.
- b) Que représente cette égalité pour la fonction $x \mapsto H(x)$ en -1?
- c) Calculer soigneusement un développement limité d'ordre 2 en -1 de H(x). En déduire les valeurs numériques des nombres a, b et c (justifier).

2

- **Q5**) Calculer une primitive de la fonction $x \mapsto F(x)$ sur $I =]-1; +\infty[$.
- **Q6)** a) Sans calcul, donner un équivalent très simple de F(x) E(x) en $+\infty$.
 - b) En déduire l'étude locale de la fonction $x \mapsto F(x)$ au voisinage de $+\infty$.

Problème

Soit $E = \mathbb{R}_2[X]$, à tout élement P de E on fait correspondre le polynôme u(P) défini par :

$$u(P) = (X^2 - 1)P'' + 2XP'.$$

Partie I

- Q1) Montrer que u est un endomorphisme de E. Calculer les images de la base canonique de E.
- **Q2**) Calculer le rang de *u*, son noyau et son image (on en donnera une base et la dimension).
- **Q3**) Déterminer une base et la dimension de $\ker(u-2\mathrm{id}_E)$. Montrer que ce sous-espace contient un unique polynôme unitaire (à préciser), on le notera P_1 .
- **Q4)** Déterminer une base et la dimension de $\ker(u 6\mathrm{id}_E)$. Montrer que ce sous-espace contient un unique polynôme unitaire (à préciser), on le notera P_2 .
- **Q5**) Soit $P_0 = 1$, montrer que $\mathcal{B} = (P_0, P_1, P_2)$ est une base de E. En déduire la relation :

$$u^3 - 8u^2 + 12u = 0.$$

Q6) Soit $Q \in Im(u)$, montrer que les antécédents de Q par u sont les polynômes :

$$P = -\frac{1}{12}u(Q) + \frac{2}{3}Q + c$$
 avec $c \in \mathbb{K}$ quelconque.

- **Q7)** Montrer que ker(u) et Im(u) sont supplémentaires dans E. Est-ce que u est un projecteur?
- **Q8)** Montrer par récurrence sur $n \in \mathbb{N}^*$ que $\ker(u^n) = \ker(u)$. En déduire que $\forall n \in \mathbb{N}^*$, $\operatorname{Im}(u^n) = \operatorname{Im}(u)$.

Partie II

E désigne un \mathbb{K} -espace vectoriel et u un endomorphisme de \mathbb{E} , pour tout entier naturel p on note $\mathbb{I}_p = \mathrm{Im}(u^p)$ et $\mathbb{K}_p = \ker(u^p)$.

- **Q1**) Montrer que $\forall p \in \mathbb{N}, K_p \subset K_{p+1} \text{ et } I_{p+1} \subset I_p$.
- **Q2**) On suppose dans cette question que E est de dimension finie et u injectif, déterminer alors I_p et K_p pour $p \in \mathbb{N}$.
- **Q3)** On suppose dans cette question de dim(E) = $n \ge 1$ et que u est **non injectif**.
 - a) Que dire de la suite $(\dim(K_p))_{p\in\mathbb{N}}$? En déduire qu'il existe un plus petit entier $r \leq n$ tel que $K_r = K_{r+1}$.
 - b) Montrer qu'alors $I_r = I_{r+1}$, et que $\forall p \in \mathbb{N}, K_r = K_{r+n}$ et $I_r = I_{r+n}$.
 - c) Montrer que $E = I_r \oplus K_r$.
- **Q4)** Lorsque E n'est pas de dimension finie, existe-t-il un plus petit entier r tel que $K_r = K_{r+1}$? On pourra étudier le cas de l'application $D : \mathbb{K}[X] \to \mathbb{K}[X]$ définie par D(P) = P'.

