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Preface

These are notes for the lecture course “Differential Geometry II” held by the
second author at ETH Zürich in the spring semester 2011. A prerequisite
is the foundational chapter about smooth manifolds in [16] as well as some
basic results about geodesics. For the benefit of the reader we summarize
the relevant material in Chapter 1 of the present manuscript.

The first half of the book deals with degree theory, the Pontryagin con-
struction, intersection theory, and Lefschetz numbers. In this part we follow
closely the exposition of Milnor in [10]. For the additional material on in-
tersection theory and Lefschetz numbers an excellent reference is the book
by Guillemin and Pollak [5].

The second half of the book is devoted to differential forms and de-
Rham cohomology. It begins with an elemtary introduction into the subject
and continues with some deeper results such as Poincaré duality, the Čech-
deRham complex, and the Thom isomorphism theorem. Many of our proofs
in this part are taken from the classical textbook of Bott and Tu [2] which
is also a highly recommended reference for a deeper study of the subject
(including sheaf theory, homotopy theory, and characteristic classes).

2 May 2011 Joel W. Robbin and Dietmar A. Salamon
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8.4 Poincaré Duality . . . . . . . . . . . . . . . . . . . . . . . . . 72

8.4.1 The Poincaré Pairing . . . . . . . . . . . . . . . . . . . 72
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8.5.3 The Čech–deRham Complex . . . . . . . . . . . . . . 91

8.5.4 Product Structures . . . . . . . . . . . . . . . . . . . . 97

8.5.5 DeRham’s Theorem . . . . . . . . . . . . . . . . . . . 99

9 Vector Bundles and the Euler Class 103

9.1 Vector Bundles . . . . . . . . . . . . . . . . . . . . . . . . . . 103

9.1.1 Definitions and Remarks . . . . . . . . . . . . . . . . . 104

9.1.2 Examples and Exercises . . . . . . . . . . . . . . . . . 106

9.1.3 Sections . . . . . . . . . . . . . . . . . . . . . . . . . . 108

9.1.4 Vector Bundle Homomorphisms . . . . . . . . . . . . . 109

9.1.5 Orientation . . . . . . . . . . . . . . . . . . . . . . . . 110

9.2 The Thom Class . . . . . . . . . . . . . . . . . . . . . . . . . 111

9.2.1 Integration over the Fiber . . . . . . . . . . . . . . . . 111

9.2.2 Thom Forms . . . . . . . . . . . . . . . . . . . . . . . 114

9.2.3 The Thom Isomorphism Theorem . . . . . . . . . . . 118

9.2.4 Intersection Theory Revisited . . . . . . . . . . . . . . 119

9.3 The Euler Class . . . . . . . . . . . . . . . . . . . . . . . . . . 124



CONTENTS vii

9.3.1 The Euler Number . . . . . . . . . . . . . . . . . . . . 124
9.3.2 The Euler Class . . . . . . . . . . . . . . . . . . . . . 128
9.3.3 The Product Structure on H∗(CPn) . . . . . . . . . . 132

10 Connections and Curvature 137
10.1 Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

10.1.1 Vector Valued Differential Forms . . . . . . . . . . . . 137
10.1.2 Connections . . . . . . . . . . . . . . . . . . . . . . . . 138
10.1.3 Parallel Transport . . . . . . . . . . . . . . . . . . . . 143
10.1.4 Structure Groups . . . . . . . . . . . . . . . . . . . . . 144
10.1.5 Pullback Connections . . . . . . . . . . . . . . . . . . 148

10.2 Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
10.2.1 Definition and basic properties . . . . . . . . . . . . . 149
10.2.2 The Bianchi Identity . . . . . . . . . . . . . . . . . . . 151
10.2.3 Gauge Transformations . . . . . . . . . . . . . . . . . 152
10.2.4 Flat Connections . . . . . . . . . . . . . . . . . . . . . 154

10.3 Chern–Weil Theory . . . . . . . . . . . . . . . . . . . . . . . . 158
10.3.1 Invariant Polynomials . . . . . . . . . . . . . . . . . . 158
10.3.2 Characteristic Classes . . . . . . . . . . . . . . . . . . 159
10.3.3 The Euler Class of an Oriented Rank-2 Bundle . . . . 162
10.3.4 Two Examples . . . . . . . . . . . . . . . . . . . . . . 166

10.4 Chern Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
10.4.1 Definition and Properties . . . . . . . . . . . . . . . . 168
10.4.2 Construction of the Chern Classes . . . . . . . . . . . 170
10.4.3 Proof of Existence and Uniqueness . . . . . . . . . . . 171
10.4.4 Tensor Products of Complex Line Bundles . . . . . . . 175

10.5 Chern Classes in Geometry . . . . . . . . . . . . . . . . . . . 177
10.5.1 Complex Manifolds . . . . . . . . . . . . . . . . . . . . 177
10.5.2 Holomorphic Line Bundles . . . . . . . . . . . . . . . . 178
10.5.3 The Adjunction Formula . . . . . . . . . . . . . . . . . 179
10.5.4 Chern Class and Self-Intersection . . . . . . . . . . . . 181
10.5.5 The Hirzebruch Signature Theorem . . . . . . . . . . 183
10.5.6 Hypersurfaces of CP3 . . . . . . . . . . . . . . . . . . 184
10.5.7 Almost complex structures on 4-manifolds . . . . . . . 188

10.6 Low Dimensional Manifolds . . . . . . . . . . . . . . . . . . . 189



viii CONTENTS



Chapter 1

Foundations

1



2 CHAPTER 1. FOUNDATIONS



Chapter 2

Degree Theory

3



4 CHAPTER 2. DEGREE THEORY



Chapter 3
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Chapter 7

Differential Forms

This chapter begins with an elemntary discussion of differential forms on
manifolds. Section 7.1 explains the exterior algebra of a real vector space
and its relation to the determinant of a square matrix. In Section 7.2 we
introduce differential forms on manifolds, their exterior products and pull-
backs, and the exterior differential in local coordinates as well as globally.
The section closes with a brief discussion of deRham cohomology. Sec-
tion 7.3 introduces the integral of a compactly supported differential form
of top degree over an oriented manifold and and contains a proof of Stokes’
theorem. In Section 7.4 we prove Cartan’s formula for the Lie derivative of
a differential form in the direction of a vector field. We use it in Section 7.5
to show that a top degree form on a compact connected oriented smooth
manifold without boundary is exact if and only if its integral vanishes. As
applications of these results we prove the degree theorem and the Gauss–
Bonnet formula. The chapter closes with an introduction to Moser isotopy
for volume forms.

7.1 Exterior Algebra

7.1.1 Alternating Forms

We assume throughout that V is an m-dimensional real vector space and
k ∈ N is a positive integer. Let Sk denote the permutation group on k
elements, i.e. the group of all bijective maps σ : {1, . . . , k} → {1, . . . , k}. The
group operation is given by composition. There is a group homomorphism
ε : Sk → {±1} defined by

ε(σ) := (−1)ν , ν(σ) := #
{
(i, j) ∈ {1, . . . , k}2 | i < j, σ(i) > σ(j)

}
.

13



14 CHAPTER 7. DIFFERENTIAL FORMS

Definition 7.1. An alternating k-form on V is a multi-linear map

ω : V × · · · × V︸ ︷︷ ︸
k times

→ R

satisfying
ω(vσ(1), . . . , vσ(k)) = ε(σ)ω(v1, . . . , vk)

for all v1, . . . , vk ∈ V and all σ ∈ Sk. An alternating 0-form is by defini-
tion a real number. The vector space of all alternating k-forms on V will be
denoted by

ΛkV ∗ :=
{
ω : V k → R |ω is an alternating k-form

}
.

For ω ∈ ΛkV ∗ the integer k =: deg(ω) is called the degree of ω.

Example 7.2. The space of alternating 0-forms is the real line: Λ0V ∗ = R.

Example 7.3. The space of alternating 1-forms is the dual space of V :

Λ1V ∗ = V ∗ := Hom(V,R).

In the case V = R
m denote by dxi : Rm → R the projection onto the ith

coordinate, i.e.
dxi(ξ) := ξi

for ξ = (ξ1, . . . , ξm) ∈ R
m and i = 1, . . . ,m. Then the linear functionals

dx1, . . . , dxm form a basis of the dual space (Rm)∗ = Λ1(Rm)∗.

Example 7.4. An alternating 2-form on V is a skew-symmetric bilinear
map ω : V × V → R so that

ω(v,w) = −ω(w, v)

for all v,w ∈ V . In the case V = R
m an alternating 2-form can be written

in the form
ω(ξ, η) = 〈ξ,Aη〉

for ξ, η ∈ R
m, where 〈·, ·〉 denotes the standard Euclidean inner product on

R
m and A = −AT ∈ R

m×m is a skew-symmetric matrix. Thus

dimΛ2V ∗ =
m(m− 1)

2
.

for every m-dimensional real vector space V .
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Definition 7.5. Let Ik = Ik(m) denote the set of ordered k-tuples

I = (i1, . . . , ik) ∈ N
k, 1 ≤ i1 < i2 < · · · < ik ≤ m.

For I = (i1, . . . , ik) ∈ Ik the alternating k-form

dxI : Rm × · · · × R
m

︸ ︷︷ ︸
k times

→ R

is defined by

dxI(ξ1, . . . , ξk) := det




ξi11 ξi12 · · · ξi1k
ξi21 ξi22 · · · ξi2k
...

...
...

ξik1 ξik2 · · · ξikk


 (7.1)

for ξj = (ξ1j , . . . , ξ
m
j ) ∈ R

m, j = 1, . . . , k.

Lemma 7.6. The elements dxI for I ∈ Ik form a basis of Λk(Rm)∗. Thus,
for every m-dimensional real vector space V , we have

dimΛkV ∗ =

(
m

k

)
, k = 0, 1, . . . ,m,

and ΛkV ∗ = 0 for k > m.

Proof. The proof relies on the following three observations.

(1) Let e1, . . . , em denote the standard basis of R
m and fix an element

J = (j1, . . . , jk) ∈ Ik. Then, for every I ∈ Ik, we have

dxI(ej1 , . . . , ejk) =

{
1, if I = J,
0, if I 6= J.

(2) For every ω ∈ Λk(Rm)∗ we have

ω = 0 ⇐⇒ ω(ei1 , . . . , eik) = 0 ∀I = (i1, . . . , ik) ∈ Ik.
(3) Every ω ∈ Λk(Rm)∗ can be written as

ω =
∑

I∈Ik

ωIdx
I , ωI := ω(ei1 , . . . , eik).

Here assertions (1) and (2) follow directly from the definitions and asser-
tion (3) follows from (1) and (2). That the dxI span the space Λk(Rm)∗

follows immediately from (3). We prove that the dxI are linearly inde-
pendent: Let ωI ∈ R for I ∈ Ik be a collection of real numbers such
that ω :=

∑
I ωIdx

I = 0; then, by (1), we have ω(ej1 , . . . , ejk) = ωJ for
J = (j1, . . . , jk) ∈ Ik and so ωJ = 0 for every J ∈ Ik. This proves the
lemma.
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7.1.2 Exterior Product

Let k, ℓ ∈ N be positive integers. The set Sk,ℓ ⊂ Sk+ℓ of (k, ℓ)-shuffles is
the set of all permutations in Sk+ℓ that leave the order of the first k and of
the last ℓ elements unchanged:

Sk,ℓ := {σ ∈ Sk+ℓ |σ(1) < · · · < σ(k), σ(k + 1) < · · · < σ(k + ℓ)} .

The terminology arises from shuffling a card deck with k + ℓ cards.

Definition 7.7. The exterior product of two alternating forms ω ∈ ΛkV ∗

and τ ∈ ΛℓV ∗ is the alternating k + ℓ-form ω ∧ τ ∈ Λk+ℓV ∗ defined by

(ω ∧ τ)(v1, . . . , vk+ℓ) :=
∑

σ∈Sk,ℓ

ε(σ)ω
(
vσ(1), . . . , vσ(k)

)
τ
(
vσ(k+1), . . . , vσ(k+ℓ)

)

for v1, . . . , vk+ℓ ∈ V .

Example 7.8. The exterior product of two 1-forms α, β ∈ V ∗ is the 2-form

(α ∧ β)(v,w) = α(v)β(w) − α(w)β(v).

The exterior product of a 1-form α ∈ V ∗ and a 2-form ω ∈ Λ2V ∗ is given by

(α ∧ ω)(u, v, w) = α(u)ω(v,w) + α(v)ω(w, u) + α(w)ω(u, v)

for u, v, w ∈ V .

Lemma 7.9. (i) The exterior product is associative:

ω1 ∧ (ω2 ∧ ω3) = (ω1 ∧ ω2) ∧ ω3

for ω1, ω2, ω3 ∈ Λ∗V ∗.

(ii) The exterior product is distributive:

ω1 ∧ (ω2 + ω3) = ω1 ∧ ω2 + ω1 ∧ ω3

for ω1, ω2, ω3 ∈ Λ∗V ∗.

(ii) The exterior product is super-commutative:

ω ∧ τ = (−1)deg(ω) deg(τ)τ ∧ ω

for ω, τ ∈ Λ∗V ∗.
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Proof. Let ωi ∈ ΛkiV ∗, denote

k := k1 + k2 + k3,

and define Sk1,k2,k3 ⊂ Sk by

Sk1,k2,k3 :=



σ ∈ Sk

∣∣∣∣∣
σ(1) < · · · < σ(k1),
σ(k1 + 1) < · · · < σ(k1 + k2),
σ(k1 + k2 + 1) < · · · < σ(k)



 ,

Let ω ∈ ΛkV ∗ be the alternating k-form

ω(v1, . . . , vk) :=
∑

σ∈Sk1,k2,k3

ε(σ)ω1

(
vσ(1), . . . , vσ(k1)

)
·

· ω2

(
vσ(k1+1), . . . , vσ(k1+k2)

)
ω3

(
vσ(k1+k2+1), . . . , vσ(k)

)
.

Then it follows from Definition 7.7 that

ω1 ∧ (ω2 ∧ ω3) = (ω1 ∧ ω2) ∧ ω3

This proves (i). Assertion (ii) is obvious.
To prove (iii) we define the bijection

Sk,ℓ → Sℓ,k : σ 7→ σ̃

by

σ̃(i) :=

{
σ(k + i), for i = 1, . . . , ℓ,
σ(i − ℓ), for i = ℓ+ 1, . . . , ℓ+ k.

Then
ε(σ̃) = (−1)kℓε(σ)

and hence, for ω ∈ ΛkV ∗, τ ∈ ΛℓV ∗, and v1, . . . , vk+ℓ ∈ V , we have

(ω ∧ τ) (v1, . . . , vk+ℓ)
=
∑

σ∈Sk,ℓ

ε(σ)ω
(
vσ(1), . . . , vσ(k)

)
τ
(
vσ(k+1), . . . , vσ(k+ℓ)

)

= (−1)kℓ
∑

eσ∈Sℓ,k

ε(σ̃)ω
(
veσ(ℓ+1), . . . , veσ(ℓ+k)

)
τ
(
veσ(1), . . . , veσ(ℓ)

)

= (−1)kℓ(τ ∧ ω) (v1, . . . , vk+ℓ) .

This proves (iii) and the lemma.
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Exercise 7.10. The Determinant Theorem asserts that

(α1 ∧ · · · ∧ αk)(v1, . . . , vk) = det




α1(v1) α1(v2) · · · α1(vk)
α2(v1) α2(v2) · · · α2(vk)

...
...

...
αk(v1) αk(v2) · · · αk(vk)


 (7.2)

for all α1, . . . , αk ∈ V ∗ and v1, . . . , vk ∈ V . Prove this formula and deduce
that

dxI = dxi1 ∧ · · · ∧ dxik
for I = (i1, . . . , ik) ∈ Ik, where dxI ∈ Λk(Rm)∗ is given by (7.1).

7.1.3 Pullback

Let W be an n-dimensional real vector space and Φ : V → W be a linear
map.

Definition 7.11. The pullback of an alternating k-form ω ∈ ΛkW ∗ under
Φ is the alternating k-form Φ∗ω ∈ ΛkV ∗ defined by

(Φ∗ω)(v1, . . . , vk) := ω(Φv1, . . . ,Φvk)

for v1, . . . , vk ∈ V .

Lemma 7.12. (i) The map Λ∗W → Λ∗V : ω 7→ Φ∗ω is linear and preserves
the exterior product, i.e. for all ω ∈ ΛkW ∗ and τ ∈ ΛℓW ∗ we have

Φ∗(ω ∧ τ).
(ii) If Ψ : W → Z is another linear map with values in a real vector space
Z then, for every ω ∈ ΛkZ∗, we have

(Ψ ◦Φ)∗ω = Φ∗Ψ∗ω

Moreover, for every ω ∈ ΛkV ∗, we have id∗ω = ω, where id : V → V denotes
the identity map.

(iii) If Φ : V → V is an endomorphism of an m-dimensional real vector
space V and ω ∈ ΛmV ∗ then

Φ∗ω = det(Φ)ω.

Proof. Assertions (i) and (ii) follow directly from the definitions. By (ii) it
suffices to prove (iii) for V = R

m. In this case assertion (iii) can be written
in the form

Φ∗
(
dx1 ∧ · ∧ dxm

)
= det(Φ)dx1 ∧ · ∧ dxm

for Φ ∈ R
m×m and this follows from (7.1) and the product formula for the

determinant. This proves the lemma.
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7.2 Differential Forms

7.2.1 Definitions and Remarks

Let M be a smooth m-manifold and k be a nonnegative integer. A differ-
ential k-form on M is a collection of alternating k-forms

ωp : TpM × · · · × TpM︸ ︷︷ ︸
k times

→ R,

one for each p ∈ M , such that, for every k-tuple of smooth vector fields
X1, . . . ,Xk ∈ Vect(M), the function

M → R : p 7→ ωp(X1(p), . . . ,Xk(p))

is smooth. The set of differential k-forms on M will be denoted by Ωk(M).
A differential form ω ∈ Ωk(M) is said to have compact support if the set

supp(ω) := {p ∈M |ωp 6= 0}
(called the support of ω) is compact. The set of compactly supported k-
forms on M will be denoted by Ωkc (M) ⊂ Ωk(M). As before we call the
integer k =: deg(ω) the degree of ω ∈ Ωk(M).

Remark 7.13. The set

ΛkT ∗M :=
{
(p, ω) | p ∈M, ω ∈ ΛkT ∗M

}

is a vector bundle over M . This concept will be discussed in detail in
Section 9.1. We remark here that ΛkT ∗M admits the structure of a smooth
manifold, the obvious projection π : ΛkT ∗M →M is a smooth submersion,
each fiber ΛkT ∗

pM is a vector space, and addition and scalar multiplication
define smooth maps. The manifold structure is uniquely determined by the
fact that each differential k-form ω ∈ Ωk(M) defines a smooth map

M → ΛkT ∗M : p 7→ (p, ωp),

still denoted by ω. Its composition with π is the identity on M and such a
map is called a smooth section of the vector bundle. Thus Ωk(M) can be
identified the space of smooth sections of ΛkT ∗M . It is a vector space and is
infinite dimensional (unless M is a finite set or k > dim M). In particular,
Λ0T ∗M =M × R and

Ω0(M) = {f :M → R | f is smooth}
is the set of smooth real valued functions on M , also denoted by F(M),
C∞(M,R), or simply C∞(M).
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The pointwise exterior product defines a bilinear map

Ωk(M)× Ωℓ(M)→ Ωk+ℓ(M) : (ω, τ) 7→ ω ∧ τ,
given by

(ω ∧ τ)p := ωp ∧ τp (7.3)

for p ∈ M . If f : M → N is a smooth map between manifolds and ω ∈
Ωk(N) is a differential k-form on N , its pullback under f is the differential
k-form f∗ω ∈ Ωk(M) defined by

(f∗ω)p(v1, . . . , vk) := ωf(p)(df(p)v1, . . . , df(p)vk) (7.4)

for p ∈ M and v1, . . . , vk ∈ TpM . The next lemma summarizes the basic
properties of the exterior product and pullback of differential forms.

Lemma 7.14. Let φ : M → N and ψ : N → P be smooth maps between
manifolds.

(i) For all ω1, ω2, ω3 ∈ Ω∗(M) we have

ω1 ∧ (ω2 ∧ ω3) = (ω1 ∧ ω2) ∧ ω3.

(ii) For all ω1 ∈ Ωk(M) and ω2, ω3 ∈ Ωℓ(M) we have

ω1 ∧ (ω2 + ω3) = ω1 ∧ ω2 + ω1 ∧ ω3.

(iii) For ω, τ ∈ Ω∗(M) we have

ω ∧ τ = (−1)deg(ω) deg(τ)τ ∧ ω.

(iv) The map Ωk(N) → Ωk(M) : ω 7→ φ∗ω is linear and preserves the
exterior product, i.e. for ω ∈ Ωk(N) and τ ∈ Ωℓ(N) we have

φ∗(ω ∧ τ) = φ∗ω ∧ φ∗τ.

(v) For every ω ∈ Ωk(P ) we have

(ψ ◦ φ)∗ω = φ∗ψ∗ω.

Moreover, for every ω ∈ Ωk(M), we have id∗ω = ω, where id : M → M
denotes the identity map.

(vi) If φ : M → N is a diffeomorphism then, for all ω ∈ Ωk(N) and
X1, . . . ,Xk ∈ Vect(N), we have

(φ∗ω)(φ∗X1, . . . , φ
∗Xk) = ω(X1, . . . ,Xk) ◦ φ.

Proof. Assertions (i), (ii) and (iii) follow from Lemma 7.9, assertion (iv)
follows from Lemma 7.12, (v) follows from Lemma 7.12 and the chain rule,
and (vi) follows directly from the definitions.
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7.2.2 Differential Forms in Local Coordinates

Let M be an m-dimensional manifold equipped with an atlas {Uα, φα}α∈A.
Thus the Uα form an open cover of M and each map φα : Uα → φα(Uα) is a
homeomorphism onto an open subset of Rm (or of the upper half space H

m

in case M has a nonempty boundary) such that the transition maps

φβα := φβ ◦ φ−1
α : φα(Uα ∩ Uβ)→ φβ(Uα ∩ Uβ)

are smooth. In this situation every differential k-form ω ∈ Ωk(M) deter-
mines a family of differential k-forms ωα ∈ Ωk(φα(Uα)), one for each α ∈ A,
such that the restriction of ω to Uα (denoted by ω|Uα and defined as the
pullback of ω under the inclusion of Uα into M) is given by

ω|Uα = φ∗αωα (7.5)

for every α ∈ A. Explicitly, if
p ∈ Uα, vi ∈ TpM, x := φα(p), ξi := dφα(p)vi

for i = 1, . . . , k then

ωα(x; ξ1, . . . , ξk) = ωp(v1, . . . , vk). (7.6)

Recall that vi ∈ TpM and ξi ∈ R
m are related by vi = [α, ξi]p in the tangent

space model

TpM =
⋃

p∈Uα

{α} × R
m/ ∼ .

Now let e1, . . . em denote the standard basis of Rm and define

fα,I : Uα → R

by
fα,I(x) := ωα (x; ei1 , . . . , eik) = ωp ([α, ei1 ]p, . . . , [α, eik ]p)

for x ∈ φα(Uα), p := φ−1
α (x) ∈ Uα, and I = (i1, . . . , ik) ∈ Ik. Then

ωα ∈ Ωk(φα(Uα)) can be written in the form

ωα =
∑

I∈Ik

fα,Idx
I . (7.7)

Remark 7.15. The differential forms ωα ∈ Ωk(φα(Uα)) in local coordinates
satisfy the equation

ωα|φα(Uα∩Uβ) =
(
φβ ◦ φα−1

)∗
ωβ|φβ(Uα∩Uβ) (7.8)

for all α, β ∈ A. Conversely, every family of differential k-forms φα ∈
Ωk(φα(Uα) that satisfy (7.8) for all α, β ∈ A determine a unique differential
k-form ω ∈ Ωk(M) such that (7.5) holds for every α ∈ A.
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7.2.3 The Exterior Differential on Euclidean Space

Let U ⊂ R
m be an open set. The exterior differential is a linear operator

d : Ωk(U)→ Ωk+1(U).

We give two definitions of this operator, corresponding to the two ways of
writing a differential form.

Definition 7.16. Let ω ∈ Ωk(U). Then ω is a smooth map

ω : U × R
m × · · · × R

m
︸ ︷︷ ︸

k times

→ R

such that, for every x ∈ U , the map

R
m × · · · × R

m
︸ ︷︷ ︸

k times

→ R : (ξ1, . . . , ξk) 7→ ω(x; ξ1, . . . , ξk)

is an alternating k-form on R
m. The exterior differential of ω is the

(k + 1)-form dω ∈ Ωk+1(U) defined by

dω (x; ξ1, . . . , ξk+1) :=
k+1∑

j=1

(−1)j−1 d

dt

∣∣∣∣
t=0

ω
(
x+ tξj; ξ1, . . . , ξ̂j, . . . , ξk+1

)

(7.9)
for x ∈ U and ξ1, . . . , ξk+1 ∈ R

m. Here the hat indicates that the jth term
is deleted.

Definition 7.17. Let ω ∈ Ωk(U) and, for I = (i1, . . . , ik) ∈ Ik, define
fI : U → R by

fI(x) := ω(x; ei1 , . . . , eik).

Then

ω =
∑

I∈Ik

fIdx
I

and the exterior differential of ω is the (k + 1)-form

dω :=
∑

I∈Ik

dfI ∧ dxI , dfI :=
m∑

ν=1

∂fI
∂xν

dxν . (7.10)
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Remark 7.18. Let f ∈ Ω0(U) be a smooth real valued function on U . Then
df ∈ Ω1(U) is the usual differential of f , which assigns to each point x ∈ U
the derivative df(x) : Rm → R given by

df(x; ξ) = df(x)ξ = lim
t→0

f(x+ tξ)− f(x)
t

=

m∑

ν=1

∂f

∂xν
ξν

Here the last equality asserts that the derivative of f at x is given by mul-
tiplication with the Jacobi matrix. Thus

df =

m∑

ν=1

∂f

∂xν
dxν

and this shows that the two definitions of df ∈ Ω1(U) in (7.9) and (7.10)
agree for k = 0.

Remark 7.19. We prove that the definitions of dω in (7.9) and (7.10) agree
for all ω ∈ Ωk(U). To see this write ω is the form

ω =
∑

I∈Ik

fIdx
I , fI : U → R.

Then

ω(x; ξ1, . . . , ξk) =
∑

I∈Ik

fI(x)dx
I(ξ1, . . . , ξk)

for all x ∈ U and ξ1, . . . , ξk ∈ R
m. Hence, by (7.9), we have

dω(x; ξ1, . . . , ξk+1)

=
∑

I∈Ik

k+1∑

j=1

(−1)j−1 d

dt

∣∣∣∣
t=0

fI(x+ tξj)dx
I
(
ξ1, . . . , ξ̂j , . . . , ξk+1

)

=
∑

I∈Ik

k+1∑

j=1

(−1)j−1dfI(x; ξj)dx
I
(
ξ1, . . . , ξ̂j, . . . , ξk+1

)

=
∑

I∈Ik

(dfI ∧ dxI)(x; ξ1, . . . , ξk+1)

for all x ∈ U and ξ1, . . . , ξk+1 ∈ R
m. The last term agrees with the right

hand side of (7.10).
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Lemma 7.20. Let U ⊂ R
m be an open set.

(i) The exterior differential d : Ωk(U)→ Ωk+1(U) is a linear operator.

(ii) The exterior differential satisfies the Leibnitz rule

d(ω ∧ τ) = dω ∧ τ + (−1)deg(ω)ω ∧ dτ.

(iii) The exterior differential satisfies d ◦ d = 0.

(iv) The exterior differential commutes with pullback: If φ : U → V is a
smooth map to an open subset V ⊂ R

n then, for every ω ∈ Ωk(V ), we have

φ∗dω = dφ∗ω.

Proof. Assertion (i) is obvious. To prove (ii) it suffices to consider two
differential forms

ω = fdxI , τ = gdxJ

with I = (i1, . . . , ik) ∈ Ik, J = (j1, . . . , jℓ) ∈ Iℓ, and f, g : U → R. Then it
follows from Definition 7.17 that

d(ω ∧ τ) = d(fgdxI ∧ dxJ )
= d(fg) ∧ dxI ∧ dxJ

=
(
gdf + fdg

)
∧ dxI ∧ dxJ

= (df ∧ dxI) ∧ (gdxJ ) + (−1)k(fdxI) ∧ (dg ∧ dxJ)
= dω ∧ τ + (−1)kω ∧ dτ.

For general differential forms on U assertion assertion (ii) follows from the
special case and (i).

We prove (iii). For f ∈ Ω0(U) we have

ddf = d




m∑

j=1

∂f

∂xj
dxj


 =

m∑

i,j=1

∂2f

∂xi∂xj
dxi ∧ dxj = 0.

Here the last equality follows from the fact that the second partial derivatives
commute. This implies that, for every smooth function f : U → R and every
multi-index I = (i1, . . . , ik) ∈ Ik, we have

dd(fdxI) = d(df ∧ dxI) = ddf ∧ dxI − df ∧ ddxI = 0.

Here the second equation follows from (ii) and the last from the fact that
ddf = 0 (as showsn above) and ddxI = 0 (by definition). With this under-
stood assertion (iii) follows from the fact that d : Ωk(U) → Ωk+1(U) is a
linear operator.
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We prove (iv). Let U ⊂ R
m and V ⊂ R

n be open sets and φ : U → V
be a smooth map. We denote the elements of U by x = (x1, . . . , xm), the
elements of V by y = (y1, . . . , yn), and the coordinates of φ(x) by

φ(x) =: (φ1(x), . . . , φn(x))

for x ∈ U . Thus each φj s a smooth map from U to R and we have

φ∗dyj =
m∑

i=1

dφj

dxi
dxi = dφj . (7.11)

Moreover, if g ∈ Ω0(V ) is a smooth real valued function on V , then

φ∗g = g ◦ φ, dg =

n∑

j=1

∂g

∂yj
dyj ,

and hence

d(φ∗g) =
m∑

i=1

∂(g ◦ φ)
∂xi

dxi

=

m∑

i=1

n∑

j=1

(
∂g

∂yj
◦ φ
)
∂φj

∂xi
dxi

=
n∑

j=1

(
∂g

∂yj
◦ φ
)
dφj

=

n∑

j=1

(
∂g

∂yj
◦ φ
)
φ∗dyj

= φ∗dg.

(7.12)

Here the second equation follows from the chain rule and the fourth equation
follows from (7.11). For J = (j1, . . . , jk) ∈ Ik we have

d(φ∗dyJ) = d(φ∗dyj1 ∧ · · ·φ∗dyjk) = d(dφj1 ∧ · · · ∧ dφjk) = 0. (7.13)

Here the first equation follows from Lemma 7.14 and the determinant the-
orem in Exercise 7.10, the second equation follows from (7.11), and the last
equation follows from the Leibnitz rule in (ii) and the fact that ddφj = 0 for
every j, by (iii). Combining (7.12) and (7.13) we obtain

φ∗d(gdyJ ) = φ∗dg ∧ φ∗dyJ = d(φ∗g) ∧ φ∗dyJ = dφ∗(gdyJ )

for every smooth function g : V → R and every J ∈ Ik. This proves (iv)
and the lemma.



