Soit $E = \mathcal{M}_n(\mathbb{R})$ l'ensemble des matrices carrées symétriques $n \times n$ à coefficients réels et $Tr : E \longrightarrow \mathbb{R}$ l'application trace.

Soit a fixé dans \mathbb{R}^* et $f: E \times \mathbb{R}^* \longrightarrow \mathbb{R}$ définie par :

$$f(A,d) = \begin{cases} (1-d)a(Tr(A))^2 + \beta(d)Tr(A^DA^D) & \text{si } Tr(A) > 0\\ a(Tr(A))^2 + \alpha(d)Tr(A^DA^D) & \text{si } Tr(A) \leqslant 0 \end{cases}$$

où $A^D = A - \frac{1}{3}Tr(A)I_n$, β et α sont deux fonctions de classe C^1 sur \mathbb{R}^* . Trouver les conditions pour lesquelles la fonction f est de classe C^0 sur $E \times \mathbb{R}^*$, puis de classe C^1 sur $E \times \mathbb{R}^*$.

Réponse :

D'après les théorèmes généraux, la fonction f est de classe C^1 sur l'ouvert

$$\{(A,d) \in E \times \mathbb{R}^*; Tr(A) \neq 0\}$$

Soit $(A_0, d_0) \in E \times \mathbb{R}^*$ tel que Tr(A) = 0

On a:

$$\lim_{\substack{(A,d)\to (A_0,d_0)\\Tr(A)>0}} f(A,d) = \beta(d_0)Tr(A_0^D A_0^D)$$

$$\lim_{\substack{(A,d)\to (A_0,d_0)\\Tr(A)<0}} f(A,d) = \alpha(d_0)Tr(A_0^D A_0^D)$$

Il en résulte que f est continue en (A_0, d_0) si et seulement si $\beta(d_0) = \alpha(d_0)$, donc $\beta = \alpha$

De plus, pour $\beta = \alpha$,

 $\lim_{(A,d)\to(A_0,d_0)} f(A,d) = \beta(d_0)Tr(A_0^D A_0^D) = f(A_0,d_0)$

On conclut que f est de classe C^0 sur $E \times \mathbb{R}^*$, si et seulement si les fonctions β et α sont égales.