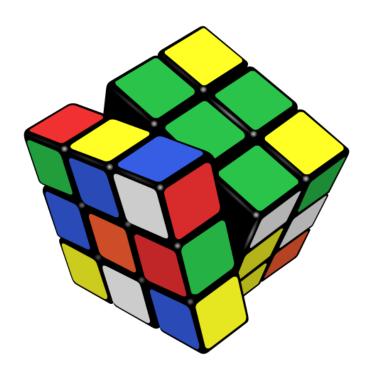
Cours de Mathématiques de MPSI:

Partie Algèbre



D'après le cours de M. Moreau, les démonstrations et exemples retirés.

CHAPITRE I : Lois de composition interne, Groupes.

1. Loi de composition interne

<u>Définition</u>: On appelle loi de composition interne sur un ensemble E toute application de $E \times E$ dans E notée * par exemple. Elle peut avoir les qualités suivantes :

- 1) * associativite $\Leftrightarrow \forall (x, y, z) \in E^3, \ x * (y * z) = (x * y) * z$
- 2) * commutative $\Leftrightarrow \forall (x,y) \in E^2, \ x * y = y * x$

<u>Définition</u>: On appelle:

- 1) élément neutre de * tout élément $e \in E$ tel que $\forall x \in E, \ x * e = x = e * x.$
- 2) élément absorbant de * tout élément $\theta \in E$ tel que $\forall x \in E, \ x * \theta = \theta = \theta * x.$
- 3) élément inversible de * tout élément $x \in E$ tel que $\exists y \in E \ / \ x * y = e = y * x$ où e est un élément neutre de *.

Remarque : S'il y a existence d'un élément neutre alors il y a unicité. De même si un élément est inversible et la loi associative alors il y a un unique inverse.

2. Groupes

2.1. Définition

<u>Définition</u>: On dit que (G, *) est un groupe si il vérifie :

- 1) * est interne sur G
- 2) * est associative
- 3) * admet un élément neutre dans G
- 4) tout élément de G est inversible pour *

Si \ast est commutative sur G alors le groupe sera dit abélien ou commutatif.

<u>Définition</u>: Si (G, *) est un groupe avec G de cardinal fini égal à n alors le groupe sera dit d'odre n.

<u>Définition</u>: On dit que $a \in G$ est régulier pour * si et seulement si $\forall (x,y) \in G^2$, $x*a = y*a \Rightarrow x = y$ et $a*x = a*y \Rightarrow x = y$.

Propriété 1 : Si (G, *) est un groupe alors tous ses éléments sont réguliers.

Propriété $2: \forall (a,b) \in G^2, \exists ! x \in G / a * x = b.$

Propriété $3: \forall a \in G$, les applications

$$f_a: \begin{array}{cccc} G & \to & G \\ x & \mapsto & a*x \end{array}$$
 et $g_a: \begin{array}{cccc} G & \to & G \\ x & \mapsto & x*a \end{array}$ sont des bijections.

Propriété $4: \forall x \in G, (x^{-1})^{-1} = x.$

Propriété $5: \forall (x,y) \in G^2, (x*y)^{-1} = y^{-1} * x^{-1}.$

2.2. Sous-groupe

<u>Définition</u>: Soit (G, *) un groupe et $H \subset G$, on dit que H est un sous-groupe de (G, *) si :

- 1)* est interne à H
- (2)(H,*) est un groupe

<u>Proposition</u>: Une intersection de sous-groupes d'un groupe (G, *) est un sous groupe de (G, *).

2.3. Morphisme de Groupe

<u>Définition</u>: Soit (G, *) et (H, \diamond) deux groupes et une application $f: G \to H$. On dit que f est un morphisme de groupe si $\forall (x, y) \in G^2$, $f(x * y) = f(x) \diamond f(y)$. Si f est bijective on l'appelle isomorphisme. Si elle est de G sur G on l'appelle endomorphisme. Un endomorphisme bijectif est appelé automorphisme.

Propriété 1 : Soit f un morphisme de (G,*) dans (H,\diamond) où e est l'élément neutre de (G,*) et e' celui de (H,\diamond) alors f(e)=e'.

Propriété 2:
$$\forall x \in G, \ f(x^{-1}) = (f(x))^{-1}.$$

Propriété 3 : De plus si g est un morphisme de (H, \diamond) dans un groupe (K, \models) alors $g \circ f$ est un morphisme de (G, *) dans (K, \models) .

<u>Définition</u>: On appelle noyau d'un morphisme f de (G,*) sur (H,\diamond) l'ensemble noté Ker f et définit par Ker $f=f^{-1}\left(\left\{e'\right\}\right)$ où e' est l'élément neutre de H.

<u>Proposition</u>: Soit f un morphisme de (G,*) dans (H,\diamond) alors Ker f est un sous groupe de (G,*).

<u>Définition</u>: On appelle image d'un morphisme (G, *) dans (H, \diamond) l'ensemble noté Im f définit par Im f = f(G).

<u>Proposition</u>: Im f est un sous-groupe de (H, \diamond) .

Remarque : f surjective \Leftrightarrow Im f=H.

CHAPITRE II: Anneaux, Arithmétique et Corps.

1. Anneaux

1.1. Définition

<u>Définition</u>: On appelle anneau tout triplet $(A, +, \times)$ où A est un ensemble et + et \times sont des lois de composition internes sur A qui vérifient :

- 1) (A, +) est un groupe abélien
- $2) \times \text{est associative}$
- 3) \times admet un élément neutre dans A
- 4) × est distributive par rapport à la loi +

$$\Leftrightarrow \forall (a,b,c) \in A^3 \text{ on a } \left\{ \begin{array}{l} a \times (b+c) = (a \times b) + (a \times c) \\ (a+b) \times c = (a \times c) + (b \times c) \end{array} \right.$$

Si la loi \times y est commutative alors l'anneau sera dit commutatif.

On notera 0_A l'élément neutre de + et 1_A celui de \times . On notera -x l'opposé de $x \in A$ (inverse pour la loi +).

<u>Propriété 1</u> : 0_A est absorbant pour $\times \Leftrightarrow \forall x \in A, \ x \times 0_A = 0_A = 0_A \times x$

Propriété $2: \forall (a,b) \in A^2$,

$$(-a) \times b = a \times (-b) = -(a \times b)$$
 et $(-a) \times (-b) = a \times b$

Propriété 3 : Soient $a \in A$ et $(b_i)_{i \in \{1,\dots,n\}} \in A^n$. Alors on a

$$a \times \left(\sum_{i=1}^{n} b_i\right) = \sum_{i=1}^{n} a \times b_i \text{ et } \left(\sum_{i=1}^{n} b_i\right) \times a = \sum_{i=1}^{n} b_i \times a$$

Propriété 4 : Soit $(a,b) \in A^2$ tel que $a \times b = b \times a$ alors $\forall n \in \mathbb{N}^*$ on a

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k \times b^{n-k}$$
$$a^n - b^n = (a-b) \times \left(\sum_{k=0}^{n-1} a^{n-1-k} \times b^k\right)$$

$$a^{2n+1} + b^{2n+1} = (a+b) \times \left(\sum_{k=0}^{2n} (-1)^k a^{2n-k} \times b^k\right)$$

1.2. Sous-anneau

<u>Définition</u>: Soit $(A, +, \times)$ un anneau et $B \subset A$, on dit que B est un sous-anneau de $(A, +, \times)$ si :

- 1) (B, +) est un sous-groupe de (A, +)
- 2) B est stable par \times
- 3) $1_A \in B$

et alors $(B, +, \times)$ sera aussi un anneau.

1.3. Morphisme d'anneaux

<u>Définition</u>: Soient $(A, +, \times)$ et (B, \oplus, \otimes) deux anneaux et $f: A \to B$.

$$f$$
 morphisme d'anneaux \Leftrightarrow
$$\begin{cases} \forall (a,b) \in A^2, \ f(a+b) = f(a) \oplus f(b) \\ \forall (a,b) \in A^2, \ f(a \times b) = f(a) \otimes f(b) \\ f(1_A) = 1_B \end{cases}$$

2. Arithmétique

2.1. Anneaux $(\mathbb{Z}, +, \times)$ et division euclidienne

<u>Proposition</u>: $(\mathbb{Z}, +, \times)$ est un anneau muni d'une relation d'ordre total \leq compatible avec +, tel que toute partie non vide majorée (respectivement minorée) de \mathbb{Z} admet un plus grand élément (respectivement plus petit).

<u>Propriété</u>: \mathbb{Z} est archimédien $\Leftrightarrow \forall x \in \mathbb{N}^*, \ \forall y \in \mathbb{Z}, \ \exists n \in \mathbb{N} \ / \ nx > y$.

<u>Théorème de la division euclidienne :</u>

$$\overline{\forall (a,b) \in \mathbb{Z} \times \mathbb{N}^*, \ \exists ! (q,r) \in \mathbb{Z} \times \mathbb{N} \ \text{tel} \ \text{que} \left\{ \begin{array}{l} a = bq + r \\ 0 \leqslant r < b \end{array} \right.$$

Conséquence : Les seuls sous-groupes de $(\mathbb{Z}, +)$ sont les parties de la forme $n\mathbb{Z}$ avec $n \in \mathbb{Z}$.

<u>Définition</u> : Soit A un sous-groupe non réduit à $\Big\{0\Big\}$ de $(\mathbb{Z},+),$ on appelle

générateur de A son plus petit élément n non nul et positif, il est tel que $A = n\mathbb{Z}$.

2.2. Divisibilité

<u>Définition</u>: On appelle relation de divisibilité notée | sur $(\mathbb{Z}, +, \times)$, la relation binaire définie par : $\forall (a, b) \in \mathbb{Z}^2$, $a|b \Leftrightarrow \exists c \in \mathbb{Z} \ / \ b = ac$.

Proposition: La relation | est réfléxive, transitive mais non antisymétrique.

<u>Définition</u>: Comme | est non antisymétrique, il sera dit de $(a,b) \in \mathbb{Z}^2$ tel que a|b et b|a qu'ils sont associées (car non nécessairement égaux).

Proposition : Soient $(a,b) \in \mathbb{Z}^2$ tel que a et b soient associées, alors a=b ou $\overline{a=-b}$.

Proposition: $\forall (a,b) \in \mathbb{Z}^2, a|b \Leftrightarrow b\mathbb{Z} \subset a\mathbb{Z}.$

Remarque : Dans \mathbb{N}^* , $a|b \Rightarrow a \leq b$.

 $\underline{\text{Proposition}:} \text{ Soient } (a,b) \in (\mathbb{Z}^*)^2, \text{ soit } H(a,b) = a\mathbb{Z} + b\mathbb{Z} = \Big\{ c \in \mathbb{Z} \ / \ \exists (u,v) \in \mathbb{Z}^2, c = au + bv \Big\},$ alors H(a,b) est un sous-groupe de $(\mathbb{Z},+)$ non réduit à $\Big\{ 0 \Big\}.$

2.3. PGCD

<u>Définition</u>: Soit $(a, b) \in (\mathbb{Z}^*)^2$, on appelle PGCD de a et de b le générateur du sous-groupe $a\mathbb{Z} + b\mathbb{Z}$. On le notera PGCD(a, b) ou encore $a \wedge b$.

<u>Proposition</u>: Soit $(a, b, d) \in (\mathbb{Z}^*)^3$, d|a et $d|b \Rightarrow d|a \wedge b$.

<u>Proposition</u>: Soit $(a,b) \in (\mathbb{Z}^*)^2$, $a \wedge b$ est le plus grand des entiers positifs divisant a et b.

Remarque : Soit $a \in \mathbb{Z}^*$, alors $a \wedge a = |a|$. Et pour tout b on a $a \wedge b = b \wedge a$.

<u>Proposition</u>: Soit $(a, b) \in (\mathbb{Z}^*)^2$, $a \wedge b = |a| \Leftrightarrow a|b$.

<u>Proposition</u>: Soit $(a, b, c) \in (\mathbb{Z}^*)^3$, $(ab) \wedge (ac) = |a|(b \wedge c)$.

<u>Proposition</u>: Soit $(a, b, d) \in (\mathbb{Z}^*)^2 \times \mathbb{N}^*$ tel que d|a et d|b alors $\exists (a', b') \in (\mathbb{Z}^*)^2 / a = a'd$ et b = b'd. On a alors $d = a \wedge b \Leftrightarrow a' \wedge b' = 1$.

2.4. PPCM

Proposition : Soit $(a,b) \in (\mathbb{Z}^*)^2$, $a\mathbb{Z} \cap b\mathbb{Z}$ est un sous-groupe de $(\mathbb{Z},+)$ non réduit à $\{0\}$.

<u>Définition</u>: Soit $(a,b) \in (\mathbb{Z}^*)^2$, on appelle PPCM de a et de b le générateur de $a\mathbb{Z} \cap b\mathbb{Z}$. On le notera PPCM(a,b) ou alors $a \vee b$.

Remarque : $a\mathbb{Z} \cap b\mathbb{Z} = (a \vee b)\mathbb{Z}$.

Proposition : $a \lor b$ est le plus petit des entiers positifs multiples communs à a et b.

Proposition : Soit $(a, b, c) \in (\mathbb{Z}^*)^3$ alors a|c et $b|c \Rightarrow a \lor b|c$.

Proposition : Soit $(a, b) \in (\mathbb{Z}^*)^2$:

- 1) $a \lor b = b \lor a$
- $2) \ a \lor b = |a| \lor |b|$
- 3) $a \lor a = |a|$
- 4) $a \vee 1 = |a|$
- 5) $a \lor b = |b| \Leftrightarrow a|b|$

<u>Proposition</u>: Soit $(a, b, c) \in (\mathbb{Z}^*)^3$, $(ab) \vee (ac) = |a|(b \vee c)$.

<u>Théorème</u>: Soit $(a,b) \in (\mathbb{Z}^*)^2$, $(a \lor b)(a \land b) = |ab|$.

2.5. Nombres premiers entre eux

<u>Définition</u>: On dit que a et b sont premiers entre eux si et seulement si $a \wedge b = 1$.

<u>Théorème de Bézout</u>: Soit $(a, b) \in (\mathbb{Z}^*)^2$,

$$a \wedge b = 1 \Leftrightarrow \exists (u, v) \in \mathbb{Z} / au + bv = 1.$$

Corollaire : Soit $(a, b, c) \in (\mathbb{Z}^*)^3$

- 1) $a \wedge (bc) = 1 \Leftrightarrow a \wedge b = 1 \text{ et } a \wedge c = 1$
- 2) $a \wedge b = 1 \Rightarrow \forall (m, n) \in (\mathbb{N}^*)^2, \ a^m \wedge b^n = 1.$
- 3) $a \wedge b = 1 \Rightarrow a \wedge bc = a \wedge c$.

<u>Théorème de Gauss</u>: Soit $(a, b, c) \in (\mathbb{Z}^*)^3$, a|bc et $a \wedge b = 1 \Rightarrow a|c$.

<u>Corollaire</u>: Soit $(a, b, n) \in (\mathbb{Z}^*)^3$, si $a \wedge b = 1$, $a \mid n$ et $b \mid n$ alors $ab \mid n$.