MPSI 2009-2010 DS Nº 7: Corrigé

Exercice 1

- Q1) a) a et b sont premiers entre eux, d'après le théorème de Bezout, il existe u et v entiers tels que au + bv = 1.
 - b) $r_0 \equiv bvr_1 \pmod{a}$ or $bv \equiv 1 \pmod{a}$ d'où $r_0 \equiv r_1 \pmod{a}$. De même, $r_0 \equiv aur_2 \pmod{b}$ or $au \equiv 1 \pmod{b}$ d'où $r_0 \equiv r_2 \pmod{b}$.

 r_0 est solution du système (S).

c) On en déduit que :

$$(S) \iff \begin{cases} n \equiv r_0 & [a] \\ n \equiv r_0 & [b] \end{cases}$$

$$\iff \begin{cases} a \mid n - r_0 \\ b \mid n - r_0 \end{cases}$$

$$\iff PPCM(a, b) \mid n - r_0 \end{cases}$$

$$\iff ab \mid n - r_0 \end{cases}$$

$$\iff \boxed{n \equiv r_0 \pmod{ab}}$$

Q2) Le système est (S) $\begin{cases} n \equiv 3 & [17] \\ n \equiv 4 & [11] \\ n \equiv 5 & [6] \end{cases}$

a = 17 et b = 11 sont premiers entre eux, on a 17u + 11v = 1 avec u = 2 et v = -3, posons $r_0 = 17u4 + 11v3 = 37$, d'après la question précédente le système équivaut à (avec $11 \times 17 = 187$):

$$\begin{cases} n \equiv 37 & [187] \\ n \equiv 5 & [6] \end{cases}$$

a=187 et b=6 sont premiers entre eux, on a 187u+6v=1 avec u=1 et v=-31, posons $r_0=187u5+6v37=-5947$, d'après la question précédente le système équivaut à $n\equiv -5947\pmod{187\times 6}=1122$), c'est à dire $n\equiv 785\pmod{1122}$, $(-5947+6\times 1122=785)$ la valeur minimale de n est donc :

$$n = 785.$$

Exercice 2

Q1) On sait que $X^3 + 1 = (X+1)(X^2 - X + 1)$, en substituant X^2 à X, on a $X^6 + 1 = (X^2 + 1)(X^4 - X^2 + 1)$, or $X^4 - X^2 + 1 = (X^2 + 1)^2 - 3X^2$, d'où:

$$X^{6} + 1 = (X^{2} + 1)(X^{2} - \sqrt{3}X + 1)(X^{2} + \sqrt{3}X + 1)$$

Ces trois facteurs sont de degré 2 et sans racine réelle, donc irréductibles dans $\mathbb{R}[X]$. Il n'y a donc pas de diviseur irréductible commun entre le numérateur et le dénominateur de F(X), la fraction est donc sous forme irréductible.

4

Q2) La partie entière est le quotient du numérateur par le dénominateur, c'est à dire de $X^6 + 1$ par $(X + 1)^3(X^2 + 1)^3$ X + 1) = $X^5 + 4X^4 + ...$, ce qui donne :

$$E(X) = X - 4.$$

Q3) On voit que -1 est un pôle triple de F et $X^2 + X + 1$ est irréductible dans $\mathbb{R}[X]$, d'après le théorème de décomposition en éléments simples, il existe des réels a, b, c, α, β tels que :

$$F(X) = E(X) + \frac{a}{X+1} + \frac{b}{(X+1)^2} + \frac{c}{(X+1)^3} + \frac{\alpha X + \beta}{X^2 + X + 1}$$

On multiplie tout par $X^2 + X + 1$ ce qui donne :

$$\frac{X^6 + 1}{(X+1)^3} = (X^2 + X + 1) \left[E(X) + \frac{a}{X+1} + \frac{b}{(X+1)^2} + \frac{c}{(X+1)^3} \right] + \alpha X + \beta$$

puis on évalue en j (racine complexe de $X^2 + X + 1$), ce qui donne $\alpha j + \beta = \frac{j^6 + 1}{(1+j)^3} = \frac{2}{-j^6} = -2$, on en déduit que:

$$\alpha = 0$$
 et $\beta = -2$.

a) On a H(X) = $(X + 1)^3$ F(X) = $a(X + 1)^2 + b(X + 1) + c + (X + 1)^3 \left[E(X) + \frac{\alpha X + \beta}{X^2 + X + 1} \right]$, en évaluat en $x \neq -1$, on obient H(x) = $c + b(x + 1) + a(x + 1)^2 + (x + 1)^2 \left[(x + 1)E(x) + x(+1)\frac{\alpha x + \beta}{x^2 + x + 1} \right]$, comme le terme entre **Q4**) crochets tend vers 0 lorsque x tend vers -1, on peut écrire :