26 CHAPTER 7. DIFFERENTIAL FORMS

7.2.4 The Exterior Differential on Manifolds

Let M be a smooth m-dimensional manifold with an atlas {Uα, φα}α∈A and
let ω ∈ Ωk(M) be a differential k-form on M . Denote by

ωα ∈ Ωk(φα(Uα))

the corresponding differential forms in local coordinates so that

ω|Uα = φ∗αωα (7.14)

for every α ∈ A. The exterior differential of ω is defined as the unique
(k + 1)-form dω ∈ Ωk+1(M) that satisfies

dω|Uα = φ∗αdωα (7.15)

for every α ∈ A. To see that such a form exists we observe that the ωα
satisfy equation (7.8) for all α, β ∈ A. Then, by Lemma 7.20, we have

dωα|φα(Uα∩Uβ) = (φβ ◦ φ−1
α )∗dωβ|φβ(Uα∩Uβ)

for all α, β ∈ A and so the existence and uniqueness of the (k + 1)-form dω
satisfying (7.15) follows from Remark 7.15. It also follows from Lemma 7.20
that this definition of dω is independent of the choice of the atlas.

Lemma 7.21. Let M be a smooth manifold.

(i) The exterior differential d : Ωk(M)→ Ωk+1(M) is a linear operator.

(ii) The exterior differential satisfies the Leibnitz rule

d(ω ∧ τ) = dω ∧ τ + (−1)deg(ω)ω ∧ dτ.

(iii) The exterior differential satisfies d ◦ d = 0.

(iv) The exterior differential commutes with pullback: If φ : M → N is a
smooth map between manifolds then, for every ω ∈ Ωk(N), we have

φ∗dω = dφ∗ω.

Proof. This follows immediately from Lemma 7.20 and the definitions.
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7.2.5 DeRham Cohomology

Lemma 7.21 shows that there is a cochain complex

Ω0(M)
d−→ Ω1(M)

d−→ Ω2(M)
d−→ · · · d−→ Ωm(M),

called the deRham complex. A differential form ω ∈ Ωk(M) is called
closed if dω = 0 and is called exact if there is a (k− 1)-form τ ∈ Ωk−1(M)
such that dτ = ω. Lemma 7.21 (iii) asserts that every exact k-form is closed
and the quotient space

Hk(M) :=
ker d : Ωk(M)→ Ωk+1(M)

im d : Ωk−1(M)→ Ωk(M)
=
{closed k − forms on M}
{exact k − forms on M}

is called the kth deRham cohomology group of M . By Lemma 7.21 (i)
is a real vector space. By Lemma 7.21 (ii) the exterior product defines a
bilinear map

Hk(M)×Hℓ(M)→ Hk+ℓ(M) : ([ω], [τ ]) 7→ [ω] ∪ [τ ] := [ω ∧ τ ]

called the cup product. By Lemma 7.14 (iv) the pullback by a smooth
map φ :M → N induces a homomorphism

φ∗ : Hk(N)→ Hk(M).

By Lemma 7.14 this map is linear and preserves the cup product.

Example 7.22. The deRham cohomology group H0(M) is the space of
smooth functions f : M → R whose differential vanishes everywhere. Thus
H0(M) is the space of locally constant real valued functions on M . If M is
connected the evaluation map at any point defines an isomorphism

H0(M) = R.

To gain a better understanding of the deRham cohomology groups we
introduce the integral of a differential form of maximal degree over a compact
oriented manifold, prove the theorem of Stokes, and examine the formula
of Cartan for the Lie derivative of a differential form in the direction of a
vector field. These topics will be discussed in the next two sections.
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7.3 Integration

7.3.1 Definition of the Integral

Let M be an oriented m-manifold, with or without boundary and not nec-
essarily compact. Let {Uα, φα)}α∈A be an oriented atlas on M . Thus the
Uα form an open cover of M and the

φα : Uα → φα(Uα)

are homeomorphisms onto open subsets φα(Uα) ⊂ H
m of the upper half

space
H
m := {x ∈ R

m |xm ≥ 0}
such that the transition maps

φβα := φβ ◦ φ−1
α : φα(Uα ∩ Uβ)→ φβ(Uα ∩ Uβ)

are smooth and
det (dφβα(x)) > 0

for all α, β ∈ A and all x ∈ φα(Uα ∩ Uβ). Choose a partition of unity

ρα :M → [0, 1], α ∈ A,

subordinate to the open cover {Uα}α∈A. Thus each point p ∈ M has a
neighborhood on which only finitely many of the ρα do not vanish and

supp(ρα) ⊂ Uα,
∑

α

ρα ≡ 1.

Definition 7.23. Let ω ∈ Ωmc (M) be a differential form with compact sup-
port and, for α ∈ A, let

ωα ∈ Ωm(φα(Uα)), gα : φα(Uα)→ R

be given by

ω|Uα =: φ∗αωα, ωα =: gα(x)dx
1 ∧ · · · ∧ dxm.

The integral of ω over M is the real number
∫

M
ω :=

∑

α∈A

∫

φα(Uα)
ρα(φ

−1
α (x))gα(x)dx

1 · · · dxm (7.16)

The sum on the right is finite because only finitely many of the products ραω
are nonzero. (Prove this!)
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Lemma 7.24. The integral of ω over M is independent of the oriented atlas
and the partition of unity used to define it.

Proof. Choose another atlas {Vβ , ψβ}β∈B on M and a partition of unity
θβ :M → [0, 1] subordinate to the cover {Vβ}β∈B . For β ∈ B define

ωβ ∈ Ωm(ψβ(Vβ)), hβ : ψβ(Vβ)→ R

by
ω|Vβ =: ψ∗

βωβ, ωβ =: hβ(y)dy
1 ∧ · · · ∧ dym.

Then it follows from Lemma 7.12 (iv) that

gα(x) = hβ
(
ψβ ◦ φ−1

α (x)
)
det
(
d(ψβ ◦ φ−1

α )(x)
)

︸ ︷︷ ︸
>0

(7.17)

for every x ∈ φα(Uα ∩ Vβ). Hence
∫

M
ω =

∑

α∈A

∫

φα(Uα)
(ρα ◦ φ−1

α )gαdx
1 · · · dxm

=
∑

α

∑

β

∫

φα(Uα∩Vβ)
(ρα ◦ φ−1

α )(θβ ◦ φ−1
α )gαdx

1 · · · dxm

=
∑

α

∑

β

∫

ψβ(Uα∩Vβ)
(ρα ◦ ψ−1

β )(θβ ◦ ψ−1
β )hβdy

1 · · · dym

=
∑

β

∫

ψβ(Vβ)
(θβ ◦ ψ−1

β )hβdy
1 · · · dym.

Here the first equation is the definition of the integral, the second equation
follows from the fact that the θβ form a partition of unity, the third equation
follows from (7.17) and the change of variables formula, and the last equation
follows from the fact that the ρα form a partition of unity. This proves the
lemma.

We can think of the integral is a functional

Ωmc (M)→ R : ω 7→
∫

M
ω.

It follows directly from the definition that this functional is linear.

Exercise 7.25. If f : M → N is an orientation preserving diffeomorphism
between oriented m-manifolds then

∫
M f∗ω =

∫
N ω for every ω ∈ Ωmc (N).

If f : M → N is an orientation reversing diffeomorphism between oriented
m-manifolds then

∫
M f∗ω = −

∫
N ω for every ω ∈ Ωmc (N).
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7.3.2 The Theorem of Stokes

Theorem 7.26. Let M be an oriented m-manifold with boundary and let
ω ∈ Ωm−1

c (M). Then ∫

M
dω =

∫

∂M
ω.

Proof. The proof has three steps.

Step 1. The theorem holds for M = H
m.

The boundary of H
m =

{
x = (x1, . . . , xm) ∈ R

m |xm ≥ 0
}

is the subset
∂Hm =

{
x = (x1, . . . , xm) ∈ R

m |xm = 0
}
, diffeomorphic to R

m−1. Con-
sider the differential (m− 1)-form

ω =

m∑

i=1

gi(x)dx
1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxm

where the gi : H
m → R are smooth functions with compact support (in the

closed upper half space) and the hat indicates that the ith term is deleted
in the ith summand. Then

dω =
m∑

i=1

∂gi
∂xi

dxi ∧ dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxm

=

m∑

i=1

(−1)i−1 ∂gi
∂xi

dx1 ∧ · · · ∧ dxm.

Choose R > 0 so large that the support of each gi is contained in the set
[−R,R]m−1 × [0, R]. Then

∫

Hm

dω =

m∑

i=1

(−1)i−1

∫ R

0

∫ R

−R
· · ·
∫ R

−R

∂gi
∂xi

(x1, . . . , xm)dx1 · · · dxm

= (−1)m−1

∫ R

−R
· · ·
∫ R

−R

∫ R

0

∂gm
∂xm

(x1, . . . , xm)dxmdx1 · · · dxm−1

= (−1)m
∫ R

−R
· · ·
∫ R

−R
gm(x

1, . . . , xm−1, 0)dx1 · · · dxm−1

=

∫

∂Hm

ω

Here the second equation follows from Fubini’s theorem, the third equation
follows again from the fundamental theorem of calculus. To understand the
last equation we observe that the restriction of ω to the boundary is

ω|∂Hm = gm(x
1, . . . , xm−1, 0) dx1 ∧ · · · ∧ dxm−1.
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Moreover, the orientation of Rm−1 as the boundary of Hm is (−1)m times
the standard orientation of Rm−1 because the outward pointing unit normal
vector at any boundary point is ν = (0, . . . , 0,−1). This proves the last
equation above and completes the proof of Step 1.

Step 2. We prove the theorem for every differential (m − 1)-form whose
support is compact and contained in a coordinate chart.

Let φα : Uα → φα(Uα) ⊂ H
m be a coordinate chart and ω ∈ Ωm−1

c (M) be a
compactly supported differential form with

supp(ω) ⊂ Uα.

Define ωα ∈ Ωm−1(φα(Uα)) by

ω|Uα =: φ∗αωα

and extend ωα to all of Hm by setting ωα equal to zero on H
m \ φα(Uα).

Since φα(Uα ∩ ∂M) = φα(Uα) ∩ ∂Hm we obtain, using Step 1, that
∫

M
dω =

∫

Uα

dφ∗αωα

=

∫

Uα

φ∗αdωα

=

∫

φα(Uα)
dωα

=

∫

φα(Uα)∩∂Hm

ωα

=

∫

Uα∩∂M
φ∗αωα

=

∫

∂M
ω.

This proves Step 2.

Step 3. We prove the theorem.

Choose an atlas {Uα, φα}α and a partition of unity ρα :M → [0, 1] subordi-
nate to the cover {Uα}α. Then, by Step 2, we have

∫

M
dω =

∑

α

∫

M
d(ραω) =

∑

α

∫

∂M
ραω =

∫

∂M
ω.

This proves Step 3 and the theorem.
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7.3.3 Examples

Example 7.27. Let U ⊂ R
2 be a bounded open set with connected smooth

boundary Γ := ∂U and choose an embedded loop R/Z→ Γ : t 7→ (x(t), y(t))
parametrizing Γ. Let f, g : R2 → R be smooth functions and consider the
1-form

ω = fdx+ gdy ∈ Ω2(R2).

Then

dω =

(
∂g

∂x
− ∂f

∂y

)
dx ∧ dy

and hence, by Stokes’ theorem, we have
∫

U

(
∂g

∂x
− ∂f

∂y

)
dxdy =

∫

Γ
(fdx+ gdy)

=

∫ 1

0
(f(x(t), y(t))ẋ(t) + g(x(t), y(t))ẏ(t)) dt.

Example 7.28. Let Σ ⊂ R
3 be a 2-dimensional embedded surface and

ν : Σ→ S2 be a Gauss map. Thus ν(x) ⊥ TxΣ for every x ∈ Σ. Define the
2-form dvolσ ∈ Ω2(Σ) by

dvolΣ(x; v,w) := det(ν(x), v, w)

for x ∈ Σ and v,w ∈ TxΣ. In other words

dvolΣ = ν1dx2 ∧ dx3 + ν2dx3 ∧ dx1 + ν3dx1 ∧ dx2

and

ν1dvolΣ = dx2 ∧ dx3, ν2dvolΣ = dx3 ∧ dx1, ν3dvolΣ = dx1 ∧ dx2.

Let u = (u1, u2, u3) : R
3 → R

3 be a smooth map and consider the 1-form

ω = u1dx
1 + u2dx

2 + u3dx
3 ∈ Ω1(Σ).

Its exterior differential is

dω = 〈curl(u), ν〉dvolΣ, curl(u) :=




∂2u3 − ∂3u2
∂3u1 − ∂1u3
∂1u2 − ∂2u1


 ,

and hence Stokes’ theorem gives the identity

∫

Σ
〈curl(u), ν〉dvolΣ =

∫

∂Σ

3∑

i=1

uidx
i.
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Example 7.29. If M is an oriented m-manifold without boundary and
τ ∈ Ωm−1

c (M) is a compactly supported (m−1)-form it follows from Stokes’
theorem that ∫

M
dτ = 0.

We prove in the next section that, when M is connected, the converse holds
as well: if ω ∈ Ωmc (M) is compactly supported m-form such that

∫
M ω = 0

then there is a τ ∈ Ωm−1
c (M) such that dτ = ω.

7.4 Cartan’s Formula

Let M and N be smooth manifold, I ⊂ R be an interval, and

I ×M → N : (t, p) 7→ φt(p)

be a smooth map. For t ∈ I define the operator

ht : Ω
k(N)→ Ωk−1(M)

by

(htω)p(v1, . . . , vk−1) := ωφt(p) (∂tφt(p), dφt(p)v1, . . . , dfφt(p)vk−1) (7.18)

for p ∈M and v1, . . . , vk−1 ∈ TpM .

Theorem 7.30 (Cartan). For every ω ∈ Ωk(N) we have

d

dt
φ∗tω = dhtω + htdω. (7.19)

Proof. The proof has four steps.

Step 1. Equation (7.19) holds for k = 0.

Let f : N → R be a smooth function. Then

d

dt
(φ∗t f)(p) =

d

dt
f(φt(p)) = df(φt(p))∂tφt(p) = htdf(p)

as claimed.

Step 2. Equation (7.19) holds for k = 1.

Assume first that M = R
m and N = R

n. Let

I × R
m → R

n : (t, x) 7→ φt(x) = (φ1t (x), . . . , φ
n
t (x))
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be a smooth map and

β =

n∑

ν=1

gνdy
ν

be a smooth 1-form on R
n, where gν : Rn → R is a smooth function for

ν = 1, . . . , n. Then

dβ =

n∑

µ,ν=1

∂gν
∂yµ

dyµ ∧ dyν , htβ =

n∑

ν=1

(gν ◦ φt)∂tφνt ,

dhtβ =
m∑

i=1

n∑

µ,ν=1

(
∂gν
∂yµ
◦ φt

)
∂φµt
∂xi

∂tφ
ν
t dx

i +
m∑

i=1

n∑

ν=1

(gν ◦ φt)
∂2φνt
∂t∂xi

dxi,

htdβ =
m∑

i=1

n∑

µ,ν=1

(
∂gν
∂yµ
◦ φt

)(
∂tφ

µ
t

∂φνt
∂xi
− ∂tφνt

∂φµt
∂xi

)
dxi.

Moreover,

φ∗tβ =

m∑

i=1

n∑

ν=1

(gν ◦ φt)
∂φνt
∂xi

dxi

and hence

d

dt
φ∗tβ =

m∑

i=1

n∑

ν=1

d

dt

(
(gν ◦ φt)

∂φνt
∂xi

)
dxi

=

m∑

i=1

n∑

µ,ν=1

(
∂gν
∂yµ
◦ φt

)
∂tφ

µ
t

∂φνt
∂xi

dxi +

m∑

i=1

n∑

ν=1

(gν ◦ φt)
∂2φνt
∂t∂xi

dxi

= dhtβ + htdβ

as claimed. This proves Step 2 for M = R
m and N = R

n. The general case
can be reduced to this by choosing local coordinates.

Step 3. The operator ht : Ω
∗(M)→ Ω∗−1(M) is linear and satisfies

ht(ω ∧ τ) = htω ∧ φ∗t τ + (−1)deg(ω)φ∗tω ∧ htτ

for all ω, τ ∈ Ω∗(M).

This follows directly from the definitions.

Step 4. Equation (7.19) holds for every ω ∈ Ωk(M) and every k ≥ 0.

We prove this by induction on k. For k = 0, 1 the assertion was proved
in Steps 1 and 2. Thus assume k ≥ 2 and suppose the assertion has been
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established for k − 1. Since every k-form ω ∈ Ωk(N) can be written as a
finite sum of exterior products of a 1-form and a (k − 1)-form it suffices to
assume that

ω = β ∧ τ, β ∈ Ω1(N), τ ∈ Ωk−1(N).

In this case we have

d

dt
φ∗tω =

d

dt
(φ∗tα ∧ φ∗t τ)

= (htdβ + dhtβ) ∧ φ∗t τ + φ∗tβ ∧ (dhtτ + htdτ)

= ht(dβ ∧ τ)− φ∗tdβ ∧ htτ + d(htβ ∧ φ∗t τ)− htβ ∧ dφ∗t τ
−ht(β ∧ dτ) + htβ ∧ φ∗t dτ − d(φ∗tβ ∧ htτ) + dφ∗tβ ∧ htτ

= d(htβ ∧ φ∗t τ − φ∗tβ ∧ htτ) + ht(dβ ∧ τ − β ∧ dτ)
= dhtω − htdω.

Here the second equation follows from Step 2 and the induction hypothesis,
the third equation follows from Step 3, the fourth equation follows from
the fact that the exterior derivative commutes with pullback, and the last
equation follows from Step 3 and the Leibniz rule for the exterior derivative.
This proves Step 4 and the theorem.

Corollary 7.31. Let Mm and Nn be oriented manifolds without boundary
and φt :M →M , 0 ≤ t ≤ 1, be a proper smooth homotopy, so that

K ⊂ N is compact =⇒
⋃

t

φ−1
t (K) ⊂M is compact.

Let ω ∈ Ωkc (N) be closed k-form with compact support. The there is a
(k − 1)-form τ ∈ Ωk−1

c (M) with compact support such that

dτ = φ∗1ω − φ∗0ω.

Proof. By Theorem 7.30, we have

φ∗1ω − φ∗0ω =

∫ 1

0

d

dt
φ∗tω dt =

∫ 1

0
dhtω dt = dτ, τ :=

∫ 1

0
htω dt,

where ht : Ω
k(M)→ Ωk−1(M) is given by (7.18). We have

supp(τ) ⊂
⋃

0≤t≤1

φ−1
t (supp(ω)).

The set on the right is compact because the homotopy is proper. This proves
the corollary.
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Let X ∈ Vect(M). The interior product of X with a differential form
ω ∈ Ωk(M) is the (k − 1)-form ι(X)ω ∈ Ωk−1(M) defined by

(ι(X)ω)p(v1, . . . , vk−1) := ωp(X(p), v1, . . . , vk−1)

for p ∈ M and v1, . . . , vk−1 ∈ TpM . If X is complete and φt ∈ Diff(M)
denotes the flow of X the Lie derivative of ω in the direction of X is
defined by

LXω :=
d

dt

∣∣∣∣
t=0

φ∗tω.

This formula continues to be meaningful pointwise even if X is not complete.

Corollary 7.32 (Cartan). The Lie derivative of ω ∈ Ωk(M) in the direc-
tion X ∈ Vect(M) is given by

LXω = dι(X)ω + ι(X)dω. (7.20)

Proof. Assume for simplicity that X is complete and let

R×M →M : (t, p) 7→ φt(p)

denote the flow of X. Then the operator ht : Ω
k(M) → Ωk−1(M) in (7.18)

is given by

htω = φ∗t ι(X)ω.

In particular h0ω = ι(X)ω and hence (7.20) follows from (7.19) with t = 0.
This proves the corollary.

Corollary 7.33. Let ω ∈ Ωk(M) and X1, . . . ,Xk+1 ∈ Vect(M). Then

dω(X1, . . . ,Xk+1)

=
k+1∑

i=1

(−1)i−1LXi

(
ω(X1, . . . , X̂i, . . . ,Xk+1)

)

+
∑

i<j

(−1)i+j−1ω
(
[Xi,Xj ],X1, . . . , X̂i, . . . , X̂j , . . . ,Xk+1

)
(7.21)

Proof. The proof is by induction on k. For k = 0 the equation is obvious.
For k = 1 we use functoriality of the Lie derivative. Thus, if if φt is the flow
of X, we have

LXY =
d

dt

∣∣∣∣
t=0

φ∗tY = −[X,Y ].
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and

LX (ω(Y )) =
d

dt

∣∣∣∣
t=0

φ∗t (ω(Y ))

=
d

dt

∣∣∣∣
t=0

(φ∗tω) (φ
∗
tY )

= (LXω)(Y )− ω([X,Y ])

= dω(X,Y )−LY (ω(X)) − ω([X,Y ]).

Here the last equality follows from Corollary 7.32. This gives

dω(X,Y ) = LX(ω(Y ))− LY (ω(X)) + ω([X,Y ]) (7.22)

as claimed. For ω = α ∧ τ with α ∈ Ω1(M) and τ ∈ Ωk−1(M) the assertion
follows by induction. The induction step uses the Leibniz rule for the exterior
derivative and is left to the reader.

Example 7.34. If ω ∈ Ω2(M) and X,Y,Z ∈ Vect(M) then

dω(X,Y,Z) = LX
(
ω(Y,Z)

)
+ LY

(
ω(Z,X)

)
+ LZ

(
ω(X,Y )

)

− ω(X, [Y,Z]) − ω(Y, [Z,X]) − ω(Z, [X,Y ]).
(7.23)

Exercise 7.35. Prove the formula (7.21) directly in local coordinates using
Definition 7.16.

Exercise 7.36. Deduce the formula (7.20) in Corollary 7.32 from (7.21) by
an induction argument, starting with k = 1.

Exercise 7.37. Deduce the formula (7.19) in Theorem 7.30 from (7.20).
Hint: Assume first that φt : M → N is an embedding. Then there is a
smooth family of vector field Yt ∈ Vect(N) such that

Yt ◦ φt = ∂tφt.

For example, choose a Riemannian metric on N and define

Yt(expφt(p)(v)) := ρ(|v|)d expφt(p)(v)∂tφt(v)
for a suitable cutoff function ρ. Let ψt be isotopy of N generated by Yt via
∂tψt = Yt ◦ ψt and ψ0 = id. Then

φt = ψt ◦ φ0.
Now deduce (7.19) from (7.20) for LYtω. To prove (7.19) in general replace
φt :M → N by the embedding

φ̃t :M → Ñ :=M ×N, φ̃t(p) := (p, φt(p)).
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7.5 The Degree Theorem

7.5.1 Integration and Exactness

Theorem 7.38. Let M be a connected oriented m-dimensional manifold
without boundary and ω ∈ Ωmc (M) be an m-form with compact support.
Then the the following are equivalent.

(i) The integral of ω over M vanishes.

(ii) There is an (m−1)-form τ onM with compact support such that dτ = ω.

Proof. That (ii) implies (i) follows from Stokes’ Theorem 7.26. We prove in
two steps that (i) implies (ii).

Step 1. Let f : Rm → R be a smooth function whose support is contained in
the set (a, b)m where a < b. Then there are smooth functions ui : R

m → R,
i = 1, . . . ,m, supported in (a, b)m, such that

f =
m∑

i=1

∂ui
∂xi

.

Thus

fdx1 ∧ · · · ∧ dxm = d

(
m∑

i=1

(−1)i−1uidx
1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxm

)
.

To see this, choose a smooth function ρ : R→ [0, 1] such that

ρ(t) =

{
0, for t ≤ a+ ε,
1, for t ≥ b− ε,

for some ε > 0 and define fi : R
m → R by f0 := 0, fm := f , and

fi(x) :=

∫ b

a
· · ·
∫ b

a
f(x1, . . . , xi, ξi+1, . . . , ξm)ρ̇(xi+1) · · · ρ̇(xm)dξi+1 · · · dξm

for i = 1, . . . ,m− 1. Then each fi is supported in (a, b)m. For i = 1, . . . ,m
define ui : R

m → R by

ui(x) :=

∫ xi

a
(fi − fi−1)(x

1, . . . , xi−1, ξ, xi, . . . , xm) dξ.

Then ui is supported in (a, b)m and

∂ui
∂xi

= fi − fi−1.

This proves Step 1.
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Step 2. We prove that (i) implies (ii).

Choose a point p0 ∈ M , an open neighborhood U0 ⊂ M of p0, and an
orientation preserving coordinate chart φ0 : U0 → R

m such that the image
of φ0 is the open unit cube (0, 1)m ⊂ R

m. Since M is connected and has no
boundary there is, for every p ∈M , a diffeomorphism ψp :M →M , isotopic
to the identity, such that

ψp(p0) = p.

Thus the open sets
Up := ψp(U0)

cover M . Choose a partition of unity ρp : M → [0, 1] subordinate to this
cover. Since the set K := supp(ω) is compact there are only finitely many
points p ∈ M such that the function ρp does not vanish on K. Number
these points as p1, . . . , pn and abbreviate

Ui := Upi , ρi := ρpi , ψi := ψpi

for i = 1, . . . , n. Then

supp(ρi) ⊂ Ui = ψi(U0),

n∑

i=1

ρi|K ≡ 1.

Hence supp(ρiω) ⊂ Ui and

supp(ψ∗
i (ρiω)) ⊂ U0.

Since ψi is smoothly isotopic to the identity and φiω has compact support, it
follows from Corollary 7.31 that there is a compactly supported (m−1)-form
τi ∈ Ωm−1

c (M) such that

dτi = ψ∗
i (ρiω)− ρiω.

Hence it follows from Stokes’ theorem 7.26 that
∫

M

n∑

i=1

ψ∗
i (ρiω) =

∫

M

n∑

i=1

ρiω =

∫

M
ω = 0.

Now ψ∗
i (ρiω) is supported in ψ−1

i (Ui) = U0 and so is
∑n

i=1 ψ
∗
i (ρiω). Thus

the pushforward of this sum under the chart φ0 : U0 → R
m has support in

(0, 1)m = φ0(U0) and can be smoothly extended to all of Rm by setting it
equal to zero on R

m \ (0, 1)m. Moreover,

∫

Rm

(φ0)∗

n∑

i=1

ψ∗
i (ρiω) =

∫

M

n∑

i=1

ψ∗
i (ρiω) = 0.
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Hence it follows from Step 1 that there is an (m− 1)-form τ0 ∈ Ωm−1
c (Rm)

with support in (0, 1)m such that

dτ0 = (φ0)∗

n∑

i=1

ψ∗
i (ρiω).

Thus φ∗0τ0 ∈ Ωm−1
c (U0) has compact support in U0 and therefore extends to

all of M by setting it equal to zero on M \ U0. This extension satisfies

dφ∗0τ0 =

n∑

i=1

ψ∗
i (ρiω)

and hence

ω =

n∑

i=1

ψ∗
i (ρiω)−

n∑

i=1

(ψ∗
i (ρiω)− ρiω) = dφ∗0τ0 −

n∑

i=1

dτi = dτ

with

τ := φ∗0τ0 −
n∑

i=1

τi ∈ Ωm−1
c (M).

This proves Step 2 and the theorem.

Exercise 7.39. LetM be a compact connected oriented smoothm-manifold
without boundary and let Λ be a manifold. Let Λ→ Ωm(M) : λ 7→ ωλ be a
smooth family of m-forms on M such that

∫

M
ωλ = 0

for every λ ∈ Λ. Prove that there is a smooth family of (m − 1)-forms
Λ→ Ωm−1(M) : λ 7→ τλ such that

dτλ = ωλ

for every λ ∈ Λ. Hint: Use the argument in the proof of Theorem 7.38 to
construct a linear operator

h :

{
ω ∈ Ωm(M)

∣∣∣
∫

M
ω = 0

}
→ Ωm−1(M)

such that ∫

M
ω = 0 =⇒ dhω = ω

for every ω ∈ Ωm(M). Find an explicit formula for the operator h. Note
that Ui, ρi, ψi can be chosen once and for all, independent of ω.
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Corollary 7.40. Let M be a compact connected oriented m-manifold with-
out boundary. Then the map

Ωm(M)→ R : ω 7→
∫

M
ω

induces an ismorphism
Hm(M) ∼= R.

Proof. The kernel of this map is the space of exact forms, by Theorem 7.38.
Hence the induced homomorphism on deRham cohomology is bijective.

Exercise 7.41. Let M be a compact connected nonorientable m-manifold
without boundary. Prove that every m-form on M is exact and hence

Hm(M) = 0.

Hint: Let π : M̃ → M be the oriented double cover of M . More precisely,
a point in M̃ is a pair (p, o) consisting of a point p ∈M and an orientation

o of TpM . Prove that M̃ is a compact connected oriented m-dimensional

manifold without boundary and that π : M̃ →M is a local diffeomorphism.
Prove that the integral of π∗ω vanishes over M̃ for every ω ∈ Ωm(M).

7.5.2 The Degree Theorem

The next theorem relates the integral of a differential form to the integral of
its pullback under an arbitrary smooth map between manifolds of the same
dimension.

Theorem 7.42 (Degree Theorem). Let M and N be compact oriented
smooth m-manifolds without boundary and suppose that N is connected.
Then, for every smooth map f :M → N and every ω ∈ Ωm(N), we have

∫

M
f∗ω = deg(f)

∫

N
ω

Proof. Let q ∈ N be a regular value of f . Then f−1(q) is a finite subset ofM .
Denote the elements of this set by p1, . . . , pn and let εi = ±1 according to
whether or not df(pi) : TpiM → TqN is orientation preserving or orientation
reversing. Thus

f−1(q) = {p1, . . . , pn}, εi = sign det(df(pi)), deg(f) =
n∑

i=1

εi. (7.24)
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Next we observe that there are open neighborhoods V ⊂ N of q and Ui ⊂M
of pi for i = 1, . . . , n satisfying the following conditions.

(a) f restricts to a diffeomorphism from Ui to V for every i; it is orientation
preserving when εi = 1 and orientation reversing when εi = −1.
(b) The sets Ui are pairwise disjoint.

(c) f−1(V ) = U1 ∪ · · · ∪ Un.
In fact, since df(pi) : TpiM → TqN is a vector space isomorphism, it follows
from the implicit function theorem that there are connected open neighbor-
hoods Ui of pi and Vi of q such that f |Ui

: Ui → Vi is a diffeomorphism.
Shrinking the sets Ui, if necessary, we may assume Ui ∩ Uj = ∅ for i 6= j.
Now take

V := V1 ∩ · · · ∩ Vn \ f(M \ (U1 ∪ · · · ∪ Un))
and replace Ui by the set Ui ∩ f−1(V ). These sets satisfy (a), (b), and (c).

If ω ∈ Ωm(N) is supported in V then

∫

M
f∗ω =

n∑

i=1

∫

Ui

f∗ω =

n∑

i=1

εi

∫

V
ω = deg(f)

∫

N
ω.

Here the first equation follows from (b) and (c), the second equation follows
from (a) and Exercise 7.25, and the last equation follows from (7.24). Now
let ω ∈ Ωm(N) is any m-form and choose ω′ ∈ Ωm(N) such that

supp(ω′) ⊂ V,
∫

N
ω′ =

∫

N
ω.

Then, by Theorem 7.38, there is a τ ∈ Ωm−1(N) such that

dτ = ω − ω′.

Hence
∫

M
f∗ω =

∫

M
f∗(ω′ + dτ)

=

∫

M
f∗ω′

= deg(f)

∫

N
ω′

= deg(f)

∫

N
ω.

Here the last but one equality follows from the fact that ω′ is supported
in V . This proves the theorem.
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7.5.3 The Gauss–Bonnet Formula

Let M be an oriented Riemannian m-manifold. Then there is a unique
m-form

dvolM ∈ Ωm(M)

called the volume form ofM , such that (dvolM )p(e1, . . . , em) = 1 for every
p ∈M and every positively oriented orthonormal basis e1, . . . , em of TpM .

Exercise 7.43. Let M be an oriented Riemannian m-manifold equipped
with an oriented atlas φα : Uα → φα(Uα) ⊂ R

m and a metric tensor
gα : φα(Uα)→ R

m×m. Prove that the volume form dvolM is in local co-
ordinates given by

(dvolM )α =
√

det(gα(x))dx
1 ∧ · · · dxm.