<u>Théorème d'Euclide</u>: Soit $(a,b,q,r) \in (\mathbb{Z}^*)^4$ tel que a=bq+r alors $a \wedge b=b \wedge r$

Recherche du PGCD de deux entiers : On suppose que $(a,b) \in (\mathbb{N}^*)^2$, car on sait que $a \wedge b = |a| \wedge |b|$. Et on suppose aussi $a \geq b$. On effectue la division euclidienne de a par b, alors on obtient a = bq + r et $0 \leq r < b$, mais aussi $a \wedge b = b \wedge r$. Si r = 0 alors le PGCD est b, sinon on recommence le procédé avec b et r, on obtient donc une suite strictement décroissante de restes dont le dernier non nul est le PGCD de a et de b.

2.6. Nombres premiers

<u>Définition</u>: On appelle nombre premier tout nombre entier $p \in \mathbb{N} \setminus \{0, 1\}$ qui ne soit divisible que par 1 et par lui-même.

<u>Propriété 1 :</u> Tout nombre premier est premier avec tout entier qu'il ne divise pas.

Propriété 2 : Deux nombres premiers distincts sont premiers entre eux.

Propriété 3 : Soit p premier et $(a,b) \in (\mathbb{Z}^*)^2$ alors $p|ab \Rightarrow p|a$ ou p|b.

Propriété 4 : Tout entier $n \leq 2$ admet au moins un diviseur premier.

Propriété 5 : L'ensemble \mathcal{P} des nombres premiers est infini.

2.7. Factorisation en nombres premiers

<u>Définition</u>: Soit $n \ge 1$ et p premier. On appelle p-valuation de n le plus grand entier α tel que $p^{\alpha}|n$, et on le note $V_p(n)$. De plus on appelle support

premier de n l'ensemble des nombres premiers p tels que $V_p(n) \ge 1$ et l'on note cet ensemble $V_p(n)$.

<u>Théorème</u>: Soient n un entier, $(p_1, \dots, p_m) \in \mathcal{P}^m$ distincts, et $(\alpha_1, \dots, \alpha_m) \in \mathbb{N}^m$ tels que $p_1^{\alpha_1}|n, \dots, p_m^{\alpha_m}|n$ alors $\prod_{i=1}^m p_i^{\alpha_i}|n$.

Théorème de la décomposition : $\forall n \geqslant 1, \ n = \prod_{p \in \mathcal{P}(n)} p^{V_p(n)}$ et cette décomposition en produit de facteur premier est unique.

3. Corps

3.1. Définition

<u>Définition</u>: On dit que $(K, +, \times)$ est un corps si :

- 1) $(K, +, \times)$ est un anneau commutatif
- 2) $(K\setminus\{0\},\times)$ est un groupe commutatif.

Remarque: $(K, +\times)$ est un corps $\Rightarrow K \neq \{0_K\}$ donc $1_K \neq 0_K$.

3.2. Sous-corps

<u>Définition</u>: On dit que $H \subset K$ est un sous-corps du corps $(K, +, \times)$ si :

- 1) H est un sous anneau de $(K, +, \times)$
- $(2) \forall h \in H \setminus \{0\}, \ h^{-1} \in H$

Remarque: Un sous-corps est un corps, et tous les corps sont commutatifs.

CHAPITRE III : Algèbre linéaire

1. Espace vectoriel sur un corps K

1.1. Définition

<u>Définition</u>: On dit que E est un K-espace vectoriel, où K est un corps, si :

- 1) E est muni d'une loi notée + de composition interne tel que (E,+) soit un groupe commutatif
- 2) E est muni d'une loi externe notée ·, c'est à dire d'une application de $K \times E \to E$ qui vérifie :

$$(i) \ \forall u \in E, \ 1_K.u = u$$

(ii)
$$\forall \lambda \in K, \forall (u, v) \in E^2, \ \lambda.(u + v) = \lambda.u + \lambda.v$$

(iii)
$$\forall (\lambda, \mu) \in K^2$$
, $\forall u \in E$, $(\lambda + \mu).u = \lambda.u + \mu.u$

$$(iv) \ \forall (\lambda, \mu) \in K^2, \ \forall u \in E, \ \lambda.(\mu.u) = (\lambda \times \mu).u$$

Les éléments de E sont appelés les vecteurs, ceux de K les scalaires. L'élément neutre de (E, +) sera noté $\overrightarrow{0}$. Le vecteur opposé d'un vecteur u sera noté -u.

Propriété
$$1: \forall u \in E, \ 0_K.u = \overrightarrow{0}$$

Propriété
$$2: \forall \lambda \in K, \ \lambda. \overrightarrow{0} = \overrightarrow{0}$$

Propriété 3 :
$$\forall \lambda \in K, \ \forall u \in E, \ \lambda.u = \overrightarrow{0} \Rightarrow \lambda = 0 \text{ ou } u = \overrightarrow{0}$$

Propriété
$$4: \forall \lambda \in K, \ \forall u \in E, \ (-\lambda).u = \lambda.(-u) = -(\lambda.u)$$

1.2. Structure d'espace vectoriel produit

<u>Définition</u>: Soient E et F deux K-espace vectoriels. On définit sur $E \times F$ une loi + par (u, v) + (u', v') = (u + u', v + v'). Alors $(E \times F, +)$ est un groupe commutatif tel que $0_{E \times F} = (0_E, 0_F)$ et -(u, v) = (-u, -v). De même on définit une loi externe \cdot sur $E \times F$ définie par $\lambda \cdot (u, v) = (\lambda \cdot u, \lambda \cdot v)$. Et alors muni de ces deux lois, $(E \times F, +, \cdot)$ est un K espace vectoriel.

On peut généraliser à n K-espaces vectoriels, E_1, \dots, E_n . On peut définir

sur $E = E_1 \times E_2 \times \cdots \times E_n$ une loi interne + et une loi externe · relativement à ce qui précède, tel que $(E, +, \times)$ soit un K-espace vectoriel.

1.3. Sous-espace vectoriel

<u>Définition</u>: Soit E un K-espace vectoriel et $F \subset E$. On dit que F est un sous-espace vectoriel de E si :

- 1) F est un sous-groupe de (E, +)
- 2) F est stable par la loi externe

De manière équivalente si :

- 1) $F \neq \emptyset$
- 2) F stable par +
- 3) F stable par \cdot

On peut réunir 2) et 3) en F est stable par combinaison linéaire :

$$\forall (\lambda, \mu) \in K^2, \ \forall (x, y) \in F^2, \ \lambda.x + \mu.y \in F$$

Un sous-espace vectoriel est un espace vectoriel, et $\{\overrightarrow{0}\}$ est un sous-espace vectoriel.

1.4. Intersection de sous-espace vectoriel

<u>Proposition</u>: Toute intersection de sous-espaces vectoriels d'un K-espace vectoriel E est un sous-espace vectoriel de E.

<u>Définition</u>: Soit $A \subset E$ où E est un espace vectoriel, on appelle sous-espace vectoriel engendré par A l'intersection de tous les sous-espaces vectoriels contenant A, et on le note Vect(A). Et alors Vect(A) est le plus petit sous-espace vectoriel contenant A pour la relation \subset .

1.5. Somme de sous-espace vectoriel

<u>Définition</u>: Soit F et G deux sous-espaces vectoriel d'un même K-espace vectoriel E. On appelle somme de F et G notée F+G la partie $F+G=\left\{w\in E\ /\ \exists (u,v)\in F\times G,\ w=u+v\right\}$.

Proposition : F + G est un sous-espace vectoriel de E.

<u>Définition</u>: On dit que la somme F+G est directe si $F\cap G=\left\{\overrightarrow{0}\right\}$. Elle sera alors notée $F\oplus G$.

<u>Définition</u>: On dit que deux sous-espaces vectoriels F et G d'un K-espace vectoriel E sont supplémentaire si $\forall w \in E$, $\exists ! (u, v) \in F \times G / w = u + v$.

Proposition : F et G supplémentaires $\Leftrightarrow F \oplus G = E$.

2. Sous-espace affine d'un K-espace vectoriel

2.1. Translations

<u>Définition</u>: Soit E un K-espace vectoriel et $u \in E$, on appelle translation de vecteur u l'application $t_u: E \to E \atop v \mapsto v+u$. On note T(E) l'ensemble des translations de E, alors $(T(E), \circ)$ est un groupe commutatif isomorphe au groupe (E, +).

2.2. Sous-espaces affines

<u>Définition</u>: Soit E un K-espace vectoriel, on appelle sous-espace affine passant par $a \in E$ et de direction le sous-espace vectoriel F l'ensemble des vecteurs de la forme a + u où $\in F$. On le note a + F.

Propriété 1 : Soient F un sous-espace vectoriel de E, et $(a,b) \in E^2$,

$$b \in a + F \Leftrightarrow \exists v \in F \ / \ b = a + v.$$

Propriété 2 : Soit $a \in E$ alors $a + \{\overrightarrow{0}\} = \{a\}$.

Propriété 3 : Soient F un sous-espace vectoriel de E, et $(a, u) \in E^2$,

$$a + u \in a + F \Leftrightarrow u \in F$$
.

Propriété 4 : Soient F un sous-espace vectoriel de E, et $a \in E$,

$$a + F = F \Leftrightarrow a \in F$$
.

Propriété 5 : Soient F et G deux sous-espaces vectoriels de E, $(a,b) \in E^2$,

$$a + F \subset b + G \Leftrightarrow F \subset G \text{ et } b - a \in G.$$

Propriété $6: a + F = b + G \Leftrightarrow F = G \text{ et } b - a \in F \text{ (respectivement } G).$

Propriété 7 : $a + F = b + F \Leftrightarrow b - a \in F$

Propriété $8: a + F = a + G \Leftrightarrow F = G$

<u>Définition</u>: On dit que le sous-espace affine a+F est parralèle au sous-espace affine b+G si $F\subset G$.

<u>Proposition</u>: L'intersection des deux sous-espaces affines a+F et b+G est soit vide soit un sous-espace affine de direction $F \cap G$.

<u>Définition</u>: On dit que a + F et b + G sont supplémentaires si F et G sont supplémentaires.

<u>Théorème</u>: L'intersection de deux sous-espaces affines supplémentaires est réduite à un point.

Remarque: Tout vecteur d'un K-espace vectoriel peut-être vu comme un point. A deux points a et b de E on associe le vecteur $\overrightarrow{ab} = b - a$. La droite affine passant par a et b est donc le sous-espace affine passant par a et de direction $K.\overrightarrow{ab}$ donc $a + K.\overrightarrow{ab}$.

- 1) si $\alpha = 0$, f est constante sur E.
- 2) si $\alpha \neq 0$, alors f est bijective. Et on appelle barycentre des points a_i pondérés des coefficients α_i l'unique point $g \in E$ tel que $f(g) = \overrightarrow{0}$.

3. Application linéaire

3.1. Définition

<u>Définition</u>: On appelle application linéaire du K-espace vectoriel E dans le K-espace vectoriel F toute application $f:E\to F$ telle que :

1)
$$\forall (u, v) \in E^2$$
, $f(u+v) = f(u) + f(v)$

2)
$$\forall \lambda \in K, \ \forall u \in E, \ f(\lambda.u) = \lambda.f(u)$$

Ce qui peut se regrouper en,

$$\forall (u, v) \in E^2, \ \forall \lambda \in K, \ f(u + \lambda . v) = f(u) + \lambda . f(v)$$

On peut voir comme conséquence directe de la définition que $f(\overrightarrow{0}_E) = \overrightarrow{0}_F$ car f est un morphisme du groupe (E, +) vers le groupe (F, +).

<u>Définition</u>: Une application linéaire d'un K-espace vectoriel E dans K (car on sait que tout corps K peut-être vu comme K-espace vectoriel) est appelée forme linéaire.

Une application linéaire de E dans E est appelée endormorphisme de E.

Une application linéaire bijective de E sur F est appelée isomorphisme de E sur F.

Un endomorphisme bijectif de E est appelée automorphisme de E.

3.2. Espace vectoriel $\mathcal{L}(E,F)$

<u>Définition</u>: On appelle $\mathcal{L}(E,F)$ l'ensemble formé par les applications linéaires de E sur F. On définit sur $\mathcal{L}(E,F)$ une loi + par :

de
$$E$$
 sur F . On definit sur $\mathcal{L}(E,F)$ une for $+$ par : $\forall (f,g) \in (\mathcal{L}(E,F))^2, \ f+g: \ \begin{array}{ccc} E & \to & F \\ u & \mapsto & f(u)+g(u) \end{array}$

De même on définit une loi externe · par :

$$\forall \lambda \in K, \ \forall f \in \mathcal{L}(E, F), \ \lambda.f: \begin{array}{ccc} E & \rightarrow & F \\ u & \mapsto & \lambda.f(u) \end{array}$$

<u>Théorème</u> : $\mathcal{L}(E,F)$ muni de la loi interne + et de la loi externe · est un K-espace vectoriel.

<u>Définition</u>: On notera l'ensemble des endomorphismes de E de la manière suivante $\mathcal{L}(E)$ au lieu de $\mathcal{L}(E, E)$.

3.3. Composition d'applications linéaires

<u>Proposition</u>: Soit $f \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(F, G)$ où E, F, et G sont trois K-espaces vectoriels. Alors $g \circ f \in \mathcal{L}(E, G)$.

 $\frac{\text{Proprosition}: \text{ Soient } E, F \text{ et } G \text{ trois } K\text{-espaces vectoriels et } f \in \mathcal{L}(E, F)}{\text{alors l'application } \varphi: \begin{matrix} \mathcal{L}(F, G) & \to & \mathcal{L}(E, G) \\ g & \mapsto & g \circ f \end{matrix}} \text{ est une application linéaire } de \ \mathcal{L}\left(\mathcal{L}(F, G), \mathcal{L}(E, G)\right).$

De même soit $g \in \mathcal{L}(F,G)$ alors l'application $\psi: \begin{array}{ccc} \mathcal{L}(E,F) & \to & \mathcal{L}(E,G) \\ f & \mapsto & g \circ f \end{array}$ est une application linéaire de $\mathcal{L}\left(\mathcal{L}(E,F),\mathcal{L}(E,G)\right)$.

Proposition : $(\mathcal{L}(E), \circ)$ est un anneau non commutatif.

3.4. Noyau et image d'une application linéaire

<u>Définition</u>: Soit $f \in \mathcal{L}(E, F)$ alors on appelle noyau de f l'ensemble ker $f = f^{-1}\left(\left\{\overrightarrow{0}\right\}\right)$ et on appelle l'image de f l'ensemble Im f = f(E).

<u>Proposition</u>: Soit $f \in \mathcal{L}(E, F)$ alors ker f est un sous-espace vectoriel de E et Im f est un sous-espace vectoriel de F.

<u>Proposition</u>: Soit H un sous-espace vectoriel de E, et $f \in \mathcal{L}(E, F)$ alors f(H) est un sous espace vectoriel de F.

3.5. Equation linéaire

<u>Définition</u>: On appelle équation linéaire toute équation de la forme f(u) = v où $f \in \mathcal{L}(E, F), v \in F$ et d'inconnue $u \in E$. Résoudre l'équation revient à déterminer $S = f^{-1}\left(\left\{v\right\}\right)$.

 1^{er} cas : $S = \emptyset$ alors l'équation n'a pas de solution.

 2^{nd} cas : $S \neq \emptyset$. Alors S admet au moins une solution u_0 et alors S est le sous-espace affine $S = u_0 + \ker f$.