$$H(x) = c + b(x+1) + a(x+1)^2 + o_{-1}((x+1)^2).$$

- b) Cette égalité représente un développement limité de la fonction $x \mapsto H(x)$ en -1 à l'ordre 2.
- c) On pose u = x + 1, d'où:

$$H(x) = \frac{(u-1)^6 + 1}{1 + (u-1) + (u-1)^2} = \frac{2 - 6u + 15u^2 + o(u^2)}{1 - u + u^2}$$

comme $u-u^2$ tend vers 0 en 0, on peut composer avec le développement de $\frac{1}{1-\nu}=1+\nu+\nu^2+o(\nu^2)$, ce qui donne $\frac{1}{1-u+u^2}=1+u+o(u^2)$, on termine en faisant le produit avec le développement du numérateur, ce qui donne :

$$\frac{2 - 6u + 15u^2 + o(u^2)}{1 - u + u^2} = 2 - 4u + 9u^2 + o(u^2)$$

c'est à dire:

$$H(x) = 2 - 4(x+1) + 9(x+1)^2 + o_{-1}((x+1)^2).$$

Par unicité du éveloppement limité, on en déduit que : a = 9, b = -4 et c = 2, d'où la décomposition de F:

$$F(X) = X - 4 + \frac{9}{X+1} - \frac{4}{(X+1)^2} + \frac{2}{(X+1)^3} - \frac{2}{X^2 + X + 1}.$$

- **Q5)** Soit $I =]-1; +\infty[$, la fonction $x \mapsto F(x)$ est continue sur I, elle admet donc des primitives. Une primitive de :

 - * $x \mapsto x 4 \text{ est } x \mapsto \frac{x^2}{2} 4x$. * $x \mapsto \frac{9}{x+1} \text{ est } x \mapsto 9 \ln(x+1)$. * $x \mapsto -\frac{4}{(x+1)^2} \text{ est } x \mapsto \frac{4}{x+1}$.

*
$$x \mapsto \frac{2}{(x+1)^3}$$
 est $x \mapsto -\frac{1}{(x+1)^2}$.

* $x \mapsto -\frac{2}{x^2 + x + 1}$ est $x \mapsto -\frac{4}{\sqrt{3}} \arctan\left(\frac{2x + 1}{\sqrt{3}}\right)$, car:

$$\frac{1}{x^2 + x + 1} = \frac{1}{(x + \frac{1}{2})^2 + \frac{3}{4}} = \frac{4}{3} \frac{1}{\left(\frac{2x+1}{\sqrt{3}}\right)^2 + 1} = \frac{2}{\sqrt{3}} \frac{2/\sqrt{3}}{\left(\frac{2x+1}{\sqrt{3}}\right)^2 + 1}$$

Une primitive de la fonction $x \mapsto F(x)$ sur I est donc :

$$x \mapsto \frac{x^2}{2} - 4x + 9\ln(x+1) + \frac{4}{x+1} - \frac{1}{(x+1)^2} - \frac{4}{\sqrt{3}}\arctan\left(\frac{2x+1}{\sqrt{3}}\right)$$

- **Q6)** a) $F(x) (x-4) = \frac{9}{x+1} \frac{4}{(x+1)^2} + \frac{2}{(x+1)^3} \frac{2}{x^2+x+1} \sim \frac{9}{x}$ car les termes suivants sont négligeables devant celui-ci en $+\infty$.
 - b) On a donc $F(x) (x-4) \xrightarrow{+\infty} 0$ ce qui signifie que :

la droite y = x - 4 est asymptote à la courbe de F au voisinage de $+\infty$.

De plus $F(x) - (x-4) = \frac{9}{x} \left[1 + o(1) \right]$, le crochet ayant pour limite 1, il est positif pour x assez grand, et donc :

la courbe sera au-dessus de l'asymptote au voisinage de $+\infty$.

Problème

Partie I

- Q1) La linéarite de u ne pose pas de problème, d'autre part il est clair que $deg(u(P)) \le deg(P)$ et $donc u \in \mathcal{L}(E)$.