LetM ⊂ R
m+1 be a compactm-dimensional manifold without boundary.

Then M inherits a Riemannian metric from the standard Euclidean inner
product on R

m+1 and it carries a Gauss map

ν :M → Sm

defined as follows. The complement of M in R
m+1 has two components,

one bounded and one unbounded. These components are distinguished by
the mod-2 degree of the map fx : M → Sm defined by fx(p) := p−x

|p−x| for

p ∈M . The bounded component is the set of all x ∈ R
m+1 \M that satisfy

deg2(fx) = 1 and its closure will be denoted by W . Thus W ⊂ R
m+1 is a

compact connected oriented manifold with boundary ∂W =M and we orient
M as the boundary of W . The Gauss map ν :M → Sm is characterized by
the condition that ν(p) ∈ Sm is the unique unit vector that is orthogonal to
TpM and points out of W . The volume form dvolM ∈ Ωm(M) associated to
the metric and orientation of M is then given by the explicit formula

(dvolM )p(v1, . . . , vm) = det(ν(p), v1, . . . , vm).

Moreover, the derivative of the Gauss map at p ∈ M is a linear map from
TpM to itself because Tν(p)S

m = ν(p)⊥ = TpM . The Gaussian curvature
of M is the function K :M → R defined by

K(p) := det
(
dν(p) : TpM → TpM

)
.

When M is even dimensional, this function is independent of the choice of
the Gauss map. In m is odd then replacing ν by −ν changes the sign of K.
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Theorem 7.44 (Gauss–Bonnet). Let M ⊂ R
m+1 be a compact m-dimen-

sional submanifold without boundary. Then

∫

M
KdvolM =

Vol(Sm)

2
χ(M), (7.25)

where χ(M) denotes the Euler characteristic of M .

Remark 7.45. When m = 2n we have

Vol(S2n)

2
=

22nn!

(2n)!
πn.

When m is odd the Euler characteristic of M is zero.

Proof of Theorem 7.44. The Gauss map of Sm is the identity. Hence the
volume form on Sm is given by

dvolSm =

m+1∑

i=1

(−1)i−1xidx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxm+1

or, equivalently,

(dvolSm)x(ξ1, . . . , ξm) = det(x, ξ1, . . . , ξm)

for x ∈ Sm and ξ1, . . . , ξm ∈ TxS
m = x⊥. Hence the pullback of dvolS2

under the Gauss map is given by

(ν∗dvolSm)p(v1, . . . , vm) = (dvolSm)ν(p)(dν(p)v1, . . . , dν(p)vm)

= det(ν(p), dν(p)v1, . . . , dν(p)vm)

= K(p) det(ν(p), v1, . . . , vm)

= K(p)(dvolM )p(v1, . . . , vm)

for p ∈M and v1, . . . , vm ∈ TpM = ν(p)⊥. Thus

KdvolM = ν∗dvolSm .

Since the degree of the Gauss map is half the Euler characteristic of M , by
the Poincaré–Hopf Theorem, it follows from the Degree Theorem 7.42 that

∫

M
KdvolM =

∫

M
ν∗dvolSm = deg(ν)

∫

Sm

dvolSm =
χ(M)

2
Vol(Sm).

This proves the theorem.



7.5. THE DEGREE THEOREM 45

Remark 7.46. We shall prove in Section 8.2 that the deRham cohomology
of a compact manifold M (with or without boundary) is finite dimensional
and in Section 8.4 that the Euler characteristic of a compact oriented m-
manifold without boundary is the alternating sum of the Betti numbers
bi := dimH i(M):

χ(M) =
m∑

i=0

(−1)i dimH i(M).

This formula continues to hold for nonorientable manifolds.

7.5.4 Moser Isotopy

Definition 7.47. Let M be a smooth m-manifold. A volume form on
M is a nowhere vanishing differential m-form on M . If M is oriented, a
volume form ω ∈ Ωm(M) is called compatible with the orientation if

ωp(v1, . . . , vm) > 0 (7.26)

for every p ∈ M and every positively oriented basis v1, . . . , vm of TpM .
If a volume form ω on an oriented m-manifold M is compatible with the
orientation we write ω > 0.

Lemma 7.48. A manifold M admits a volume form if and only if it is
orientable.

Proof. If ω ∈ Ωm(M) is a volume form then ωp(v1, . . . , vm) 6= 0 for every
p ∈ M and every basis v1, . . . , vm of TpM . Hence a volume form on M
determines an orientation of each tangent space TpM : a basis v1, . . . , vm
is called positively oriented if (7.26) holds. These orientation fit together
smoothly. Namely, fix a point p0 ∈ M and a positive basis v1, . . . , vm of
Tp0M and choose vector fields X1, . . . ,Xm ∈ Vect(M) such that Xi(p0) = vi
for i = 1, . . . ,m. Then there is a connected open neighborhood U ⊂M of p0
such that the vectors X1(p), . . . Xm(p) form a basis of TpM for every p ∈ U .
Hence the function

U → R : p 7→ ωp(X1(p), . . . ,Xm(p))

is everywhere nonzero and hence is everywhere positive, because it is positive
at p = p0. Thus the vectors X1(p), . . . ,Xm(p) form a positive basis of TpM
for every p ∈ U .

Here is a different argument. Given a volume form ω ∈ Ωm(M) we can
choose an atlas φα : Uα → R

m such that the forms

ωα := (φα)∗ω ∈ Ωm(φα(Uα))
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in local coordinates have the form

ωα = fαdx
1 ∧ · · · ∧ dxm, fα > 0.

It follows that

d(φβ ◦ φ−1
α )(x) =

fα(x)

fβ(φβ ◦ φ−1
α )(x)

> 0

for all α, β and all x ∈ φα(Uα ∩ Uβ). Hence the atlas {Uα, φα}α is oriented.
Conversely, suppose M is oriented. Then one can choose a Riemannian

metric and take ω = dvolM to be the volume form associated to the metric
and orientation. Alternatively, choose an atlas φα : Uα → φα(Uα) ⊂ R

m

onM such that the transition maps φβ◦φ−1
α : φα(Uα∩Uβ)→ φβ(Uα∩Uβ) are

orientation preserving diffeomorphisms for all α and β. Let ρα :M → [0, 1]
be a partition of unity subordinate to the cover {Uα}α so that

suppρα ⊂ Uα,
∑

α

ρα ≡ 1.

Define ω ∈ Ωm(M) by

ω :=
∑

α

ραφ
∗
αdx

1 ∧ · · · ∧ dxm,

where ραφ
∗
αdx

1 ∧ · · · ∧ dxm ∈ Ωmc (Uα) is extended to all of M by setting it
equal to zero on M \ Uα. Then we have

ωp(v1, . . . , vm) :=
∑

p∈Uα

ρα(p) det(dφα(p)v1, . . . , dφα(p)vm)

for p ∈ M and v1, . . . , vm ∈ TpM . Here the sum is understood over all α
such that p ∈ Uα. For each p ∈ M and each basis v1, . . . , vm of TpM all
the summands have the same sign and at least one summand is nonzero.
Hence ω is a volume form on M and is compatible with the orientation
determined by the atlas.

Theorem 7.49 (Moser Isotopy). Let M be a compact connected oriented
m-manifold without boundary and ω0, ω1 ∈ Ωm(M) be volume forms such
that ∫

M
ω0 =

∫

M
ω1.

Then there is a diffeomorphism ψ : M → M , isotopic to the identity, such
that ψ∗ω1 = ω0.
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Proof. We prove that ω0 and ω1 have the same sign on each basis of each
tangent space. Let U ⊂M be the set of all p ∈M such that the real numbers
(ω0)p(v1, . . . , vm) and (ω1)p(v1, . . . , vm) have the same sign for some (and
hence every) basis v1, . . . , vm of TpM . Then U and M \ U are open sets
because ω0 and ω1 are volume forms, U 6= ∅ because the integral of ω0 and
ω1 agree, and hence U = M because M is connected. Thus ω0 and ω1

determine the same orientation of M . Hence the convex combinations

ωt := (1− t)ω0 + tω1, 0 ≤ t ≤ 1,

are all volume forms onM . The idea of the proof is to find a smooth isotopy
ψt ∈ Diff(M), 0 ≤ t ≤ 1, starting at the identity, such that

ψ∗
t ωt = ω0 (7.27)

for every t. Now every isotopy starting at the identity determines, and is
determined by, a smooth family of vector fields Xt ∈ Vect(M), 0 ≤ t ≤ 1,
via

d

dt
ψt = Xt ◦ ψt, ψ0 = id. (7.28)

By assumption the integral of ω1 − ω0 vanishes over M . Hence, by Theo-
rem 7.38, there is an (m− 1)-form τ ∈ Ωm−1(M) such that

dτ = ω1 − ω0 = ∂tωt.

If ψt and Xt are related by (7.28) it follows from Cartan’s formula in Corol-
lary 7.32 that

d

dt
ψ∗
t ωt = ψ∗

t (LXtωt + ∂tωt) = ψ∗
t d(ι(Xt)ωt + τ). (7.29)

By Exercise 7.50 below there is a smooth family of vector fields

Xt := −I−1
ωt

(τ) ∈ Vect(M), ι(Xt)ωt + τ = 0.

Let ψt ∈ Diff(M), 0 ≤ t ≤ 1, be the isotopy of M determined by the
vector fields Xt via equation (7.28). Then it follows from (7.29) that the
volume form ψ∗

t ωt is independent of t and therefore satisfies (7.27). Hence
the diffeomorphism ψ := ψ1 satisfies the requirements of the theorem.

Exercise 7.50. Let M be a smooth m-manifold and ω ∈ Ωm(M) be a
volume form. Prove that the linear map

Iω : Vect(M)→ Ωm−1(M), Iω(X) := ι(X)ω,

is a vector space isomorphism.
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Remark 7.51. LetM be a compact connected oriented smoothm-manifold
without boundary. Fix a volume form ω0 and denote the group of volume
preserving diffeomorphisms by

Diff(M,ω0) := {φ ∈ Diff(M) |φ∗ω0 = ω0} .

One can use Moser isotopy to prove that the inclusion of the group of vol-
ume preserving diffeomorphisms into the group of all diffeomorphisms is a
homotopy equivalence. This is understood with respect to the C∞-topology
on the group of diffeomorphisms. A sequence ψν converges in this topology,
by definition, if it converges uniformly with all derivatives.

To prove the assertion consider the set

V (M) :=

{
ω ∈ Ωm(M)

∣∣∣ω is a volume form and

∫

M
ω = 1

}

of all volume forms on M with volume one and assume ω0 ∈ V (M). The
group Diff(M) acts on V (M) and the isotropy subgroup of ω0 is Diff(M,ω0).
Theorem 7.49 asserts that the map

Diff(M)→ V (M) : ψ 7→ ψ∗ω0

is surjective. Moreover, there is a continuous map

V (M)→ Diff(M) : ω 7→ ψω

such that ψ∗
ωω = ω0 for every ω ∈ V (M) and ψω0 = id. To see this construct

an affine map V (M)→ Ωm−1(M) : ω 7→ τω such that dτω = ω−ω0 for every
ω ∈ V (M), following Exercise 7.39, and then use the argument in the proof
of Theorem 7.49 to find ψω. It follows that the map

Diff(M)→ V (M)×Diff(M,ω0) : ψ 7→ (ψ∗ω0, ψ ◦ ψψ∗ω0) (7.30)

is a homeomophism with inverse (ω, φ) 7→ φ ◦ ψ−1
ω . Since V(M) is a convex

subset of Ωm(M) it is contractible and hence the inclusion of Diff(M,ω0)
into Diff(M) is a homotopy equivalence. (See Definitions 8.3 and 8.7 below.)

Exercise 7.52. Prove that there are metrics on Diff(M) and Ωm(M) that
induce the C∞-topology on these spaces. Prove that the map (7.30) is a
homeomorphism. Hint: If d : X ×X → R is a metric so is d/(1 + d).



Chapter 8

De Rham Cohomology

In this chapter we take a closer look at the deRham cohomology groups of
a smooth manifold that were introduced at the end of Section 7.2. Here we
follow closely the classical textbook of Bott and Tu [2]. An immediate conse-
quence of Cartan’s formula in Theorem 7.30 is the observation that smoothly
homotopic maps induce the same homomorphism on deRham cohomology,
that homotopy equivalent manifolds have the same deRham cohomology,
and that the deRham cohomology of a contractible space vanishes in posi-
tive degrees. In the case of Euclidean space this is a consequence of the
Poincaré Lemma which follows directly from Cartan’s formula. These ob-
servations are discussed in Section 8.1, which closes with the computation
of the deRham cohomology of a sphere. This computation is a special case
of the Mayer–Vietoris argument, the subject of Section 8.2. It is a powerful
tool in differential and algebraic topology and can be used, for example,
to prove that the deRham cohomology groups are finite dimensional and
to establish the Künneth formula for the deRham cohomology of a pro-
duct manifold. Section 8.3 extends the previous discussion to compactly
supported deRham cohomology and Section 8.4 is devoted to Poincaré dua-
lity, which again can be proved with the Mayer–Vietoris argument. Using
Poincaré duality and the Künneth formula one can then show that the Euler
characteristic of a compact oriented manifold without boundary, originally
defined as the algebraic number of zeroes of a generic vector field, is indeed
equal to the alternating sum of the Betti-numbers. A natural generalization
of the Mayer–Vietoris sequence is the Čech–deRham complex which will be
discussed in Section 8.5. In particular, we show that the deRham coho-
mology of a manifold is, under suitable hypotheses, isomorphic to the Čech
cohomology.

49
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8.1 The Poincaré Lemma

LetM be a smoothm-manifold, N be a smooth n-manifold, and f :M → N
be a smooth map. By Lemma 7.21 the pullback of differential forms under
f commutes with the exterior differential:

f∗ ◦ d = d ◦ f∗. (8.1)

In other words, the following diagram commutes:

Ω0(M)
d // Ω1(M)

d // Ω2(M)
d // · · ·

Ω0(N)
d //

f∗

OO

Ω1(N)
d //

f∗

OO

Ω2(N)
d //

f∗

OO

· · ·

.

Thus f∗ : Ωk(N) → Ωk(M) is a linear map which assigns closed forms
to closed forms and exact forms to exact forms. Hence it descends to a
homomorphism on cohomology, still denoted by f∗:

Hk(N)→ Hk(M) : [ω] 7→ f∗[ω] := [f∗ω].

If g : N → Q is another smooth map between smooth manifolds then, by
Lemma 7.14, we have

(g ◦ f)∗ = f∗ ◦ g∗ : Hk(Q)→ Hk(M).

Moreover, it follows from Lemmas 7.14 and 7.21 that deRham cohomology
is equipped with a cup product structure

Hk(M)×Hℓ(M)→ Hk+ℓ(M) : ([ω], [τ ]) 7→ [ω] ∪ [τ ] := [ω ∧ τ ]

and that the cup product is preserved by pullback.

Theorem 8.1. If f0, f1 : M → N are smoothly homotopic then there is a
collection of linear maps h : Ωk(N)→ Ωk−1(M), one for every nonnegative
integer k, such that

f∗1 − f∗0 = d ◦ h+ h ◦ d : Ωk(N)→ Ωk(M) (8.2)

for every nonnegative integer k. In particular, the homomorphisms induced
by f0 and f1 on deRham cohomology agree:

f∗0 = f∗1 : H∗(N)→ H∗(M).
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Proof. Choose a smooth homotopy F : [0, 1] ×M → N satisfying

F (0, p) = f0(p), F (1, p) = f1(p)

for every p ∈M , and for 0 ≤ t ≤ 1, define ft :M → N by

ft(p) := F (t, p).

By Theorem 7.30, we have

d

dt
f∗t ω = dhtω + htdω

for ω ∈ Ωk(N), where ht : Ω
k(N)→ Ωk−1(M) is defined by

(htω)p(v1, . . . , vk−1) := ωft(p)(∂tft(p), dft(p)v1, . . . , dft(p)vk−1)

for p ∈M and vi ∈ TpM . Integrating over t we find

f∗1ω − f∗0ω =

∫ 1

0

d

dt
f∗t ω dt = dhω + hdω

where h : Ωk(N)→ Ωk−1(M) is defined by

(hω)p(v1, . . . , vk−1) :=

∫ 1

0
ωft(p)(∂tft(p), dft(p)v1, . . . , dft(p)vk−1) dt (8.3)

for p ∈M and vi ∈ TpM . This proves the theorem.

Remark 8.2. In homological algebra equation (8.1) says that

f∗ : Ω∗(N)→ Ω∗(M)

is a chain map. Equation (8.2) says that the chain maps f∗0 and f∗1 are
chain homotopy equivalent and the map

h : Ω∗(N)→ Ω∗−1(M)

is called a chain homotopy equivalence from f∗0 to f∗1 . In other words,
smoothly homotopic maps between manifold induce chain homotopy equiv-
alent chain maps between the associated deRham cochain complexes. Chain
homotopy equivalent chain maps always descend to the same homorphism
on (co)homology.



52 CHAPTER 8. DE RHAM COHOMOLOGY

Definition 8.3. Two manifolds M and N are called homotopy equiva-
lent if there exist smooth maps f : M → N and g : N → M such that the
compositions

g ◦ f :M →M, f ◦ g : N → N

are both homotopic to the respective identity maps. If this holds the maps
f and g are called homotopy equivalences and g is called a homotopy
inverse of f .

Exercise 8.4. The closed unit disc in R
m (an m-manifold with boundary)

is homotopy equivalent to a point (a 0-manifold without boundary).

Corollary 8.5. Homotopy equivalent manifolds have isomorphic deRham
cohomology (including the product structures).

Proof. Let f : M → N be a homotopy equivalence and g : N → M be a
homotopy inverse of f . Then it follows from Theorem 8.1 that

f∗ ◦ g∗ = (g ◦ f)∗ = id : H∗(M)→ H∗(M)

and
g∗ ◦ f∗ = (f ◦ g)∗ = id : H∗(N)→ H∗(N).

Hence f∗ : H∗(N)→ H∗(M) is a vector space isomorphism and

(f∗)−1 = g∗ : H∗(M)→ H∗(N).

This proves the corollary.

Example 8.6. For every smooth manifold M we have

H∗(M) ∼= H∗(R×M).

To see this, define π : R×M →M and ι :M → R×M by

π(s, p) := p, ι(p) := (0, p)

for s ∈ R and p ∈M . Then π ◦ ι = id :M →M and ι ◦π : R×M → R×M
is homotopic to the identity. An explicit homotopy is given by

ft : R×M → R×M, ft(s, p) := (st, p), f0 = ι ◦ π, f1 = id.

Hence M and R ×M are homotopy equivalent and so the assertion follows
from Corollary 8.5. Explicitly, π∗ : H∗(M)→ H∗(R×M) is an isomorphism
with inverse ι∗ : H∗(R×M)→ H∗(M).
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Definition 8.7. A smooth manifold M is called contractible if the identity
map on M is homotopic to a constant map.

Exercise 8.8. Every contractible manifold is nonempty and connected.

Exercise 8.9. A manifold is contractible if and only if it is homotopy equiv-
alent to a point.

Exercise 8.10. Every nonempty geodesically convex open subset of a Rie-
mannian m-manifold without boundary is contractible.

Corollary 8.11 (Poincaré Lemma). Let M be a contractible manifold.
Then there is a collection of linear maps h : Ωk(M) → Ωk−1(M), one for
every nonnegative integer k, such that

d ◦ h+ h ◦ d = id : Ωk(M)→ Ωk(M), k ≥ 1. (8.4)

Hence H0(M) = R and Hk(M) = 0 for k ≥ 1.

Proof. Let p0 ∈ M and [0, 1] × M → M : (t, p) 7→ ft(p) be a smooth
homotopy such that f0(p) = p0 and f1(p) = p for every p ∈ M . Let
h : Ωk(M)→ Ωk−1(M) be given by (8.3). Then, for every k-form ω ∈ Ωk(M)
with k ≥ 1, it follows from Theorem 8.1 that

ω = f∗1ω − f∗0ω = dhω − hdω.
(The assumption k ≥ 1 is needed in the first equation.) Hence, for k ≥ 1,
every closed k-form onM is exact and so Hk(M) ∼= 0. SinceM is connected
we have H0(M) = R. This proves the corollary.

Example 8.12. The Euclidean space R
m is contractible. An explicit ho-

motopy from a constant map to the identity is given by ft(x) := tx for
0 ≤ t ≤ 1 and x ∈ R

m. Hence

Hk(Rm) =

{
R, for k = 0,
0, for k ≥ 1.

The chain homotopy equivalence h : Ωk(Rm)→ Ωk−1(Rm) associated to the
above homotopy ft via (8.3) is given by

(hω)(x; ξ1, . . . , ξk−1) =

∫ 1

0
tk−1ω(x; tx, ξ1, . . . , ξk−1) dt (8.5)

for ω ∈ Ωk(Rm) and x, ξ1, . . . , ξk−1 ∈ R
m. By Corollary 8.5 it satisfies

d ◦ h+ h ◦ d = id : Ωk(Rm)→ Ωk(Rm)

for k ≥ 1. This is the Poincaré Lemma in its original form.
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Example 8.13. For m ≥ 1 the deRham cohomology of the unit sphere

Sm ⊂ R
m+1

is given by

Hk(Sm) =

{
R
m, for k = 0 and k = m,

0, for 1 ≤ k ≤ m− 1.

That H0(Sm) = R follows from Example 7.22 because Sm is connected
(whenever m ≥ 1). That Hm(Sm) = R follows from Corollary 7.40 because
Sm is a compact connected oriented manifold without boundary.

We prove that
H1(Sm) = 0

for every m ≥ 2. To see this consider the open sets

U± := Sm \ {(0, . . . , 0,∓1)}.

Their union is Sm, each set U+ and U− is diffeomorphic to R
m via stere-

ographic projection, and their intersection U+ ∩ U− is diffeomorphic to
R
m \ {0} and hence to R× Sm−1:

U+ ∼= U− ∼= R
m, U+ ∩ U− ∼= R× Sm−1.

In particular, the intersection U+∩U− is connected becausem ≥ 2. Now let
α ∈ Ω1(Sm) be a closed 1-form. Then it follows from Example 8.12 that the
restrictions of α to U+ and U− are exact. Hence there are smooth functions
f± : U± → R such that

α|U+ = df+, α|U− = df−.

The differential of the difference f+ − f− : U+ ∩ U− → R vanishes. Since
U+ ∩ U− is connected there is a constant c ∈ R such that

f+(x)− f−(x) = c ∀ x ∈ U+ ∩ U−.

Define f : Sm → R by

f(x) :=

{
f−(x) + c, for x ∈ U−,
f+(x), for x ∈ U+.

This function is well defined and smooth and satisfies df = α. Thus we
have proved that every closed 1-form on Sm is exact, when m ≥ 2, and thus
H1(Sm) = 0, as claimed.
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We prove by induction on m that Hk(Sm) = 0 for 1 ≤ k ≤ m − 1 and
m ≥ 2. We have just seen that this holds for m = 2. Thus let m ≥ 3 and
assume, by induction, that the assertion holds for m− 1. We have already
shown that H1(Sm) = 0. Thus we fix an integer

2 ≤ k ≤ m− 1

and prove that
Hk(Sm) = 0.

Let ω ∈ Ωk(Sm) be a closed k-form. By Example 8.12, the restrictions of
ω to U+ and U− are both exact. Hence there are smooth (k − 1)-forms
τ± ∈ Ωk−1(U±) such that

α|U+ = dτ+, α|U− = dτ−.

Hence the (k − 1)-form

τ+|U+∩U− − τ−|U+∩U− ∈ Ωk−1(U+ ∩ U−)

is closed. By Example 8.6 and the induction hypothesis, we have

Hk−1(U+ ∩ U−) ∼= Hk−1(R× Sm−1) ∼= Hk−1(Sm−1) = 0.

Hence there is a (k − 2)-form β ∈ Ωk−2(U+ ∩ U−) such that

dβ = τ+|U+∩U− − τ−|U+∩U− .

Now choose a smooth cutoff function ρ : Sm → [0, 1] such that

ρ(x) =

{
0, for x near (0, . . . , 0,−1),
1, for x near (0, . . . , 0, 1),

and define τ ∈ Ωk−1(Sm) by

τ :=

{
τ− + d(ρβ) on U−,
τ+ − d((1− ρ)β) on U+.

Then dτ = ω. Thus we have proved that every closed k-form on Sm is exact
and hence Hk(Sm) = 0, as claimed.

The computation of the deRham cohomology of Sm in Example 8.13
is an archetypal example of a Mayer–Vietoris argument. More generally,
if we have a cover of a manifold by two well chosen open sets U and V ,
the computation of the deRham cohomology of M can be reduced to the
computation of the deRham cohomology of the manifolds U , V , and U ∩ V
by means of the Mayer–Vietoris sequence. We shall see that this exact
sequence is a powerful tool for understanding deRham cohomology.
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8.2 The Mayer–Vietoris Sequence

8.2.1 The Short Exact Sequence

Let M be a smooth m-manifold (not necessarily compact or connected and
with or without boundary). Let U, V ⊂M be open sets such that

M = U ∪ V.

The Mayer–Vietoris sequence associated to this open cover by two sets
is the sequence of homomorphisms

0 −→ Ωk(M)
i∗−→ Ωk(U)⊕ Ωk(V )

j∗−→ Ωk(U ∩ V ) −→ 0, (8.6)

where i∗ : Ωk(M)→ Ωk(U)⊕Ωk(V ) and j∗ : Ωk(U)⊕ Ωk(V )→ Ωk(U ∩ V )
are defined by

i∗ω := (ω|U , ω|V ), j∗(ωU , ωV ) := ωV |U∩V − ωU |U∩V

for ω ∈ Ωk(M) and ωU ∈ Ωk(U), ωV ∈ Ωk(V ). Thus i∗ is given by restriction
and j∗ by restriction followed by subtraction.

Lemma 8.14. The Mayer–Vietoris sequence (8.6) is exact.

Proof. That i∗ is injective, is obvious: if ω ∈ Ωk(M) vanishes on U and
on V then it vanishes on all of M . That the image of i∗ agrees with the
kernel of j∗ is also obvious: if ωU ∈ Ωk(U) and ωV ∈ Ωk(V ) agree on the
intersection U ∩ V , then they determine a unique global k-form ω ∈ Ωk(M)
such that ω|U = ωU and ω|V = ωV .

We prove that j∗ is surjective. Choose a partition of unity subordi-
nate to the open cover M = U ∪ V . It consists of two smooth functions
ρU :M → [0, 1] and ρV :M → [0, 1] satisfying

supp(ρU ) ⊂ U, supp(ρV ) ⊂ V, ρU + ρV ≡ 1.

Now let ω ∈ Ωk(U ∩ V ) and define ωU ∈ Ωk(U) and ωV ∈ Ωk(V ) by

ωU :=

{
−ρV ω on U ∩ V,
0 on U \ V, ωV :=

{
ρUω on U ∩ V,
0 on V \ U.

Then
j∗(ωU , ωV ) = ωV |U∩V − ωU |U∩V = ρUω + ρV ω = ω

as claimed. This proves the lemma.
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8.2.2 The Long Exact Sequence

The Mayer–Vietoris sequence (8.6) is an example of what is called a short
exact sequence in homological algebra in that it is short (five terms start-
ing and ending with zero), it is exact, and it consists of chain homomor-
phisms. Thus the following diagram commutes:

0 // Ωk+1(M)
i∗ // Ωk+1(U)⊕ Ωk+1(V )

j∗ // Ωk+1(U ∩ V ) // 0

0 // Ωk(M)
i∗ //

d

OO

Ωk(U)⊕ Ωk(V )
j∗ //

d

OO

Ωk(U ∩ V ) //

d

OO

0

.

Any such short exact sequence gives rise to a long exact sequence in
cohomology. The relevant boundary operator will be denoted by

d∗ : Hk(U ∩ V )→ Hk+1(M)

and it is defined as follows. Given a closed form ω ∈ Ωk(U ∩ V ) choose
a pair (ωU , ωV ) ∈ Ωk(U) ⊕ Ωk(V ) whose image under j∗ is ω; then the
pair (dωU , dωV ) belongs to the kernel of j∗, because ω is closed, and hence
belongs to the image of i∗, by exactness; hence there is a unique (k+1)-form
d∗ω ∈ Ωk+1(M) whose image under i∗ is the given pair (dωU , dωV ). Since
i∗d(d∗ω) = di∗(d∗ω) = d(dωU , dωV ) = 0 and i∗ is injective it follows that
d∗ω is closed. Moreover, one can check that the cohomology class of d∗ω is
independent of the choice of the pair (ωU , ωV ) used in this construction.

In the present setting we have an explicit formula for the operator d∗

coming from the proof of Lemma 8.14. Namely, we define an operator

d∗ : Ωk(U ∩ V )→ Ωk+1(M)

by

d∗ω :=

{
dρU ∧ ω on U ∩ V,
0 on M \ (U ∩ V ).

(8.7)

This operator is well defined because the 1-form dρU = −dρV is supported
in U ∩ V . Moreover, we have

d ◦ d∗ + d∗ ◦ d = 0

and hence d∗ assigns closed forms to closed forms and exact forms to ex-
act forms. Thus d∗ descends to a homomorphism on cohomology and the
reader may check that this is precisely the homomorphism defined by dia-
gram chasing as above.
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The homomorphisms on de Rham cohomology induced by i∗, j∗, d∗ give
rise to a long exact sequence

· · ·Hk(M)
i∗−→ Hk(U)⊕Hk(V )

j∗−→ Hk(U ∩ V )
d∗−→ Hk+1(M) · · · (8.8)

which is also called the Mayer–Vietoris sequence.

Theorem 8.15. The Mayer–Vietoris sequence (8.8) is exact.

Proof. That the composition of any two successive homomorphisms is zero
follows directly from the definitions.

We prove that ker d∗ = im j∗. Let ω ∈ Ωk(U ∩ V ) be a closed k-form
such that d∗[ω] = [d∗ω] = 0. Then the k-form d∗ω ∈ Ωk+1(M) is exact.
Thus there is a k-form τ ∈ Ωk(M) such that dτ = d∗ω or, equivalently,

dτ |U∩V = dρU ∧ ω, dτ |M\(U∩V ) = 0.

Define ωU ∈ Ωk(U) and ωV ∈ Ωk(V ) by

ωU := −ρV ω − τ |U , ωV := ρUω − τ |V .
Here it is understood that the form −ρV ω on U∩V is extended to all of U by
setting it equal to sero on U \V and the form ρUω on U∩V is extended to all
of V by setting it equal to zero on V \U . The k-forms ωU and ωV are closed
and hence determine cohomology classes [ωU ] ∈ Hk(U) and [ωV ] ∈ Hk(V ).
Moreover

ωV |U∩V − ωU |U∩V = ρUω + ρV ω = ω

and hence j∗([ωU ], [ωV ]) = [ω]. Thus we have proved that ker d∗ = im j∗.
We prove that ker j∗ = im i∗. Let ωU ∈ Ωk(U) and ωV ∈ Ωk(V ) be

closed k-forms such that j∗([ωU ][ωV ]) = 0. Then there is a (k − 1)-form
τ ∈ Ωk−1(U ∩ V ) such that

ωV |U∩V − ωU |U∩V = dτ.

By Lemma 8.14 there exist (k − 1)-forms τV ∈ Ωk−1(U) and τV Ω
k−1(V )

such that
τV |U∩V − τU |U∩V = τ.

Combining the last two equations we find that ωU−dτU agrees with ωV −dτV
on U ∩ V . Hence there is a global k-form ω ∈ Ωk(M) such that

ω|U = ωU − dτU , ω|V = ωV − dτV .
This form is obviously closed, its restriction to U is cohomologous to ωU ,
and its restriction to V is cohomologous to ωV . Hence i∗[ω] = ([ωU ], [ωV ]).
Thus we have proved that ker j∗ = im i∗.
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We prove that ker i∗ = im d∗. Let ω ∈ Ωk(M) be a closed k-form such
that i∗[ω] = 0. Then ω|U and ω|V are exact. Thus there are (k − 1)-forms
τU ∈ Ωk−1(U) and τV ∈ Ωk−1(V ) such that

dτU = ω|U , dτV = ω|V .