3.6. Projecteurs

<u>Définition</u>: On appelle projecteur du K-espace vectoriel E tout endomorphisme p de E tel que $p \circ p = p$.

Proposition : Soit F et G deux sous-espaces vectoriels de E supplémentaires.

Alors l'application f de E dans F qui à tout vecteur $w \in E$ se décomposant w = u + v où $u \in F$ et $v \in G$ associe le vecteur f(w) = u est un projecteur de E appelé projecteur sur F parralèlement à G.

<u>Théorème</u>: Soit p un projecteur de E alors p projette sur Im p parallèlement à ker p.

<u>Proposition</u>: Soit p le projecteur sur F parallèlement à G, et q le projecteur sur G parallèlement à F alors $q = Id_E - p$ ce qui nous donne Im $p = \ker (Id_E - p)$ et $\ker p = \operatorname{Im}(Id - q)$.

3.7. Application réciproque d'un endormorphisme

<u>Théorème</u>: Soit f un isomorphisme du K-espace vectoriel E sur le K-espace vectoriel F. Alors f^{-1} est un isomorphisme de F sur E.

3.8. Affinités vectorielles

<u>Définition</u>: Soit F et G deux sous-espaces vectoriels supplémentaires du K-espace vectoriel E. On appelle affinité de rapport $\lambda \in K$, d'axe F et de direction G l'application $f: E \to E$ qui à tout vecteur w = u + v avec $u \in F$ et $v \in G$ associe $f(w) = u + \lambda .v$ On remarque que si $\lambda = 0_K$ alors cette affinité effectue en réalité une projection sur son axe parallèlement à sa direction.

3.9. Symétries vectorielles et involutions linéaires

<u>Définition</u>: Soient F et G deux-sous espaces vectoriels supplémentaires du K-espace vectoriel E. On appelle symétrie vectorielle d'axe F et de direction G l'afffinité vectorielle de rapport $\lambda = -1_K$.

On appelle involution de E tout application $f: E \to E$ vérifiant $f \circ f = Id_E$. Toute involution est donc bijective et vérifie donc $f^{-1} = f$.

Théorème : Soit f un endomorphisme de E alors :

f symétrie vectorielle de $E \Leftrightarrow f$ involution linéaire de E.

3.10. Groupe linéaire GL(E)

<u>Définition</u>: On appelle GL(E) l'ensemble des automorphisme de E.

<u>Théorème</u>: $(GL(E), \circ)$ est un groupe non commutatif.

CHAPITRE IV : Polynômes

1. K-Espace vectoriel des polynômes

1.1. Définition

<u>Définition</u>: On appelle polyôme à coefficients dans le corps infini \mathbb{K} toute suite $P = (a_n)_{n \in \mathbb{N}} \in \mathbb{K}^{\mathbb{N}}$ presque nulle, c'est à dire $\exists p_0 \in \mathbb{N} / \forall n \geq p_0, \ a_n = 0$.

<u>Définition</u>: L'ensemble des polynômes sur \mathbb{K} est noté $\mathbb{K}[X]$. Le polynôme $(0,0,0,\cdots)$ est appelé polynôme nul noté 0 et $(1,0,0,\cdots)$ polynôme unité noté 1.

<u>Définition</u>: Soit $P \in \mathbb{K}[X]$, si $P \neq 0$, soit $A = \{n \in \mathbb{N} \mid a_n \neq 0\}$, A admet un plus grand élément qu'on appelle degré de P noté deg P et $a_{\text{deg }P}$ est appelé coefficient dominant. Si $a_{\text{deg }P} = 1$, P est dit unitaire. Par définition deg $0 = -\infty$.

Proposition: Soit
$$(P,Q) \in (\mathbb{K}[X])^2$$
, avec $P = (a_n)$ et $Q = (b_n)$, $P = Q \Leftrightarrow \forall n \in \mathbb{N}, \ a_n = b_n$.

1.2 Addition des polynômes

<u>Définition</u>: On définit sur $\mathbb{K}[X]$ la loi + par restriction de l'addition des suites aux polynômes. Soit $(P,Q) \in (\mathbb{K}[X])^2$, avec $P = (a_n)$ et $Q = (b_n)$, alors $P + Q = (a_n + b_n)$. Si on a p_0 et q_0 tels que $\forall n \geq p_0, \ a_n = 0$ et $\forall n \geq q_0, \ b_n = 0$ donc $\forall n \geq \max(p_0, q_0), \ a_n + b_n = 0$, donc P + Q est bien un polynôme.

 $\underline{\text{Propriét\'e 1}:} \ \forall (P,Q) \in (\mathbb{K}[X])^2, \ \deg(P+Q) \leq \max(\deg\,P,\deg\,Q).$

Propriété 2: Soit $(P,Q) \in (\mathbb{K}[X])^2$, si deg $P \neq \deg Q$, alors $\deg(P+Q) = \max(\deg Q, \deg Q)$.

Propriété 3 : $(\mathbb{K}[X], \circ)$ est un groupe commutatif.

1.3. Multiplication des polynômes

<u>Définition</u>: On définit sur $\mathbb{K}[X]$ une miltiplication \times par $\forall (P,Q) \in (\mathbb{K}[X])^2$, avec $P(a_n)$ et $Q = (b_n)$ alors on définit $P \times Q = (c_n)$ par $c_n = \sum_{i=0}^n a_i b_{n-k}$.

Propriété $1: \times$ est interne à $\mathbb{K}[X]$.

Propriété 2 : \times est commutative sur $\mathbb{K}[X]$.

Propriété $3: \times$ est associative sur $\mathbb{K}[X]$.

Propriété $4: \times$ est distributive par rapport à la loi +.

Propriété $5: \times$ admet un élément neutre dans $\mathbb{K}[X]$ qui est $1 = (1, 0, 0, \cdots)$

Propriété 6 : $deg(P \times Q) = deq P + deg Q$.

<u>Théorème</u>: $(\mathbb{K}[X], +, \times)$ est un anneau commutatif intègre, c'est à dire $\forall (P,Q) \in (\mathbb{K}[X])^2, \ P \times Q = 0 \Rightarrow P = 0 \text{ ou } Q = 0.$

Remarque : $(\mathbb{K}[X], +, \times)$ n'est pas un corps.

1.4. Multiplication par un scalaire

<u>Définition</u>: On définit dans $\mathbb{K}[X]$ une loi externe · depuis le corps \mathbb{K} par $\forall \lambda i n \mathbb{K}, \forall P \in \mathbb{K}[X]$, où $P = (a_n)$ alors on définit $\lambda . P = (\lambda . a_n)$.

<u>Théorème</u>: $(\mathbb{K}[X], +, \cdot)$ est un espace vectoriel.

1.5. Générateur de $\mathbb{K}[X]$

<u>Définition</u>: On pose $X=(0,1,0,0,\cdots)$. On remarque alors que $X^2=(0,0,1,0,\cdots)$ et plus généralement, soit $n\in\mathbb{N},\ X^n=(\underbrace{0,\cdots,0}_{n\text{ frie}},1,0,0,\cdots)$

avec $X^0=1$. Soit $P\in\mathbb{K}[X]$, tel que $P=(a_n)$ alors on peut réécrire $P=\sum_{k=0}^{\deg P}a_kX^k$.

<u>Définition</u> : X est appelé générateur de $\mathbb{K}[X]$, on l'appelle aussi indéterminée.

<u>Définition</u>: Soit $n \in \mathbb{N}$, on note $\mathbb{K}_n[X]$ l'ensemble formé par les polynômes de degré inférieur ou égaux à n.

<u>Théorème</u>: $\forall n \in \mathbb{N}, \mathbb{K}_n[X]$ est un \mathbb{K} -espace vectoriel.

Proposition: On identifie $\mathbb{K}_0[X]$ à \mathbb{K} par la bijection $\varphi : \begin{array}{c} \mathbb{K}_0[X] \to \mathbb{K} \\ \lambda.1 & \mapsto \lambda \end{array}$ D'où à présent on notera λ au lieu de $\lambda.1$.

1.6. Composition de polynômes

$$\underline{\text{D\'efinition}:} \text{ Soit } P(X) = \sum_{k=0}^p a_k.X^k \text{ et } Q(X) = \sum_{k=0}^q b_k.X^k \text{ alors on d\'efinit le}$$
 polynôme $Q \circ P$ par $Q \circ P(X) = \sum_{i=0}^q b_i.\left(\sum_{k=0}^p a_k.X^k\right)^i$

2. Divisibilité

2.1. Définition

<u>Définition</u>: On dit que le polynôme P divise le polynôme Q si $\exists R \in \mathbb{K}[X]$ tel que $Q = P \times R$, ce qui se note P|Q. Si $P \neq 0$ alors R - s'il existe - est unique.

<u>Proposition</u>: Tout polynôme est divisble par tout polynôme de degré 0, et tout polynôme divise le polynôme nul.

<u>Proposition</u>: | est une relation de préodre dans $\mathbb{K}[X]$. Soit $P \in \mathbb{K}[X]$, les éléments associés à P sont tous de la forme $\lambda.P$ avec $\lambda \neq 0$. Dans l'ensemble des polynômes unitaires, la relation | devient une relation d'ordre.

2.2. Fonction polynômiale associée

<u>Définition</u>: Soit $P \in \mathbb{K}[X]$ définit par $P(X) = \sum_{k=0}^{p} a_k . X^k$ on associe l'appli-

cation
$$\widetilde{P}$$
: $x \mapsto \sum_{k=0}^{p} a_k x^k$

Propriété : Soit $P \in \mathbb{K}[X]$ de degré deg $P \leq n$ admettant m > n racines alors P = 0.

2.3. Divisibilité par X-a

<u>Théorème</u>: Soit $a \in \mathbb{K}$ et $P \in \mathbb{K}[X]$, $(X - a)|P \Leftrightarrow P(a) = 0$.

Corollaire: Soit $(a,b) \in \mathbb{K}^2$, et $P \in \mathbb{K}[X]$, alors

$$a \neq b$$
, $(X - a)|P$ et $(X - b)|P \Rightarrow (X - a)(X - b)|P$.

Ce qui se généralise :

$$\forall P \in \mathbb{K}[X], \ \forall (a_1, \dots, a_n) \in \mathbb{K}^n, \text{ si } \forall (i, j) \in \{1, \dots, n\}^2, \text{ on a}$$

 $i \neq j \Rightarrow a_i \neq a_j \text{ et si } \forall i \in \{1, \dots, n\} \text{ on a } (X - a_i) | P \text{ alors } \prod_{i=1}^n (X - a_i) | P.$

2.4. Polynôme dérivé

<u>Définition</u>: Soit $P \in \mathbb{K}[X]$ tel que $P(X) = \sum_{k=0}^{p} a_k X^k$. On appelle polynôme dérivé de P le polynôme noté P' définit par

$$P'(X) = \sum_{k=1}^{p} k a_k . X^{k-1} = \sum_{k=0}^{p-1} (k+1) a_{k+1} . X^k.$$

Propriété 1: $\forall (P,Q) \in (\mathbb{K}[X])^2, (P+Q)' = P' + Q'.$

 $\underline{\text{Propriété 2}:} \ \forall \lambda \in \mathbb{K}, \forall P \in \mathbb{K}[X], \ (\lambda.P) = \lambda.P'.$

Propriété 3 : L'application φ_D : $\stackrel{\mathbb{K}[X]}{P} \xrightarrow{\longrightarrow} \stackrel{\mathbb{K}[X]}{P'}$ est un endormorphisme de $\mathbb{K}[X]$.

Propriété $4: \forall (P,Q) \in (\mathbb{K}[X])^2, (P \times Q)' = P' \times Q + P \times Q'.$

<u>Définition</u>: On défini par récurrence les dérivées successives d'un polynôme P par $\forall k \in \mathbb{N}, \ P^{(k+1)} = \left(P^{(k)}\right)'$. Si $P(X) = \sum_{k=0}^{p} a_k X^k$ alors

$$\forall i \in \mathbb{N}, \ P^{(i)}(X) = \sum_{k=i}^{p} \frac{k!}{(k-i)!} X^{k-i}.$$

Théorème : Formule de Liebniz : $\forall (P,Q) \in (\mathbb{K}[X])^2, \ \forall n \in \mathbb{N}, \ (P \times Q)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} P^{(k)} Q^{(n-k)}$

<u>Théorème</u>: Formule de Taylor : Soit $P \in \mathbb{K}[X]$, $a \in \mathbb{K}$ et $p = \deg P$, alors

$$P(X+a) = \sum_{k=0}^{p} \frac{P^{(k)}(a)}{k!} X^{k}$$

Remarque: Si on prend a = 0 alors on trouve $P(X) = \sum_{k=0}^{p} \frac{P^{(k)}(0)}{k!} X^k$ et donc on trouve $\forall n \in \mathbb{N}, \ a_n = \frac{P^{(n)}(0)}{n!}$.

2.5. Divisibilité par $(X-a)^k$

Théorème : Soit $P \in \mathbb{K}[X]$, $a \in \mathbb{K}$ et $k \in \mathbb{N}^*$.

$$(X-a)^k | P \iff P(a) = P'(a) = \dots = P^{(k-1)}(a) = 0$$

<u>Définition</u>: On appelle racine du polynôme P tout élément α de \mathbb{K} tel que $P(\alpha) = 0$, et on appelle multiplicité de α le plus petit entier k tel que $P^{(k)} \neq 0$, on note $k = \text{mult } \alpha$.

Si $\lambda = \text{mult } \alpha \text{ alors par definition équivalente}$:

$$\forall i \in \{0, \dots, \lambda - 1\}, \ P^{(i)}(\alpha) = 0 \text{ et } P^{(\lambda)}(\alpha) \neq 0.$$

<u>Théorème</u>: Soit $P \in \mathbb{K}[X]$, et α une racine de P avec $\lambda = \text{mult } \alpha$. Alors $(X - \alpha)^{\lambda} | P$ et $(X - \alpha)^{\lambda+1} \nmid P$, ce qui nous donne $P(X) = (X - \alpha)^{\lambda} \times Q(X)$ avec $Q(\alpha) \neq 0$.

3. Division Euclidienne suivant les puissances croissantes

Théorème de la division Euclidienne :

$$\forall (A,B) \in (\mathbb{K}[X])^2 \ / \ B \neq 0, \ \exists ! (Q,R) \in (\mathbb{K}[X])^2, \ \text{tel que} \left\{ \begin{array}{l} A = BQ + R \\ \deg R < \deg B \end{array} \right.$$

Remarque : Soit
$$A = \sum_{k=0}^p a_k X^k$$
 et $B = \sum_{k=0}^q b_k X^k$ avec $a_p \neq 0$, $b_q \neq 0$ et $p \geq q$. On effectue une division euclidienne selon les puissances croissantes donc on cherche à faire disparaitre $a_p X^p$ grâce à B . Et on obtient $A(X) = \frac{a_p}{b_q} X^{p-q} B(X) + A_1(X)$ et on recommence, on effectue la division euclidienne de $A_1(X) = A(X) - \frac{a_p}{b_q} X^{p-q} B(X)$ par $B(X)$ et on s'arrète quand le reste à un degré inférieur strictement à celui de B .