 On a u(1) = 0, u(X) = 2X et $u(X^2) = 6X^2 2$.
- **Q2)** On voit que $1 \in \ker(u)$, donc $\dim(\ker(u)) \ge 1$. D'autre part u(X) et $u(X^2)$ sont non colinéaires dans $\operatorname{Im}(u)$, donc $\dim(\operatorname{Im}(u)) \ge 2$, mais d'après le théorème du rang on doit avoir $\dim(E) = \dim(\ker(u)) + \operatorname{rg}(u) = 3$, d'où $\dim(\ker(u)) = 1$ et $\operatorname{rg}(u) = 2$, on en déduit que $\ker(u) = \operatorname{Vect}[1] = \mathbb{R}$ et :

$$Im(u) = Vect[u(X), u(X^2)] = Vect[X, X^2 - \frac{1}{3}].$$

- **Q3)** Soit v = u 2id, alors v(1) = -2, v(X) = 0 et $v(X^2) = 4X^2 2$, on a donc $Im(v) = Vect[-2, 4X^2 2]$ et donc rg(v) = 2, on en déduit que dim(ker(v)) = 1 d'où ker(u 2id) = Vect[X]. On a donc une droite vectorielle, on voit que l'unique polynôme untaire sur cette droite est $P_1 = X$.
- Q4) Soi w = u 6id, on a w(1) = -6, w(X) = -4X et $w(X^2) = -2$, on a Im(w) = Vect[-6, -4X] donc rg(w) = 2 et dim(ker(w)) = 1, or $w(3X^2 1) = 0$ donc $extbf{ker}(u 6$ id) $= Vect[3X^2 1]$, c'est une droite, on voit que l'unique polynôme unitaire sur cette droite est $extbf{P}_2 = X^2 \frac{1}{3}$.
- **Q5)** Si $aP_0 + bP_1 + cP_2 = 0$ alors le terme en X^2 est cX^2 , donc c = 0, il reste alors $aP_0 + bP_1 = 0$, le terme en X est bX donc b = 0 puis a = 0. La famille (P_0, P_1, P_2) est libre de cardinal 3 dans un espace E de dimension 3, c'est donc une base de E.

 Remarquons que $u^3 8u^2 + 12u = (u 6id) \circ (u 2id) \circ u$ et que ces composées sont commutatives. Par

Remarquons que $u^3 - 8u^2 + 12u = (u - 6id) \circ (u - 2id) \circ u$ et que ces composees sont commutatives. Par conséquent, si on pose $w = u^3 - 8u^2 + 12u$ alors $w(P_0) = (u - 6id) \circ (u - 2id) \circ u(P_0) = 0$ car $P_0 \in \ker(u)$, $w(P_1) = u \circ (u - 6id) \circ (u - 2id)(P_1) = 0$ car $P_1 \in \ker(u - 2id)$, $w(P_2) = u \circ (u - 2id) \circ (u - 6id)(P_2) = 0$ car $P_2 \in \ker(u - 6id)$, par conséquent l'application w est nulle, c'est à dire : $u^3 - 8u^2 + 12u = 0$.

Q6) Si $Q \in \text{Im}(u)$ alors il existe $P \in e$ tel que Q = u(P) donc $(u-6\text{id}) \circ (u-2\text{id})(Q) = (u-6\text{id}) \circ (u-2\text{id}) \circ u(P) = 0$ c'est à dire en développant : $u^2(Q) - 8u(Q) + 12Q = 0$ et donc $Q = -\frac{1}{12}u^2(Q) + \frac{2}{3}u(Q) = u(-\frac{1}{12}u(Q) + \frac{2}{3}Q) = u(P)$, on en déduit que $P = -\frac{1}{12}u(Q) + \frac{2}{3}Q + c$ avec $c \in \text{ker}(u)$ [équation linéaire], c'est à dire :

$$P = -\frac{1}{12}u(Q) + \frac{2}{3}Q + c \text{ avec } c \in \mathbb{K}.$$

Q7) On a ker(u) = Vect[1] = Vect[P₀], Im(u) = Vect[P₁, P₂] car rg(u) = 2, et P₁, P₂ sont dans Im(u) [car P₁ = $u(\frac{1}{2}P_1)$ et P₂ = $u(\frac{1}{6}P_2)$]. Comme la famille (P₀, P₁, P₂) est une base de E, on a :

$$E = \ker(u) \oplus \operatorname{Im}(u) .$$

On a $u^2(X) = u(2X) = 4X$ donc $u^2 \neq u$, u n'est pas un projecteur

Q8) Pour n = 1 l'égalité est évidente. Supposons l'égalité pour un entier $n : \ker(u) = \ker(u^n)$, on a $\ker(u) \subset \ker(u^{n+1})$, si $x \in \ker(u^{n+1})$ alors $u^{n+1}(x) = 0$ et donc $u(x) \in \ker(u^n)$, par conséquent, $u(x) \in \ker(u)$ or $\operatorname{Im}(u) \cap \ker(u) = \{0\}$, d'où u(x) = 0 *i.e.* $x \in \ker(u)$, finalement $\ker(u^{n+1}) = \ker(u)$.