Hence the (k − 1)-form

τ := τV |U∩V − τU |U∩V ∈ Ωk−1(U ∩ V )

is closed. We prove that d∗[τ ] = [ω]. To see this, define σ ∈ Ωk−1(M) by

σ :=





ρUτU + ρV τV on U ∩ V,
ρUτU on U \ V,
ρV τV on V \ U.

Then
τU = −ρV τ + σ|U , τV = ρUτ + σ|V .

Here the form ρV τ on U ∩ V is again understood to be extended to all of U
by setting it equal to zero on U∩V and the form ρUτ on U∩V is understood
to be extended to all of V by setting it equal to zero on V \ U . Since τ is
closed we obtain

d∗τ =

{
−d(ρV τ) on U
d(ρUτ) on V

}
=

{
dτU − dσ|U on U
dτV − dσ|V on V

}
= ω − dσ.

Hence d∗[τ ] = [ω] as claimed. Thus we have proved that ker i∗ = im d∗ and
this completes the proof of the theorem.

Corollary 8.16. If M = U ∪ V is the union of two open sets such that the
deRham cohomology of U , V , U ∩ V is finite dimensional, then so is the
deRham cohomology of M .

Proof. By Theorem 8.15 the vector space Hk(M) is isomorphic to the direct
sum of the image of

d∗ : Hk−1(U ∩ V )→ Hk(M)

and the image of
i∗ : Hk(M)→ Hk(U)⊕Hk(V ).

As both summands are finite dimensional so is Hk(M). This proves the
corollary.
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8.2.3 Finite Good Covers

The previous result can be used to prove finite dimensionality of the deRham
cohomology for a large class of manifolds. A collection U = {Ui}i∈I of
nonempty open subsets Ui ⊂M is called a good cover if M =

⋃
i∈I Ui and

each intersection Ui0 ∩ · · · ∩Uik is either empty or diffeomorphic to R
m. U

is called a finite good cover if it is a good cover and I is a finite set. Note
that the existence of a good cover implies that M has no boundary.

Exercise 8.17. Prove that every compact m-manifold without boundary
has a finite good cover. Hint: Choose a Riemannian metric and cover M
by finitely many geodesic balls of radius at most half the injectivity radius.
Show that the intersections are all geodesically convex and use Exercise 8.18.

Exercise 8.18. Prove that every nonempty geodesically convex open subset
of a Riemannian m-manifold M without boundary is diffeomorphic to R

m.
Hint 1: Prove that it is diffeomorphic to a bounded star shaped open set
U ⊂ R

m centered at the origin, so that if x ∈ U then tx ∈ U for 0 ≤ t ≤ 1.
Hint 2: Prove that there is a smooth function g : R

m → R such that
g(x) > 0 for every x ∈ U , g(x) = 1 for |x| sufficiently small, and g(x) = 0
for x ∈ R

n \ U . Define h : U → [0,∞) by

h(x) :=

∫ 1

0

dt

g(tx)
.

Prove that the map φ : U → R
m, φ(x) := h(x)x, is a diffeomorphism.

Hint 3: There is a lower semicontinuous function f : Sm−1 → (0,∞]
such that U = Uf :=

{
rx |x ∈ Sm−1, 0 ≤ r < f(x)

}
. (Lower semicontinu-

ity is characterized by the fact that the set Uf is open.) The Moreau
envelopes of f are the functions

(enf)(x) := inf
y∈Sm−1

(
f(y) +

n

2
|x− y|2

)
.

They are continuous and real valued (unless f ≡ ∞) and they approximate f
pointwise from below. Use this to prove that there is a sequence of smooth
functions fn : Sm−1 → R satisfying 0 < fn < fn+1 < f for every n and
limn→∞ fn(x) = f(x) for every x. Construct a diffeomorphism from R

m to
Uf that maps the open ball of radius n diffeomorphically onto the set Ufn .

Exercise 8.19. Let M be a compact manifold with boundary. Prove that
M \ ∂M has a good cover. Hint: Choose a Riemannian metric on M that
restricts to a product metric in a tubular neighborhood of the boundary.
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Corollary 8.20. If M admits a finite good cover then its deRham cohomol-
ogy is finite dimensional.

Proof. The proof is by induction on the number of elements in the good
cover. If M has a good cover consisting of precisely one open set then M is
diffeomorphic to R

m and hence its deRham cohomology is one-dimensional
by Example 8.12. Now fix an integer n ≥ 2 and suppose, by induction, that
every smooth manifold that admits a good cover by at most n− 1 open sets
has finite dimensional deRham cohomology. Let M = U1 ∪U2 ∪ · · · ∪Un be
a good cover and denote

U := U1 ∪ · · · ∪ Un−1, V := Un.

Then U ∩ V has a good cover consisting of the open sets Ui ∩ Un for
i = 1, . . . , n − 1. Hence it follows from the induction hypothesis that the
manifolds U , V , U ∩ V have finite dimensional deRham cohomology. Thus,
by Corollary 8.16, the deRham cohomology of M is finite dimensional as
well. This proves the corollary.

Corollary 8.21. Every compact manifoldM has finite dimensional deRham
cohomology.

Proof. The manifoldM \∂M has a finite good cover and is homotopy equiv-
alent to M . (Prove this!) Hence the assertion follows from Corollary 8.5
and Corollary 8.20.

8.2.4 The Künneth Formula

Let M and N be smooth manifolds and consider the projections

M ×N πN //

πM
��

N

M

.

They induce a linear map

Ωk(M)⊗ Ωℓ(N)→ Ωk+ℓ(M ×N) : ω ⊗ τ 7→ π∗Mω ∧ π∗Nτ. (8.9)

If ω and τ are closed then so is π∗Mω∧π∗Nτ and if, in addition, one of the forms
is exact so is π∗Mω ∧ π∗Nτ . Hence the map (8.9) induces a homomorphism
on deRham cohomology

κ : H∗(M)⊗H∗(N)→ H∗(M ×N), κ([ω]⊗ [τ ]) := [π∗Mω ∧ π∗Nτ ]. (8.10)
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Theorem 8.22 (Künneth formula). If M and N have finite good covers
then κ is an isomorphism; thus

Hℓ(M ×N) ∼=
ℓ⊕

k=0

Hk(M)⊗Hℓ−k(N)

for every integer ℓ ≥ 0 and dimH∗(M ×N) = dimH∗(M) · dimH∗(N).

Proof. The proof is by induction on the number n of elements in a good
cover of M . If n = 1 then M is diffeomorphic to R

m. In this case it
follows from Example 8.6 that the projection πN :M ×N → N induces an
isomorphism π∗N : H∗(N)→ H∗(M×N) on deRham cohomology. Moreover,
by Example 8.12, we have H∗(Rm) = H0(Rm) = R and hence κ is an
isomorphism, as claimed.

Now fix an integer n ≥ 2 and assume, by induction, that the Küenneth
formula holds for M ×N whenever M admits a good cover by at most n−1
open sets. Suppose that M = U1 ∪U2 ∪ · · · ∪Un is a good cover and denote

U := U1 ∪ · · · ∪ Un−1, V := Un.

Then, by the induction hypothesis, the Künneth formula holds for U × N ,
V ×N , and (U ∩ V )×N . We abbreviate

H̃ℓ(M) :=

ℓ⊕

k=0

Hk(M)⊗Hℓ−k(N), Ĥℓ(M) := Hℓ(M ×N),

so that κ is a homomorphism from H̃ℓ(M) to Ĥℓ(M). Then the Mayer–
Vietoris sequence gives rise to the following commutative diagram:

H̃ℓ(M)
i∗ //

κ

��

H̃ℓ(U)⊕ H̃ℓ(V )
j∗ //

κ

��

H̃ℓ(U ∩ V )
d∗ //

κ

��

H̃ℓ+1(M)

κ

��

Ĥℓ(M)
i∗ // Ĥℓ(U)⊕ Ĥℓ(V )

j∗ // Ĥℓ(U ∩ V )
d∗ // Ĥℓ+1(M)

.

That the first two squares in this diagram commute is obvious from the
definitions. We examine the third square. It has the form

⊕ℓ
k=0H

k(U ∩ V )⊗Hℓ−k(N)
d∗ //

κ

��

⊕ℓ
k=0H

k+1(M)⊗Hℓ−k(N)

κ

��
Hℓ((U ∩ V )×N)

d∗ // Hℓ+1(M ×N)

.
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If ω ∈ Ωk(U ∩ V ) and τ ∈ Ωℓ−k(N) are closed forms we have

κd∗(ω ⊗ τ) = π∗Md
∗ω ∧ π∗Nτ

d∗κ(ω ⊗ τ) = d∗(π∗Mω ∧ π∗Nτ).
Recall that d∗ω ∈ Ωk+1(M) is given by dρU ∧ ω on U ∩ V and vanishes on
M \ (U ∩ V ), where ρU , ρV :M → [0, 1] are as in the proof of Lemma 8.14.
They also give rise to a partition of unity on M × N , subordinate to the
cover by the open sets U ×N and V ×N , and defined by

π∗MρU = ρU ◦ πM :M ×N → [0, 1],

π∗MρV = ρV ◦ πM :M ×N → [0, 1].

Using this partition of unity for the definition of the boundary operator

d∗ : Ωℓ((U ∩ V )×N)→ Ωℓ+1(M ×N)

in the Mayer–Vietoris sequence for M ×N , we obtain the equation

d∗κ(ω ⊗ τ) = d∗(π∗Mω ∧ π∗Nτ)
= d(π∗MρU ) ∧ π∗Mω ∧ π∗Nτ
= π∗M(dρU ∧ ω) ∧ π∗Nτ
= π∗Md

∗ω ∧ π∗Nτ
= κd∗(ω ⊗ τ).

on (U∩V )×N . Since both sides of this equation vanish on (M \(U∩V ))×N ,
we have proved that

d∗ ◦ κ = κ ◦ d∗.
Thus κ : H̃∗ → Ĥ∗ induces a commuting diagram of the Mayer–Vietoris
sequences for H̃∗ and Ĥ∗. The induction hypothesis asserts that κ is an
isomorphism for each of the manifolds U , V , and U ∩ V . Hence it follows
from the Five Lemma 8.23 below that it also is an isomorphism for M . This
completes the induction argument and the proof of the Künneth formula.

Lemma 8.23 (Five Lemma). Let

A
f1 //

α

��

B
f2 //

β
��

C
f3 //

γ

��

D
f4 //

δ
��

E

ε

��
A′

f ′1 // B′
f ′2 // C ′

f ′3 // D′
f ′4 // E′

.

be a commutative diagram of homomorphisms of abelian groups such that the
horizontal sequences are exact. If α, β, δ, ε are isomorphisms then so is γ.

Proof. Exercise.
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8.3 Compactly Supported Differential Forms

8.3.1 Definition and Basic Properties

LetM be anm-dimensional smooth manifold (possibly with boundary) and,
for every integer k ≥ 0, denote by Ωkc (M) the space of compactly supported
k-forms on M . (See Section 7.2.1.) Consider the cochain complex

Ω0
c(M)

d−→ Ω1
c(M)

d−→ Ω2
c(M)

d−→ · · · d−→ Ωmc (M).

The cohomology of this complex is called the compactly supported de-
Rham cohomology of M and will be denoted by

Hk
c (M) :=

ker d : Ωkc (M)→ Ωk+1
c (M)

im d : Ωk−1
c (M)→ Ωkc (M)

for k = 0, 1, . . . ,m.

Remark 8.24. If M is compact then every differential form on M has
compact support and hence Ω∗

c(M) = Ω∗(M) and H∗
c (M) = H∗(M).

Remark 8.25. The compactly supported deRham cohomology of a mani-
fold is not functorial. If f :M → N is a smooth map (between noncompact
manifolds) and ω ∈ Ωkc (N) is a compactly supported differential form on N
then

supp(f∗ω) ⊂ f−1(supp(ω)).

Thus f∗ω may not have compact support.

Remark 8.26. If f :M → N is proper in the sense that

K ⊂ N is compact =⇒ f−1(K) ⊂M is compact,

then pullback under f is a cochain map

f∗ : Ω∗
c(N)→ Ω∗

c(M)

and thus induces a homomorphism on compactly supported deRham co-
homology. By Corollary 7.31 the induced map on cohomology is invariant
under proper homotopies. Here it is not enough to assume that each map
ft in a homotopy is proper; one needs the condition that the homotopy
[0, 1] ×M → N : (t, p) 7→ ft(p) itself is proper.
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Remark 8.27. If ι : U → M is the inclusion of an open set then every
compactly supported differential form on U can be extended to a smooth
differential form on all of M by setting it equal to zero on M \ U . Thus
there is an inclusion induced cochain map

ι∗ : Ω
∗
c(U)→ Ω∗

c(M)

and a homomorphism on compactly supported deRham cohomology.

These remarks show that the compactly supported deRham cohomology
of a noncompact manifold behaves rather differently from the usual deRham
cohomology. This is also illustrated by the following examples.

Example 8.28. The compactly supported deRham cohomology of the 1-
manifold M = R is given by

H0
c (R) = 0, H1

c (R) = R.

That H0
c (R) = 0 follows from the fact that every compactly supported

function f : R → R with df = 0 vanishes identically. To prove H1
c (R) = R

we observe that a 1-form ω ∈ Ω1
c(R) can be written in the form

ω = g(x) dx,

where g : R→ R is a smooth function with compact support. Thus ω = df
where f : R → R is defined by f(x) :=

∫ x
−∞ g(t) dt. This function has

compact support if and only if the integral of g over R vanishes. Thus ω
belongs to the image of the operator d : Ω0

c(R) → Ω1
c(R) if and only if its

integral is zero. This is a special case of Theorem 7.38.

Example 8.29. If M is connected and not compact then every compactly
supported locally constant function on M vanishes and hence

H0
c (M) = 0.

Example 8.30. If M is a nonempty connected oriented smooth m-dimen-
sionnal manifold without boundary then

Hm
c (M) ∼= R.

An explicit isomorphism from Hm
c (M) to the reals is given by

Hm
c (M)→ R : [ω]→

∫

M
ω.

This map is surjective, because M is nonempty, and it is injective by Theo-
rem 7.38.
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Lemma 8.31. For every smooth m-manifold we have

Hk
c (M) ∼= Hk+1

c (M × R), k = 0, 1, . . . ,m.

Corollary 8.32. The compactly supported deRham cohomology of R
m is

given by

Hk
c (R

m) =

{
R, for k = m,
0, for k < m.

Proof. This follows from Example 8.28 by induction. The induction step
uses Example 8.29 for k = 0 and Lemma 8.31 for k > 0.

Proof of Lemma 8.31. As a warmup we consider the case M = R
m and use

the coordinates (t, x1, . . . , xm) on R × R
m. Then a (compactly supported)

k-form on R
m × R has the form

ω =
∑

|I|=k−1

αI(x, t)dx
I ∧ dt+

∑

|J |=k

βJ(x, t)dx
J ,

where the αI and βJ are smooth real valued functions on R
m × R (with

compact support). Fixing a real number t ∈ R we obtain differential forms

αt :=
∑

|I|=k−1

αI(x, t)dx
I ∈ Ωk−1

c (Rm),

βt :=
∑

|J |=k

βJ(x, t)dx
J ∈ Ωkc (R

m).

Going to the general case we see that a compactly supported differential
form ω ∈ Ωkc (R ×M) can be written as

ω = αt ∧ dt+ βt, (8.11)

where R→ Ωk−1
c (M) : t 7→ αt and R→ Ωkc (M) : t 7→ βt are smooth families

of differential forms on M such that the set

supp(ω) =
⋃

t∈R

(
supp(αt) ∪ supp(βt)

)
× {t}

is compact. The formula in local coordinates shows that the exterior differ-
ential of ω ∈ Ωkc (M × R) is given by

dω = dM×Rω =
(
dMαt + (−1)k∂tβt

)
∧ dt+ dMβt. (8.12)
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Choose a smooth function e : R→ R with compact support such that
∫ ∞

−∞
e(t) dt = 1

and define the operators

π∗ : Ω
k+1
c (R ×M)→ Ωkc (M), e∗ : Ω

k
c (M)→ Ωk+1

c (R ×M),

by

π∗ω :=

∫ ∞

−∞
αt dt, e∗α := e(t)α ∧ dt (8.13)

for ω = αt ∧ dt+ βt ∈ Ωk+1
c (M × R) and α ∈ Ωkc (M). Then it follows from

equation (8.12) that

π∗ ◦ d = dM ◦ π∗, e∗ ◦ dM = d ◦ e∗.
Hence π∗ and e∗ induce homomorphisms on compactly supported deRham
cohomology, still denoted by π∗ and e∗. We have the identity

π∗ ◦ e∗ = id

both on Ωkc (M) and on Hk
c (M). We prove that the composition e∗ ◦ π∗ is

chain homotopy equivalent to the identity, namely, that there is an operator

K : Ωk+1
c (M × R)→ Ωkc (M × R)

satisfying the identity

id− e∗ ◦ π∗ = (−1)k
(
d ◦K −K ◦ d

)
(8.14)

on Ωk+1
c (M × R). The operator K is given by

Kω := α̃t ∧ dt+ β̃t, α̃t := 0, β̃t :=

∫ t

−∞
αs ds−

∫ t

−∞
e(s) dsπ∗ω (8.15)

for ω = αt ∧ dt+ βt ∈ Ωk+1
c (M × R). Combining (8.12) and (8.15) we find

dKω = (−1)k (αt − e(t)π∗ω) ∧ dt+ dM
∫ t

−∞
αs ds−

∫ t

−∞
e(s) ds dMπ∗ω,

Kdω =

∫ t

−∞

(
dMαs + (−1)k+1∂sβs

)
ds−

∫ t

−∞
e(s) ds π∗dω

= (−1)k+1βt + dM
∫ t

−∞
αs ds −

∫ t

−∞
e(s) ds dMπ∗ω.

Hence

dKω −Kdω = (−1)k
(
αt ∧ dt+ βt − e(t)π∗ω ∧ dt

)
= (−1)k

(
ω − e∗π∗ω

)
.

This proves (8.14) and the lemma.
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8.3.2 The Mayer–Vietoris Sequence for H
∗
c

Let M be a smooth m-manifold and U, V ⊂ M be two open sets such that
U ∪ V =M . The Mayer–Vietoris sequence in this setting has the form

0←− Ωkc (M)
i∗←− Ωkc (U)⊕ Ωkc (V )

j∗←− Ωkc (U ∩ V )←− 0, (8.16)

where i∗ : Ωkc (U)⊕ Ωkc (V )→ Ωkc (M) and j∗ : Ω
k
c (U ∩ V )→ Ωkc (U)⊕ Ωkc (V )

are defined by

i∗(ωU , ωV ) := ωU + ωV , j∗ω := (−ω, ω)

for ωU ∈ Ωkc (U), ωV ∈ Ωkc (V ), and ω ∈ Ωkc (U ∩ V ). Here the first summand
in the pair (−ω, ω) ∈ Ωkc (U) ⊕ Ωkc (V ) is understood in the first component
as the extension of −ω to all of U by setting it zero on U \ V and in the
second component as the extension of ω to all of V by setting it zero on
V \ U . Likewise, the k-form ωU + ωV ∈ Ωkc (M) is understood as the sum
after extending ωU to all of M by setting it zero on V \U and extending ωV
to all of M by setting it zero on U \ V .

Lemma 8.33. The Mayer–Vietoris sequence (8.16) is exact.

Proof. That j∗ is injective is obvious. That the image of j∗ agrees with the
kernel of i∗ follows from the fact that if the sum of the compactly supported
differential form ωU ∈ Ωkc (U) and ωV ∈ Ωk(V ) vanishes on all of M , then
the compact set supp(ωV ) = supp(ωU ) is contained in U ∩ V .

We prove that i∗ is surjective. As in the proof of Lemma 8.14 we choose
a partition of unity subordinate to the cover M = U ∪ V , consisting of two
smooth functions ρU :M → [0, 1] and ρV :M → [0, 1] satisfying

supp(ρU ) ⊂ U, supp(ρV ) ⊂ V, ρU + ρV ≡ 1.

Let ω ∈ Ωkc (M) and define ωU ∈ Ωkc (U) and ωV ∈ Ωkc (V ) by

ωU := ρUω|U , ωV := ρV ω|V .

Then

i∗(ωU , ωV ) = ωU + ωV = ω.

This proves the lemma.
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As in Section 8.2 we have that i∗ and j∗ are cochain maps so that the
following diagram commutes

0 Ωk+1
c (M)oo Ωk+1

c (U)⊕ Ωk+1
c (V )

i∗oo Ωk+1
c (U ∩ V )

j∗oo 0oo

0 Ωkc (M)oo

d

OO

Ωkc (U)⊕ Ωkc (V )
i∗oo

d

OO

Ωkc (U ∩ V )
j∗oo

d

OO

0oo

.

The boundary operator

d∗ : H
k
c (M)→ Hk+1

c (U ∩ V )

for the long exact sequence is is defined as follows. Given a closed form
ω ∈ Ωkc (M) choose a pair (ωU , ωV ) ∈ Ωkc (U) ⊕ Ωkc (V ) whose image under
i∗ is ω; then the pair (dωU , dωV ) belongs to the kernel of i∗, because ω is
closed, and hence belongs to the image of j∗, by exactness; hence there is a
unique (k + 1)-form d∗ω ∈ Ωk+1

c (U ∩ V ) whose image under j∗ is the given
pair (dωU , dωV ). As before, this form is closed and its cohomology class in
Hk+1
c (U ∩ V ) is independent of the choice of the pair (ωU , ωV ) used in this

construction.
Again, there is an explicit formula for the operator d∗ coming from the

proof of Lemma 8.33. Namely, we define the linear map

d∗ : Ω
k
c (M)→ Ωk+1

c (U ∩ V ),

by
d∗ω := dρV ∧ ω|U∩V . (8.17)

This operator is well defined because the 1-form dρV = −dρU is supported
in U ∩ V . Moreover, we have

d ◦ d∗ + d∗ ◦ d = 0

and hence d∗ assigns closed forms to closed forms and exact forms to ex-
act forms. Thus d∗ descends to a homomorphism on cohomology and the
reader may check that this is precisely the homomorphism defined by dia-
gram chasing as above.

The homomorphisms on compactly supported deRham cohomology in-
duced by i∗, j∗, d∗ give rise to a long exact sequence

· · ·Hk
c (M)

i∗←− Hk
c (U)⊕Hk

c (V )
j∗←− Hk

c (U ∩ V )
d∗←− Hk−1

c (M) · · · (8.18)

which is also called the Mayer–Vietoris sequence.
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Theorem 8.34. The Mayer–Vietoris sequence (8.18) is exact.

Proof. That the composition of any two successive homomorphisms is zero
follows directly from the definitions.

We prove that ker d∗ = im i∗. Let ω ∈ Ωkc (M) be a closed compactly
supported k-form on M such that

d∗[ω] = 0.

Then there is a compactly supported k-form τ ∈ Ωkc (U ∩ V ) such that

dτ = d(ρV ω)|U∩V = −d(ρUω)|U∩V .

Define ωU ∈ Ωkc (U) and ωV |inΩkc (V ) by

ωU :=

{
ρUω + τ on U ∩ V,
ρUω on U \ V, ωV :=

{
ρV ω + τ on U ∩ V,
ρV ω on V \ U.

These forms are closed and have compact support. Moreover, ωU + ωV = ω
and hence i∗([ωU ], [ωV ]) = [ω]. Thus we have proved that ker d∗ = im i∗.

We prove that ker i∗ = im j∗. Let ωU ∈ Ωkc (U) and ωV ∈ Ωkc (V ) be
compactly supported closed k-forms such that

i∗([ωU ], [ωV ]) = 0.

Then there is a compactly supported (k − 1)-form τ ∈ Ωkc (M) such that

dτ =





ωU + ωV on U ∩ V,
ωU on U \ V,
ωV on V \ U.

It follows that the k-form

ω := ωV |U∩V − d(ρV τ)|U∩V = −ωU |U∩V + d(ρU τ)|U∩V ∈ Ωkc (U ∩ V )

has compact support in U ∩ V . Moreover, ω is closed and the pair

j∗(ω) =

({
−ω on U ∩ V,
0 on U \ V

}
,

{
ω on U ∩ V,
0 on V \ U

})
∈ Ωkc (U)⊕ Ωkc (V )

is cohomologous to (ωU , ωV ). Hence j∗([ω]) = ([ωU ], [ωV ]). Thus we have
proved that ker i∗ = im j∗.
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We prove that ker j∗ = im d∗. Let ω ∈ Ωkc (U ∩ V ) be a compactly
supported closed k-form such that

j∗([ω]) = 0.

Then there exist compactly supported (k − 1)-forms τU ∈ Ωk−1
c (U) and

τV ∈ Ωk−1
c (V ) such that

dτU :=

{
−ω on U ∩ V,
0 on U \ V, dτV :=

{
ω on U ∩ V,
0 on V \ U.

Define τ ∈ Ωk−1
c (M) and σ ∈ Ωk−1

c (U ∩ V ) by

τ :=





τU + τV on U ∩ V,
τU on U \ V,
τV on V \ U,

σ := ρV τU − ρUτV .

Then τ is closed and
ρV τ |U∩V = τV |U∩V + σ,

hence
d(ρV τ)|U∩V = dτV |U∩V + dσ = ω + dσ,

and hence
d∗[τ ] = [dρV ∧ τ |U∩V ] = [ω].

Thus we have proved that ker j∗ = im d∗. This proves the theorem.

The proof of Theorem 8.34 also follows from Lemma 8.33 and an abstract
general principle in homological algebra, namely, that every short exact
sequence of (co)chain complexes determines uniquely a long exact sequence
in (co)homology. In the proof of Theorem 8.34 we have established exactness
with the boundary map given by an explicit formula. The formulas for the
boundary maps d∗ and d∗ in the Mayer–Vietoris sequences will be useful in
the proof of Poincaré duality. The Mayer–Vietoris sequence for compactly
supported deRham cohomology can be used as before to establish finite
dimensionality and the Künneth formula. This is the content of the next
three corollaries.

Corollary 8.35. If M = U ∪ V is the union of two open sets such that the
compactly supported deRham cohomology of U , V , U ∩ V is finite dimen-
sional, then so is the compactly supported deRham cohomology of M .

Proof. The proof is exactly the same as that of Corollary 8.16.
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Corollary 8.36. If M admits a finite good cover then its compactly sup-
ported deRham cohomology is finite dimensional.

Proof. The proof is analogous to that of Corollary 8.20, using Corollary 8.32
instead of Example 8.12.

Corollary 8.37 (Künneth formula). If M and N have finite good covers
then the map Ωkc (M)⊗Ωℓc(N)→ Ωk+ℓc (M×N) : ω⊗τ 7→ π∗Mω∧π∗Nτ induces
an isomorphism

κ : H∗
c (M)⊗H∗

c (N)→ H∗
c (M ×N).

Thus
ℓ⊕

k=0

Hk
c (M)⊗Hℓ−k

c (N) ∼= Hℓ
c(M ×N)

for every integer ℓ ≥ 0 and

dimH∗
c (M ×N) = dimH∗

c (M) · dimH∗
c (N).

Proof. The proof is exactly the same as that of Theorem 8.22.

8.4 Poincaré Duality

8.4.1 The Poincaré Pairing

Let M be an oriented smooth m-dimensional manifold without boundary.
Then, for every integer k ∈ {0, 1, . . . ,m}, there is a bilinear map

Ωk(M)× Ωm−k
c (M) : (ω, τ) 7→

∫

M
ω ∧ τ. (8.19)

If ω and τ are closed and one of the forms ω and τ is exact (which in the
case of τ means that it is the exterior differential of a compactly supported
(m − k − 1)-form) then ω ∧ τ is the exterior differential of a compactly
supported (m − 1)-form and hence its integral vanishes, by Theorem 7.26.
This shows that the pairing (8.19) descends to a bilinear form on deRham
cohomology

Hk(M)×Hm−k
c (M) : ([ω], [τ ]) 7→

∫

M
ω ∧ τ. (8.20)

called the Poincaré pairing.
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Theorem 8.38 (Poincaré duality). Let M be an oriented smooth m-
dimensional manifold without boundary and suppose that M has a finite
good cover. Then the Poincaré pairing (8.20) is nondegenerate. This means
the following.

(a) If ω ∈ Ωk(M) is closed and

τ ∈ Ωm−k
c (M), dτ = 0 =⇒

∫

M
ω ∧ τ = 0

then ω is exact.

(b) If τ ∈ Ωm−k
c (M) is closed and

ω ∈ Ωk(M), dω = 0 =⇒
∫

M
ω ∧ τ = 0

then there is a σ ∈ Ωm−k−1
c (M) such that dσ = τ .

Remark 8.39. The assumption that ω is closed is not needed in (a) and the
assumption that τ is closed is not needed in (b). In fact if

∫
M ω∧dσ = 0 for

every σ ∈ Ωm−k−1
c (M) then, by Stoke’s Theorem 7.26, we have

∫
M dω∧σ = 0

for every σ ∈ Ωm−k−1
c (M) and hence dω = 0. Similarly for τ .

Remark 8.40. The Poincaré pairing (8.20) induces a homomorphism

PD : Hk(M)→ Hm−k
c (M)∗ = Hom(Hm−k

c (M),R) (8.21)

which assigns to the cohomology class of a closed k-form ω ∈ Ωk(M) the
homomorphism

Hm−k
c (M) −→ R : [τ ] 7→ PD([ω])([τ ]) :=

∫

M
ω ∧ τ.

Condition (a) says that the homomorphism PD is injective and, if Hm−k
c (M)

is finite dimensional, condition (b) says that PD is surjective. This last as-
sertion is an exercise in linear algebra. By Corollary 8.20 and Corollary 8.36
we know already that, under the assumptions of Theorem 8.38, both the
deRham cohomology and the compactly supported deRham cohomology of
M are finite dimensional. Thus the assertion of Theorem 8.38 can restated
in the form that PD : Hk(M) → Hm−k

c (M)∗ is an isomorphism for ev-
ery k. We say that a manifold M satisfies Poincaré duality if PD is an
isomorphism.
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Remark 8.41. The Poincaré pairing (8.20) also induces a homomorphism

PD∗ : Hm−k
c (M)→ Hk(M)∗ = Hom(Hk(M),R) (8.22)

which sends a class [τ ] ∈ Hm−k
c (M) to the homomorphism

Hk(M) −→ R : [ω] 7→ PD∗([τ ])([ω]) :=

∫

M
ω ∧ τ.

If both Hk(M) and Hm−k
c (M) are finite dimensional then (8.21) is bijective

if and only if (8.22) is bijective. However, in general these two assertions
are not equivalent. It turns out that the operator (8.21) is an isomorphism
for every oriented manifold M without boundary while (8.22) is not always
an isomorphism. (See [2, Remark 5.7].)

Remark 8.42. If M is compact without boundary then H∗
c (M) = H∗(M).

In this case the homomorphisms PD : Hk(M) → Hm−k(M)∗ in (8.21) and
PD∗ : Hk(M)→ Hm−k(M)∗ in (8.22) differ by a sign (−1)k(m−k).

Example 8.43. As a warmup we show that Poincaré duality holds for
M = R

m. That PD : Hk(Rm) → Hm−k
c (Rm)∗ is an isomorphism for k > 0

follows from the fact both cohomology groups vanish. (See Example 8.12
and Corollary 8.32.) For k = 0 the Poincaré pairing has the form

Ω0(Rm)× Ωmc (R
m) : (f, τ) 7→

∫

Rm

fτ.