4. Factorisation

4.1. Polynôme irréductible

<u>Définition</u>: Soit $P \in \mathbb{K}[X]$ de degré deg $P \ge 1$, on dit que P est irréductible si P n'admet pas de diviseur $Q \in \mathbb{K}[X]$ tel que $1 \le \deg Q < \deg P$.

Remarque : Les polynômes de degré 1 sont irréductibles.

<u>Définition</u>: On dit qe $P \in \mathbb{K}[X]$ est scindé si P est un produit de polynôme du 1^{er} degré de $\mathbb{K}[X]$.

4.2. Factorisation dans $\mathbb{C}[X]$

Théorème de d'Alembert :

$$\forall P \in \mathbb{K}[X] / \text{deg } P \ge 1, \ \exists \alpha \in \mathbb{C} / P(\alpha) = 0.$$

<u>Corollaire</u>: $\forall P \in \mathbb{K}[X]$ de degré deg $P = n \geq 1$, et de terme dominant $a_n \neq 0$, alors $\exists (\alpha_1, \dots, \alpha_n) \in \mathbb{C}^n$ tel que $P(X) = a_n \cdot \prod_{k=1}^n (X - \alpha_k)$.

<u>Théorème</u>: Tous les polynômes sur $\mathbb{C}[X]$ et les seuls polynômes irréductibles sont ceux de degré 1.

4.2. Factorisation dans $\mathbb{R}[X]$

<u>Théorème</u>: Les polynômes irréductibles de $\mathbb{R}[X]$ sont les polynômes de degré 1 et ceux de degré 2 de la forme $P(X) = aX^2 + bX + c$ avec $\Delta = b^2 - 4ac < 0$.

<u>Corollaire</u>: Tout polynôme de $\mathbb{R}[X]$ peut se factoriser dans $\mathbb{R}[X]$ sous la forme d'un produit de polynômes de degré 1 et de degré 2 à discriminant $\Delta < 0$ donc sous la forme :

$$P(X) = \prod_{k=1}^{p} (a_k X + b_k) \prod_{j=1}^{q} (c_j X^2 + d_j X + e_j) \text{ avec } \forall k \in \{1, \dots, p\} \ a_k \neq 0,$$

$$\forall j \in \{1, \dots, q\} \ d_j^2 - 4c_j e_j < 0 \text{ et } c_j \neq 0 \text{ et enfin } p + 2q = \deg P.$$

Mais tout polynôme de $\mathbb{R}[X]$ peut aussi se factoriser dans $\mathbb{C}[X]$ sous la forme de produit de polynômes de degré 1 dont les racines sont soit réelles soit conjuguées deux à deux, donc sous la forme :

$$P(X) = \prod_{k=1}^{p} (a_k X + b_k) \prod_{j=1}^{q} c_j (X - \alpha_j) (X - \overline{\alpha_i}) \text{ avec } \forall k \in \{1, \dots, p\} \ a_k \neq 0,$$

$$\forall j \in \{1, \dots, q\} \ c_j \neq 0 \text{ et } \alpha_i \in \mathbb{C} \setminus \mathbb{R} \text{ et enfin } p + 2q = \deg P.$$

5. Relation entre coefficients et racines

$$\forall k \in \{1, \dots, n\} \quad \sigma_k = (-1)^k \frac{a_{n-k}}{a_n}$$

6. Divisibilité dans l'anneau $\mathbb{K}[X]$

6.1. PGCD

Proposition : $\forall P \in \mathbb{K}[X]$, (P) est un sous-groupe de $(\mathbb{K}[X], +)$.

Proposition : $\forall (P,Q) \in (\mathbb{K}[X])^2$, (P) + (Q) est un sous-groupe de $(\mathbb{K}[X], +)$.

Proposition : $\forall (P,Q) \in (\mathbb{K}[X])^2, P|Q \Leftrightarrow (Q) \subset (P).$

<u>Proposition</u>: $\forall (P,Q) \in (\mathbb{K}[X])^2$, $(P) = (Q) \Leftrightarrow P$ et Q sont associés $\Leftrightarrow \exists \lambda \in \mathbb{K} / P = \lambda Q$.

Proposition : Soit $R \in (P) + (Q)$ alors $(R) \subset (P) + (Q)$.

Théorème : $\forall (P,Q) \in (\mathbb{K}[X])^2$, $\exists R \in \mathbb{K}[X]$ tel que (P) + (Q) = (R).

<u>Définition</u>: Soit $(P,Q) \in (\mathbb{K}[X])^2$, On appelle PGCD de P et Q, noté $P \wedge Q$ l'unique polyôme unitaire R tel que (P) + (Q) = (R).

<u>Théorème</u>: Le PGCD d'un couple (P,Q) est le polynôme unitaire accocié au dernier reste non nul dans l'algorithme d'Euclide. Algorithme composé de divisions euclidiennes successives de la même manière que dans \mathbb{Z} .

6.2. PPCM

<u>Proposition</u>: Soit $(P,Q) \in (\mathbb{K}[X])^2$ non nuls, $\exists M \in \mathbb{K}[X] / (M) = (P) \cap (Q)$.

<u>Définition</u>: On appelle PPCM d'un couple $(P,Q) \in (\mathbb{K}[X])^2$ non nuls - noté $P \vee Q$ - l'unique polynôme unitaire $M \in \mathbb{K}[X]$ tel que $(M) = (P) \cap (Q)$.

6.3. Polynôme premiers entre eux

 $\underline{\text{D\'efinition}}$: On dit que les polynômes P et Q sont premiers entre eux si $P \wedge Q = 1.$

Théorème de Bézout :

$$\forall (P,Q) \in (\mathbb{K}[X])^2 \ / \ P \wedge Q = 1, \ \exists (U,V) \in (\mathbb{K}[X])^2 \ / \ UP + VQ = 1.$$

Théorème de Gauss:

$$\forall (P,Q,R) \in (\mathbb{K}[X])^3, \ P|QR \ \text{et} \ P \wedge Q = 1 \Rightarrow P|Q.$$

Corollaire : P|R, Q|R et $P \wedge Q = 1 \Rightarrow PQ|R$.

7. Décomposition en élément simple d'une fraction rationnelle

7.1. Corps $\mathbb{K}(X)$

On peut voir que $\frac{P}{Q} = \frac{R}{S} \Leftrightarrow PS = QR \text{ dans } \mathbb{K}[X]$

On définit une loi + par : $\frac{P}{Q} + \frac{R}{S} = \frac{PS + QR}{QS}$ d'élément neutre 0 comme dans $\mathbb{K}[X]$, $-\left(\frac{P}{Q}\right) = \frac{-P}{Q} = \frac{P}{-Q}$. On remarque que $\forall P \in \mathbb{K}[X]^*$, $\frac{0}{P} = 0$.

On définit une loi \times par : $\frac{P}{Q} \times \frac{R}{S} = \frac{PR}{QS}$ d'élément neutre 1 comme dans $\mathbb{K}[X]$. Soit $\frac{P}{Q}$ avec $P \neq 0$, alors on a $\left(\frac{P}{Q}\right)^{-1} = \frac{Q}{P}$ alors on remarque $\forall P \in \mathbb{K}[X]^*, \ \frac{P}{P} = 1$.

<u>Définition</u>: On appelle forme irréductible de $F\in\mathbb{K}(X)$ l'unique écriture de F sous la forme $\frac{P}{Q}$ où Q est unitaires et $P\wedge Q=1$.

<u>Définition</u>: Soit $F = \frac{P}{Q}$ écrite sous forme irréductible, on appelle pôle de F toute racine de Q. On appelle multiplicité du pôle α de F la multiplicité de α dans Q.

7.2. Fonctions rationnelles associées à une fraction rationnelle.

<u>Définition</u>: A une fraction rationnelle $F = \frac{P}{Q}$ on peut associer la fonction

rationnelle \widetilde{F} : $D \to \mathbb{K}$ P(x) où $D = \mathbb{K} \setminus \{\alpha \in \mathbb{K} \mid Q(\alpha) = 0\}$.

Remarque : \widetilde{F} dépend du représentant $\frac{P}{Q}$ choisit, si $\frac{P}{Q}$ est la forme irréductible de F alors D sera le plus grand ensemble possible sur lequel \widetilde{F} sera définie,

on le note ici D_{max} , mais si $P \wedge Q = R \neq 1$ donc de degré deg $R \geqslant 1$ on peut alors écrire $F = \frac{RP'}{RQ'}$ où $\frac{P'}{Q'}$ est la forme irreductible de F, alors ici $D = D_{max} \setminus \left\{\alpha \in \mathbb{K} \mid R(\alpha) = 0\right\}$, donc \widetilde{F} ne sera pas défini en les racines de R si distinctes de celles de Q'. En tout point où deux formes de \widetilde{F} sont définies, elles sont égales.

7.3. Décomposition en élément simple

<u>Définition</u>: On appelle élément simple dans $\mathbb{C}(X)$ toute fraction rationnelle de la forme $\frac{a}{(X-\alpha)^n}$ où $a \in \mathbb{C}$, $\alpha \in \mathbb{C}$ et $n \in \mathbb{N}^*$.

<u>Lemme</u>: Toute fraction $F = \frac{P}{Q}$ sous forme irréductible, se décompose de manière unique sous la forme $F = E + \frac{R}{Q}$ avec deg $R < \deg Q$.

<u>Théorème</u>: Soit $F = \frac{P}{Q} \in \mathbb{C}(X)$ mise sous forme irréductible, de pôles $\alpha_1, \dots, \alpha_n$ de multiplicités respectives β_1, \dots, β_n . Soit P = EQ + R la division euclidienne de P par Q. Alors F peut se décomposer en éléments simples sous la forme unique :

$$F(X) = E(X) + \frac{A_{\beta_1,\alpha_1}}{(X - \alpha_1)^{\beta_1}} + \frac{A_{\beta_1-1,\alpha_1}}{(X - \alpha_1)^{\beta_1-1}} + \dots + \frac{A_{1,\alpha_1}}{(X - \alpha_1)} + \frac{A_{\beta_2,\alpha_2}}{(X - \alpha_2)^{\beta_2}} + \frac{A_{\beta_2-1,\alpha_2}}{(X - \alpha_2)^{\beta_2-1}} + \dots + \frac{A_{1,\alpha_2}}{(X - \alpha_2)^{\beta_2}} + \dots + \frac{A_{\beta_n,\alpha_n}}{(X - \alpha_n)^{\beta_n}} + \frac{A_{\beta_n-1,\alpha_n}}{(X - \alpha_n)^{\beta_n-1}} + \dots + \frac{A_{1,\alpha_n}}{(X - \alpha_n)}$$

où $A_{\beta_1,\alpha_1},...,A_{\beta_{n-1},\alpha_{n-1}}$ et A_{β_n,α_n} sont tous non nuls.

<u>Définition</u>: E(X) s'appelle partie entière de la fraction rationnelle F(X), et $\frac{A_{\beta_j,\alpha_j}}{(X-\alpha_j)^{\beta_j}} + \frac{A_{\beta_j-1,\alpha_j}}{(X-\alpha_j)^{\beta_j-1}} + \cdots + \frac{A_{1,\alpha_j}}{(X-\alpha_j)}$ est appelée la forme polaire de F relativement au pôle α_j .

Remarque : Si deg P < deg Q alors E(X) = 0.

<u>Proposition</u>: Soit $F(X) = \frac{P(X)}{Q(X)}$ sous forme irréductible de pôles $\alpha_1, \dots, \alpha_n$ de multiplicités respectives β_1, \dots, β_n .

$$Q(X) = \prod_{i=1}^{n} (X - \alpha_i)^{\beta_i}$$
. On note $Q_j(X) = \prod_{i \neq j}^{n} (X - \alpha_i)^{\beta_i} = \frac{Q(X)}{(X - \alpha_j)^{\beta_j}}$.

Alors on trouve les premiers coefficients $A_{\beta_j,\alpha_j} = \frac{P(\alpha_j)}{Q_j(\alpha_j)}$.

Pour les autres coefficients :

1) on peut remplacer X par x_0 qui n'est pas un pôle de F et obtenir un sytème :

$$\frac{P(x_0)}{Q(x_0)} = E(x_0) + \frac{A_{\beta_1,\alpha_1}}{(x_0 - \alpha_1)^{\beta_1}} + \frac{A_{\beta_1-1,\alpha_1}}{(x_0 - \alpha_1)^{\beta_1-1}} + \dots + \frac{A_{1,\alpha_1}}{(x_0 - \alpha_1)} + \frac{A_{\beta_2,\alpha_2}}{(x_0 - \alpha_2)^{\beta_2}} + \frac{A_{\beta_2-1,\alpha_2}}{(x_0 - \alpha_2)^{\beta_2-1}} + \dots + \frac{A_{1,\alpha_2}}{(x_0 - \alpha_2)} + \dots + \frac{A_{\beta_n,\alpha_n}}{(x_0 - \alpha_n)^{\beta_n}} + \frac{A_{\beta_n-1,\alpha_n}}{(x_0 - \alpha_n)^{\beta_n-1}} + \dots + \frac{A_{1,\alpha_n}}{(x_0 - \alpha_n)}$$

2) on a $\frac{P}{Q} = E + \frac{R}{Q}$ et alors on multiplie par X, on obtient donc

$$\frac{XR(X)}{Q(X)} = \frac{A_{\beta_1,\alpha_1}X}{(X - \alpha_1)^{\beta_1}} + \frac{A_{\beta_1 - 1,\alpha_1}X}{(X - \alpha_1)^{\beta_1 - 1}} + \dots + \frac{A_{1,\alpha_1}X}{(X - \alpha_1)} + \frac{A_{\beta_2,\alpha_2}X}{(X - \alpha_2)^{\beta_2}} + \frac{A_{\beta_2 - 1,\alpha_2}X}{(X - \alpha_2)^{\beta_2 - 1}} + \dots + \frac{A_{1,\alpha_2}}{(X - \alpha_2)} + \dots + \frac{A_{\beta_n,\alpha_n}X}{(X - \alpha_n)^{\beta_n}} + \frac{A_{\beta_n - 1,\alpha_n}X}{(X - \alpha_n)^{\beta_n - 1}} + \dots + \frac{A_{1,\alpha_n}X}{(X - \alpha_n)}$$

et on fait tendre X vers $+\infty$, on obtient :

$$\lim_{X \to +\infty} \frac{XR(X)}{Q(X)} = A_{1,\alpha_1} + A_{1,\alpha_2} + \dots + A_{1,\alpha_n}.$$

c) si $F \in \mathbb{R}(X)$, les coefficients de même ordre des racines conjuguées sont conjugués. C'est à dire $A_{j,\alpha} = \overline{A_{j,\overline{\alpha}}}$

d) utiliser la partité possible de F pour déduire d'éventuels rapports entre les coefficients, ou l'annulation de certains.

<u>Théorème</u>: Soit $P(X) = K \cdot \prod_{i=1}^{n} (X - \alpha_i)^{\beta_i}$ avec $K \in \mathbb{C}^*$. Alors on a la

décomposition en éléments simples suivante $\frac{P'(X)}{P(X)} = \sum_{i=1}^{n} \frac{\beta_i}{X - \alpha_i}$.

