1D Richard's equation :

$$
\begin{array}{r}
\frac{\partial \theta}{\partial \psi} \frac{\partial \psi}{\partial t}-\frac{\partial}{\partial z}\left(K(\psi) \frac{\partial \psi}{\partial z}\right)+\frac{\partial}{\partial z} K(\psi)=S_{r} \\
\psi(L, t)=\beta(t) \\
K(\psi)-K(\psi) \frac{\partial \psi}{\partial z}=q(t) \text { at } z=0 \\
\psi(z, 0)=\psi_{0}(z) \tag{4}
\end{array}
$$

To solve equation (1), the soil water retention function is introduced to eliminate one of the two dependent variables.

$$
\theta(\psi)=\theta_{r}+\frac{\alpha\left(\theta_{s}-\theta_{r}\right)}{\alpha+|\psi|^{\beta}}
$$

The unsaturated conductivity K is given by

$$
K(\psi)=\frac{\alpha}{\alpha+|\psi-z|^{\gamma}} K_{s}
$$

What you need to do is to solve the following transformed equation

$$
\begin{array}{r}
\frac{\partial \tilde{\theta}}{\partial t}=\frac{\partial^{2} \phi}{\partial z^{2}}+S_{r}, \bar{\theta}(\phi)=\theta(h) \\
\frac{\partial \phi}{\partial z}=-q(t) \text { at } z=0 \\
\phi(L, t)=\bar{\beta}(t) \\
\phi(z, 0)=\phi_{0}(z) . \tag{8}
\end{array}
$$

Thus, the unknown of the equation is ϕ. Start discretizing the PDE

$$
\begin{gathered}
\frac{\partial \tilde{\theta}(\phi)}{\partial t}=\frac{\partial^{2} \phi}{\partial z^{2}}+S \\
\frac{\bar{\theta}_{i}^{n+1}-\bar{\theta}_{i}^{n}}{\Delta t}=\frac{\phi_{i+1}^{t+1}-2 \phi_{i}^{t+1}+\phi_{i-1}^{t+1}}{(\Delta z)^{2}}+S_{i}
\end{gathered}
$$

where $\bar{\theta}_{i}^{n}=\bar{\theta}\left(\phi_{i}^{n}\right)=\theta\left(h_{i}^{n}\right)$.
The key idea is to solve it for ϕ_{i}^{n+1} using the same code as lab14a.f90 which requires evaluating $\bar{\theta}(\phi)$ using the relations

$$
\bar{\theta}(\phi)=\theta(h)=\theta_{r}+\frac{\alpha\left(\theta_{s}-\theta_{r}\right)}{\alpha+|h-z|^{\beta}}, \quad \phi(h)=\int_{0}^{h} \bar{K}(\lambda) d \lambda, \quad \bar{K}(\lambda)=\frac{\alpha}{\alpha+|\lambda|^{\gamma}} K_{s}
$$