If f ∈ Ω0(Rm) and
∫
M fτ = 0 for every compactly supported m-form on M

then f vanishes; otherwise f 6= 0 on some nonempty open set U ⊂ R
m and

we can choose
τ = ρfdx1 ∧ · · · ∧ dxm,

where ρ : Rm → R
+ is a smooth cutoff function with support in U such that

ρ(x) > 0 for some x ∈ U ; then
∫

Rm

fτ =

∫

Rm

f2(x)ρ(x)dx1 · · · dxm > 0,

a contradiction. Conversey, if τ ∈ Ωmc (R
m) is given such that

∫
Rm fτ = 0

for every constant function f :M → R then
∫

Rm

τ = 0

and hence it follows from Theorem 7.38 that there is a compactly supported
(m− 1)-form σ ∈ Ωm−1

c (Rm) such that dσ = τ .
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8.4.2 Proof of Poincaré Duality

Proof of Theorem 8.38. The proof is by induction on the number n of ele-
ments in a good cover of M . If n = 1 then M is diffeomorphic to R

m and
hence the assertion follows from Example 8.43. Now let n ≥ 2, suppose that

M = U1 ∪ · · · ∪ Un
is a good cover, and suppose that Poincaré duality holds for every oriented
m-manifold with a good cover by at most n − 1 open sets. Denote by
U, V ⊂M the open sets

U := U1 ∪ · · · ∪ Un−1, V := Un.

Then the induction hypothesis asserts that Poincaré duality holds for the
manifolds U , V , and U∩V . We shall prove thatM satisfies Poincaré duality
by considering simultaneously the Mayer–Vietoris sequences for H∗ and H∗

c

associated to the cover M = U ∪ V .
Thus we have commuting diagrams

Hk(M)
i∗−→ Hk(U)⊕Hk(V )

j∗−→ Hk(U ∩ V )
× × ×

Hm−k
c (M)

i∗←− Hm−k
c (U)⊕Hm−k

c (V )
j∗←− Hm−k

c (U ∩ V )
↓ ↓ ↓
R R R

(8.23)

and

Hk(U ∩ V )
d∗−→ Hk+1(M)

× ×
Hm−k
c (U ∩ V )

±d∗←− Hm−k−1
c (M)

↓ ↓
R R

(8.24)

Commutativity of the first square (8.23) asserts that, for all closed forms
ω ∈ Ωk(M) and τU ∈ Ωm−k

c (U), τV ∈ Ωm−k
c (V ) we have

∫

M
ω ∧ i∗(τU , τV ) =

∫

U
ω|U ∧ τU +

∫

V
ω|V ∧ τV .

This follows from the definition of i∗ : Ωm−k
c (U) ⊕ Ωm−k

c (V ) → Ωm−k
c (M).

(See (8.16).) Commutativity of the second square (8.23) asserts that, for all
closed forms ωU ∈ Ωk(U), ωV ∈ Ωm−k(V ), and τ ∈ Ωm−k

c (U ∩ V ) we have
∫

U
ωU ∧ (−τ) +

∫

V
ωV ∧ τ =

∫

U∩V
j∗(ωU , ωV ) ∧ τ.
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This follows from the definition of j∗ : Ωk(U) ⊕ Ωk(V ) → Ωk(U ∩ V ).
(See (8.6).) Commutativity of the diagram (8.24) asserts that, for all closed
forms ω ∈ Ωk(U ∩ V ) and τ ∈ Ωm−k−1

c (M), we have

±
∫

U∩V
ω ∧ d∗τ =

∫

M
d∗ω ∧ τ.

To see this, we recall that

d∗ω = dρV ∧ ω ∈ Ωk+1(M), d∗τ = dρU ∧ τ ∈ Ωm−k
c (U ∩ V ).

Here dρV ∧ω is extended to all ofM by setting it equal to zero onM\(U∩V ),
and dρU ∧ τ is restricted to U ∩ V where it still has compact support. Since
dρU + dρV = 0 we obtain

∫

M
d∗ω ∧ τ =

∫

U∩V
dρV ∧ ω ∧ τ

= (−1)k
∫

U∩V
ω ∧ dρV ∧ τ

= (−1)k+1

∫

U∩V
ω ∧ dρU ∧ τ

= (−1)k+1

∫

U∩V
ω ∧ d∗τ

as claimed. With the commutativity of (8.23) and (8.24) established, we
obtain a commuting diagram

Hk(M) //

PD

��

Hk(U)
⊕

Hk(V )

//

PD∼=
��

Hk(U ∩ V ) //

PD∼=

��

Hk+1(M)

PD

��
Hm−k
c (M)∗ //

Hm−k
c (U)∗

⊕
Hm−k
c (V )∗

// Hm−k
c (U ∩ V )∗ // Hm−k−1

c (M)

Since the horizontal sequences are exact and the Poincaré duality homo-
morphisms PD : H∗ → Hm−∗

c are isomorphisms for U , V , and U ∩ V , it
follows from the Five Lemma 8.23 that PD : H∗(M) → Hm−∗

c (M) is an
isomorphism as well. This proves the theorem.
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8.4.3 Poincaré Duality and Intersection Numbers

LetM be a compact oriented smooth m-manifold without boundary so that
the compactly supported deRham cohomology of M agrees with the usual
deRham cohomology. Then Theorem 8.38 asserts that every linear map φ :
Hm−k(M)→ R determines a unique deRham cohomology class [τ ] ∈ Hk(M)
such that φ([ω]) =

∫
M ω∧τ for every closed form ω ∈ Ωk(M). An important

class of examples of such homomorphisms φ arises from integration over
submanifolds, or more generally, from the integration of pullbacks under
smooth maps. More precisely, let P be a compact oriented manifold of
dimension dimP = m−k and let f : P →M be a smooth map. Then there
is a closed form τf ∈ Ωk(M), unique up to an additive exact form, such that

∫

M
ω ∧ τf =

∫

P
f∗ω (8.25)

for every closed form ω ∈ Ωm−k(M). This follows immediately from The-
orem 8.38 and Remark 8.41. Namely, the deRham cohomology class of τf
in Hk(M) is the inverse of the linear map Hm−k(M) → R : [ω] 7→

∫
P f

∗ω
under isomorphism PD∗ : Hk(M) → Hm−k(M)∗ in (8.22). The unique
deRham cohomology class [τf ] ∈ Hk(M) is called dual to f . We also call
each representative of this class dual to f . If Q ⊂M is a compact oriented
submanifold without boundary of dimension dimQ = m − ℓ we use this
construction for the obvious embedding of Q into M . Thus there is a closed
form τQ ∈ Ωℓ(M), unique up to an additive exact form, such that

∫

M
ω ∧ τQ =

∫

Q
ω (8.26)

for every closed form ω ∈ Ωm−ℓ(M). The unique deRham cohomology class
[τQ] ∈ Hℓ(M) of such a form as well as the forms τQ themselves are called
dual to Q. The next theorem relates the cup product to intersection theory.
The proof will be given in Section 9.2.4.

Theorem 8.44. Let M and P be compact oriented smooth manifolds with-
out boundary, f : P → M be a smooth map, and Q ⊂ M be a compact
oriented submanifold without boundary. Assume

dimP = m− k, dimQ = m− ℓ, dimM = m = k + ℓ

and let τf ∈ Ωk(M) and τQ ∈ Ωℓ(M) be closed forms dual to f and Q,
respectively. Then the intersection number of f and Q is given by

f ·Q =

∫

M
τf ∧ τQ =

∫

Q
τf = (−1)kℓ

∫

P
f∗τQ. (8.27)
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8.4.4 Euler Characteristic and Betti Numbers

The Betti numbers of a manifold are defined as the dimensions of the
deRham cohomology groups and are denoted by

bi := dimH i(M), i = 0, . . . ,m.

By Corollary 8.21 these numbers are finite whenever M is compact. Recall
that we have defined the Euler characteristic χ(M) of a compact manifold
M without boundary as the sum of the indices of a vector field with only
isolated zeros. The next theorem shows that this invariant agrees with the
alternating sum of the Betti numbers (under the assumption that M is
oriented). It shows also that the Lefschetz number of a smooth map form
M to itself (defined as the sum of the fixed point indices) can be expressed
in terms of the traces of the induced maps on deRham cohomology.

Theorem 8.45. Let M be a compact oriented smooth manifold without
boundary and let f : M → M be a smooth map. Then the Euler character-
istic of M is given by

χ(M) =

m∑

i=0

(−1)i dimH i(M) (8.28)

and the Lefschetz number of f is given by

L(f) =

m∑

i=0

(−1)itrace
(
f∗ : H i(M)→ H i(M)

)
. (8.29)

Proof. Choose closed differential forms

ωi ∈ Ωki(M), dωi = 0, i = 0, 1, . . . , n,

whose cohomology classes [ωi] form a basis of H∗(M). By Theorem 8.38
there is a dual basis

τj ∈ Ωm−kj(M), dτj = 0, j = 0, 1, . . . , n,

such that ∫

M
ωi ∧ τj = δij =

{
1, if i = j,
0, if i 6= j.

(Let ηj : H
kj (M)→ R be the linear functional that sends [ωi] to δij for each i

with ki = kj and choose a closed form τj ∈ Ωm−kj such that PD∗([τj ]) = ηj.)
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Now consider the manifold M ×M and denote by π1 : M ×M → M
and π2 :M ×M →M the projections onto the first and second factors. By
Theorem 8.22 the cohomology classes of the forms π∗1ωi ∧ π∗2τj form a basis
of the deRham cohomology of M×M . In particular, there are real numbers
cij ∈ R such that the cohomology class [τ∆] ∈ Hm(M ×M), dual to the
diagonal ∆ ⊂M ×M as in Section 8.4.3, can be expressed in the form

[τ∆] =
∑

i,j

cij [π
∗
1ωi ∧ π∗2τj]. (8.30)

We compute the coefficients cij by using the equation

∫

∆
ω =

∫

M×M
ω ∧ τ∆, ω := π∗1τℓ ∧ π∗2ωk,

If ι :M →M×M denotes the inclusion of the diagonal given by ι(p) := (p, p)
for p ∈M then π1 ◦ ι = π2 ◦ ι = id and hence

∫

∆
ω =

∫

M
ι∗(π∗1τk ∧ π∗2τℓ) =

∫

M
τℓ ∧ ωk = (−1)deg(ωk) deg(τℓ)δkℓ.

Moreover, by (8.30), we have

∫

M×M
ω ∧ τ∆ =

∑

i,j

cij

∫

M×M
π∗1τℓ ∧ π∗2ωk ∧ π∗1ωi ∧ π∗2τj

=
∑

i,j

cij(−1)deg(ωk) deg(ωi)

∫

M×M
π∗1τℓ ∧ π∗1ωi ∧ π∗2ωk ∧ π∗2τj

=
∑

i,j

cij(−1)deg(ωk) deg(ωi)

∫

M
τℓ ∧ ωi

∫

M
ωk ∧ τj

=
∑

i,j

cij(−1)deg(ωk) deg(ωi)(−1)deg(ωk) deg(τj )δiℓδjk

= (−1)deg(ωk) deg(ωℓ)(−1)deg(ωk) deg(τk)cℓk

Setting k = ℓ we find

ckℓ = (−1)deg(ωk)δkℓ

and hence, by (8.30),

[τ∆] =
∑

i

(−1)deg(ωi)[π∗1ωi ∧ π∗2τi]. (8.31)
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Now the Lefschetz number of f is given by

L(f) = graph(f) ·∆.
We can express this number in terms of Theorem 8.44 with M replaced by
the product manifold M ×M , with

Q = ∆ ⊂M ×M,

and with f : P →M replaced by the map

id× f :M →M ×M.

Since

π1 ◦ (id × f) = id :M →M, π2 ◦ (id× f) = f :M →M

we obtain

L(f) = graph(f) ·∆

= (−1)m
∫

M
(id× f)∗τ∆

= (−1)m
∑

i

(−1)deg(ωi)

∫

M
(id× f)∗(π∗1ωi ∧ π∗2τi)

= (−1)m
∑

i

(−1)deg(ωi)

∫

M
ωi ∧ f∗τi

=

m∑

k=0

(−1)k
∑

deg(τi)=k

∫

M
ωi ∧ f∗τi

=

m∑

k=0

(−1)ktrace
(
f∗ : Hk(M)→ Hk(M)

)
.

Here the last equation follows from the fact that

f∗τi =
∑

deg(τj)=k

aijτj, aij :=

∫

M
ωj ∧ f∗τi,

whenever deg(τi) = k, and hence

trace
(
f∗ : Hk(M)→ Hk(M)

)
=

∑

deg(τi)=k

aii =
∑

deg(τi)=k

∫

M
ωi ∧ f∗τi.

This proves (8.29). The Euler characteristic of M is equal to the Lefschetz
number of the identity map on M and hence (8.28) follows immediately
from (8.29). This proves the theorem.
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Remark 8.46. The zeta function of a smooth map

f :M →M

on a compact oriented m-manifold M without boundary (thought of as a
discrete-time dynamical system) is defined by

ζf (t) := exp

(
∞∑

n=1

L(fn)tn

n

)
, (8.32)

where
fn := f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸

n times

:M →M

denotes the nth iterate of f . By definition of the Lefschetz numbers (in
terms of an algebraic count of the fixed points) the zeta-function of f can be
expressed in terms a count of the periodic points of f , provided that they
are all isolated. If the periodic points of f are all nondegenerate then the
zeta-function of f can be written in the form

ζf (t) =

∞∏

n=1

∏

p∈Pn(f)/Zn

(1− ε(p, fn)tn)−ε(p,fn)ι(p,fn) , (8.33)

where Pn(f) denotes the set of periodic points with minimal period n and

ι(p, fn) := sign det(1l− dfn(p)),
ε(p, fn) := sign det(1l + dfn(p))

for p ∈ Pn(f). This formula is due to Ionel and Parker. One can use
Theorem 8.45 to prove that

ζf (t) =

m∏

i=0

det
(
1l− tf∗ : H i(M)→ H i(M)

)(−1)i+1

=
det
(
1l− tf∗ : Hodd(M)→ Hodd(M)

)

det (1l− tf∗ : Hev(M)→ Hev(M))
.

(8.34)

In particular, the zeta function is rational.

Exercise 8.47. Prove that the right hand side of (8.32) converges for t
sufficiently small. Prove the formulas (8.33) and (8.34). Hint: Use the
identities

det(1l− tA)−1 = exp

(
trace

(
∞∑

n=1

tnAn

n

))
, ι(p, fn) = ι(p, f)ε(p, f)n−1

for a square matrix A and t ∈ R sufficiently small, and for a fixed point p
of f that is nondegenerate for all iterates of f .
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8.4.5 Examples and Exercises

Example 8.48 (The DeRham Cohomology of the Torus). It follows
from the Künneth formula in Theorem 8.22 by induction that the deRham
cohomology of the m-torus

T
m = R

m/Zm ∼= S1 × · · · × S1
︸ ︷︷ ︸

m times

has dimension

dimHk(Tm) =

(
m

k

)
.

Hence every k-dimensional deRham cohomology class can be represented
uniquely by a k-form

ωc =
∑

1≤i1<···<ik≤m

ci1···ikdx
i1 ∧ · · · ∧ dxik

with constant coefficients. Thus the map c 7→ [ωc] defines an isomorphism

Λ∗(Rm)∗ → H∗(Tm).

This is an isomorphism of algebras with the exterior product on the left and
the cup product on the right.

Exercise 8.49. Show that a closed k-form ω ∈ Ωk(Tm) is exact if and only if
its integral vanishes over every compact oriented k-dimensional submanifold
of Tm. Hint: Given a closed k-form ω ∈ Ωk(Tm) choose c such that ω − ωc
is exact. Express the number ci1···ik as an integral of ω over a k-dimensional
subtorus of Tm.

Exercise 8.50. Prove that a 1-form ω ∈ Ω1(M) is exact if and only if its
integral vanishes over every smooth loop in M . Show that every connected
simply connected manifold M satisfies

H1(M) = 0.

Hint: Assume ω ∈ Ω1(M) satisfies
∫
S1 γ

∗ω = 0 for every smooth map
γ : S1 → M . Fix a point p0 ∈ M and define the function f : M → R

as follows. Given p ∈ M choose a smooth path γ : [0, 1] → M such that
γ(0) = p0 and γ(1) = p and define

f(p) :=

∫

[0,1]
γ∗ω.

Prove that the value f(p) does not depend on the choice of the path γ.
Prove that f is smooth. Prove that df = ω.
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Example 8.51 (The Genus of a Surface). Let Σ be a compact connected
oriented 2-manifold without boundary. Then Theorem 8.38 asserts that the
Poincaré pairing

H1(Σ)×H1(Σ)→ R : ([α], [β]) 7→
∫

Σ
α ∧ β

is nondegenerate. Since this pairing is skew-symetric it follows that H1(Σ)
is even dimensional. Hence there is a nonnegative integer g ∈ N0, called the
genus of Σ, such that

dimH1(Σ) = 2g.

Moreover, since Σ is connected, we have H0(Σ) = R and H2(Σ) = R (see
Theorem 7.38 or Theorem 8.38). Hence, by Theorem 8.45, the Euler char-
acteristic of Σ is given by

χ(Σ) = 2− 2g.

Thus the Euler characteristic is even and less than or equal to two. Since
the 2-sphere is simply connected we have H1(S2) = 0, by Exercise 8.50, and
hence the 2-sphere has genus zero and Euler characteristic two. This follows
also from the Poincaré–Hopf Theorem. By Example 8.48 the 2-torus has
genus one and Euler characteristic zero. This can again be derived from the
Poincaré–Hopf theorem because there is a vector field on the torus without
zeros. All higher genus surfaces have negative Euler characteristic. Exam-
ples of surfaces of genus zero, one, and two are depicted in Figure 8.1. By the
Gauss–Bonnet Formula only genus one surfaces can admit flat metrics. A
fundamental result in two dimensional differential topology is that two com-
pact connected oriented 2-manifolds without boundary are diffeomorphic if
and only if they have the same genus. A beautiful proof of this theorem,
based on Morse theory, is contained in the book of Hirsch [6].

g=2g=1g=0

Figure 8.1: The Genus of a Surface.
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Example 8.52 (The DeRham Cohomology of CPn). The deRham
cohomology of CPn is given by

Hk(CPn) =

{
R, if k is even,
0, if k is odd.

(8.35)

We explain the cup product structure on H∗(CPn) at the end of Chapter 9.

For CP1 ∼= S2 the formula (8.35) follows from Example 8.51. We prove
the general formula by induction on n. Take n ≥ 2 and suppose the assertion
has been proved for CPn−1. Consider the open subsets

U := CPn \ {[0 : · · · : 0 : 1]},
V := CPn \CPn−1 = {[z0 : · · · : zn−1 : zn] ∈ CPn | zn 6= 0} .

They cover CPn, the set V is diffeomorphic to C
n and the obvious inclusion

ι : CPn−1 → U is a homotopy equivalence. A homotopy inverse of the
inclusion is the projection π : U → CPn−1 given by

π([z0 : · · · : zn−1 : zn]) := [z0 : · · · : zn−1]

Then π ◦ ι = id : CPn−1 → CPn−1 and ι ◦ π : U → U is homotopic to the
identity by the homotopy ft : U → U given by

ft([z0 : · · · : zn−1 : zn) := [z0 : · · · : zn−1 : tzn]

with

f0 = ι ◦ π, f1 = id.

Hence the inclusion ι : CPn−1 → U induces an isomorphism on cohomology,
by Corollary 8.5, and the cohomology of V is isomorphic to that of Cn. Thus
it follows from the induction hypothesis and Example 8.12 that

Hk(U) =

{
R, if k is even,
0, if k is odd,

Hk(V ) =

{
R, if k = 0,
0, if k > 0.

Moreover, the intersection U ∩ V is diffeomorphic to C
n \ {0} and therefore

is homotopy equivalent to S2n−1. Thus, by Example 8.13, we have

Hk(V ) =





R, if k = 0,
0, if 1 ≤ k ≤ 2n− 2,
R, if k = 2n − 1.
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Hence, for 2 ≤ k ≤ 2n − 2, the Mayer–Vietoris sequence takes the form

Hk−1(U ∩ V )
d∗→ Hk(CPn)

i∗→ Hk(U)⊕Hk(V )
j∗→ Hk(U ∩ V )

‖ ‖ ‖ ‖
0 → Hk(CPn) → Hk(CPn−1) → 0

.

This sequence is exact, by Theorem 8.15. Hence the inclusion induced ho-
momorphism

ι∗ : Hk(CPn)→ Hk(CPn−1) (8.36)

is an isomorphism for 2 ≤ k ≤ 2n− 2. Since CPn is connected, we have

H0(CPn) = R.

Since CPn is simply connected, by Exercise 8.53 below, it follows from Ex-
ercise 8.50 that

H1(CPn) = 0.

(Exercise: Deduce this instead from the Mayer–Vietoris sequence.) Since
CPn is a complex manifold, it is oriented and therefore satisfies Poincaré
duality. Hence, by Theorem 8.38 we have

H2n(CPn) ∼= H0(CPn) = R, H2n−1(CPn) ∼= H1(CPn) = 0.

This proves (8.35) for all n. It also follows that the homomorphism (8.36)
is an isomorphism for 0 ≤ k ≤ 2n− 2.

Exercise 8.53. Prove that CPn is simply connected.

Exercise 8.54 (The DeRham Cohomology of RPm). Prove that the
deRham cohomology of RPm is

Hk(RPm) =





R, if k = 0,
0, if 1 ≤ k ≤ m− 1,
0, if k = m is even,
R, if k = m is odd.

In particular, RP2 has Euler characteristic one. Hint: RPm is oriented
if and only if m is odd. Prove that, up to homotopy, there is only one
noncontractible loop in RPm, and hence its fundamental group is isomorphic
to Z2. Use Exercise 8.50 to prove that H1(RPm) = 0 for m ≥ 2. Use an
induction argument and Mayer–Vietoris to prove that Hk(RPm) = 0 for
2 ≤ k ≤ m− 1.
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8.5 The Čech-deRham Complex

In Section 8.2 on the Mayer–Vietoris sequence we have studied the deRham
cohmology of a smooth manifold M by restricting global differential forms
on M to two open sets and differential forms on the two open sets to their
intersection and examining the resulting combinatorics. We have seen that
this technique is a powerful tool for understanding deRham cohomology
allowing us, for example, to prove finite dimensionality, derive the Künneth
formula, and establish Poincaré duality for compact manifolds in an elegant
manner. The Mayer–Vietoris principle can be carried over to covers ofM by
an arbitrarly many (or even infinitely many) open sets. Associated to any
open cover (of any topological space) is the Čech cohomology. In general,
this cohomology will depend on the choice of the cover. We shall prove that
the Čech cohomology of a good cover of a smooth manifold is isomorphic
to the deRham cohomology and hence is independent of the choice of the
good cover. This result is a key ingredient in the proof of deRham’s theorem
which asserts that the deRham cohomology of a manifold its isomorphic to
the singular cohomology with real coefficients.

8.5.1 The Čech Complex

Let M be a smooth manifold and

U = {Ui}i∈I

be an open cover of of M , indexed by a set I, such that

Ui 6= ∅

for every i ∈ I. The combinatorics of the cover U is encoded in the sets of
multi-indices associated to nonempty intersections, denoted by

Ik(U ) :=
{
(i0, . . . , ik) ∈ Ik |Ui0 ∩ · · · ∩ Uik 6= ∅

}

for every nonnegative integer k. The permutation group Sk+1 of bijections
of the set {0, 1, . . . , k} acts on the set Ik(U ) and the nonempty intersections
of k + 1 sets in U correspond to orbits under this action: reordering the
indices doesn’t change the intersection. We shall consider ordered nonempty
intersections up to even permutations; the convention is that odd permuta-
tions act by a sign change on the data associated to an ordered nonempty
intersection.
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The simplest way of assigning a cochain complex to these data is to
assign a real number to each ordered nonempty intersection of k + 1 sets
in U . Thus we assign a real number ci0···ik to each ordered (k + 1)-tuple
(i0, . . . , ik) ∈ Ik(U ) with the convention that the sign changes under every
odd reordering of the indices. In particular, the number ci0···ik is zero when-
ever there is any repetition among the indices and is undefined whenever
Ui0 ∩ · · · ∩ Uik = ∅. Let Ck(U ,R) denote the real vector space of all tuples

c = (ci0···ik)(i0,...,ik)∈I(U ) ∈ R
Ik(U )

that satisfy the condition

ciσ(0)···iσ(k)
= ε(σ)ci0···ik

for σ ∈ Sk+1 and (i0, . . . , ik) ∈ Ik(U ). These spaces determine a cochain
complex

C0(U ,R)
δ−→ C1(U ,R)

δ−→ C2(U ,R)
δ−→ C3(U ,R)

δ−→ · · · . (8.37)

called the Čech complex of the open cover U with real coefficients.
The boundary operator δ : Ck(U ,R)→ Ck+1(U ,R) is defined by

(δc)i0 ···ik+1
:=

k+1∑

ν=0

(−1)νci0···biν ···ik+1
(8.38)

for c = (ci0···ik)(i0,...,ik)∈I(U ) ∈ Ck(U ,R).

Example 8.55. A Čech 0-cochain c ∈ C0(U ,R) assign a real number ci to
every open set Ui, a Čech 1-cochain c ∈ C1(U ,R) assigns a real number cij
to every nonempty ordered intersection Ui ∩ Uj such that

cij = −cji
and a Čech 2-cochain c ∈ C2(U ,R) assigns a real number cijk to every
nonempty ordered triple intersection Ui ∩ Uj ∩ Uk such that

cijk = −cjik = −cikj.
The boundary operator δ assigns to a 0-cochain c = (ci)i∈I the 1-cochain

(δc)ij = cj − ci, Ui ∩ Uj 6= ∅,
and it assigns to every 1-cochain c = (cij)(i,j)∈I1(U ) the 2-cochain

(δc)ijk = cjk + cki + cij , Ui ∩ Uj ∩ Uk 6= ∅.
One verifies immediately that δ ◦ δ = 0. This continues to hold in general
as the next lemma shows.
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Lemma 8.56. The image of the linear map δ : Ck(U ,R) → R
Ik+1(U ) is

contained in the subspace Ck+1(U ,R) and δ ◦ δ = 0.

Proof. The first assertion is left as an exercise for the reader. To prove the
second assertion we choose a k-cochain c ∈ Ck(U ,R) and a multi-index
(i0, . . . , ik+2) ∈ Ik+2(U ) and compute

δ(δc)i0 ···ik+2
=

k+2∑

ν=0

(−1)ν(δc)i0 ···biν ···ik+1

=
∑

0≤µ<ν≤k+2

(−1)ν+µci0··· biµ······biν ···ik+1

+
∑

0≤ν<µ≤k+2

(−1)ν+µ−1ci0···biν ······ biµ···ik+1

= 0.

This proves the lemma.

The cohomology of the Čech complex (8.37) is called the Čech coho-
mology of U with real coefficients and will be denoted by

Hk(U ,R) :=
ker δ : Ck(U ,R)→ Ck+1(U ,R)

im δ : Ck−1(U ,R)→ Ck(U ,R)
. (8.39)

This beautiful and elementary combinatorial construction works for every
open cover of every topological space M and immediately gives rise to the
following fundamental questions.

Question 1: To what extent does the Čech cohomology H∗(U ,R) depend
on the choice of the open cover?

Question 2: If M is a manifold, what is the relation between H∗(U ,R)
and the deRham cohomology H∗(M) (or any other (co)homology theory)?

Example 8.57. The Čech cohomology group H0(U ,R) is the kernel of
the operator δ : C0(U ,R) → C1(U ,R) and hence consists of all tuples
c = (ci)i∈I that satisfy ci = cj whenever Ui ∩ Uj 6= ∅. This shows that,
for every Čech 0-cocycle c = (ci)i∈I ∈ H0(U ,R), there is a locally constant
function f :M → R such that f |Ui

≡ ci for every i ∈ I. If each open set Ui
is connected H0(U ,R) is the vector space of all locally constant real valued
functions on M and hence

H0(U ,R) = R
π0(M) = H0(M),

where π0(M) is the set of components of M and H0(M) is the deRham
cohomology group. On the other hand, if U consists only of one open set
U =M , then H0(U ,R) = R is the set of globally constant functions on M .



8.5. THE ČECH-DERHAM COMPLEX 89

8.5.2 The Isomorphism

Let M be a smooth manifold and U = {Uo}i∈I be an open cover of M . We
show that there is a natural homomorphism from the Čech cohomology of U

to the deRham cohomology of M . The definition of the homomorphism on
the cochain level depends on the choice of a partition of unity ρi :M → [0, 1]
subordinate to the cover U = {Ui}i∈I . Define the linear map

Ck(U ,R)→ Ωk(M) : c 7→ ωc (8.40)

by

ωc :=
∑

(i0,...,ik)∈Ik(U )

ci0···ikρi0dρi1 ∧ · · · ∧ dρik . (8.41)

for c ∈ Ck(U ,R).

Lemma 8.58. The map (8.40) is a chain homomorphism and hence induces
a homomorphism on cohomology

H∗(U ,R)→ H∗(M) : [c] 7→ [ωc]. (8.42)

Proof. It will sometimes be convenient to set ci0···ik := 0 for c ∈ Ck(U ,R)
and (i0, . . . , ik) ∈ Ik+1 \ Ik(U ). We prove that the map (8.40) is a chain
homomorphism. For c ∈ Ck(U ,R) we compute

ωδc =
∑

(i0,...,ik+1)∈Ik+1(U )

(δc)i0 ···ik+1
ρi0dρi1 ∧ · · · ∧ dρik+1

=
∑

(i0,...,ik+1)∈Ik+1(U )

k+1∑

ν=0

(−1)νci0···biν ···ik+1
ρi0dρi1 ∧ · · · ∧ dρik+1

=
∑

(i0,...,ik+1)∈Ik+2

ci1···ik+1
ρi0dρi1 ∧ · · · ∧ dρik+1

+

k+1∑

ν=1

(−1)ν
∑

(i0,...,ik+1)∈Ik+2

ci0···biν ···ik+1
ρi0dρi1 ∧ · · · ∧ dρik+1

=
∑

(i1,...,ik+1)∈Ik+1

ci1···ik+1
dρi1 ∧ · · · ∧ dρik+1

= dωc.

Here we have used the fact that the respective summand vanishes when-
ever (i0, . . . , ik+1) /∈ Ik+1(U ) and that

∑
i∈I dρi = 0 and

∑
i∈I ρi = 1.

Thus (8.40) is a chain map and this proves the lemma.
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Remark 8.59. Let c ∈ Ck(U ,R) such that δc = 0. Then, for all tuples
(i, j, i1, . . . , ik) ∈ Ik+1(U ), we have

cii1···ik = cji1···ik −
k∑

ν=1

(−1)νciji1···biν ···ik

Multiply by ρjdρi1 ∧ · · · dρik and restrict to Ui. Since ρjdρi1 ∧ · · · ∧ dρik
vanishes on Ui whenever (i, j, i1, . . . , ik) /∈ Ik+1(U ), the resulting equation
continues to hold for all tuples (i, j, i1, . . . , ik) ∈ Ik+2. Fixing i and taking
the sum over all tuples (j, i1, . . . , ik) ∈ Ik+1 we find

δc = 0 =⇒ ωc|Ui
=

∑

(i1,...,ik)∈Ik

cii1···ikdρi1 ∧ · · · ∧ dρik . (8.43)

This gives another proof that ωc is closed whenever δc = 0.

The next theorem is the main result of this section. It answers the above
questions under suitable assumptions on the cover U .

Theorem 8.60. If U is a good cover of M then (8.42) is an isomorphism
from the Čech cohomology of U to the deRham cohomology of M

The proof of Theorem 8.60 will in fact show that, under the assumption
that U is a good cover, the homomorphism (8.42) on cohomology is inde-
pendent of the choice of the partition of unity used to define it. Moreover,
we have the following immediate corollary.