<u>Proposition</u>: La décomposition en éléments simples permet de calculer des <u>primitives de</u> toute fraction rationnelle, il suffit pour cela de savoir :

 $\forall a \in \mathbb{C}, \ \alpha \in \mathbb{N} \text{ avec } \alpha \geqslant 2 \text{ alors on a} :$

$$\int \frac{1}{(t-a)^{\alpha}} \ dt = \frac{1}{1-\alpha} \cdot \frac{1}{(t-a)^{\alpha-1}} + c \ \text{ où } c \in \mathbb{C}.$$

Si $\mathcal{I}_m(a) \neq 0$ alors:

$$\int \frac{1}{(t-a)} dt = \ln|t-a| + i.\operatorname{Arctan}\left(\frac{t-\mathcal{R}_e(a)}{\mathcal{I}_m(a)}\right)$$

Si $\mathcal{I}_m(a) = 0 \Leftrightarrow a \in \mathbb{R} \text{ alors} :$

$$\int \frac{1}{(t-a)} dt = \ln|t-a|$$

CHAPITRE V : Espaces vectoriels de dimension finie

1. Familles génératrices, libres et bases

1.1. Combinaison linéaire de vecteurs

<u>Définition</u>: On appelle combinaison linéaire des p vecteurs u_1, \dots, u_p du Kespace vectoriel E tout vecteur v s'écrivant $v = \sum_{i=1}^p \lambda_i . u_i$ où $\forall i, \lambda_i \in K$

Proposition: Tout espace vectoriel est stable par combinaison linéaire.

Proposition: Soit $f \in \mathcal{L}(E, F)$, $(u_1, \dots, u_p) \in E^n$, $(\lambda_1, \dots, \lambda_p) \in K^p$, alors

$$f\left(\sum_{i=1}^{p} \lambda_i.u_i\right) = \sum_{i=1}^{p} \lambda_i.f(u_i)$$

<u>Définition</u>: On appelle sous-espace vectoriel engendré par la famille de vecteurs $(u_1, \dots, u_p) \in E^p$ l'ensemble des combinaisons linéaires des p-vecteurs (u_1, \dots, u_p) . On le note $Vect(u_1, \dots, u_p)$.

Proposition : $Vect(u_1, \dots, u_p)$ est un sous-espace vectoriel de E.

Remarque : $Vect(u_1, \dots, u_p)$ est le sous-espace vectoriel egendré par la partie $A = \{u_1, \dots, u_p\}$ précédemment noté Vect(A) est aussi égal à l'intersection des sous-espaces vectoriels contenant A.

1.2. Famille génératrice

<u>Définition</u>: Soit F un sous-espace vectoriel de E. On dit que la famille $(u_1, \dots, u_p) \in E^p$ est génératrice de F si tout vecteur de F est une combinaison linéaire des p-vecteurs u_1, \dots, u_p donc si $Vect(u_1, \dots, u_p) = F$.

Remarque: Soit (u_1, \dots, u_p) une famille génératrice de F et soit les vecteurs $(u_{p+1}, \dots, u_{p+n}) \in E^n$, alors $(u_1, \dots, u_p, u_{p+1}, \dots, u_{p+n})$ est une famille génératrice de F.

<u>Proposition</u>: Soit $(u_1, \dots, u_p) \in E^p$ une famille génératrice du sous-espace vectoriel F; pour que la famille $(v_1, \dots, v_n) \in F^n$ soit génératrice de F il faut et il suffit que tout u_i soit combinaison linéaire de la famille (v_1, \dots, v_n) .

1.3 Familles libres, familles liées

<u>Définition</u>: Soit (u_1, \dots, u_p) une famille de p-vecteurs du K-espace vectoriel E, on dit que la famille (u_1, \dots, u_p) est libre si :

$$\forall (\lambda_1, \dots, \lambda_p) \in K^p, \ \sum_{i=1}^p \lambda_i u_i = \overrightarrow{0} \Rightarrow \forall i \in \{1, \dots, p\}, \ \lambda_i = 0.$$

Dans ce cas on dit que les vecteurs sont linéairement indépendants.

On dit qu'une famille (u_1, \dots, u_p) est liée si elle n'est pas libre.

$$\underline{\text{Proposition}:} (u_1, \dots, u_p) \text{ est liée} \Leftrightarrow \exists (\lambda_1, \dots, \lambda_p) \in \mathbb{K}^p \setminus \{(0, \dots, 0)\} \text{ tel}
\underline{\text{que} \sum_{i=1}^p \lambda_i u_i} = \overrightarrow{0}.$$

Remarques: 1) Si la famille (u_1, \dots, u_p) est liée alors toute famille $(u_1, \dots, u_p, u_{p+1}, \dots, u_{p+n})$ est liée.

- 2) Toute sous-famille d'une famille libre est libre.
- 3) Toute famille contenant le vecteur $\overrightarrow{0}$ est liée.

<u>Proposition</u>: Pour qu'une famille soit liée il faut et il suffit qu'un vecteur soit combinaison linéaire des autres vecteurs de la famille.

<u>Théorème</u>: Soit $n \in \mathbb{N}^*$, soit (u_1, \dots, u_n) une famille de n vecteurs et (v_1, \dots, v_{n+1}) une famille de n+1 vecteurs combinaison linéaire de la famille (u_1, \dots, u_n) , alors (v_1, \dots, v_{n+1}) est liée.

1.4. Base

<u>Définition</u>: On dit que la famille (u_1, \dots, u_n) est une base du sous-espace vectoriel F du K-espace vectoriel E si elle est libre et génératrice de F.

1.5. Coordonnées

<u>Théorème</u>: Soit $\mathcal{B} = (u_1, \dots, u_n)$ une base du sous-espace vectoriel F du K-espace vectoriel E, alors pour tout vecteur $v \in F$ il existe un unique n-uplet

$$(x_1, \dots, x_n) \in K^n$$
 tel que $v = \sum_{i=1}^n x_i u_i$.

<u>Définition</u>: La famille (x_1, \dots, x_n) est appelée famille de coordonnées du vecteur v dans la base $\mathcal{B} = (u_1, \dots, u_n)$. x_i est appelée $i^{\grave{e}me}$ coordonnée du vecteur v dans la base \mathcal{B} .

2. Dimension

2.1. Théorème de la base incomplète

<u>Définition</u>: On dit que le K-espace vectoriel E est de dimension finie si E admet une famille génératrice finie.

Théorème de la base incomplète :

Soit E un espace vectoriel de dimension finie et non réduit à $\{\overrightarrow{0}\}$. Soit (u_1, \cdot, u_m) une famille libre de E alors on peut compléter cette famille en $(u_1, \dots, u_m, \dots, u_n)$ telle que elle soit une base de E.

Remarque: 1) Ce théorème prouve l'éxistence d'une base pour un K-espace vectoriel de dimension finie, pour ce il suffit de compléter une famille trivialement libre (u) avec $u \neq \overline{0}$.

2) En pratique on complète une famille libre avec des vecteurs d'une base connue.

2.2. Dimension d'un espace vectoriel

Théorème : Soient les 3 familles suivantes :

$$\mathcal{U} = (u_1, \dots, u_p)$$
 libre,
 (e_1, \dots, e_n) base de E ,
 $\mathcal{V} = (v_1, \dots, v_q)$ génératrice de E .

Alors $p \leqslant n \leqslant q$. De plus si :

- 1) p = n alors \mathcal{U} est une base de E2) q = n alors \mathcal{V} est une base de E.
- Remarque : Toutes les bases d'un espace vectoriel E ont donc même nombre de vecteurs si celui-ci n'est pas réduit à $\left\{\overrightarrow{0}\right\}$.

<u>Définition</u>: On appelle dimension d'un espace vectoriel E le nombre de vecteurs dans une base de E. On la note dim E, en précisant parfois sur quel corps E est défini on note dim $_KE$.

Par convention dim $\left\{\overrightarrow{0}\right\} = 0$.

Proposition : Soit E un espace vectoriel de dimension n, alors toute famille libre ou génératrice de E de n vecteurs est une base de E.

2.3. Dimension d'un sous-espace vectoriel

<u>Définition</u>: On appelle dimension du sous-espace vectoriel F de E la dimension de l'espace vectoriel F.

<u>Proposition</u>: Tout sous-espace vectoriel F d'un espace vectoriel E de dimension finie est de dimension finie et dim $F \leq \dim E$.

<u>Théorème</u>: Soient F et G deux sous-espaces vectoriels de E de dimension finie alors :

$$\dim(F+G) + \dim(F\cap G) = \dim F + \dim G.$$

Remarque: si F et G sont en somme directe alors $\dim(F \oplus G) = \dim F + \dim G$.

Remarque : si F est un sous-espace vectoriel de E de dimension finie et si dim F =dim E alors F = E.

2.4. Existence de supplémentaire

Proposition: Tout sous-espace vectoriel F d'un espace vectoriel E de dimension finie admet un sous-espace vectoriel G de E qui lui est supplémentaire.

2.5. Rang d'une famille de vecteurs

<u>Définition</u>: On appelle rang de la famille $U = (u_1, \dots, u_n)$ de vecteurs de E la dimension du sous-espace vectoriel Vect(U). Si U est libre alors c'est une base de Vect(U) et donc dim Vect(U) = n. Si U est liée alors $\exists u_0$ un des vecteurs de U qui est combinaison linéaire des autres et dim Vect(U) < n.

2.6. Dimension d'un espace vectoriel produit

Proposition : Soit E et F deux K-espaces vectoriels de dimension finie alors :

 $\dim\,E\times F=\!\!\dim\,E+\dim\,F.$

CHAPITRE VI : Applications linéaires et matrices

1. Application linéaires

1.1. Rappels

Rappels: Soient E et F deux K-espaces vectoriels de dimension finie, $\mathcal{L}(E,F)$ est l'ensemble des applications linéaires de E dans F. $\mathcal{L}(E)$ l'ensemble des endomorphismes de E. Soit $f \in \mathcal{L}(E,F)$, alors on appelle noyaux de f l'ensemble ker $f = \left\{ x \in E \ / \ f(x) = 0 \right\}$ et l'image de f l'ensemble Im f = f(E).

1.2. Théorème fondamental

<u>Théorème</u>: Une application linéaire est totalement déterminée par l'image d'une base. C'est à dire, étant la famille $\mathcal{B} = (e_1, \dots, e_n)$ base de E et une famille de vecteurs (u_1, \dots, u_n) de F. Alors il existe une unique application linéaire de E dans F telle que $\forall i \in \{1, \dots, n\}$ $f(e_i) = u_i$.

Remarque : Etant donnée une famille de vecteurs (u_1, \dots, u_n) de E alors il existe une unique application linéaire φ de K^n dans E liée à la base cano-

nique
$$(e_1, \dots, e_n)$$
 de K^n définie par $v = \sum_{i=1}^n x_i e_i \mapsto \sum_{i=1}^n x_i u_i$

Si (u_1, \dots, u_n) est libre alors φ est injective.

Si (u_1, \dots, u_n) est génératrice alors φ est surjective.

Si (u_1, \dots, u_n) est une base alors φ est un isomorphisme.

1.3. Isomorphisme

<u>Théorème</u>: Soit $f \in \mathcal{L}(E, F)$ avec $n = \dim E$ et $p = \dim F$.

f est un isomorphisme $\Leftrightarrow n = p$ et f injective.

 \Leftrightarrow l'image d'une base de E est une base de F.

<u>Lemme 1</u>: Soit (u_1, \dots, u_n) une famille libre de E et $f \in \mathcal{L}(E, F)$ injective, alors $(f(u_i, \dots, f(u_n)))$ est une famille libre de F.

<u>Lemme 2</u>: Soit (u_1, \dots, u_n) une famille génératrice de E et $f \in \mathcal{L}(E, F)$ alors $(f(u_1), \dots, f(u_n))$ est génératrice de Im f.

Remarque : Deux K-espaces vectoriels de même dimension finie sont isomorphes, et tout K-espace vectoriel de dimension n est isomorphe à K^n .

1.4. Théorème de la dimension

Proposition : Soit $f \in \mathcal{L}(E, F)$, et G un sous-espace vectoriel de E supplémentaire à ker f. Alors $f_{|G}$ est un isomorphisme de G sur Im f.

Théorème de la dimension :

Soit $f \in \mathcal{L}(E, F)$ alors dim $E = \dim \ker f + \dim \operatorname{Im} f$.

Corollaire: Soit $f \in \mathcal{L}(E, F)$ avec dim $E = \dim F$ alors:

f injective $\Leftrightarrow f$ surjective $\Leftrightarrow f$ bijective.

1.5. Rang d'une application linéaire

Définition : Soit $f \in \mathcal{L}(E, F)$ alors on appelle rang de f noté et défini par :

$$\operatorname{rg} f = \operatorname{Im} f$$

Proposition: Soient (e_1, \dots, e_n) une base de E et $f \in \mathcal{L}(E, F)$ alors le rang de f est égal au rang de la famille $(f(e_1), \dots, f(e_n))$.

1.6. Hyperplan

<u>Définition</u>: On appelle hyperplan d'un K-espace vectoriel E tout sous-espace de E admettant un sous-espace vectoriel de E supplémentaire de dimension 1.

Remarque : Si E est de dimension finie n, les hyperplans de E sont les sousespaces vectoriel de E de dimension n-1.

Rappel : On appelle forme linéaire de E un K espace vectoriel, toute application linéaire de E dans K.

Théorème : Soit E un espace vectoriel de dimension finie, le noyau d'une

forme linéaire non nulle surl E est un hyperplan et réciproquement tout hyperplan de E est le noyau d'une forme linéaire non nulle sur E.

<u>Définition</u>: Soit f une forme linéaire non nulle sur E de dimension finie de noyau l'hyperplan H. On dit alors que f(u) = 0 ($\Leftrightarrow u \in H$) est une équation cartésienne de H.

2. Matrices

2.1. Matrice d'une application linéaire

Remarque: D'après le théorème fondamental tout morphisme $f \in \mathcal{L}(E, F)$ est totalement déterminée par l'image d'une base $\mathcal{B} = (e_1, \dots, e_q)$ de E. On note $f(\mathcal{B}) = (f(e_1), \dots, f(e_q))$, et on note relativement à une base $\mathcal{B}' = (f_1, \dots, f_p)$ de F la $i^{\grave{e}me}$ coordonnée de $f(e_j)$ sous la forme $a_{i,j}$. Ce qui nous donne:

$$\begin{cases}
f(e_1) = a_{1,1}f_1 + a_{2,1}f_2 + \dots + a_{p,1}f_p \\
\vdots \\
f(e_i) = a_{1,i}f_1 + a_{2,i}f_2 + \dots + a_{p,i}f_p \\
\vdots \\
f(e_q) = a_{1,q}f_1 + a_{2,q}f_2 + \dots + a_{p,q}f_p
\end{cases}$$

Donc f est totalement déterminée par le tableau de coordonnées suivant :

$$\begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,q} \\ a_{2,1} & a_{2,2} & & a_{2,q} \\ \vdots & & \ddots & \vdots \\ a_{p,1} & a_{p,2} & \cdots & a_{p,q} \end{pmatrix} \leftarrow f_1 \\ \leftarrow f_2 \\ \vdots \\ \leftarrow f_p \\ \uparrow & \uparrow & \uparrow \\ f(e_1) & f(e_2) & \cdots & f(e_q) \end{pmatrix}$$

<u>Définition</u>: Ce tableau est appelé matrice de f relativement aux bases $\mathcal{B} = (e_1, \dots, e_q)$ et $\mathcal{B}' = (f_1, \dots, f_p)$ que l'on note :

$$M_{\mathcal{B},\mathcal{B}'}f = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,q} \\ a_{2,1} & a_{2,2} & & a_{2,q} \\ \vdots & & \ddots & \vdots \\ a_{p,1} & a_{p,2} & \cdots & a_{p,q} \end{pmatrix}$$

2.2. Matrice de type (p,q)

<u>Définition</u>: Une matrice (p,q) est un tableau formé de coefficients $a_{i,j} \in \mathbb{K}$ composée de p lignes et q colonnes.