$$\forall n \in \mathbb{N}^*, \ker(u^n) = \ker(u).$$

Soit $n \in \mathbb{N}^*$: on a l'inclusion, $\text{Im}(u^n) \subset \text{Im}(u)$, mais on a l'égalité de dimensions car en vertu du théorème du rang:

$$rg(u^n) = dim(E) - dim(ker(u^n)) = dim(E) - dim(ker(u)) = rg(u)$$

par conséquent : $\boxed{\text{Im}(u^n) = \text{Im}(u)}$

Partie II

- **Q1)** Si $x \in K_p$ alors $u^p(x) = 0$ d'où $u^{p+1}(x) = u(0) = 0$ et donc $x \in K_{p+1}$, *i.e.* $K_p \subset K_{p+1}$. Si $y \in I_{p+1}$ alors il existe $x \in E$ tel que $y = u^{p+1}(y)$ et donc $y = u^p(u(x))$ d'où $y \in Im(u)$ et $I_{p+1} \subset I_p$.
- **Q2)** Si u est injectif et E de dimension finie, alors u est bijectif, i.e. $u \in GL(E)$, et donc $\forall p \in \mathbb{N}, u^p \in GL(E)$, par conséquent, $K_p = \{0\}$ et $K_p = \{0$
- Q3) a) Supposons que $A = \{p \in [1..n] \mid K_p = K_{p+1}\}$ est vide, alors $\forall p \in [1..n]$, $\dim(K_p) < \dim(K_{p+1})$ (car on a l'inclusion $K_p \subset K_{p+1}$), donc l'ensemble $\{\dim(K_p) \mid p \in [1..n+1]\}$ contient n+1 éléments distincts et qui sont tous dans l'intervalle [1..n], ce qui est absurde donc l'ensemble A est non vide par conséquent il admet un minimum (car $A \subset \mathbb{N}$), il existe donc un plus petit entier $r \leq n$ tel que $K_r = K_{r+1}$.
 - b) On sait que $I_{r+1} \subset I_r$. D'après le théorème du rang on a :

$$\dim(I_r) = \dim(E) - \dim(K_r) = \dim(E) - \dim(K_{r+1}) = \dim(I_{r+1})$$

donc: $I_r = I_{r+1}$

On montre par récurrence sur p que $K_r = K_{r+p}$, ceci est vrai pour p = 0, supposons que ce soit vrai pour un entier p, et montrons que $K_r = K_{r+p+1}$: on a $K_{r+p} \subset K_{r+p+1}$, soit $x \in K_{r+p+1}$ alors $u^{r+p+1}(x) = 0 = u^{r+1}[u^p(x)]$, donc $u^p(x) \in K_{r+1} = K_r$, donc $u^{r+p}(x) = 0$ i.e. $x \in K_{r+p}$ et donc $K_{r+p+1} = K_{r+p} = K_r$.

On montre ensuite avec le théorème du rang que $I_{r+p} = I_r$.

- c) D'après le théorème du rang, $\dim(I_r) + \dim(K_r) = \dim(E)$, soit $x \in I_r \cap K_r$, alors $u^r(x) = 0$ et il existe $y \in E$ tel que $x = u^r(y)$, on a donc $u^{2r}(y) = 0$ *i.e.* $y \in K_{2r}$, mais $K_{2r} = K_r$ donc $u^r(y) = 0$ c'est à dire x = 0, la somme est directe et donc $E = I_r \oplus K_r$.
- **Q4)** En reprenant la dernière question de la partie I : $E = \mathbb{K}[X]$ et $d : P \mapsto P'$, alors $K_0 = \{0\}$ et $\forall r \in \mathbb{N}^*, K_r = \mathbb{K}_{r-1}[X]$, on voit donc qu'il n'y a pas d'entier r tel que $K_r = K_{r+1}$. Par contre on peut remarquer sur cet exemple que $\forall r \in \mathbb{N}, I_r = I_{r+1} = E$.