Corollary 8.61. The Čech cohomology groups with real coefficients associ-
ated to two good covers of a smooth manifold are isomorphic.

If U is a finite good cover the Čech complex C∗(U ,R) is finite dimen-
sional and hence, so is its cohomology H∗(U ,R). Combining this observa-
tion with Theorem 8.60 we obtain another proof that the deRham cohomol-
ogy is finite dimensional as well.

Corollary 8.62. If a smooth manifold admits a finite good cover then its
deRham cohomology is finite dimensional.

Following Bott and Tu [2] we explain a proof of Theorem 8.60 that is
based on a Mayer–Vietoris argument and involves differential forms of all
degrees on the open sets in the cover and their intersections. Thus we build
a cochain complex that contains both the deRham complex and the Čech
complex as subcomplexes.
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8.5.3 The Čech–deRham Complex

Associated to the open cover U = {Ui}i∈I of ourm-manifoldM is a cochain
complex defined as follows. Given two nonnegative integers k and p we
introduce the vector space

Ck(U ,Ωp)

of all tuples

ω = (ωi0···ik)(i0,...,ik)∈Ik(U ) , ωi0···ik ∈ Ωp(Ui0 ∩ · · · ∩ Uik),

that satisfy ωiσ(0)···iσ(k)
= ε(σ)ωi0···ik for σ ∈ Sk+1 and (i0, . . . , ik) ∈ Ik(U ).

This complex carries two boundary operators

δ : Ck(U ,Ωp)→ Ck+1(U ,Ωp), d : Ck(U ,Ωp)→ Ck(U ,Ωp+1)

defined by

(δω)i0···ik+1
:=

k+1∑

ν=0

(−1)νωi0···biν ···ik+1
, (dω)i0···ik+1

:= dωi0···ik+1
. (8.44)

They satisfy the equations

δ ◦ δ = 0, δ ◦ d = d ◦ δ, d ◦ d = 0. (8.45)

Here the first equation is proved by the same argument as in Lemma 8.56, the
second equation is obvious, and the third equation follows from Lemma 7.21.

The complex is equipped with a double grading by the integers k and p.
The total grading is defined by

deg(ω) := k + p, ω ∈ Ck(U ,Ωp),

and the degree-n part of the complex will be denoted by

Čn(U ) :=
⊕

k+p=n

Ck(U ,Ωp).

We write ωk,p for the projection of ω ∈ Č
s
(U ) onto Ck(U ,Ωp). The double

graded complex carries a boundary operator

D : Čn(U )→ Čn+1(U )

defined by
(Dω)k,p := δωk−1,p + (−1)kdωk,p−1 (8.46)

for ω ∈ Čn(U ) and nonnegative integers k and p satisfying k + p = n + 1.
The sign can be understood as arising from interchanging d and k.



92 CHAPTER 8. DE RHAM COHOMOLOGY

Lemma 8.63. The operator (8.46) satisfies D ◦D = 0.

Proof. Let ω ∈ Čn(U ) and choose k and p such that k + p = n+ 2. Then

(D(Dω))k,p = δ(Dω)k−1,p + (−1)kd(Dω)k,p−1

= δ
(
δωk−2,p + (−1)k−1dωk−1,p−1

)

+(−1)kd
(
δωk−1,p−1 + (−1)kdωk,p−2

)

= δδωk−2,p + (−1)k(dδ − δd)ωk−1,p−1 + ddωk,p−2

= 0.

The last equation follows from (8.45) and this proves the lemma.

The complex (Č∗(U ),D) is called the Čech–deRham complex of the
cover U and its cohomology

Ȟn(U ) :=
ker D : Čn(U )→ Čn+1(U )

im D : Čn−1(U )→ Čn(U )
. (8.47)

is called the Čech–deRham cohomology of U . There are natural cochain
homomorphisms

ι : Ck(U ,R)→ Ck(U ,Ω0) ⊂ Čk(U ),

r : Ωp(M)→ C0(U ,Ωp) ⊂ Čp(U ).
(8.48)

The operator ι is the inclusion of the constant functions and r is the restric-
tion defined by (rω)i := ω|Ui

for i ∈ I. The maps r, δ, ι, d are depicted in
the following diagram. We will prove that all rows except for the first and
all columns except for the first are exact in the case of a good cover.

0 //

��

Ω0(M)

r

��

d // Ω1(M)

r

��

d // Ω2(M)

r

��

d // · · ·

C0(U ,R)
ι //

δ
��

C0(U ,Ω0)

δ
��

d // C0(U ,Ω1)

δ
��

d // C0(U ,Ω1)

δ
��

d // · · ·

C1(U ,R)
ι //

δ
��

C1(U ,Ω0)

δ
��

d // C1(U ,Ω1)

δ
��

d // C1(U ,Ω1)

δ
��

d // · · ·

C2(U ,R)
ι //

δ
��

C2(U ,Ω0)

δ
��

d // C2(U ,Ω1)

δ
��

d // C2(U ,Ω1)

δ
��

d // · · ·

...
...

...
...

.
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Lemma 8.64. The sequence

0→ Ωp(M)
r→ C0(U ,Ωp)

δ→ C1(U ,Ωp)
δ→ C2(U ,Ωp)

δ→ · · · (8.49)

is exact for every integer p ≥ 0. If U is a good cover of M then the sequence

0→ Ck(U ,R)
ι→ Ck(U ,Ω0)

d→ Ck(U ,Ω1)
d→ Ck(U ,Ω2)

d→ · · · (8.50)

is exact for every integer k ≥ 0.

Proof. For the sequence (8.50) exactness follows immediately from Exam-
ple 8.12 and the good cover condition. For the sequence (8.49) the good
cover condition is not required. Exactness at C0(U ,Ωp) follows directly
from the definitions. To prove exactness at Ck(U ,Ωp) for k ≥ 1 we choose
a partition of unity ρi : M → [0, 1] subordinate to the cover U = {Ui}i∈I .
For k ≥ 1 define the operator

h : Ck(U ,Ωp)→ Ck−1(U ,Ωp)

by

(hω)i0···ik−1
:=
∑

i∈I

ρiωii0···ik−1
(8.51)

for ω ∈ Ck(U ,Ωp) and (i0, . . . , ik−1) ∈ Ik−1(U ), where each term in the
sum is understood as the extension to the open set Ui0 ∩ · · · ∩Uik by setting
it equal to zero on the complement of Ui ∩ Ui0 ∩ · · · ∩ Uik . We prove that

δ ◦ h+ h ◦ δ = id : Ck(U ,Ωp)→ Ck(U ,Ωp) (8.52)

for k ≥ 1. This shows that if ω ∈ Ck(U ,Ωp) satisfies δω = 0 then ω = δhω
belongs to the image of δ. To prove (8.52) we compute

(hδω)i0 ···ik =
∑

i∈I

ρi(δω)ii0···ik

=
∑

i∈I

ρi

(
ωi0···ik −

k∑

ν=0

(−1)νωii0···biν ···ik

)

= ωi0···ik −
k∑

ν=0

(−1)ν
∑

i∈I

ρiωii0···biν ···ik

= ωi0···ik −
k∑

ν=0

(−1)ν(hω)i0···biν ···ik

=
(
ω − δhω

)
i0···ik

for ω ∈ Ck(U ,Ωp) and (i0, . . . , ik) ∈ Ik(U ). This proves (8.52) and the
lemma.
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Theorem 8.65. Let U be a good cover of M . Then the homorphism

r : Ω∗(M)→ Č∗(U ), ι : C∗(U ,R)→ Č∗(U )

induce isomorphism

r∗ : H∗(M)→ Ȟ∗(U ), ι∗ : H∗(U ,R)→ Ȟ∗(U )

on cohomology.

Proof. We prove that r is injective in cohomology. Let ω ∈ Ωp(M) be
closed and assume that ω0,p := rω = (ω|Ui

)i∈I ∈ C0(U ,Ωp) ⊂ Čp(U ) is
exact. Then there are elements τk−1,p−k ∈ Ck−1(U , ωp−k), k = 1, . . . , p,
such that rω = Dτ :

ω0,p = dτ0,p−1,

0 = δτk−1,p−k + (−1)kdτk,p−k−1, k = 1, . . . , p− 1,

0 = δτp−1,0.

(8.53)

We must prove that ω is exact. To see this we observe that there are elements
σk−2,p−k ∈ Ck−2(U ,Ωp−k), p ≥ k ≥ 2, satisfying

δσp−2,0 = τp−1,0,

δσk−2,p−k = τk−1,p−k + (−1)kdσk−1,p−k−1, p− 1 ≥ k ≥ 2.
(8.54)

The existence of σp−2,0 follows immediately from the last equation in (8.53)
and Lemma 8.64. If 2 ≤ k ≤ p− 1 and σk−1,p−k−1 has been found such that

δσk−1,p−k−1 = τk,p−k−1 + (−1)k+1dσk,p−k−2,

we have dδσk−1,p−k−1 = dτk,p−k−1 and hence

δ
(
τk−1,p−k + (−1)kdσk−1,p−k−1

)
= δτk−1,p−k + (−1)kdτk,p−k−1 = 0.

Here the last equation follows from (8.53). Thus, by Lemma 8.64, there is
an element σk−2,p−k satisfying (8.54).

It follows from (8.53) with k = 1 that δτ0,p−1 = dτ1,p−2 and from (8.54)
with k = 2 that τ1,p−2 + dσ1,p−3 = δσ0,p−2. Hence

δ
(
τ0,p−1 − dσ0,p−2

)
= δτ0,p−1 − dτ1,p−2 = 0,

d
(
τ0,p−1 − dσ0,p−2

)
= dτ0,p−1 = ω0,p.

(8.55)

The first equation in (8.55) shows that there is a global (p − 1)-form τ̃
on M whose restriction to Ui agrees with the relevant component of the
Čech–deRham cochain τ0,p−1 − dσ0,p−2 ∈ C0(U ,Ωp−1). The second equa-
tion in (8.55) shows that dτ̃ = ω. Hence ω is exact, as claimed.
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We prove that r is surjective in cohomology. Let ωk,p−k ∈ Ck(U ,Ωp−k)
be given for k = 0, . . . , p and suppose that Dω = 0:

0 = dω0,p,

0 = δωk,p−k + (−1)k+1dωk+1,p−k−1, k = 0, . . . , p− 1,

0 = δωp,0.

(8.56)

We construct elements τk−1,p−k ∈ Ck−1(U ,Ωp−k), k = 1, . . . , p, satisfying

δτp−1,0 = ωp,0,

δτk−1,p−k = ωk,p−k + (−1)k+1dτk,p−k−1, k = 1, . . . , p− 1.
(8.57)

The existence of τp−1,0 follows immediately from the last equation in (8.56)
and Lemma 8.64. If 1 ≤ k ≤ p− 1 and τk,p−k−1 has been found such that

δτk,p−k−1 = ωk+1,p−k−1 + (−1)k+2dτk+1,p−k−1,

we have dδτk,p−k−1 = dωk+1,p−k−1 and hence

δ
(
ωk,p−k + (−1)k+1dτk,p−k−1

)
= δωk,p−k + (−1)k+1dωk+1,p−k−1 = 0.

Here the last equation follows from (8.56). By exactness, this shows that
there is an element τk−1,p−k satisfying (8.57). It follows from (8.57) that

(ω −Dτ)0,p = ω0,p − dτ0,p−1,

(ω −Dτ)k,p−k = ωk,p−k − δτk−1,p−k − (−1)kdτk,p−k−1 = 0,

(ω −Dτ)p,0 = ωp,0 − δτp−1,0 = 0

(8.58)

for k = 1, . . . , p − 1. Moreover, it follows from (8.56) with k = 0 that
δω0,p = dω1,p−1 and from (8.57) with k = 1 that δτ0,p−1 = dτ1,p−2. Hence

δ(ω −Dτ)0,p = δ
(
ω0,p − dτ0,p−1

)

= d
(
ω1,p−1 − δτ0,p−1

)

= d
(
−dτ1,p−2

)

= 0.

This shows there is a global p-form ω̃ on M whose restriction to Ui agrees
with the relevant component of ω0,p − dτ0,p−1 ∈ C0(U ,Ωp). This form is
closed and satisfies rω̃ = ω − Dτ , by (8.58). Hence the cohomology class
of ω in Ȟp(U ) belongs to the image of r∗ : Hp(M)→ Ȟp(U ).

Thus we have proved that r∗ : H∗(M) → Ȟ∗(U ) is an isomorphism.
The proof that ι∗ : H∗(U ,R) → Ȟ∗(U ) is an isomorphism as well follows
by exactly the same argument with the rows and columns in our diagram
interchanged.



96 CHAPTER 8. DE RHAM COHOMOLOGY

Proof of Theorem 8.60. Recall that the linear map

h : Ck(U ,Ωp)→ Ck−1(U ,Ωp)

in (8.51) has the form (hω)i0···ik−1
=
∑

i∈I ρiωii0···ik−1
, and define the map

Φ : Ck(U ,Ωp)→ Ck−1(U ,Ωp+1)

by

(Φω)i0···ik−1
:= (−1)k

∑

i∈I

dρi ∧ ωii0···ik−1
=
∑

i∈I

dρi ∧ ωi0···ik−1i

for ω ∈ Ck(U ,Ωp−k). The product with dρi guarantees that each summand
on the right extends smoothly to Ui0···ik−1

by setting it equal to zero on the
complement of the intersection with Ui. These two operators satisfy

id = δ ◦ h+ h ◦ δ, −Φ =
(
(−1)k−1d

)
◦ h+ h ◦

(
(−1)kd

)

on Ck(U ,Ωp−k). Here the first equation is (8.52) and the second equation
follows directly from the definitions. Combining these two equations we find

id− Φ = D ◦ h+ h ◦D.
Thus Φ induces the identity on Ȟk(U ).

Starting with p = 0 and iterating the operator k times we obtain a
homomorphism

Φk = Φ ◦ Φ ◦ · · · ◦Φ︸ ︷︷ ︸
k times

: Ck(U ,Ω0)→ C0(U ,Ωk),

inducing the identity on Ȟk(U ). This operator assigns to every element
f = (fi0···ik)(i0···ik)∈Ik(U ) ∈ Ck(U ,Ω0) the tuple Φkf ∈ C0(U ,Ωk) given by

(Φkf)i =
∑

(i1,...,ik)∈Ik(U )

fii1...ikdρi1 ∧ · · · ∧ dρik ∈ Ωk(Ui).

Hence, by Remark 8.59, the following diagram commutes on the kernel of δ:

Ck(U ,R) ⊃ ker δ

ι

��

c 7→ωc // Ωk(M)

r

��
Ck(U ,Ω0)

Φk
// Ck(U ,Ωk)

.

Since Φk induces the identity on Čech–DeRham cohomology, we deduce that
the composition of the homomorphism Hk(U ,R) → H∗(M) : [c] 7→ [ωc]
in (8.42) with r∗ : H∗(M) → Ȟk(U ) is equal to ι∗ : Hk(U ,R) → Ȟk(U ).
Hence it follows from Theorem 8.65 that the homomorphism (8.42) is an
isomorphism. This proves the theorem.
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8.5.4 Product Structures

The Čech complex of an open cover U = {Ui}i∈I is equipped with a cup
product. The definition of this product structure is quite straight forward,
however, it requires the choice of an order relation ≺ on the index set I.
Given such an ordering, each cochain

ω = (ωi0···ik)(i0,...,ik)∈Ik(U ) ∈ Ck(U ,Ωp)

is uniquely determined by the elements ωi0···ik for those tuples that satisfy
i0 ≺ i1 ≺ · · · ≺ ik. All the other elements are then determined by the
equivariance condition under the action of the permutation group Sk+1.

Definition 8.66. The cup product on C∗(U ,Ω∗) is the bilinear map

Ck(U ,Ωp)× Cℓ(U ,Ωq)→ Ck+ℓ(U ,Ωp+q) : (ω, τ) 7→ ω ∪ τ

defined by
(ω ∪ τ)i0···ik+ℓ

:= (−1)ℓpωi0···ik ∧ τik···ik+ℓ
(8.59)

for every ω ∈ C
k(U ,Ωp), every τ ∈ Cℓ(U ,Ωq), and every (k + ℓ+ 1)-tuple

(i0, i1, . . . , ik+ℓ) ∈ Ik+ℓ(U ) that satisfies

i0 ≺ i1 ≺ · · · ≺ ik+ℓ.

Here the right hand side in (8.59) is understood as the restriction of the
differential form to the open subset Ui0 ∩ Ui1 ∩ · · · ∩ Uik+ℓ

.

Remark 8.67. The product structure on C∗(U ,Ω∗) is sensitive to the
choice of the ordering of the index set I and is not commutative in any way,
shape, or form. In fact, the cup product τ ∪ ω associated to the reverse
ordering agrees up to the usual sign (−1)deg(ω) deg(τ) with the cup product
ω ∪ τ associated to the original ordering.

Remark 8.68. The sign in equation (8.59) is naturally associated to the
interchanged indices p and ℓ.

Remark 8.69. The cup product on C∗(U ,Ω∗) restricts to the product

(a ∪ b)i0···ik+ℓ
= ai0···ikbik ···ik+ℓ

, i0 ≺ i1 ≺ · · · ≺ ik+ℓ, (8.60)

on C∗(U ,R) ⊂ C∗(U ,Ω0).

Remark 8.70. The cup product on C∗(U ,Ω∗) restricts to the exterior
product for differential forms on C0(U ,Ω∗).
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Lemma 8.71. The cup product (8.59) on C∗(U ,Ω∗) is associative and

D(ω ∪ τ) = (Dω) ∪ τ + (−1)deg(ω)ω ∪ (Dτ) (8.61)

for ω ∈ Ck(U ,Ωp) and τ ∈ Cℓ(U ,Ωq), where deg(ω) = k + p.

Proof. The proof of associativity is left as an exercise. To prove (8.61) we
compute

(
δ(ω ∪ τ)

)
i0···ik+ℓ+1

=
k+ℓ+1∑

ν=0

(−1)ν(ω ∪ τ)i0···biν ···ik+ℓ+1

=
k∑

ν=0

(−1)ν(−1)ℓpωi0···biν ···ik+1
∧ τik+1···ik+ℓ+1

+
k+ℓ+1∑

ν=k+1

(−1)ν(−1)ℓpωi0···ik ∧ τik···biν ···ik+ℓ+1

=

k+1∑

ν=0

(−1)ν(−1)ℓpωi0···biν ···ik+1
∧ τik+1···ik+ℓ+1

+

k+ℓ+1∑

ν=k

(−1)ν(−1)ℓpωi0···ik ∧ τik···biν ···ik+ℓ+1

= (−1)ℓp(δω)i0···ik+1
∧ τik+1···ik+ℓ+1

+(−1)ℓp+kωi0···ik ∧ (δτ)ik ···ik+ℓ+1

=
(
(δω) ∪ τ

)
i0···ik+ℓ+1

+ (−1)k+p
(
ω ∪ (δτ)

)
i0···ik+ℓ+1

.

Thus we have proved that

δ(ω ∪ τ) = (δω) ∪ τ + (−1)deg(ω)ω ∪ (δτ). (8.62)

Moreover,
(
d(ω ∪ τ)

)
i0···ik+ℓ+1

= (−1)ℓpd
(
ωi0···ik ∧ τik···ik+ℓ

)

= (−1)ℓpdωi0···ik ∧ τik···ik+ℓ

+(−1)(ℓ+1)pωi0···ik ∧ dτik···ik+ℓ

Thus we have proved that

(−1)k+ℓd(ω ∪ τ) =
(
(−1)kdω

)
∪ τ + (−1)deg ωω ∪

(
(−1)ℓdτ

)
. (8.63)

Equation (8.61) follows by taking the sum of equations (8.62) and (8.63).
This proves the lemma.
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The cochain homomorphisms r and ι intertwine the product structures
on the cochain level. Hence the induced homomorphisms on cohomology

r∗ : H∗(M)→ Ȟ∗(U ), ι∗ : H∗(U ,R)→ Ȟ∗(U )

also intertwine the product structures. If U is a good cover these are iso-
morphisms and hence, in this case, both cohomology groups Ȟ∗(U ) and
H∗(U ,R) inherit the commutativity properties of the cup product on de-
Rham cohomology, although this is not at all obvious from the definitions.

8.5.5 DeRham’s Theorem

There is a natural homomorphism

H∗
dR(M)→ H∗

sing(M,R) (8.64)

from the deRham cohomology ofM to the singular cohomology with real co-
efficients, defined in terms of integration over smooth singular cycles. DeR-
ham’s Theorem asserts that this homomorphism is bijective. To prove
this it suffices, in view of Theorem 8.60, to prove that the singular coho-
mology of M with real coefficients is isomorphic to the Čech cohomology
H∗(U ,R) associated to a good cover. The proof involves similar methods
as that of Theorem 8.60 but will not be included in this manuscript. An
excellent reference is the book of Bott and Tu [2].

Remark 8.72. Let M be a compact oriented smooth m-manifold without
boundary. It is a deep theorem in algebraic topology that a suitable integer
multiple of any integral singular homology class on M can be represented
by a compact oriented submanifold without boundary, in the sense that any
triangulation of the submanifold gives rise to a singular cycle representing
the homology class. The details of this are outside the scope of the present
manuscript. However, we mention without proof the following consequence
of this result and DeRham’s theorem:

There is a finite collection of compact oriented (m − ki)-dimensional sub-
manifolds without boundary

Qi ⊂M, i = 0, . . . , n,

such that the cohomology classes of the closed forms

τi = τQi
∈ Ωki(M),

dual to the submanifolds as in Section 8.4.3, form a basis of H∗(M).
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Remark 8.73. It follows from the assertion in Remark 8.72 that every
closed form ω ∈ Ωk(M) that satisfies

∫

P
f∗ω = 0

for every compact oriented smooth k-manifold P without boundary and ev-
ery smooth map f : P → M is exact. (This implies that the homomor-
phism (8.64) is injective.)

For k = 1 this follows from Exercise 8.50. To see this in general, let Qi
and τi be chosen as in Remark 8.72 and denote by Ik ⊂ {0, . . . , n} the set
of all indices i such that

dim Qi = m− ki = k, deg(τi) = ki = m− k.
If ω ∈ Ωk(M) satisfies our assumptions then

∫

M
ω ∧ τi =

∫

Qi

ω = 0

for every i ∈ Ik. Since the cohomology classes [τi] form a basis of Hm−k(M)
we have ∫

M
ω ∧ τ = 0

for every closed (m− k)-form τ . Hence ω is exact, by Theorem 8.38.

Exercise 8.74. Define a homomorphism

H1(M)→ Hom(π1(M,p0),R) : [ω] 7→ ρω (8.65)

which assigns to every closed 1-form ω ∈ Ω1(M) the homomorphism

ρω : π1(M,p0)→ R, ρω([γ]) :=

∫

[0,1]
γ∗ω,

for every smooth based loop γ : [0, 1]→M with γ(0) = γ(1) = p0. By The-
orem 8.1, ρω depends only on the cohomology class of ω. By Exercise 8.50
the homomorphism [ω] 7→ ρω is injective. Prove that it is surjective. Hint:
Choose a good cover U = {Ui}i∈I of M and, for each i ∈ I, choose a point
pi ∈ Ui and a path γi : [0, 1] →M such that γi(0) = p0 and γi(1) = pi. For
(i, j) ∈ I1(U ) define the number cij ∈ R by

cij := ρ(γ),





γ(t) = γi(4t), for 0 ≤ t ≤ 1/4,
γ(t) ∈ Ui, for 1/4 ≤ t ≤ 1/2,
γ(t) ∈ Uj , for 1/2 ≤ t ≤ 3/4,
γ(t) = γj(4(1 − t)), for 3/4 ≤ t ≤ 1.
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Prove that any two such paths γ are homotopic with fixed endpoints. Prove
that the numbers cij determine a 1-cocycle in the Čech complex C1(U ,R).
Prove that the 1-form

ωc :=
∑

(i,j)∈I1(U )

cijρidρj

is closed and satisfies ρωc = ρ. Note that the only conditions on U , needed
in this proof are that the sets Ui are connected and simply connected, and
that each nonempty intersection Ui ∩ Uj is connected.

Exercise 8.75. Consider the circle M = S1 with its standard counterclock-
wise orientation and let S1 = U1 ∪ U2 ∪ U3 be a good cover. Thus the
sets U1, U2, U3 are open intervals as are the intersections U1 ∩ U2, U2 ∩ U3,
U3∩U1. Assume that in the counterclockwise ordering the endpoint of U1 is
contained in U2 and the endpoint of U2 in U3. Prove that the composition of
the isomorphism H1(U ,R) → H1(S1) with the isomorphism H1(S1) → R,
given by integration, is the map

H1(U ,R)→ R : [c23, c13, c12] 7→ c23 − c13 + c12.

Deduce that the homomorphism ρωc : π1(S
1) → R associated to a cycle

c ∈ C1(U ,R) as in Exercise 8.74 maps the positive generator to the real
number c23 − c13 + c12.

Exercise 8.76. Choose a good cover U of the 2-sphere by four open hemi-
spheres and compute its Čech complex. Find an explicit expression for the
isomorphism H2(U ,R)→ R associated to the standard orientation.
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Chapter 9

Vector Bundles and the

Euler Class

In this chapter we introduce smooth vector bundles over smooth manifolds
in the intrinsic setting. Basic definitions and examples are discussed in
Section 9.1. In Section 9.2 we define Integration over the Fiber, introduce
the Thom Class, prove the Thom Isomorphism Theorem, and relate the
Thom class to intersection theory. In Section 9.3 we introduce the Euler
Class of an oriented vector bundle and show that, if the rank of the bundle
agrees with the dimension of the base and the base is oriented, its integral
over the base, the Euler Number, is equal to the algebraic number of zeros of
a section with only nondegenerate zeros. As an application we compute the
product structure on the deRham cohomology of complex projective space.

9.1 Vector Bundles

In [16] we have introduced the notion of a vector bundle

π : E →M

over an (embedded) manifold M as a subbundle of the product M ×R
ℓ for

some integer ℓ ≥ 0. In this section we show how to carry the definitions
of vector bundles, sections, and vector bundle homomorphisms over to the
intrinsic setting. This is also the appropriate framework for introducing
structure groups of vector bundles. And we discuss the notion of orientabil-
ity, which specializes to orientability of a manifold in the case of the tangent
bundle.

103
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9.1.1 Definitions and Remarks

Let M be a smooth m-manifold and n be a nonnegative integer. A real
vector bundle over M of rank n consists of a smooth manifold E of
dimension m+ n, a smooth map

π : E →M,

called the projection, a real vector space V of dimension n, an open cover
{Uα}α∈A of M , a collection of diffeomorphisms

ψα : π−1(Uα)→ Uα × V, α ∈ A,

called local trivializations, that satisfy

pr1 ◦ ψα = π|π−1(Uα)

so that the diagram

π−1(Uα)
ψα //

π
$$HH

HHH
HH

HH
Uα × V

pr1
{{wwwww

wwww

Uα

(9.1)

commutes for every α ∈ A, and a collection of smooth maps

gβα : Uα ∩ Uβ → GL(V ), α, β ∈ A,

called transition maps, that satisfy

ψβ ◦ ψ−1
α (p, v) = (p, gβα(p)v) (9.2)

for all α, β ∈ A, p ∈ Uα ∩ Uβ, and v ∈ V .
For p ∈M the set

Ep := π−1(p)

is called the fiber of E over p. If

G ⊂ GL(V )

is a Lie subgroup and the transition maps gβα all take values in G we call E
a vector bundle with structure group G. We say that the structure
group of a vector bundle E can be reduced to G if E can be covered by
local trivializations whose transition maps all take values in G.
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It is sometimes convenient to write an element of a vector bundle E as
a pair (p, e) consisting of a point p ∈M and an element e ∈ Ep of the fiber
of E over p. This notation suggests that we may think of a vector bundle
over M as a functor which assigns to each element p ∈M a vector space Ep.
The definition in Section 9.1.1 then requires that the disjoint union of the
vector spaces Ep is equipped with the structure of a smooth manifold whose
coordinate charts are compatible with the projection π and with the vector
space structures on the fibers.

Remark 9.1. If π : E → M is a vector bundle then the projection π is a
surjective submersion because the diagram (9.1) commutes.

Remark 9.2. If π : E → M is a vector bundle then, for every p ∈ M , the
fiber Ep = π−1(p) inherits a vector space structure from V via the bijection

ψα(p) := pr2 ◦ ψα|Ep : Ep → V (9.3)

for α ∈ A with p ∈ Uα. In other words, for λ ∈ R and e, e′ ∈ Ep we define
the sum e+ e′ ∈ Ep and the product λe ∈ Ep by

e+ e′ := ψα(p)
−1(ψα(p)e+ ψα(p)e

′), λe := ψα(p)
−1(λψα(p)).

The vector space structure on Ep is independent of α because the map

ψβ(p) ◦ ψα(p)−1 = gβα(p) : V → V

is linear for all α, β ∈ A with p ∈ Uα ∩ Uβ.
Remark 9.3. The transition maps of a vector bundle E satisfy the condi-
tions

gγβgβα = gγα, gαα = 1l, (9.4)

for all α, β, γ ∈ A. Here the first equation is understood on the intersection
Uα ∩ Uβ ∩ Uγ where all three transition maps are defined.

Conversely, every open cover {Uα}α∈A and every system of transition
maps gβα : Uα ∩ Uβ → GL(V ) satisfying (9.4) determines a vector bundle

Ẽ :=
⋃

α∈A

{α} × Uα × V/ ∼

where the equivalence relation is given by

[α, p, v] ∼ [β, p, gβα(p)v]

for α, β ∈ A, p ∈ Uα ∩ Uβ , and v ∈ V . The projection π : E → M is given
by [α, p, v] 7→ p and the local trivializations are given by [α, p, v] 7→ (p, v).
These local trivializations satisfy (9.2). This vector bundle is isomorphic
to E (see Section 9.1.4 below).
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9.1.2 Examples and Exercises

Example 9.4 (Trivial Bundle). The simplest example of a vector bundle
over M is the trivial bundle

E =M × R
n.

It has an obvious global trivialization. Every real rank-n vector bundle
over M is locally isomorphic to the trivial bundle but there is not necessar-
ily a global isomorphism. (See below for the definition of a vector bundle
isomorphism.)

Example 9.5 (Möbius Strip). The simplest example of a nontrivial vector
bundle is the real rank-1 vector bundle

E :=
{
(z, ζ) ∈ S1 × C | z2ζ ∈ R

}

over the circle
S1 := {z ∈ C | |z| = 1} ,

called the Möbius strip. Exercise: Prove that the Möbius strip does not
admit a global trivialization; it does not admit a global nonzero section.
(See below for the definition of a section.)

Example 9.6 (Tangent Bundle). Let M be a smooth m-manifold with
an atlas {Uα, φα}α∈A. The tangent bundle

TM := {(p, v) | p ∈M, v ∈ TpM}

is a vector bundle over M with the obvious projection π : TM → M and
the local trivializations

ψα : π−1(Uα)→ Uα × R
m, ψα(p, v) := (p, dφα(p)v).

The transition maps gβα : Uα ∩ Uβ → GL(m,R) are given by

gβα(p) = d(φβ ◦ φ−1
α )(φα(p))

for p ∈ Uα ∩ Uβ.
Exercise 9.7 (Dual bundle). Let π : E →M be a real vector bundle with
local trivializations ψα(p) : Ep → V . Show that the dual bundle

E∗ := {(p, e∗) | p ∈M, e∗ ∈ Hom(Ep,R)}

is a vector bundle with V replaced by V ∗ in the local trivializations and
that the transition maps are related by gE

∗

βα = (gEαβ)
∗ : Uα ∩ Uβ → GL(V ∗).