La matrice A formée des coefficients $a_{i,j}$ peut s'écrire sous forme réduite :

$$A = (a_{i,j})_{p,q}$$
.

On note $\mathcal{M}_{p,q}(\mathbb{K})$ l'ensemble formé par les matrices de type (p,q) à coefficients dans \mathbb{K} .

On notera $\mathcal{M}_n(\mathbb{K})$ l'ensemble des matrices carrées à n lignes et n colonnes au lieu de $\mathcal{M}_{n,n}(\mathbb{K})$.

Proposition: Soient $A = (a_{i,j})_{p,q}$ et $B = (b_{i,j})_{p,q}$ de $\mathcal{M}_{p,q}(\mathbb{K})$. Alors:

$$A = B \Leftrightarrow \forall (i,j) \in \{1,\cdots,p\} \times \{1,\cdots,q\} \text{ on a } a_{i,j} = b_{i,j}$$

<u>Définition</u>: On définit sur $\mathcal{M}_{p,q}(\mathbb{K})$ une addition par :

 $\forall (A,B) \in (\mathcal{M}_{p,q}(\mathbb{K}))^2$ avec $A = (a_{i,j})_{p,q}$ et $B = (b_{i,j})_{p,q}$ on donne :

$$A + B = (c_{i,j})_{p,q}$$
 avec $c_{i,j} = a_{i,j} + b_{i,j}$.

<u>Théorème</u>: $(\mathcal{M}_{p,q}(\mathbb{K}), +)$ est un groupe commutatif.

<u>Définition</u>: On définit sur $\mathcal{M}_{p,q}(\mathbb{K})$ une multiplication externe \cdot par :

 $\forall \lambda \in \mathbb{K}, \ \forall A \in \mathcal{M}_{p,q}(\mathbb{K}) \text{ avec } A = (a_{i,j})_{p,q} \text{ on donne} :$

$$\lambda.A = (b_{i,j})_{p,q} \text{ avec } b_{i,j} = \lambda a_{i,j}.$$

<u>Théorème</u>: $(\mathcal{M}_{p,q}(\mathbb{K}), +, \cdot)$ est un \mathbb{K} -espace vectoriel de dimension pq donc isomorphe à \mathbb{K}^{pq} .

Définition:

Les matrices de $\mathcal{M}_{n,1}(\mathbb{K})$ sont appelées matrices colonnes d'ordre n.

Les matrices de $\mathcal{M}_{1,n}(\mathbb{K})$ sont appelées matrices lignes d'ordre n.

Les matrices de $\mathcal{M}_n(\mathbb{K})$ sont appelées matrices carrées d'ordre n.

2.3. Matrice représentative d'une application linéaire relativement à des bases données

<u>Définition</u>: On appelle matrice de l'application linéaire $f \in \mathcal{L}(E, F)$ relativement aux bases $\mathcal{B} = (e_1, \dots, e_q)$ de E et $\mathcal{B}' = (f_1, \dots, f_p)$ une base de F.

Soit la matrice
$$M_{\mathcal{B},\mathcal{B}'}f = (a_{i,j})_{p,q}$$
 où $f(e_j) = \sum_{i=1}^p a_{i,j}f_i$.

$$M_{\mathcal{B},\mathcal{B}'} = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,q} \\ a_{2,1} & a_{2,2} & & a_{2,q} \\ \vdots & & \ddots & \vdots \\ a_{p,1} & a_{p,2} & \cdots & a_{p,q} \end{pmatrix} \begin{array}{c} \leftarrow f_1 \\ \leftarrow f_2 \\ \vdots \\ \leftarrow f_2 \\ \leftarrow f_2 \\ \vdots \\ \leftarrow f_p \\ \uparrow & \uparrow & \uparrow \\ f(e_1) & f(e_2) & \cdots & f(e_q) \end{array}$$

Si $f \in \mathcal{L}(E)$ avec \mathcal{B} une base de E alors on note $M_{\mathcal{B}}f = M_{\mathcal{B},\mathcal{B}}f$.

Théorème d'isomorphisme : Soit \mathcal{B} une base de E et \mathcal{B}' une base de F où E et F sont deux \mathbb{K} -espaces vectoriels. L'application $\varphi: \begin{array}{ccc} \mathcal{L}(E,F) & \to & \mathcal{M}_{p,q}(\mathbb{K}) \\ f & \mapsto & M_{\mathcal{B},\mathcal{B}'}f \end{array}$ est un isomorphisme de \mathbb{K} -espace vectoriel.

Corollaire : Si dim E = q et dim F = p alors :

$$\dim \mathcal{L}(E,F) = \dim \mathcal{M}_{p,q}(\mathbb{K}) = pq.$$

Remarque: L'isomorphisme φ n'est pas canonique mais dépend clairement des bases \mathcal{B} et \mathcal{B}' . Or il existe un isomorphisme canonique entre $\mathcal{L}(\mathbb{K}^q, \mathbb{K}^p)$ et $\mathcal{M}_{p,q}(\mathbb{K})$ qui est ψ : $f \mapsto \mathcal{M}_{p,q}(\mathbb{K})$ où $\forall n \in \mathbb{N}^*, \mathcal{B}_n$ est la base canonique de \mathbb{K}^n .

2.4. Multiplication de matrices

<u>Proposition</u>: Soit $f \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(F, G)$ où E, F et G sont trois \mathbb{K} espaces vectoriels de dimension finie. Soit $\mathcal{B} = (e_1, \dots, e_r)$ une base de E, $\mathcal{B}' = (f_1, \dots, f_q) \text{ une base de } F \text{ et } \mathcal{B}'' = (g_1, \dots, g_p) \text{ une base de } G.$ Soit $A = M_{\mathcal{B}, \mathcal{B}'} f = (a_{i,j})_{q,r}$ et $B = M_{\mathcal{B}', \mathcal{B}''} g = (b_{i,j})_{p,q}$.

On a
$$f(e_j) = \sum_{i=1}^{q} a_{i,j} f_i$$
 et $g(f_i) = \sum_{k=1}^{p} b_{k,i} g_k$.

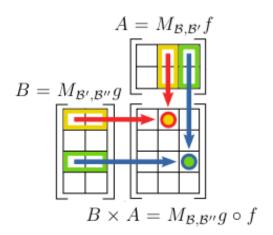
Ce qui nous donne:

$$g \circ f(e_j) = \sum_{k=1}^p \left(\sum_{i=1}^q b_{k,i} a_{i,j}\right) g_k.$$

On pose $c_{i,j} = \sum_{k=1}^q b_{i,k} a_{k,j}$ et on obtient $g \circ f(e_j) = \sum_{i=1}^p c_{i,j} g_i$. Donc la matrice de $g \circ f$ est $M_{\mathcal{B},\mathcal{B}''} g \circ f = (c_{i,j})_{p,r} = \left(\sum_{k=1}^q b_{i,k} a_{k,j}\right)_{m=1}^q$

<u>Définition</u>: Soit $A = (a_{i,j})_{q,r}$ et $B = (b_{i,j})_{p,q}$, alors on définit $B \times A$ par $B \times A = (c_{i,j})_{p,r}$ avec $c_{i,j} = \sum_{k=1}^{q} b_{i,k} a_{k,j}$. Si $A = M_{\mathcal{B},\mathcal{B}'} f$ et $B = M_{\mathcal{B}',\mathcal{B}''} g$ alors

 $B \times A = M_{\mathcal{B},\mathcal{B}''}g \circ f$. En pratique on multiplie les lignes de B avec les colonnes de A comme le montre le schéma suivant :



Remarque : Dans un produit $B \times A$ le nombre de colonnes de B doit être égal au nombre de lignes de A ce qui se voit sur le dessin précédent.

Propriété 1 : $M_{\mathcal{B}',\mathcal{B}''}g \times M_{\mathcal{B},\mathcal{B}'}f = M_{\mathcal{B},\mathcal{B}''}g \circ f$.

Propriété $2: \times$ est associative

$$\forall (A, B, C) \in \mathcal{M}_{p,q}(\mathbb{K}) \times \mathcal{M}_{q,r}(\mathbb{K}) \times \mathcal{M}_{r,s}(\mathbb{K}) \text{ on a :}$$

$$A \times (B \times C) = (A \times B) \times C$$

Propriété $3: \times$ est distributive :

$$\begin{cases}
\forall A \in \mathcal{M}_{p,q}(\mathbb{K}) \text{ et } \forall (B,C) \in (\mathcal{M}_{q,r}(\mathbb{K}))^2 \ A \times (B+C) = A \times B + A \times C \\
\forall (A,B) \in (\mathcal{M}_{p,q}(\mathbb{K}))^2 \text{ et } \forall C \in \mathcal{M}_{q,r}(\mathbb{K}) \ (A+B) \times C = A \times C + B \times C
\end{cases}$$

Propriété 4 : $\forall \lambda \in \mathbb{K}, \ \forall (A, B) \in \mathcal{M}_{p,q}(\mathbb{K}) \times \mathcal{M}_{q,r}(\mathbb{K}) \text{ on a :}$

$$(\lambda.A) \times B = \lambda.(A \times B)$$

Remarque: Le produit matriciel n'est pas un produit commutatif et ce même si il peut dans certains cas s'effectuer dans les deux sens. Soit $A \in \mathcal{M}_{p,q}(\mathbb{K})$ il y a deux éléments neutres pour A avec la loi \times :

1) l'élément neutre à gauche est la matrice carrée d'ordre p notée :

$$I_p = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & 1 \end{pmatrix}, \text{ c'est à dire } I_p \times A = A.$$

2) l'élément neutre à droite est la matrice carrée d'ordre q notée :

$$I_q = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
, c'est à dire $A \times I_q = A$.

On peut remarquer que I_p est la matrice de Id_E et I_q celle de Id_F (exprimée dans une base quelconque). Seul quand p=q que l'on notera n, on peut réellement parler d'élément neutre car I_n est élément neutre à gauche et à droite et appartient au même ensemble que A étant $\mathcal{M}_n(\mathbb{K})$.

<u>Définition</u>: Soit $f \in \mathcal{L}(E, F)$, $\mathcal{B} = (e_1, \dots, e_q)$ une base de E et $\mathcal{B}' = (f_1, \dots, f_p)$ une base de F. Soit $x \in E$ tel que $x = \sum_{i=1}^q x_i e_i$ alors on lui $f(x_1)$

associe le vecteur colonne
$$X=\left(\begin{array}{c} x_1\\ \vdots\\ x_q \end{array}\right)\in\mathcal{M}_{q,1}(\mathbb{K}).$$

Au vecteur
$$f(x) = \sum_{j=1}^{p} y_j f_j$$
 on associe le vecteur $Y = \begin{pmatrix} y_1 \\ \vdots \\ y_p \end{pmatrix} \in \mathcal{M}_{p,1}(\mathbb{K})$ et

soit $A = M_{\mathcal{B},\mathcal{B}'}f = (a_{i,j})_{p,q} \in \mathcal{M}_{p,q}(\mathbb{K})$. On peut donc écrire une équivalence entre la définition analytique de f et une équation matricielle de f suivante :

définition analytique de $f \Leftrightarrow$ équation matricielle de f

$$\begin{cases} y_{1} = a_{1,1}f_{1} + a_{2,1}f_{2} + \dots + a_{p,1}f_{p} \\ \vdots \\ y_{i} = a_{1,i}f_{1} + a_{2,i}f_{2} + \dots + a_{p,i}f_{p} \\ \vdots \\ y_{q} = a_{1,q}f_{1} + a_{2,q}f_{2} + \dots + a_{p,q}f_{p} \end{cases} \Leftrightarrow \begin{pmatrix} y_{1} \\ \vdots \\ y_{p} \end{pmatrix} = \begin{pmatrix} a_{1,1} & \dots & a_{1,q} \\ \vdots & \ddots & \vdots \\ a_{p,1} & \dots & a_{p,q} \end{pmatrix} \begin{pmatrix} x_{1} \\ \vdots \\ x_{q} \end{pmatrix}$$

2.5. Ensemble $\mathcal{M}_n(\mathbb{K})$, les matrices carrées d'ordre n.

Théorème : $(\mathcal{M}_n(\mathbb{K}), +\times)$ est un anneau non commutatif d'élément neutre

$$0_{\mathcal{M}_n(\mathbb{K})} = \begin{pmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{pmatrix} \text{ et d'élément unité } I_n = 1_{\mathcal{M}_n(\mathbb{K})} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Remarque: Soit $(A, B) \in (\mathcal{M}_n(\mathbb{K}))^2$ tel que A et B commutent alors $\forall n \in \mathbb{N}^*$ on a les identités remarquables suivantes:

$$(A+B)^n = \sum_{k=0}^n \binom{n}{k} A^k \times B^{n-k}$$
$$A^n - B^n = (A-B) \times \left(\sum_{k=0}^{n-1} A^{n-1-k} \times B^k\right)$$

$$A^{2n+1} + B^{2n+1} = (A+B) \times \left(\sum_{k=0}^{2n} (-1)^k A^{2n-k} \times B^k\right)$$

Théorème d'isomorphisme:

Soit E un \mathbb{K} -espace vectoriel de dimension finie n et \mathcal{B} une base de E. Alors $\varphi: \begin{array}{ccc} \mathcal{L}(E) & \to & \mathcal{M}_n(\mathbb{K}) \\ f & \mapsto & M_{\mathcal{B}}f \end{array}$ est un isomorphisme d'anneau et d'espace vectoriel.

Remarque : φ n'est pas canonique et dépend de la base \mathcal{B} , il existe un isomorphisme canonique ψ : $\mathcal{L}(\mathbb{K}^n) \to \mathcal{M}_n(\mathbb{K})$ avec \mathcal{B}_n la base canonique de \mathbb{K}^n .

<u>Définition</u>: Soit $A \in \mathcal{M}_n(\mathbb{K})$, on dit que A est inversible si $\exists B \in \mathcal{M}_n(\mathbb{K})$ telle que $BA = I_n = AB$, et alors on notera $B = A^{-1}$.

<u>Théorème</u>: Soit \mathcal{B} une base de $E, f \in \mathcal{L}(E)$ et $A = M_{\mathcal{B}}f$ alors:

A inversible
$$\Leftrightarrow f \in GL(E)$$
.

<u>Définition</u>: On notera $GL_n(\mathbb{K})$ l'ensemble des matrices inversibles.

Théorème d'isomorphisme :

$$(GL_n(\mathbb{K}), \times)$$
 est isomorphe à $(GL(E), \circ)$.

Pour toute base \mathcal{B} de E, l'application $\varphi: \begin{array}{ccc} GL(E) & \to & GL_n(\mathbb{K}) \\ f & \mapsto & M_{\mathcal{B}}f \end{array}$ réalise cette relation isomorphisme.