Deduce that the cotangent bundle T ∗M is a vector bundle over M .
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Example 9.8 (Exterior power). The kth exterior power

ΛkT ∗M :=
{
(p, ω) | p ∈M, ω ∈ ΛkT ∗

pM
}

of the cotangent bundle is a real vector bundle with the the local trivializa-
tions given by pushforward under the derivatives of the coordinate charts:

(dφα(p)
−1)∗ : ΛkT ∗

pM → Λk(R
m)∗.

The transition maps of ΛkT ∗M are then given by

gΛ
kT ∗M

βα (p) = (d(φα ◦ φ−1
β )(φβ(p)))

∗ ∈ GL(Λk(Rm)∗)

for p ∈ Uα ∩ Uβ .
Example 9.9 (Pullback). Let πE : E → M be a real vector bundle with
local trivializations ψEα (p) : Ep → V and let f : N → M be a smooth map.
Then the pullback bundle

f∗E :=
{
(q, e) | q ∈ N, e ∈ E, πE(e) = f(q)

}
⊂ N × E

is a submanifold of N × E and a vector bundle over N with the obvious
projection πf

∗E : f∗E → N onto the first factor, the local trivializations
ψf

∗E
α (q) = ψEα (f(q)) : (f

∗E)q = Ef(q) → V for q ∈ f−1(Uα) and the transi-
tion maps

gf
∗E
βα = gEβα ◦ f : f−1(Uα) ∩ f−1(Uβ)→ GL(V ).

Example 9.10 (Whitney Sum). Let πE : E → M , πF : F → M be
vector bundles with local trivializations ψEα (p) : Ep → V , ψFα (p) : Fp → V
for p ∈ Uα (over the same open cover). The Whitney sum

E ⊕ F :=
⋃

p∈M

{p} × (Ep ⊕ Fp) ,

is a vector bundle over M with the obvious projection π : E ⊕ F →M , the
local trivializations

ψE⊕F
α (p) := ψEα (p)⊕ ψFα (p) : Ep ⊕ Fp → V ⊕W, p ∈ Uα,

and the transition maps

gE⊕F
βα = gEβα ⊕ gFβα : Uα ∩ Uβ → GL(V ⊕W ).

Replacing everywhere ⊕ by ⊗ we obtain the tensor product of E and F .
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Exercise 9.11 (Normal Bundle). Let M be a smooth m-manifold and
Q ⊂ M be a k-dimensional submanifold. Choose a Riemannian metric
on M . Prove that the normal bundle

TQ⊥ := {(p, v) | p ∈ Q, v ∈ TpM, v ⊥ TqQ}

is a smooth vector bundle over Q of rankm−k. Hint: IfQ is totally geodesic
one can use the Levi–Civita connection onM to construct local trivialization
of the normal bundle. Alternatively, one can use geodesics to find coordinate
charts φα : Uα → R

k×Rm−k such that φα(Uα∩Q) = φα(Uα)∩(Rk×{0}) and
v ⊥ TqQ if and only if dφα(q)v ∈ {0} × R

m−k for all q ∈ Q and v ∈ TqM .
Yet another method is to identitfy the normal bundle with the quotient
bundle TM |Q/TQ and use an arbitrary submanifold chart to find a local
trivialization modelled on the quotient space V = R

m/Rk.

9.1.3 Sections

Let π : E →M be a real vector bundle over a smooth manifold. A section
of E is a smooth map s :M → E such that

π ◦ s = id :M →M.

The set of sections of E is a real vector space, denoted by

Ω0(M,E) := {s :M → E | s is smooth and π ◦ s = id} .

If we write a point in E as a pair (p, e) with p ∈ M and e ∈ Ep, then we
can think of a section of E as a natural transformation which assigns to
each element p of M and element s(p) of the vector space Ep such that the
map M → E : p 7→ (p, s(p)) is smooth. Slightly abusing notation we will
switch between these two points of view whenever convenient and use the
same letter s for the map M → E : p 7→ (p, s(p)) and for the assignment
p 7→ s(p) ∈ Ep.
Remark 9.12. In the local trivializations ψα : π−1(Uα)→ Uα×V a section
s :M → E is given by smooth maps sα : Uα → V such that

ψα(s(p)) := (p, sα(p)). (9.5)

These maps satisfy the condition

sβ = gβαsα (9.6)

on Uα ∩ Uβ. Conversely, every collection of smooth maps sα : Uα → V
satisfying (9.6) determine a unique global section s :M → E via (9.5).
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Example 9.13 (Zero Section). The zero section

ι :M → E, ι(p) := 0p ∈ Ep,

assigns to each p ∈M the zero element of the fiber Ep = π−1(E) with respect
to the vector space structure of Remark 9.2. Its image is a submanifold

Z := ι(M) = {0p | p ∈M} ⊂ E,

which will also be called the zero section of E.

Exercise 9.14. For every vector bundle π : E → M , every p ∈ M , and
every e ∈ Ep, there is a smooth section s :M → E such that s(p) = e.

Example 9.15. The space of sections of the tangent bundle is the space of
vector fields, the space of sections of the cotangent bundle is the space of
1-forms, and the space of sections of the kth exterior power of the cotangent
bundle is the space of k-forms on M :

Ω0(M,TM) = Vect(M), Ω0(M,ΛkT ∗M) = Ωk(M).

If Q ⊂ M is a submanifold of a Riemannian manifold then the space of
sections of the normal bundle of Q is the space Ω0(Q,TQ⊥) = Vect⊥(Q) of
normal vector fields along Q.

9.1.4 Vector Bundle Homomorphisms

Let πE : E →M and πF : F →M be real vector bundles A vector bundle
homomorphism is a smooth map Φ : E → F such that

πF ◦Φ = πE

and, for every p ∈M , the restriction

Φp := Φ|Ep : Ep → Fp

is a linear map. A vector bundle isomorphism is a bijective vector bundle
homomorphism. The vector bundles E and F are called isomorphic if there
exists a vector bundle isomorpism Φ : E → F .

Exercise 9.16. (i) Every vector bundle isomorphism is a diffeomorphism.

(ii) Every injective vector bundle homomorphism is an embedding.

(iii) Every real vector bundle over a compact manifoldM admits an injective
vector bundle homomorphism Φ : E →M ×R

N for some integer N . Hint:
Use a finite collection of local trivializations and a partition of unity.



110 CHAPTER 9. VECTOR BUNDLES AND THE EULER CLASS

Exercise 9.17. The Möbius strip π : E → S1 in Example 9.5 is not iso-
morphic to the trivial bundle F := S1 ×R. The tangent bundle TM of any
manifold M is isomorphic to the cotangent bundle T ∗M .

Exercise 9.18. The set

Hom(E,F ) :=
⋃

p∈M

{p} ×Hom(Ep, Fp)

is a vector bundle over M and the space of smooth sections of Hom(E,F ) is
the space of vector bundle homomorphisms from E to F . The vector bundle
E∗ ⊗ F is isomorphic to Hom(E,F ).

9.1.5 Orientation

A vector bundle π : E → M is called orientable if its local trivializations
can be chosen such that the transition maps take values in the group GL+(V )
of orientation preserving automorphisms of V , i.e. for all α, β ∈ A we have

gβα(p) = ψβ(p) ◦ ψα(p)−1 ∈ GL+(V ), p ∈ Uα ∩ Uβ. (9.7)

It is called oriented if V is oriented and (9.7) holds.
A vector bundle π : E →M is orientable if and only if its structure group

can be reduced to GL+(V ). Care must be taken to distinguish between the
orientability of E as a vector bundle and the orientability of E as a manifold.
By definition, a manifold M is orientable if and only if its tangent bundle is
orientable as a vector bundle. Thus E is orientable as a manifold if and only
if its tangent bundle TE is orientable as a vector bundle. For example the
trivial bundle E = M × R

n is always orientable as a vector bundle but the
manifold M ×R

n is only orientable if M is. Conversely, the tangent bundle
of any manifold, orientable or not, is always an orientable manifold in the
sense that its tangent bundle TTM is an orientable vector bundle.

Exercise 9.19. Let M be an orientable manifold and π : E →M be a real
vector bundle. Then E is orientable as a vector bundle if and only if the
manifold E is orientable.

Exercise 9.20. The Möbius strip in Example 9.5 is not orientable.

Exercise 9.21. A vector bundle π : E → M of rank n is oriented if and
only the fibers Ep are equipped with orientations that fit together smoothly
in the following sense: for every p0 ∈ M there is an open neighborhood
U ⊂M of p0 and there are sections s1, . . . , sn : U → E over U such that the
vectors s1(p), . . . , sn(p) form a positive basis of Ep for every p ∈ U .

Exercise 9.22. The tangent bundle of the tangent bundle is orientable.
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9.2 The Thom Class

We assume throughout this section thatM is a compact oriented smoothm-
manifold without boundary and π : E →M is an oriented real vector bundle
of rank n. AsM is oriented, no ambiguity can arise as to the meaning of the
term “oriented” for the vector bundle E; it is oriented both as a manifold
and as a vector bundle.

9.2.1 Integration over the Fiber

Definition 9.23. For k = 0, 1, . . . ,m we define a linear map

π∗ : Ω
n+k
c (E)→ Ωk(M).

Let τ ∈ Ωn+kc (E) be given and choose p ∈ M and v1, . . . , vk ∈ TpM . Asso-
ciated to these data is a differential form

τp,v1,...,vk ∈ Ωnc (Ep),

defined as follows. Given e ∈ Ep = π−1(p) and tangent vectors

e1, . . . , en ∈ TeEp = ker dπ(e) = Ep,

choose lifts ṽi ∈ TeEp such that

dπ(e)ṽi = vi, i = 1, . . . , k,

and define

(τp,v1,...,vk)e(e1, . . . , en) := τe(ṽ1, . . . , ṽk, e1, . . . , en). (9.8)

The expression on the right is independent of the choice of the lifts ṽi;
namely, if the ej are linearly independent any two choices of lifts ṽi dif-
fer by a linear combination of the ej, and if the ej are linearly dependent
the right hand side of (9.8) vanishes for any choice of the ṽi. Now the
pushforward π∗τ ∈ Ωk(M) is defined by

(π∗τ)p(v1, . . . , vk) :=

∫

Ep

τp,v1,...,vk (9.9)

for p ∈ M and v1, . . . , vk ∈ TpM . The integral is well defined because
τp,v1,...,vk has compact support and Ep is an oriented n-dimensional manifold.

Exercise 9.24. Prove that the map

(π∗τ)p : TpM × · · · × TpM︸ ︷︷ ︸
k times

→ R

in (9.9) is an alternating k-form for every p and that these alternating k-
forms fit together smoothly. Prove that the map τ 7→ π∗τ is linear.
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Example 9.25. If τ ∈ Ωnc (E) then π∗τ ∈ Ω0(M) is the smooth real valued
function on M defined by

(π∗τ)(p) =

∫

Ep

τ

for p ∈M .

Example 9.26. The map π∗ : Hk+1
c (M × R) → Hk

c (M) in the proof of
Lemma 8.31 is an example of integration over the fiber.

Lemma 9.27. Let π : E → M be an oriented real rank-n vector bundle
over a compact oriented smooth m-manifold M without boundary and let
π∗ : Ω

n+∗
c (E)→ Ω∗(M) be the operator of Definition 9.23. Then

π∗(π
∗ω ∧ τ) = ω ∧ π∗τ. (9.10)

for every ω ∈ Ωℓ(M) and every τ ∈ Ωn+kc (E). Moreover,

π∗ ◦ dE = dM ◦ π∗ (9.11)

and ∫

M
ω ∧ π∗τ =

∫

E
π∗ω ∧ τ (9.12)

for every ω ∈ Ωm−k(M) and every τ ∈ Ωn+kc (E).

Proof. The proof of equation (9.10) relies on the observation that the vectors
ei ∈ TeEp = Ep, used in the definition of the compactly supported n-form
(π∗ω ∧ τ)p,v1,...,vk+ℓ on Ep in Definition 9.23, can only lead to nonzero terms
when they appear in τ . The details are left as an exercise for the reader.

To prove (9.11) we will work in a local trivialization of E followed by
local coordinates on M . Thus we consider the vector bundle

U × R
n

over an open set U ⊂ R
m. We use coordinates x1, . . . , xm on U and t1, . . . , tn

on R
n. Thus our (n+ k)-form τ ∈ Ωn+k(U ×R

n) can be written in the form

τ =
∑

|J |+|K|=n+k

τJ,K(x, t) dx
J ∧ dtK . (9.13)

The compact support condition now translates into the assumption that the
support of τ is contained in the product of U with a compact subset of Rn.
(Such forms are said to have vertical compact support; see [2].)
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Integration over the fiber yields a k-form π∗τ ∈ Ωk(U) given by

π∗τ =
∑

|J |=k

(∫

Rn

τJ,Kn(x, t) dt
1 · · · dtn

)
dxJ , (9.14)

where Kn denotes the maximal multi-index Kn = (1, . . . , n). Next we apply
the same operation to the form

dτ =
∑

|J |+|K|=n+k

m∑

i=1

∂τJ,K
∂xi

(x, t) dxi ∧ dxJ ∧ dtK

+
∑

|J |+|K|=n+k

n∑

j=1

∂τJ,K
∂tj

(x, t) dtj ∧ dxJ ∧ dtK .

The key observation is that, for every fixed element x ∈ U , the second
summand belongs to the image of the operator d : Ωn−1

c (Rn) → Ωnc (R
n)

and hence its integral over R
n vanishes by Stokes’ Theorem 7.26. Thus

integration over the fiber yields the (k + 1)-form

π∗dτ =
∑

|J |=k

m∑

i=1

(∫

Rn

∂τJ,Kn

∂xi
(x, t) dt1 · · · dtn

)
dxi ∧ dxJ

=
m∑

i=1

∑

|J |=k

(
∂

∂xi

∫

Rn

τJ,Kn(x, t) dt
1 · · · dtn

)
dxi ∧ dxJ

= dπ∗τ.

Here the second equation follows by interchanging differentiation and inte-
gration and the last equation follows from (9.14). This proves (9.11).

We prove (9.12). Using a partition of unity on M we may again reduce
the identity to a computation in local coordinates. Thus we assume that
τ ∈ Ωn+k(U × R

n) is given by (9.13) and has vertical compact support as
before, and that ω ∈ Ωm−k

c (U) has the form

ω =
∑

|I|=m−k

ωI(x) dx
I

Then both forms π∗ω ∧ τ ∈ Ωm+n
c (U × R

n) and ω ∧ π∗τ ∈ Ωmc (U) have
compact support. To compare their integral it is convenient to define a
number ε(I, J) ∈ {±1} by

dxI ∧ dxJ =: ε(I, J)dx1 ∧ · · · ∧ dxm

for multi-indices I and J with |I| = m− k and |J | = k.
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With this setup we obtain
∫

U
ω ∧ π∗τ

=
∑

|I|=m−k

∑

|J |=k

∫

U
ωI(x)

(∫

Rn

τJ,Kn(x, t)dt
1 · · · dtn

)
dxI ∧ dxJ

=
∑

|I|=m−k

∑

|J |=k

ε(I, J)

∫

U

∫

Rn

ωI(x)τJ,Kn(x, t)dt
1 · · · dtndx1 · · · dxm

=
∑

|I|=m−k

∑

|J |=k

ε(I, J)

∫

U×Rn

ωI(x)τJ,Kn(x, t)dx
1 · · · dxmdt1 · · · dtn

=
∑

|I|=m−k

∑

|J |=k

∫

U×Rn

ωI(x)τJ,Kn(x, t)dx
I ∧ dxJ ∧ dtKn

=

∫

U×Rn

π∗ω ∧ τ.

Here the third equality follows from Fubini’s thoerem. This proves (9.12)
and the lemma.

9.2.2 Thom Forms

Let π : E → M be an oriented real rank-n vector bundle over a compact
oriented smooth m-manifoldM without boundary. A closed compactly sup-
ported n-form τ ∈ Ωnc (E) is called a Thom form on E if

π∗τ = 1.

The next two lemmas characterize Thom forms and establish their existence.

Lemma 9.28. Let π : E → M be an oriented real rank-n vector bundle
over a compact oriented smooth m-manifold M without boundary. Denote
by ι :M → E the zero section, let λ ∈ R, and let τ ∈ Ωnc (E) be closed. Then
the following are equivalent.

(a) π∗τ = λ.

(b) Every m-form ω ∈ Ωm(M) satisfies
∫

E
π∗ω ∧ τ = λ

∫

M
ω.

(c) Every closed m-form σ ∈ Ωm(E) satisfies
∫

E
σ ∧ τ = λ

∫

M
ι∗σ.
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Proof. We prove that (a) is equivalent to (b). By Lemma 9.27 we have
∫

M
ω ∧ π∗τ =

∫

E
π∗ω ∧ τ

for every ω ∈ Ωm(M). Condition (a) holds if the term on the left is equal to
λ
∫
M ω for every ω and (b) holds if the term on the right is equal to λ

∫
M ω

for every ω. Thus (a) is equivalent to (b).
We prove that (b) is equivalent to (c). Since π ◦ ι = id we have

ι∗π∗ω = (π ◦ ι)∗ω = ω

for every ω ∈ Ωm(M). Hence (b) follows directly from (c) with σ := ι∗ω.
Conversely, assume (b) and let σ ∈ Ωm(E) be a closed m-form. Since the
map ι ◦ π : E → E is the projection onto the zero section, it is homotopic
to the identity via the homotopy ft : E → E, given by ft(e) = te, with

f0 = ι ◦ π, f1 = id.

Hence it follows from Theorem 8.1 that the m-form

σ − π∗ι∗σ ∈ Ωm(E)

is exact for every closed form σ ∈ Ωm(E). This implies
∫

E
σ ∧ τ =

∫

E
π∗ι∗σ ∧ τ = λ

∫

M
ι∗σ.

Here the last equation follows from (b). This proves the lemma.

Remark 9.29. A subset U ⊂ E of a vector bundle is called star shaped
if it intersects each fiber of E in a star shaped set centered at zero:

e ∈ U, 0 ≤ t ≤ 1 =⇒ te ∈ U.

The proof of Lemma 9.28 shows that, if U ⊂ E is a star shaped open
neighborhood of the zero section and τ ∈ Ωnc (E) satisfies

supp(τ) ⊂ U, dτ = 0, π∗τ = 1,

then (c) continues to hold for every closed m-form σ ∈ Ωm(U). Namely, in
this case the m-form f∗t σ, with ft(e) = te, is defined on all of U for 0 ≤ t ≤ 1
and hence

σ − π∗ι∗σ = f∗1σ − f∗0σ
is an exact m-form on U , by Theorem 8.1. Hence the integral of its exterior
product with τ vanishes, by Stokes’ theorem.
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Lemma 9.30. Let π : E →M be an oriented real rank-n vector bundle over
a compact oriented smooth m-manifold M without boundary.

(i) For every β ∈ Ωn−1
c (E) we have

π∗dβ = 0.

(ii) For every open neighborhood U ⊂ E of the zero section there is a com-
pactly supported m-form τ ∈ Ωnc (E) such that

supp(τ) ⊂ U, dτ = 0, π∗τ = 1.

(iii) If τ0, τ1 ∈ Ωnc (E) satisfy

dτ0 = dτ1 = 0, π∗τ0 = π∗τ1 = 1,

then there is a compactly supported (n− 1)-form β ∈ Ωn−1
c (E) such that

τ1 − τ0 = dβ.

Proof. We prove (i). Since ∂E = ∅ it follows from Stokes’ Theorem that
∫

E
π∗ω ∧ dβ =

∫

E
d(π∗ω ∧ β) = 0

for every ω ∈ Ωm(M). Hence

π∗dβ = 0,

by Lemma 9.28. This proves (i).
We prove (ii). Let ι : M → E be the inclusion of the zero section as in

Example 9.13 and define the linear operator T : Hm(E)→ R by

T ([σ]) :=

∫

M
ι∗σ

for every closed m-form σ ∈ Ωm(E). Since E is an oriented manifold and
has a good cover it satisfies Poincaré duality, by Theorem 8.38. Hence there
is a compactly supported closed n-form τ ∈ Ωnc (E) such that

σ ∈ Ωm(E), dσ = 0 =⇒
∫

E
σ ∧ τ = T ([σ]) =

∫

M
ι∗σ.

By Lemma 9.28 with λ = 1, this implies

π∗τ = 1.
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Since τ has compact support there is a constant λ ≥ 1 such that

e ∈ supp(τ) =⇒ λ−1e ∈ U.

Consider the homotopy ft : E → E defined by

ft(e) := te, 1 ≤ t ≤ λ.

It is proper and satisfies

supp(f∗λτ) = f−1
λ (supp(τ)) ⊂ U.

Hence, by Remark 8.26, there is a β ∈ Ωn−1
c (E) such that

f∗λτ − τ = dβ.

The n-form f∗λτ ∈ Ωnc (E) is closed and supported in U . Moreover, by (i), it
satisfies

π∗(f
∗
λτ) = 1.

This proves (ii).

We prove (iii). By assumption π∗(τ1 − τ0) = 0 and τ1 − τ0 is closed.
Hence it follows from Lemma 9.28 with λ = 0 that

∫

E
σ ∧ (τ1 − τ0) = 0

for every closed m-form σ ∈ Ωm(E). Hence (iii) follows from Poincaré
duality in Theorem 8.38. This proves the lemma.

Remark 9.31. Lemma 9.30 remains valid when M is not orientable. How-
ever, the proof cannot use Poincaré duality. The result can then be obtained
by using the Mayer–Vietoris sequence directly and this requires an extension
of the theory to noncompact base manifolds M .

Remark 9.32. Lemma 9.30 remains valid for noncompact base manifolds
with appropriate modifications. The required modification involves differ-
ential forms on E with socalled vertical compact support (see Bott–Tu [2]).
If M is oriented the proof remains essentially the same.
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9.2.3 The Thom Isomorphism Theorem

Let π : E → M be an oriented real rank-n vector bundle over a compact
oriented smooth m-manifold M without boundary. By Lemma 9.30 there is
a Thom form on E and its cohomology class is independent of the choice of
the Thom form. It is called the Thom class of E and will be denoted by

τ(E) := [τ ] ∈ Hn
c (E), τ ∈ Ωnc (E), dτ = 0, π∗τ = 1. (9.15)

Theorem 9.33 (Thom Isomorphism Theorem). Let π : E → M be
an oriented real rank-n vector bundle over a compact oriented smooth m-
manifold M without boundary. Then the homomorphism

π∗ : H
n+k
c (E)→ Hk(M) (9.16)

is an isomorphism for k = 0, 1, . . . ,m and its inverse is the homomorphism

Hk(M)→ Hn+k
c (E) : a 7→ π∗a ∪ τ(E). (9.17)

Moreover Hk
c (E) = 0 for k < n.

Proof. Both manifolds M and E are oriented and have finite good covers
and therefore satisfy Poincaré duality. Thus

Hn+k
c (E) ∼= Hm−k(E) ∼= Hm−k(M) ∼= Hk(M)

for every integer k. Here the first and last isomorphisms exist by Poincaré
duality (Theorem 8.38) and the second isomorphism exists by Corollary 8.5,
because E is homotopy equivalent to M : the projection π : E → M is a
homotopy equivalence and the inclusion of the zero section ι : M → E is a
homotopy inverse. In particular, for k < 0 the last two terms above are zero
so H∗

c (E) vanishes in degrees less than n.
Now let T : Hk(M)→ Hn+k

c (E) be the homomorphisms (9.17). Then

T [ω] = [π∗ω ∧ τ ]

for every closed k-form ω ∈ Ωk(M), where τ ∈ Ωnc (E) is a Thom form.
Hence, by equation (9.10) in Lemma 9.27, we have

π∗T [ω] = [π∗(π
∗ω ∧ τ)] = [ω ∧ π∗τ ] = [ω]

for every closed k-form ω ∈ Ωk(M). Thus π∗ ◦ T = id : Hk(M) → Hk(M).
Since Hk(M) and Hn+k

c (M) have the same dimension it follows that π∗ is
an isomorphism with inverse T . This proves the theorem.
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Exercise 9.34 (Pullback). Let π : E →M and π′ :M ′ → E′ be oriented
real rank-n vector bundles over compact oriented smooth manifolds without
boundary. Let φ : M ′ → M and Φ : E′ → E be smooth maps such that
π′ ◦ Φ = φ ◦ π and the map Φp := Φ|Ep : Ep → E′

φ(p) is an orientation
preserving vector space isomorphism for every p ∈M . Prove that

Φ∗τ(E) = τ(E′) ∈ Hn
c (E

′).

9.2.4 Intersection Theory Revisited

It is interesting to review intersection theory in the light of the above results
on the Thom class. We consider the following setting. LetM be an oriented
(not necessarily compact) m-dimensional manifold without boundary and

Q ⊂M

be a compact oriented (m−n)-dimensional submanifold without boundary.
We also fix a Riemannian metric on M . For ε > 0 sufficiently small we
consider the ε-neighborhood TQ⊥

ε of the zero section in the normal bundle
and the tubular ε-neighborhood Uε ⊂M of Q. These sets are defined by

TQ⊥
ε :=

{
(q, v)

∣∣∣ q ∈ Q, v ∈ TqM,
v ⊥ TqQ, |v| < ε

}
,

Uε :=

{
p ∈M

∣∣∣ d(p,Q) = min
q∈Q

d(p, q) < ε

}
.

(9.18)

They are open and, for ε > 0 sufficiently small, the exponential map

exp : TQ⊥
ε → Uε

is a diffeomorphism. We orient the normal bundle such that orientations
match in the direct sum TqM = TqQ⊕ TqQ⊥ for q ∈ Q. Let τε ∈ Ωnc (TQ

⊥)
be a Thom form such that

supp(τε) ⊂ TQ⊥
ε , dτε = 0, π∗τε = 1. (9.19)

Such a form exists by Lemma 9.30. Now define τQ ∈ Ωn(M) by

τQ :=

{
(exp−1)∗τε on Uε,
0 on M \ Uε. (9.20)

This form is closed, by definition. The next lemma shows that τQ is dual to
Q as in Section 8.4.3.



120 CHAPTER 9. VECTOR BUNDLES AND THE EULER CLASS

Lemma 9.35. Let Q ⊂M and τQ ∈ Ωn(M) be as above. Then

∫

M
ω ∧ τQ =

∫

Q
ω (9.21)

for every closed (m− n)-form ω ∈ Ωm−n(M).

Proof. Denote the inclusion of the zero section in TQ⊥ by

ιQ : Q→ TQ⊥

For every closed form ω ∈ Ωm−n(M) we compute

∫

M
ω ∧ τQ =

∫

Uε

ω ∧ τQ

=

∫

TQ⊥
ε

exp∗ ω ∧ τε

=

∫

Q
ι∗Q exp∗ ω

=

∫

Q
(exp ◦ιQ)∗ω

=

∫

Q
ω.

Here the third step follows from Lemma 9.28 and Remark 9.29, because
the open set TQ⊥

ε ⊂ TQ⊥ is a star shaped open neighborhood of the zero
section. The last step follows from the fact that the map

exp ◦ιQ : Q→M

is just the inclusion of Q into M . This proves the lemma.

Although the existence of a closed (m − n)-form τQ that is dual to Q,
i.e. that satisfies equation (9.21), follows already from Poincaré duality,
Lemma 9.35 gives us a geometrically explicit representative of this coho-
mology class that is supported in an arbitrarily small neighborhood of the
submanifold Q. We will now show how this explicit representative can be
used to relate the cup product in cohomology to the intersection numbers
of submanifolds.
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Theorem 9.36. Let Q ⊂ M and τQ ∈ Ωm−n(M) be as in Lemma 9.35.
Let P be a compact oriented smooth n-manifold without boundary and let
f : P →M be a smooth map that is transverse to Q. (See Figure 9.1.) Then

Q · f =

∫

P
f∗τQ. (9.22)

Q

f

P
+1

−1
−1

Figure 9.1: The intersection number of Q and f .

Proof. By assumption f−1(Q) is a finite set. We denote it by

f−1(Q) =: {p1, . . . , pk}

and observe that

Tf(pi)M = Tf(pi)Q⊕ im df(pi), i = 1, . . . , k. (9.23)

Since dimP +dimQ = dimM , the derivative df(pi) : TpiP → Tf(pi)M is an
injective linear map and hence its image inherits an orientation from TpiP .
The intersection index ι(pi;Q, f) ∈ {±1} is obtained by comparing orienta-
tions in (9.23) and the intersection number of Q and f is, by definition, the
sum of the intersection indices:

Q · f =

k∑

i=1

ι(pi;Q, f).

It follows from the injectivity of df(pi) that the restriction of f to a suf-
ficiently small neighborhood Vi ⊂ P of pi is an embedding. Its image is
transverse to Q. Choosing ε > 0 sufficiently small and shrinking the Vi,
if necessary, we may assume that the Vi are pairwise disjoint and that the
tubular neighborhood Uε ⊂M in (9.18) satisfies

f−1(Uε) = V1 ∪ V2 ∪ · · · ∪ Vk.
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Since supp(τQ) ⊂ Uε we obtain supp(f∗τQ) ⊂ f−1(Uε) =
⋃k
i=1 Vi and hence

∫

P
f∗τQ =

k∑

i=1

∫

Vi

f∗τQ =
k∑

i=1

∫

Vi

(exp−1 ◦f)∗τε. (9.24)

Here the second equation uses the exponential map exp : TQ⊥
ε → Uε and

the Thom form τε = exp∗ τQ ∈ Ωnc (TQ
⊥) with support in TQ⊥

ε .

Now choose a local trivialization

ψi : TQ
⊥|Wi

→Wi × R
n

of the normal bundle TQ⊥ over a contractible neighborhood

Wi ⊂ Q

of f(pi) such that the open set TQ⊥
ε |Wi

is mapped diffeomorphically onto
Wi ×Bε. Here Bε ⊂ R

n denotes the open ball of radius ε centered at zero.
Let τi ∈ Ωn(Wi ×Bε) be the Thom form defined by

ψ∗
i τi = τε.

Then, by (9.24), we have

∫

P
f∗τQ =

k∑

i=1

∫

Vi

(exp−1 ◦f)∗τε =
k∑

i=1

∫

Vi

(ψi ◦ exp−1 ◦f)∗τi. (9.25)

Consider the composition

fi := pr2 ◦ ψi ◦ exp−1 ◦f |Vi : Vi → Bε.

If ε > 0 is chosen sufficiently small, this is a diffeomorphism; it is orientation
preserving if ι(pi;Q, f) = 1 and is orientation reversing if ι(pi;Q, f) = −1.
Since Wi is contractible there is a homotopy ht : Vi →Wi such that

h0 ≡ f(pi), h1 = pr1 ◦ ψi ◦ exp−1 ◦f |Vi : Vi → Wi.

Thus

h1 × fi = ψi ◦ exp−1 ◦f |Vi : Vi →Wi ×Bε.

Moreover, the pullback of the Thom form τi ∈ Ωn(Wi × Bε) under the
homotopy ht × fi has compact support in [0, 1] × Vi.
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With this notation in place it follows from Corollary 7.31 and Stokes’
Theorem 7.26 that

∫

Vi

(ψi ◦ exp−1 ◦f)∗τi =
∫

Vi

(h1 × fi)∗τi

=

∫

Vi

(h0 × fi)∗τi

= ι(pi;Q, f)

∫

{f(pi)}×Bε

τi

= ι(pi;Q, f).

Here the third equality follows from Exercise 7.25 and the last from the fact
that the integral of τi over each slice {q} × Bε is equal to one. Combining
this with (9.25) we find

∫

P
f∗τQ =

k∑

i=1

∫

Vi

(ψi ◦ exp−1 ◦f)∗τi =
k∑

i=1

ι(pi;Q, f) = Q · f.

This proves the theorem.