Remarque : φ n'est pas canonique et dépend de la base \mathcal{B} , il existe un isomorphisme canonique ψ : $GL(\mathbb{K}^n) \to GL_n(\mathbb{K})^n \to M_{\mathcal{B}_n} f$ avec \mathcal{B}_n la base canonique de \mathbb{K}^n .

2.6. Matrice de changement de base

<u>Définition</u>: Soit $\mathcal{B} = (e_1, \dots, e_p)$ une base de E et (u_1, \dots, u_q) une famille de vecteurs de E, avec $u_j = \sum_{i=1}^p a_{i,j} e_i$.

Alors on appelle matrice de la famille u_j relativement à la base \mathcal{B} la matrice $A = (a_{i,j})_{p,q}$.

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,q} \\ a_{2,1} & a_{2,2} & & a_{2,q} \\ \vdots & & \ddots & \vdots \\ a_{p,1} & a_{p,2} & \cdots & a_{p,q} \end{pmatrix} \quad \begin{array}{l} \leftarrow e_1 \\ \leftarrow e_2 \\ \vdots \\ \leftarrow e_p \\ \uparrow & \uparrow \\ u_1 & u_2 & \cdots & u_q \end{array}$$

<u>Définition</u>: Soient \mathcal{B} et \mathcal{B}' deux base de E. On appelle matrice de passage de \mathcal{B} à \mathcal{B}' la matrice de la famille \mathcal{B}' relativement à la base \mathcal{B} et on la note $M_{\mathcal{B}}\mathcal{B}'$.

Remarques: 1) $M_{\mathcal{B}}\mathcal{B}' = M_{\mathcal{B}',\mathcal{B}}(Id_E)$

- 2) $M_{\mathcal{B}}\mathcal{B} = I_n$
- 3) $M_{\mathcal{B}}\mathcal{B}'$ est la matrice dans la base B de l'unique endomrphisme f de E qui envoie \mathcal{B} sur \mathcal{B}' , c'est à dire tel que $f(\mathcal{B}) = \mathcal{B}'$.
- 4) Soit $x \in E$ de coordonnées (x_1, \dots, x_n) dans la base \mathcal{B} de E et de coordonnées (x'_1, \dots, x'_n) dans la base \mathcal{B}' de E.

Si on pose
$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
, $X' = \begin{pmatrix} x'_1 \\ \vdots \\ x'_n \end{pmatrix}$ et $P = M_{\mathcal{B}}\mathcal{B}'$ alors on a : $X = PX'$

Ou alors en notation moins compacte si l'on pose $x_{\mathcal{B}}$ le vecteur colonne correspondant à x dans la base \mathcal{B} alors on a :

$$x_{\mathcal{B}} = M_{\mathcal{B}} \mathcal{B}' x_{\mathcal{B}'}$$

<u>Théorème</u>: Soit $P = M_{\mathcal{B}}\mathcal{B}'$ avec \mathcal{B} et \mathcal{B}' deux bases de E. Alors P est inversible et $P^{-1} = M_{\mathcal{B}'}\mathcal{B}$.

Réciproquement toute matrice inversible est une matrice de changement de base, de plus pour toute matrice P inversible et toute base \mathcal{B} il existe une unique base \mathcal{B}' telle que $P = M_{\mathcal{B}}\mathcal{B}'$.

Théorème de changement de base : Soit $f \in \mathcal{L}(E, F)$ avec dim E = q et dim F = p, sooient \mathcal{B}_1 et \mathcal{B}'_1 deux bases de E, soient \mathcal{B}_2 et \mathcal{B}'_2 deux bases de F, si on pose $A = M_{\mathcal{B}_1,\mathcal{B}_2}f$ et $A' = M_{\mathcal{B}'_1,\mathcal{B}'_2}f$, ainsi que $P = M_{\mathcal{B}_1}\mathcal{B}'_1$ et $Q = M_{\mathcal{B}_2}\mathcal{B}'_2$ alors :

$$A' = Q^{-1}AP$$

Ou alors en notation moins compacte:

$$M_{\mathcal{B}_1',\mathcal{B}_2'}f = M_{\mathcal{B}_2'}\mathcal{B}_2 \times M_{\mathcal{B}_1,\mathcal{B}_2}f \times M_{\mathcal{B}_1}\mathcal{B}_1'$$

Pour un endomorphisme f de E, \mathcal{B} et \mathcal{B}' deux bases de E, on pose $A = M_{\mathcal{B}}f$ et $A' = M_{\mathcal{M}'}f$ ainsi que $P = M_{\mathcal{B}}\mathcal{B}'$ alors on a :

$$A' = P^{-1}AP$$

Ou alors en notation moins compacte:

$$M_{\mathcal{B}'}f = M_{\mathcal{B}'}\mathcal{B} \times M_{\mathcal{B}}f \times M_{\mathcal{B}}\mathcal{B}'.$$

Réciproquement, soient $(A, C) \in (\mathcal{M}_{p,q}(\mathbb{K}))^2$ et $(P, Q) \in GL_q(\mathbb{K}) \times GL_p(\mathbb{K})$ telles que $C = Q^{-1}AP$ alors A et C sont les matrcie d'une même aplication linéaire exprimées dans des bases différentes.

Cas d'un endomorphisme, soient $(A, C) \in (\mathcal{M}_n(\mathbb{K}))^2$ et $P \in GL_n(\mathbb{K})$ telles que $C = P^{-1}AP$ alors A et C sont les matrices d'un même endomorphisme exprimées dans une base différente.

2.7. Rang d'une matrice

<u>Définition</u>: On appelle rang d'une matrice $A \in \mathcal{M}_{q,p}(\mathbb{K})$ le rang de l'unique application linéaire $f \in \mathcal{L}(\mathbb{K}^p, \mathbb{K}^q)$. dont A est la matrice relativement aux bases canoniques B_q et B_p . On note rg $A = \operatorname{rg} f$.

Remarque : Le rang de A est aussi celui de ses vecteurs colonnes, ou de ses vecteurs lignes.

<u>Théorème</u>: Le rang d'une application $f \in \mathcal{L}(E, F)$ est égal au rang de sa matrice A relativement à des bases de \mathcal{B} de E et \mathcal{B}' de F quelconques.

<u>Théorème</u>: Soit $A \in \mathcal{M}_{q,p}(\mathbb{K})$ alors A est de rang r si et seulement si A est de la forme $A = U \times J_r \times V$ avec $(U, V) \in GL_q(\mathbb{K}) \times GL_p(\mathbb{K})$ et $J_r = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$.

2.8. Matrices particulières

<u>Définition</u>: On dit que la matrice $A \in \mathcal{M}_n(\mathbb{K})$ est diagonale si $\forall (i,j) \in \{1, \dots, n\}^2, i \neq j \Rightarrow a_{i,j} = 0.$

<u>Proposition</u>: L'ensemble des matrices diagonales $\mathcal{D}_n(\mathbb{K})$ de $\mathcal{M}_n(\mathbb{K})$ avec n fixé est un sous-espace vectoriel et un sous-anneau de $\mathcal{M}_n(\mathbb{K})$.

<u>Définition</u>: On appelle matrice scalaire toute matrice λI_n avec $\lambda \in \mathbb{K}$, λI_n est la matrice de λId_E et ce dans n'importe qu'elle base.

<u>Définition</u>: On dit que la matrice $A \in \mathcal{M}_n(\mathbb{K})$ est triangulaire supérieure si $\forall (i,j) \in \{1,\dots,n\}^2, i > j \Rightarrow a_{i,j} = 0$ De même on dit que la matrice $A \in \mathcal{M}_n(\mathbb{K})$ est triangulaire inférieure si $\forall (i,j) \in \{1,\dots,n\}^2, i < j \Rightarrow a_{i,j} = 0$

Proposition: L'ensemble des matrices triangulaires supérieures $TSup_n(\mathbb{K})$ et l'ensemble des matrices inférieures $TInf_n(\mathbb{K})$ de $\mathcal{M}_n(\mathbb{K})$ avec n fixé sont des sous-espaces vectoriels et des sous-anneaux de $\mathcal{M}_n(\mathbb{K})$.

Remarque : $TSup_n(\mathbb{K}) \cap TInf_n(\mathbb{K}) = \mathcal{D}_n(\mathbb{K})$.

<u>Définition</u>: Soit $A = (a_{i,j})_{p,q} \in \mathcal{B}_{p,q}(\mathbb{K})$ alors on appelle transposée de A la matrice noté ${}^tA = (b_{i,j})_{q,p}$ de $\mathcal{B}_{q,p}(\mathbb{K})$ définie par $b_{i,j} = a_{j,i}$.

Prorpiété 1 : $\forall (A, B) \in (\mathcal{B}_{p,q}(\mathbb{K}))^2, \ ^t(A+B) = \ ^tA + ^tB$

Prorpiété 2 : $\forall A \in \mathcal{B}_{p,q}(\mathbb{K})$ et $\forall \lambda \in \mathbb{K}, \ ^t(\lambda.A) = \lambda.^tA$

d'espace vectoriel. De plus si p=q=n alors on a l'application $\psi: \mathcal{M}_n(\mathbb{K}) \xrightarrow{} \mathcal{M}_n(\mathbb{K})$ qui est un automorphisme d'espace vectoriel.

Propriété 4: $\forall (A, B) \in \mathcal{M}_{p,q}(\mathbb{K}) \times \mathcal{M}_{q,r}(\mathbb{K}), \ ^t(A \times B) = \ ^tB \times ^tA.$

Propritété 5: $\forall A \in \mathcal{M}_n(\mathbb{K}), \ A \in GL_n(\mathbb{K}) \Rightarrow {}^tA \in GL_n(\mathbb{K}) \text{ et de plus}$ $({}^tA)^{-1} = {}^t(A^{-1})$

<u>Définition</u>: $A \in \mathcal{M}_n(\mathbb{K})$ est dite symétrique si $^tA = A$ équivalent à $\forall (i,j) \in \{1, \dots, n\}$ $a_{i,j} = a_{j,i}$.

On note l'ensemble des matrice symétrique de la forme $S_n(\mathbb{K})$

<u>Définition</u>: $A \in \mathcal{M}_n(\mathbb{K})$ est dite antisymétrique si ${}^tA = -A$ équivalent à $\forall (i,j) \in \{1,\dots,n\}$ $a_{i,j} = -a_{j,i}$. On voit alors que les termes de la diagonales sont nuls.

On note l'ensemble des matrices antisymétrique de la forme $\mathcal{A}_n(\mathbb{K})$.

<u>Théorème</u>: $S_n(\mathbb{K})$ et $A_n(\mathbb{K})$ sont deux sous espaces vectoriels de $\mathcal{M}_n(\mathbb{K})$, de plus ils sont supplémentaires $\Leftrightarrow S_n(\mathbb{K}) \oplus A_n(\mathbb{K}) = \mathcal{M}_n(\mathbb{K})$

2.9. Operation élémentaire sur les lignes et les colonnes d'une matrice

<u>Définition</u>: On appelle opération élémentaire toute opération sur les lignes ou les colonnes du type :

1) Addition d'un multiple d'une ligne à une autre :

$$L_i \leftarrow L_i + \alpha L_j \text{ avec } j \neq i$$

2) Addition d'un multiple d'une colonne à une autre :

$$C_i \leftarrow C_i + \alpha.C_j \text{ avec } j \neq i$$

Ces deux opérations reviennent à multiplier à gauche pour les lignes et droite pour les colonnes par une certaine matrice $P_{\alpha,i,j}$ inversible d'inverse $P_{-\alpha,i,j}$ avec :

$$P_{\alpha,i,j} = \begin{pmatrix} 1 & 0 & \cdots & \cdots & \cdots & \cdots & 0 \\ 0 & \ddots & \ddots & & & & \vdots \\ \vdots & \ddots & 1 & \cdots & \alpha & & \vdots \\ \vdots & & \ddots & \ddots & \vdots & & \vdots \\ \vdots & & & \ddots & 1 & \ddots & \vdots \\ \vdots & & & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & \cdots & 0 & 1 \end{pmatrix} \leftarrow \text{ligne } i$$

$$\uparrow$$

$$\text{colonne } j$$

3) Echange de deux lignes:

$$i \neq j, L_i \leftrightarrow L_j$$

4) Echange de deux colonnes:

$$i \neq j, C_i \leftrightarrow C_i$$

Ces deux opérations reviennent à multiplier à gauche pour les lignes et droite pour les colonnes par une certaine matrice $P_{i,j}$ inversible d'inverse elle même avec :

$$P_{i,j} = \begin{pmatrix} 1 & 0 & \cdots & \cdots & \cdots & 0 \\ 0 & \ddots & \ddots & & & \vdots \\ \vdots & \ddots & 0 & \cdots & 1 & & \vdots \\ \vdots & \ddots & \vdots & & \ddots & \vdots \\ \vdots & 1 & \cdots & 0 & \ddots & \vdots \\ \vdots & & & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & \cdots & \cdots & 0 & 1 \end{pmatrix} \leftarrow \text{ligne } i$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$

$$\text{colonne } i \quad \text{colonne } j$$

5) Multiplication d'une ligne par un scalaire $\lambda \neq 0$:

$$L_i \leftarrow \lambda . L_i$$

6) Multiplication d'une colonne par un scalaire $\lambda \neq 0$:

$$C_i \leftarrow \lambda.C_i$$

Ces deux opérations reviennent à multiplier à gauche pour les lignes et droite pour les colonnes par une certaine matrice $P_{\alpha,i}$ inversible d'inverse $P_{\frac{1}{\alpha},i}$ avec :

$$P_{\alpha,i} = \begin{pmatrix} 1 & 0 & \cdots & \cdots & 0 \\ 0 & \ddots & & & \vdots \\ \vdots & & \alpha & & \vdots \\ \vdots & & & \ddots & \vdots \\ 0 & \cdots & \cdots & 0 & 1 \end{pmatrix} \leftarrow \text{ligne } i$$

<u>Proposition</u>: Soit $A \in GL_n(\mathbb{K})$ donc $A \times A^{-1} = I_n$. On effectue des opérations élémentaires comme celles précédentes, d'une manière à ramener A en I_n .

Si par exemple on arrive a avoir:

$$P_p \times \cdots P_1 \times A \times P'_1 \times \cdots \times P'_q = I_n$$

Où les P_i sont des opérations élémentaires sur les lignes et les P_i' des opérations sur les colonnes alors on trouve :

$$P_p \times \cdots P_1 \times A \times P'_1 \times \cdots \times P'_q = I_n$$

$$A = P_1^{-1} \times \dots \times P_p^{-1} \times I_n \times P_q^{\prime -1} \times \dots \times P_1^{\prime -1}.$$

donc

$$A^{-1} = P_1' \times \cdots \times P_q' \times I_n \times P_p \times \cdots \times P_1.$$

Pour plus de logique :

$$A^{-1} = (I_n \times P_1' \times \dots \times P_q') \times (P_p \times \dots \times P_1 \times I_n).$$

On applique donc les transformations sur les colonnes à I_n , on applique les transformations sur les lignes à part à I_n et on multiplie le premier résultat avec le second, le premier à gauche et le second à droite.

On remarque que si on ne fait que des opérations sur les lignes ou seulement sur les colonnes alors on effectue simultanement les mêmes à I_n pour arriver à A^{-1} .

<u>Théorème</u>: Le rang d'une matrice reste inchangé par opérations élémentaires.

Remarque: Pour trouver le rang de A on tente de ramener A par opérations élémentaires jusqu'à une matrice de la forme $\begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$ ou plus rapidement à une matrice de la forme $\begin{pmatrix} TS_r & 0 \\ 0 & 0 \end{pmatrix}$ ou $\begin{pmatrix} TI_r & 0 \\ 0 & 0 \end{pmatrix}$ avec TS_r triangulaire supérieure et TI_r triangulaire inférieur et alors r sera le rang de A.

CHAPITRE VII: Déterminant

1. Groupe symétrique

1.1. Groupe (\mathfrak{S}_n, \circ)

<u>Définition</u>: \mathfrak{S}_n est l'ensemble des bijections de $\{1, \dots, n\}$, appelées aussi permutations.

Proposition : (\mathfrak{S}_n, \circ) est un groupe non commutatif.

1.2. Orbites

<u>Définition</u>: Soit $s \in \mathfrak{S}_n$ et $a \in \{1, \dots, n\}$. On appelle orbite de a l'ensemble des éléments $x \in \{1, \dots, n\}$ tel que $\exists k \in \mathbb{Z} / x = s^k(a)$ soit

$$O(a) = \left\{ x \in \{1, \dots, n\} / \exists k \in \mathbb{Z}, x = s^k(a) \right\}$$

On appelle longueur de l'orbite de a le cardinal de O(a). On définit par récurrence :

si
$$k > 0$$
, $s^k = \underbrace{s \circ \cdots \circ s}_{k \text{ fois}}$
si $k < 0$, $s^k = \underbrace{s^{-1} \circ \cdots \circ s^{-1}}_{-k \text{ fois}}$
si $k = 0$ alors $s^k = s^0 = Id_{\{1, \cdots, n\}}$

 $\underline{\text{Remarque}:}\ O(a) = \Big\{a\Big\} \Leftrightarrow s(a) = a.$

1.3. Décomposition d'une permutation en produit de cycles

<u>Définition</u>: On appelle cycle toute permutation ne comptant qu'une orbite de plus de 2 éléments. Et on appelle ordre du cyle la longueur de cette orbite. On note (i_1, \dots, i_r) le cycle de longueur r tel que $\forall k \in \{1, \dots, r-1\}, \ s(i_k) = i_{k+1}, s(i_r) = i_1$ et tel que tout autre élément soit un point fixe de s.

<u>Théorème de décomposition :</u> Toute permutation se décompose en un produit commutatif de cycles.

1.4. Décomposition en produit de transposition

<u>Définition</u>: On appelle transposition tout cycle d'ordre 2. On note (i, j) la transposition qui échange i et j distincts.

<u>Théorème de décomposition</u>: Toute permutation se décompose en produit non commutatif de transposition.

1.5. Signature d'une permutation

<u>Définition</u>: Soit $s \in \mathfrak{S}_n$, on appelle signature de la permutation s le nombre noté $\varepsilon(s)$ égal à :

$$\varepsilon(s) = \prod_{i < j} \frac{s(j) - s(i)}{j - i}$$

Proposition : $\forall s \in \mathfrak{S}_n, \, \varepsilon(s) = \pm 1.$

Théorème : La signature d'une transposition est égale à -1.

<u>Théorème</u>: ε : $\mathcal{S}_n \to \{-1,1\}$ s est un morphisme de groupe de (\mathcal{S}_n, \circ) dans le groupe $(\{-1,1\}, \times)$.

Proposition: Soit $s \in \mathfrak{S}_n$, $\varepsilon(s) = (-1)^k$ si s est le produit de k transpositions, et est unique modulo 2.

2. Applications multilinéaire

2.1. Définition

<u>Définition</u>: Soient E_1, \dots, E_n et F des \mathbb{K} -espaces vectoriels. On dit que l'application f de $E_1 \times \dots \times E_n$ dans F est n-linéaire si $\forall i \in \{1, \dots, n\}$, et $\forall (u_1, \dots, u_{i-1}, u_{i+1}, \dots, u_n) \in E_1 \times \dots \times E_{i-1} \times E_{i+1} \times \dots \times E_n$, l'application: $E_i \to F$ est linéaire.

Ne pas confondre multilinéarité et linéarité sur l'espace produit.

<u>Définition</u>: On dit que l'application n-linéaire f de $E_1 \times \cdots \times E_n$ dans F est symétrique si $\forall (u_1, \cdots, u_n) \in E_1 \times \cdots \times E_n$ et $\forall s \in \mathfrak{S}_n$ on a :

$$f(u_{s(1)}, \cdots, u_{s(n)}) = f(u_1, \cdots, u_n)$$

<u>Définition</u>: On dit que l'application n-linéaire f de $E_1 \times \cdots \times E_n$ dans F est antisymétrique si $\forall (u_1, \cdots, u_n) \in E_1 \times \cdots \times E_n$ et $\forall s \in \mathfrak{S}_n$ on a :

$$f(u_{s(1)}, \cdots, u_{s(n)}) = \varepsilon(s) f(u_1, \cdots, u_n)$$

<u>Définition</u>: On dit que l'application n-linéaire f de $E_1 \times \cdots \times E_n$ dans F est alternée si $\forall (u_1, \cdots, u_n) \in E_1 \times \cdots \times E_n$ et $\forall s \in \mathfrak{S}_n$ on a :

$$\exists (i,j) \in \{1,\cdots,n\}, \text{ avec } i \neq j \text{ tel que } u_i = u_j \Rightarrow f(u_1,\cdots,u_n) = 0$$

2.2. Forme multilinéaire

<u>Définition</u>: Soit E un \mathbb{K} -espace vectoriel, une application n linéaire de E^n dans \mathbb{K} , est appelée forme n-linéaire sur E.

Propriété 1 : Soit f une forme n-linéaire sur E,

f antisymétrique $\Leftrightarrow f$ alternée

Propriété 2 : Soit f une forme n-linéaire sur E antisymétrique. $\forall (u_1, \dots, u_n) \in E^n \text{ et } \forall j \in \{2, \dots, n\} \text{ on a :}$

$$f(u_j, u_1, \dots, u_{j-1}, u_{j+1}, \dots, u_n) = (-1)^{j-1} f(u_1, \dots, u_n).$$

3. Déterminants

3.1. Déterminant de n vecteurs

<u>Théorème</u>: Soit E un \mathbb{K} -espace vectoriel de dimension $n \geq 1$, et $\mathcal{B} = (e_1, \dots, e_n)$ une base de E. Alors il existe une unique forme n-linéaire alternée f sur E telle que $f(e_1, \dots, e_n) = 1$.

<u>Définition</u>: Soit $\mathcal{B} = (e_1, \dots, e_n)$ une base de E, on appelle l'unique forme n-linéaire alternée f sur E telle que $f(e_1, \dots, e_n) = 1$ déterminant dans la base \mathcal{B} et notée $\det_{\mathcal{B}}$.

<u>Définition</u>: Si (v_1, \dots, v_n) sont des vecteurs tels que $v_j = \sum_{i=1}^n x_{i,j} e_i$. Alors on note sous la forme suivante :

$$\det_{\mathcal{B}}(v_1, \cdots, v_n) = \begin{vmatrix} x_{1,1} & \cdots & x_{1,n} \\ \vdots & \ddots & \vdots \\ x_{n,1} & \cdots & x_{n,n} \end{vmatrix}$$

Proposition: Pour calculer le déterminant suivant $\det_{\mathcal{B}}(v_1, \cdots, v_n) = \begin{vmatrix} x_{1,1} & \cdots & x_{1,n} \\ \vdots & \ddots & \vdots \\ x_{n,1} & \cdots & x_{n,n} \end{vmatrix}$,

on va mettre en place un procédé de récurrence. On appelle $\Delta_{i,j}$ le déterminant extrait de $\det_{\mathcal{B}}(v_1, \dots, v_n)$ auquel on a retiré la $i^{\grave{e}me}$ ligne et la $j^{\grave{e}me}$ colonne. On a donc alors la relation de récurrence suivante :

$$\det_{\mathcal{B}}(v_1,\cdots,v_n) = \sum_{i=1}^n (-1)^{i+j} x_{i,j} \Delta_{i,j}$$

appelée développement par rapport à la $j^{ème}$ colonne (j fixée).

Ou encore:

$$\det_{\mathcal{B}}(v_1, \cdots, v_n) = \sum_{j=1}^{n} (-1)^{i+j} x_{i,j} \Delta_{i,j}$$

appelée développement par rapport à la $i^{\grave{e}me}$ ligne (i fixée).

3.2. Déterminant d'une matrice carrée

<u>Définition</u>: On appelle déterminant de la matrice carrée d'ordre n, $A = (a_{i,j})_n \in \mathcal{M}_n(\mathbb{K})$, le déterminant des vecteurs colonnes de A pris comme vecteurs de \mathbb{K}^n et exprimés dans la base canonique \mathcal{B}_n , donc

$$\det A = \det_{\mathcal{B}}(C_1, \dots, C_n) = \begin{vmatrix} a_{1,1} & \dots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{n,1} & \dots & a_{n,n} \end{vmatrix}$$

De même on le calcule en développant par rapport aux colonnes ou aux lignes avec les formules :

$$\det A = \sum_{i=1}^{n} (-1)^{i+j} a_{i,j} \det(A_{i,j}) \text{ par rapport à la } j^{\grave{e}me} \text{ colonne}$$

ou alors:

$$\det A = \sum_{j=1}^{n} (-1)^{i+j} a_{i,j} \det(A_{i,j}) \text{ par rapport à la } i^{\grave{e}me} \text{ ligne.}$$

où $A_{i,j}$ est la matrice carrée d'ordre n-1 obtenue en ôtant la $i^{\grave{e}me}$ ligne et la $j^{\grave{e}me}$ colonne.

Les éléments $det(A_{i,j})$ sont appelées les déterminants mineurs de A. La valeur $(-1)^{i+j} \det(A_{i,j})$ est appelée cofacteur de $a_{i,j}$.

3.3. Déterminant d'une matrice triangulaire

<u>Proposition</u>: Soit $A = (a_{i,j})_n \in \mathcal{M}_n(\mathbb{K})$ une matrice triangulaire supérieure ou inférieure. Alors si on développe toujours par rapport à la $1^{\grave{e}re}$ colonne si A est triangulaire supérieure, ou alors par rapport à la $1^{\grave{e}re}$ ligne si A est triangulaire inférieure alors on trouve : $\det A = \prod_{i=1}^n a_{i,i}$.

3.4. Action du groupe symétrique

<u>Théorème 1</u>: Soit \mathcal{B} une base de E alors $\det_{\mathcal{B}}$ est antisymétrique $\Leftrightarrow \forall (u_1, \dots, u_n) \in E^n$ et $\forall s \in \mathfrak{S}_n$ on a :

$$\det_{\mathcal{B}}(u_{s(1)},\cdots,u_{s(n)})=\varepsilon(s)\det_{\mathcal{B}}(u_1,\cdots,u_n)$$

<u>Théoreme 2</u>: Soit $\mathcal{B} = (e_1, \dots, e_n)$ une base de E et les vecteurs $(u_1, \dots, u_n) \in E^n$ tels que $u_j = \sum_{i=1}^n x_{i,j} e_i$ alors :

$$\det_{\mathcal{B}}(u_1, \cdots, u_n) = \sum_{s \in \mathfrak{S}_n} \varepsilon(s) \prod_{i=1}^n x_{s(i),i}$$

Théorème 3 : Soit $A \in \mathcal{M}_n(\mathbb{K})$ alors $\det({}^tA) = \det(A)$.

4. Applications du déterminant

4.1. Indépendance linéaire de n vecteurs

<u>Théorème 1</u>: Soit E de dimension n, $\mathcal{B} = (e_1, \dots, e_n)$ une base de E et les n vecteurs $(v_1, \dots, v_n) \in E^n$. Alors:

$$(v_1, \dots, v_n)$$
 liée $\Leftrightarrow \det_{\mathcal{B}}(v_1, \dots, v_n) = 0$
 (v_1, \dots, v_n) libre $\Leftrightarrow \det_{\mathcal{B}}(v_1, \dots, v_n) \neq 0$

4.2. Changement de base de calcul d'un déterminant

Théorème 2 : Soient \mathcal{B} et \mathcal{B}' deux bases de E alors :

$$\forall (v_1, \dots, v_n) \in E^n, \det_{\mathcal{B}'}(v_1, \dots, v_n) = \frac{1}{\det_{\mathcal{B}} \mathcal{B}'} \det_{\mathcal{B}}(v_1, \dots, v_n)$$

4.3. Déterminant d'un endormorphisme

<u>Théorème 3</u>: Soit $f \in \mathcal{L}(E)$ alors $\exists ! K \in \mathbb{K}$ tel que $\forall \mathcal{B}$ une base de E et $\forall (v_1, \dots, v_n) \in E^n$, on ait :

$$\det_{\mathcal{B}}(f(v_1), \cdots, f(v_n)) = K \det_{\mathcal{B}}(v_1, \cdots, v_n)$$

<u>Définition</u>: On appelera déterminant de l'endormorphisme f la constante K précédemment citée et on le note det f.

Propriété 1 : Soit $f \in \mathcal{L}(E)$ et \mathcal{B} une base de E alors det $M_{\mathcal{B}}f = \det f$

Propriété 2 : Soit $(f,g) \in (\mathcal{L}(E))^2$ alors $\det(g \circ f) = \det g \times \det f$

Propriété 3 : Soit $(A, B) \in (\mathcal{L}_n(\mathbb{K}))^2$, alors $\det(A \times B) = \det A \times \det B$.

Propriété 4 : Soit $A \in \mathcal{M}_n(\mathbb{K})$ alors :

A inversible $\Leftrightarrow \det A \neq 0$

Dans ce cas alors $\det(A^{-1}) = \frac{1}{\det A}$

Propriété 5 : ψ : $GL_n(\mathbb{K}) \to \mathbb{K}^*$ est un morphisme de groupe du groupe $(GL_n(\mathbb{K}), \circ)$ dans le groupe (\mathbb{K}^*, \times) .

4.4. Calcul de l'inverse d'une matrice

<u>Définition</u>: On appelle comatrice de A la matrice notée com A égale à com $A = (\det(A_{i,j}))$ avec $A_{i,j}$ la sous-matrice d'ordre n-1 obtenue en ôtant la $i^{\grave{e}me}$ ligne et la $j^{\grave{e}me}$ colonne.

Théorème: Soit
$$A \in GL_n(\mathbb{K})$$
 alors $A^{-1} = \frac{1}{\det A} \operatorname{tcom} A$.

4.5. Règles de calcul

Proposition : 1) Soit $\lambda \in \mathbb{K}$, et $A \in \mathcal{M}_n(\mathbb{K})$ alors $\det(\lambda.A) = \lambda^n \det A$

- 2) $\det(A+B) \neq \det A + \det B$ en général.
- 3) Le déterminant change de signe si on échange deux colonnes ou 2 lignes.
- 4) Si 2 colonnes ou deux lignes sont proportionnelles alors le déterminant est nul.
- 5) On peut ajouter à une colonne (resp à une ligne) une combinaison linaire des autres colonnes (resp lignes) dans changer la valeur du déterminant.

CHAPITRE VIII : Systèmes linéaires