Proof of Theorem 8.44. By Lemma 9.35, the closed n-form τQ ∈ Ωn(M),
constructed in (9.20) via the Thom class on the normal bundle TQ⊥, is dual
to Q as in Section 8.4.3. Thus Theorem 9.36 gives

Q · f =

∫

P
f∗τQ =

∫

M
τQ ∧ τf = (−1)n(m−n)

∫

Q
τf .

Here the second equation follows from the definition of the cohomology class
[τf ] ∈ Hm−n(M) dual to f in Section 8.4.3 and the last from Lemma 9.35.
This proves the theorem.

Let P and Q be compact oriented submanifolds of M without boundary
and suppose that dimP +dimQ = dimM. Then Theorem 8.44 asserts that

P ·Q =

∫

M
τP ∧ τQ.

By Lemma 9.35 we may choose τP and τQ with support in arbitrarily small
neighborhoods of P and Q, respectively, arising from Thom forms on the
normal bundles as in (9.20). If P is transverse to Q then the exterior prod-
uct τP ∧ τQ is supported near the intersection points of P and Q, and the
contribution to the integral is precisely the intersection number near each
intersection point. This is the geometric content of Theorem 8.44.
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Example 9.37. Consider the manifold M = R
2 and the submanifolds

P = R× {0}, Q = {0} × R,

Thus P and Q are the x-axis and the y-axis, respectively, in the Euclidean
plane with their standard orientations. We choose Thom forms

τP = ρ(y) dy, τQ = −ρ(x) dx,

where ρ : R → R is a smooth compactly supported function with integral
one. Then the exterior product

τP ∧ τQ = ρ(x)ρ(y)dx ∧ dy

is a compactly supported 2-form on R
2 with integral one. This is also the

intersection index of P and Q at the unique intersection point.

9.3 The Euler Class

9.3.1 The Euler Number

It is interesting to specialize Theorem 9.36 to the case where the manifoldM
is replaced by the total space of an oriented rank-n vector bundle over a
compact oriented manifold M without boundary, Q is replaced by the zero
section

Z = {0p | p ∈M} ⊂ E,

and f : P →M is replaced by a section

s :M → E.

In this case the normal bundle of the submanifold Z is the vector bundle E
itself (with an appropriate choice of the Riemannian metric). The dimension
condition dimP +dimQ = dimM in intersection theory translates into the
condition

rankE = dimM = m.

As before, we impose the condition that the section s :M → E is transverse
to the zero section. It will be useful to take a closer look at this transversality
condition.
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Definition 9.38 (Vertical Differential). Let s : M → E be a section of
a vector bundle. A point p ∈ M is called a zero of s if s(p) = 0p ∈ Ep is
the zero element of the fiber Ep = π−1(p). The vertical differential of s
at a zero p ∈M is the liner map

Ds(p) : TpM → Ep

defined as follows. Let ψα : π−1(Uα)→ Uα× V be a local trivialization such
that p ∈ Uα and consider the vector space isomorphism

ψα(p) := pr2 ◦ ψα|Ep : Ep → V

and the section in local coordinates

sα := pr2 ◦ ψα ◦ s|Uα : Uα → V.

Then the vertical differential

Ds(p) : TpM → Ep

is defined by
Ds(p)v := ψα(p)

−1dsα(p)v (9.26)

for v ∈ TpM . Thus we have the commuting diagram

V

TpM

dsα(p)
==zzzzzzzz Ds(p) // Ep

ψα(p)
``@@

@@
@@

@

.

The reader may check that the linear map (9.26) is independent of the choice
of α with p ∈ Uα (provided that s(p) = 0p).

Exercise 9.39. Show that there is a natural splitting of the tangent bundle
of E along the zero section:

T0pE
∼= TpM ⊕ Ep, p ∈M. (9.27)

Here the inclusion of TpM into T0pE is given by the derivative of the zero
section. Show that, if s :M → E is a section and p ∈M is a zero of s, then
the vertical differential Ds(p) : TpM → Ep is the composition of the usual
derivative ds(p) : TpM → T0pE with the projection T0pE → Ep onto the
vertical subspace in the splitting (9.27).
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Exercise 9.40. Show that a section s :M → E is transverse to the zero
section if and only if

s(p) = 0p =⇒ Ds(p) : TpM → Ep is surjective.

We write s ⋔ 0 to mean that s is transverse to the zero section.

Exercise 9.41. Let E be a real rank-n vector bundle over a smooth m-
manifold M and let s : M → E be a smooth section of E. Assume s is
transverse to the zero section. Then the zero set

s−1(0) := {p ∈M | s(p) = 0p}

of s is a smooth submanifold of M of dimension m− n and

Tps
−1(0) = ker Ds(p)

for every p ∈M with s(p) = 0p.

Theorem 9.42 (Euler Number). Let E be a real rank-m vector bundle
over a compact oriented smooth m-manifold M without boundary and let
τ ∈ Ωmc (E) be a Thom form. Let s : M → E be a smooth section that is
transverse to the zero section and define the index of a zero p ∈M of s by

ι(p, s) :=

{
+1, if Ds(p) : TpM → Ep is orientation preserving,
−1, if Ds(p) : TpM → Ep is orientation reversing.

(9.28)

Then ∫

M
s∗τ =

∑

s(p)=0p

ι(p, s). (9.29)

This integral is independent of s and is called the Euler number of E.

Proof. The intersection index of the zero section Z with s(M) at a zero p of
S is ι(p, S). Hence the sum on the right in equation (9.29) is the intersection
number Z · s. With this understood the assertion follows immediately from
Theorem 9.36.

Exercise 9.43. Let π : E → M be as in Theorem 9.42. Define the index
ι(p, s) ∈ Z of an isolated zero of a section s : M → E. Prove that equa-
tion (9.29) in Theorem 9.42 continues to hold for sections with only isolated
zeros. Hint: See the proof of the Poincaré–Hopf Theorem.
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Exercise 9.44. Prove that every vector bundle over a compact manifold
has a section that is transverse to the zero section. Hint: Use the methods
developed in Chapter 5.

By Theorem 9.42 the Euler number is the self-intersection number of the
zero section in E. One can show as in Chapter 3 or Chapter 5 that the right
hand side in (9.29) is independent of the choice of the section s, assuming
it is transverse to the zero section, and use this to define the Euler number
of E in the case rankE = dimM . Thus the definition of the Euler number
extends to the case where E is an orientable manifold (and M is not).

Example 9.45 (Euler characteristic). Consider the special case of the
tangent bundle E = TM of a compact oriented manifold without boundary.
A section of E is a vector field X ∈ Vect(M) and it is transverse to the zero
section if and only if all its zeros are nondegenerate. Hence it follows from
Theorem 9.42 that ∫

M
X∗τ =

∑

X(p)=0

ι(p,X)

for every nondegenerate vector field X ∈ Vect(M) and every Thom form
τ ∈ Ωmc (TM). This gives an independent proof of the part of the Poincaré–
Hopf theorem which asserts that the sum of the indices of the zeros of a
vector field (with only nondegenerate zeros) is a topological invariant. The
Poincaré–Hopf theorem also asserts that this invariant is given by

∫

M
X∗τ = χ(M) =

m∑

i=0

(−1)i dimH i(M).

(See Theorem 8.45.) In other words, the Euler number of the tangent bundle
of M is the Euler characteristic of M .

Exercise 9.46. Think of CP1 as the space of all 1-dimensional complex
linear subspaces ℓ ⊂ C

2. Fix an integer d and consider the complex line
bundles Hd → CP1 and Hd → CP1 defined by

Hd :=
(C2 \ {0}) × C

C∗
, [z0 : z1; ζ] ≡ [λz0 : λz1;λ

dζ].

Here C
∗ := C \ {0} denotes the multiplicative group of nonzero complex

numbers. Ignoring the complex structure we can think of Hd as an oriented
real rank-2 vector bundle over CP1. Prove that the Euler nuymber of Hd is
equal to d. Hint: Find a section of Hd that is transverse to the zero section
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and use (9.29). Think of CP1 as the space of all 1-dimensional complex
linear subspaces ℓ ⊂ C

2. Show that in this formulation H−1 → CP1 is the
tautological bundle over CP1 whose fiber over ℓ is the line ℓ itself. Show that
H → CP1 is the bundle whose fiber over ℓ is the dual space HomC(ℓ,C).
Show that the bundle Hd is isomorphic to H−d by an isomorphism that is
orientation reversing on each fiber.

9.3.2 The Euler Class

Let us now drop the condition that the rank of the bundle is equal to the
dimension of the base. Instead of a characteristic number we will then
obtain a characteristic deRham cohomology class. Let π : E → M be an
oriented real rank-n bundle over a compact oriented m-manifold M without
boundary. The Euler class of E is the deRham cohomology class

e(E) := [s∗τ ] = s∗τ(E) ∈ Hn(M)

where τ ∈ Ωnc (E) is a Thom form on E and s : M → E is a smooth
section. Since any two sections of E are smoothly homotopic, it follows
from Theorem 8.1 and Lemma 9.30 that the cohomology class of s∗τ is
independentof the choices of s and τ . Thus the Euler class is well defined.
If m = n the integral of e(E) over M is the Euler number, by Theorem 9.42.

Theorem 9.47 (Euler Class). Let π : E →M be an oriented rank-n vector
bundle over a compact oriented smooth m-manifold without boundary. Let
s : M → E be a smooth section and τ ∈ Ωnc (E) be a Thom form. If s is
transverse to the zero section then, for every closed form ω ∈ Ωm−n(M), we
have ∫

M
ω ∧ s∗τ =

∫

s−1(0)
ω. (9.30)

Thus [s∗τ ] is dual to the submanifold s−1(0) as in Section 8.4.3. (See below
for our choice of orientation of s−1(0).)

Corollary 9.48. Let π : E → M be an oriented real rank-n bundle over a
compact oriented manifold M without boundary. If n is odd the Euler class
of E vanishes.

Proof. By Exercise 9.44 there is a section s : M → E that is transverse to
the zero section. The right hand side in equation (9.30) changes sign when
s is replaced by −s while the left hand side remains unchanged. Hence the
assertion follows.
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Proof of Theorem 9.47. Choose a Riemannian metric on M . We orient the
zero set

Q := s−1(0) = {q ∈M | s(q) = 0q}
so that orientations match in the direct sum

TqM = TqQ⊕ TqQ⊥

for every q ∈ Q. Here TqQ
⊥ is oriented such that the isomorphism

Ds(q) : TqQ
⊥ → Eq

is orientation preserving. Choose ε > 0 such that the map

exp : TQ⊥
ε → Uε

in (9.18) is a diffeomorphism. Since the zero set of s is contained in Uε we
can choose a neighborhood U ⊂ E of the zero section such that

s−1(U) ⊂ Uε.

For example, the set U := E \s(M \Uε) is an open neighborhood of the zero
section with this property. By Lemma 9.30 we may assume without loss of
generality that our Thom form is supported in U and hence

supp(s∗τ) ⊂ s−1(U) ⊂ Uε.

The key observation is that the pullback of s∗τ under the exponential map

exp : TQ⊥
ε → Uε

defines a Thom form

τε := exp∗ s∗τ ∈ Ωnc (TQ
⊥
ε ).

Here we extend the pullback to all of TQ⊥ by setting it equal to zero on
TQ⊥ \ TQ⊥

ε . To prove that π∗τε = 1 we observe that the map

s ◦ exp : TQ⊥
ε → E

sends (q, 0) to 0q and agrees on the zero section up to first order with Ds.
Hence we can homotop the map s ◦ exp to the vector bundle isomorphism

Ds : TQ⊥ → E|Q.
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An explicit homotopy
F : [0, 1] × TQ⊥

ε → E

is given by

F (t, q, v) := ft(q, v) :=

{
t−1s(expq(tv)) ∈ Eexpq(tv)

, if t > 0,

Ds(q)v, if t = 0,

for q ∈ Q = s−1(0) and v ∈ TqM such that v ⊥ TqQ and |v| < ε. That F
is smooth can be seen by choosing local trivializations on E. Hence F is a
smooth homotopy connecting the maps

f0 = Ds, f1 = s ◦ exp .

Moreover, F extends smoothly to the closure of [0, 1]× TQ⊥
ε and the image

of the set [0, 1] × ∂TQ⊥
ε under F does not intersect the zero section of E.

Hence there is an open neighborhood U ⊂ E of the zero section such that

U ∩ F ([0, 1] × ∂TQ⊥
ε ) = ∅, U ∩ E|Q ⊂ Ds(TQ⊥

ε ).

We choose the Thom form τ ∈ Ωnc (E) with support in U . Then it follows
from our choice of U that the forms f∗t τ have uniform compact support
in TQ⊥

ε . Hence, for each q ∈ Q, we have
∫

TqQ⊥
ε

τε =

∫

TqQ⊥
ε

(s ◦ exp)∗τ

=

∫

TqQ⊥
ε

f∗1 τ

=

∫

TqQ⊥
ε

f∗0 τ

= 1.

Here the last equation follows from the fact that f0 = Ds : TQ⊥ → E|Q is
an orientation preserving vector bundle isomorphism. Thus τε = (s ◦ exp)∗τ
is a Thom form on TQ⊥

ε as claimed. With this understood we deduce that

s∗τ =: τQ ∈ Ωn(M)

satisfies the conditions (9.19) and (9.20). Hence the result follows from
Lemma 9.35. This proves the theorem.

Exercise 9.49. Deduce Theorem 9.42 from Theorem 9.47 as the special case
where rankE = dimM, so that Q = s−1(0) is a 0-dimensional manifold, and
ω = 1 ∈ Ω0(M) is the constant function one.
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Theorem 9.50. The Euler Class has the following properties.

(Zero) Let π : E →M be an oriented real rank-n bundle over a compact ori-
ented manifold without boundary. If E admits a nowhere vanishing section
then the Euler class of E is zero.

(Functoriality) Let π : E → M be an oriented real rank-n bundle over
a compact oriented manifold without boundary and let f : M ′ → M be a
smooth map defined on another compact oriented manifold without boundary.
Then the Euler class of the pullback bundle f∗E → M ′ is is the pullback of
the Euler class:

e(f∗E) = f∗e(E) ∈ Hn(M ′).

(Sum) The Euler class of the Whitney sum of two oriented real vector bun-
dles π1 : E1 → M and π2 : E2 → M over a compact oriented manifold M
without boundary is the cup product of the Euler classes:

e(E1 ⊕ E2) = e(E1) ∪ e(E2).

Proof. If s :M → E is a nowhere vanishing section then the complement of
the image of s is a neighborhood of the zero section. Hence, by Lemma 9.30,
there is Thom form τ ∈ Ωnc (E) with support contained in E \ s(M). For
this Thom form we have s∗τ = 0 and this proves the (Zero) property.

To prove (Functoriality) recall that

f∗E =
{
(p′, e) ∈M ′ × E | f(p′) = π(e)

}

and define f̃ : f∗E → E as the projection onto the second factor:

f̃(p′, e) := e.

Let τ ∈ Ωnc (E) be a Thom form. Then f̃∗τ ∈ Ωnc (f
∗E) is a Thom form on the

pullback bundle because f̃ restricts to an orientation preserving isomorphism
on each fiber. Now let s :M → E be a section of E. Then there is a section
f∗s :M ′ → f∗E defined by

(f∗s)(p′) := (p′, s(f(p′)).

Then f̃ ◦ (f∗s) = s ◦ f :M → f∗M and hence

(f∗s)∗f̃∗τ = (f̃ ◦ (f∗s))∗τ = (s ◦ f)∗τ = f∗(s∗τ).

This proves (Functoriality) of the Euler class.
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To prove the (Sum) property abbreviate

E := E1 ⊕ E2

and observe that there are two obvious projections pri : E → Ei for i = 1, 2.
Let ni := rank(Ei) and let τi ∈ Ωni

c (Ei) be a Thom form on Ei. Then

τ := pr∗1τ1 ∧ pr∗2τ2 ∈ Ωn1+n2
c (E)

is a Thom form on E, by Fubini’s theorem. A section s : M → E can be
expressed as a direct sum s = s1 ⊕ s2 of two sections si : M → Ei. Then
pri ◦ s = si and hence

s∗τ = s∗ (pr∗1τ1 ∧ pr∗2τ2) = s∗1τ1 ∧ s∗2τ2.
This proves the theorem.

9.3.3 The Product Structure on H
∗(CPn)

We examine the ring structure on the deRham cohomology of CPn where
multiplication is the cup product with unit 1 ∈ H0(M). We already know
from Example 8.52 that the odd dimensional deRham cohomology vanishes
and that H2k(CPn) ∼= R for every k = 0, 1, . . . , n. Throughout we identify
CPk with a submanifold of CPn when k ≤ n; thus

CPk =
{
[z0 : z1 : · · · : zk : 0 : · · · : 0] ∈ CPn

∣∣ |z0|2 + · · ·+ |zk|2 > 0
}
.

In particular CP0 is the single point [1 : 0 : · · · : 0]. Let h ∈ H2(CPn) be
the class dual to the submanifold CPn−1 as defined in Section 8.4.3; thus

∫

CPn
a ∪ h =

∫

CPn−1
a (9.31)

for every a ∈ H2n−2(CPn).
Let C

∗ := C \ {0} denote the multiplicative group of nonzero complex
numbers and consider the complex line bundle π : H → CPn defined as
the quotient

H :=
(Cn+1 \ {0} × C

C∗
→ CPn,

where the equivalence relation is given by

[z0 : z1 : · · · : zn; ζ] ≡ [λz0 : λz1 : · · · : λzn;λζ]
for (z0, . . . , zn) ∈ C

n+1\{0}, ζ ∈ C, and λ ∈ C
∗. The fibers of this bundle are

one dimensional complex vector spaces; hence the term complex line bundle.
One can also think of H as an oriented real rank-2 bundle over CPn.



9.3. THE EULER CLASS 133

Theorem 9.51. For k = 0, 1, . . . , n define the deRham cohomology class
hk ∈ H2k(CPn) as the k-fold cup product of h with itself:

hk := h ∪ · · · ∪ h︸ ︷︷ ︸
k times

∈ H2k(CPn).

In particular, h0 = 1 ∈ H0(CPn) is the empty product and h1 = h. These
classes have the following properties.

(i) h is the Euler class of the oriented real rank-2 bundle H → CPn.

(ii) The cohomology class hk dual to the submanifold CPn−k; thus, for every
a ∈ H2n−2k(CPn), we have

∫

CPn
a ∪ hk =

∫

CPn−1
a. (9.32)

(iii) For k = 0, . . . , n we have
∫

CPk
hk = 1. (9.33)

(iv) For every compact oriented 2k-dimensional submanifold Q ⊂ CPn with-
out boundary we have ∫

Q
hk = CPn−k ·Q. (9.34)

Proof. Geometrically one can think of CPn is as the set of complex one
dimensional subspaces of Cn+1:

CPn =
{
ℓ ⊂ C

n+1 | ℓ is a 1-dimensional complex subspace
}
.

The tautological complex line bundle over CPn is the bundle whose
fiber over ℓ is the line ℓ itself. In this formulation H is the dual of the
tautological bundle so that the fiber of H over ℓ ∈ CPn is the dual space

Hℓ = ℓ∗ = HomC(ℓ,C).

Thus H can be identified with the set of all pairs (ℓ, φ) where ℓ ⊂ C
n+1

is a 1-dimensional complex subspace and φ : ℓ → C is a complex linear
map. (Exercise: Verify this.) In this second formulation every complex
linear map Φ : Cn+1 → C defines a section s : CPn → H which assigns
to every ℓ ∈ CPn the restriction s(ℓ) := Φ|ℓ. An example, in our previous
formulation, is the projection onto the last coordinate:

s([z0 : z1 : · · · : zn]) := [z0 : z1 : · · · : zn; zn].
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This section is transverse to the zero section and its zero set is the pro-
jectve subspace s−1(0) = CPn−1 ⊂ CPn with its complex orientation. By
Theorem 9.47 the Euler class e(H) ∈ H2(CPn) is dual to the zero set of
any transverse section of H. Hence it follows from from our definitions that
h := e(H). This proves (i).

We prove the remaining assertions. By Theorem 9.50 the restriction of h
to each projective subspace CPi+1 ⊂ CPn is the Euler class of the restriction
of the bundle H. Hence

∫

CP i+1

a ∪ h =

∫

CPi
a

for every a ∈ H2i(CPn). By induction, we obtain
∫

CPi+k

a ∪ hk =

∫

CPi

a

for all i, k ≥ 0 with i + k ≤ n and every a ∈ H2i(CPn). With i = n − k
this proves (ii) and, with i = 0 and a = 1 ∈ H0(CPn), this proves (iii).
Now let Q ⊂ CPn is any 2k-dimensional compact oriented submanifold
without boundary and τQ ∈ Ω2n−2k(CPn) be a closed form dual to Q as in
Section 8.4.3. Then, by Theorem 8.44, we have

∫

Q
hk =

∫

CPn
hk ∧ τQ = CPn−k ·Q.

Here we have used the fact that the class hk is dual to the submanifold
CPn−k ⊂ CPn, by (ii). This proves (iv) and the theorem.

Remark 9.52. Equation (9.32) can be viewed as a special instance of the
general fact, not proved in these notes, that the the cup product of two closed
forms dual to transverse submanifolds P,Q ⊂M is dual to the intersection
P ∩ Q (with the appropriate careful choice of orientations). Theorem 8.44
can also be interpreted as an example of this principle.

Remark 9.53. By equation (9.34), the class hk ∈ H2k(CPn) is inte-
gral in the sense that the integral of hk over every compact oriented 2k-
dimensional submanifold Q ⊂ CPn without boundary is an integer. By
equation (9.33), the class hk generates the additive subgroup of all integral
classes in H2k(CPn) (also called the integral lattice) in the sense that
every integral cohomology class in H2k(CPn) is an integer multiple of hk.
Here we use the fact that H2k(CPn) is a one dimensional real vector space
(see Example 8.52).



9.3. THE EULER CLASS 135

Remark 9.54. The definition of the integral lattice in Remark 9.53 is rather
primitive but suffices for our purposes. The correct definition involves a co-
homology theory over the integers such as, for example, the singular coho-
mology. DeRham’s theorem asserts that the deRham cohomology H∗

dR(M)
is isomorphic to the singular cohomology H∗

sing(M ;R) with real coefficients.
Moreover, there is an obvious homomorphism H∗

sing(M ;Z) → H∗
sing(M ;R).

The correct definition of the integral lattice Λ ⊂ H∗
dR(M) is as the sub-

group (in fact subring) of those classes whose images under deRham’s iso-
morphism in H∗

sing(M ;R) have integral lifts, i.e. belong to the image of the
homomorphism H∗

sing(M ;Z) → H∗
sing(M ;R). The relation between these

two definitions of the integral lattice is not at all obvious. It is related to
the question which integral singular homology classes can be represented by
submanifolds. However, in the case of CPn these subtleties do not play a
role and we do not discuss the issue further.

Remark 9.55. Theorem 9.51 asserts that the comology class h ∈ H2(CPn)
is a multiplicative generator of H∗(CPn). In other words, every element
a ∈ H∗(CPn) can be expressed as a sum

a = c0 + c1h+ c2h
2 + · · · + cnh

n

with real coefficients ci. Think of the ci as the coefficients of a polynomial

p(u) = c0 + c1u+ c2u
2 + · · · + cnu

n

in one variable, so that a = p(h). Thus we have a ring isomorphism

R[u]

〈un+1 = 0〉 −→ H∗(CPn) : p 7→ p(h).

The integral lattice in H∗(CPn), as defined in Remark 9.53, is the image of
the subring of polynomials with integer coefficients under this isomorphism.

We shall return to the Euler class of a real rank-2 bundle in Section 10.3.3
with an alternative definition and in Section 10.3.4 with several examples.
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Chapter 10

Connections and Curvature

In this chapter we discuss connections and curvature and give an introduc-
tion to Chern–Weil theory and the Chern classes of complex vector bundles.
The chapter begins in Section 10.1 by introducing the basic notions of con-
nection and parallel transport, followed by a discussion of structure groups.
In Section 10.2 we introduce the curvature of a connection, followed by a
discussion of gauge transformations and flat connections. With the basic
notions in place we turn to Chern–Weil theory in Section 10.3. As a first
application we give another definition of the Euler class of an oriented real
rank-2 bundle and discuss several examples. Our main application is the in-
troduction of the Chern classes in Section 10.4. We list their axioms, prove
their existence via Chern–Weil theory, and show that the Chern classes
are uniquely determined by the axioms. Various applications of the Chern
classes to geometric questions are discussed in Section 10.5. The chapter
closes with a brief outlook to some deeper results in differential topology.

10.1 Connections

10.1.1 Vector Valued Differential Forms

Let π : E → M be a real rank-n vector bundle over a smooth m-manifold
M . Fix an integer k ≥ 0. A differential k-form on M with values in E
is a collection of alternating k-forms

ωp : TpM × TpM × · · · × TpM︸ ︷︷ ︸
k times

→ Ep,

one for each p ∈M , such that the map M → E : p 7→ ωp(X1(p), . . . ,Xk(p))
is a smooth section of E for every k vector fields X1, . . . ,Xk ∈ Vect(M).

137
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The space of k-forms on M with values in E will be denoted by Ωk(M,E).
In particular, Ω0(M,E) is the space of smooth sections of E. A k-form on
M with values in E can also be defined as a smooth section of the vector
bundle ΛkT ∗M ⊗ E →M. Thus

Ωk(M) = Ω0(M,ΛkT ∗M ⊗ E).

Remark 10.1. The space Ωk(M,E) of E-valued k-forms on M is a real
vector space. Moreover, we can multiply an E-valued k-form on M by a
smooth real valued function or by a real valued differential form onM using
the pointwise exterior product. This gives a bilinear map

Ωℓ(M)× Ωk(M,E)→ Ωk+ℓ(M,E) : (τ, ω) 7→ τ ∧ ω,

defined by the same formula as in the standard case where both forms are
real valued. (See Definition 7.7.)

Remark 10.2. Let ψα : π−1(Uα)→ Uα × V be a family of local trivializa-
tions of E with transitions maps gβα : Uα∩Uβ → GL(V ). Then every global
k-form ω ∈ Ωk(M,E) determines a family of local vector valued k-forms

ωα := pr2 ◦ ψα ◦ ω|Uα ∈ Ωk(Uα, V ). (10.1)

These local k-forms are related by

ωβ = gβαωα. (10.2)

Conversely, every collection of local k-forms ωα ∈ Ωk(Uα, V ) that sat-
isfy (10.2) determine a global k-form ω ∈ Ωk(M,E) via (10.1).

10.1.2 Connections

Let π : E →M be a real vector bundle over a smooth manifold. A connec-
tion on E is a linear map

∇ : Ω0(M,E)→ Ω1(M,E)

that satisfies the Leibnitz rule

∇(fs) = f∇s+ (df) · s (10.3)

for every f ∈ Ω0(M) and every s ∈ Ω0(M,E). For p ∈M and v ∈ TpM we
write ∇vs(p) := (∇s)p(v) ∈ Ep and call this the covariant derivative of s
at p in the direction v.
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The archetypal example of a connection is the usual differential

d : Ω0(M)→ Ω1(M)

on the space of smooth real valued functions on M , thought of as sections
of the trivial bundle E = M × R. This is a first order linear operator and
the same works for vector valued functions. The next proposition shows
that every connection is in a local trivialization given by a zeroth order
perturbation of the operator d.

Proposition 10.3 (Connections). Let π : E →M be a vector bundle over
a smooth manifold with local trivializations

ψα : π−1(Uα)→ Uα × V

and transitions maps

gβα : Uα ∩ Uβ → GL(V ).

(i) E admits a connection.

(ii) For every connection ∇ on E there are 1-forms Aα ∈ Ω1(Uα,End(V )),
called connection potentials, such that

(∇s)α = dsα +Aαsα (10.4)

for every s ∈ Ω0(M,E), where (∇s)α and sα are defined by (10.1). The
connection potentials satisfy the condition

Aα = g−1
βαdgβα + g−1

βαAβgβα (10.5)

for all α, β. Conversely, every collection of 1-forms Aα ∈ Ω1(Uα,End(V ))
satisfying (10.5) determine a connection ∇ on E via (10.4).

(iii) If ∇,∇′ : Ω0(M,E) → Ω1(M,E) are connections on E then there is a
1-form A ∈ Ω1(M,End(E)) such that

∇′ −∇ = A.

Conversely if ∇ is a connection on E then so is ∇+A for every endomor-
phism valued 1-form A ∈ Ω1(M,End(E)).
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Proof. The proof has six steps.

Step 1. For every section s ∈ Ω0(M,E) and every connection ∇ on E we
have supp(∇s) ⊂ supp(s).

Let p0 ∈M \supp(s) and choose a smooth function f :M → [0, 1] such that
f = 1 on the support of s and f = 0 near p0. Then fs = s and hence

∇s = ∇(fs) = f∇s+ (df)s.

The right hand side vanishes near p0 and hence ∇s vanishes at p0. This
proves Step 1.

Step 2. For every connection ∇ on E and every α there is a 1-forms
Aα ∈ Ω1(Uα,End(V )) satisfying (10.4).

Fix a compact subset K ⊂ Uα. We first define the restriction of Aα to K.
For this we choose a basis e1, . . . , en of V and a smooth cutoff function
ρ : M → [0, 1] with support in Uα such that ρ ≡ 1 in a neighborhood of K.
For i = 1, . . . , n let si :M → E be the smooth section defined by

si(p) :=

{
ρ(p)ψα(p)

−1ei, for p ∈ Uα,
0, for p ∈M \ Uα.

For p ∈ K define the linear map (Aα)p : TpM → End(V ) by

(Aα)p(v)

n∑

i=1

λiei := ψα(p)

n∑

i=1

λi∇vsi(p)

for λ1, . . . , λn ∈ R and v ∈ TpM . By Step 1, the linear map (Aα)p is
independent of the choice of ρ and hence is defined for each p ∈ Uα.

If s ∈ Ω0(M,E) is supported in Uα we take K = supp(s) and choose si
as above. Then there are fi :M → R, supported in K, such that

s =
∑

i

fisi, sα =
∑

i

fiei.

Hence, for p ∈ K = supp(s) ⊂ Uα, we have

(∇s)α(p; v) = ψα(p)∇vs(p) = ψα(p)
∑

i

∇v(fisi)(p)

= ψα(p)
∑

i

(
fi(p)∇vsi(p) + (dfi(p)v)si(p)

)

= (Aα)p(v)
∑

i

fi(p)ei +
∑

i

(dfi(p)v)ei

= (Aα)p(v)sα(p) + dsα(p)v.

By Step 1, this continues to hold when s is not supported in Uα.



10.1. CONNECTIONS 141

Step 3. The 1-forms Aα ∈ Ω1(Uα,End(V )) in Step 2 satisfy (10.5).

By definition we have (∇s)β = gβα(∇s)α and hence

dsβ +Aβsβ = gβα (dsα +Aαsα)

on Uα ∩ Uβ. Differentiating the identity sβ = gβαsα we obtain

dsβ = gβαdsα + (dgβα) sα

and hence

Aβgβαsα = Aβsβ

= gβαAαsα + gβαdsα − dsβ
=

(
gβαAα − dgβα

)
sα

for every (compactly supported) smooth function sα : Uα ∩ Uβ → V . Thus
Aβgβα = gβαAα − dgβα on Uα ∩ Uβ and this proves Step 3.

Step 4. Every collection of 1-forms Aα ∈ Ω1(Uα,End(V )) satisfying (10.5)
determine a connection ∇ on E via (10.4).

Reversing the argument in the proof of Step 3 we find that, for every smooth
section s ∈ Ω0(M,E), the local E-valued 1-form

TpM → Ep : v 7→ ψα(p)
−1
(
dsα(p)v + (Aα)p(v)sα(p)

)

agrees on Uα ∩ Uβ with the corresponding 1-form with α replaced by β.
Hence these 1-forms define a global smooth 1-form ∇s ∈ Ω1(M,E). This
proves Step 4. In particular, we have now established assertion (ii).

Step 5. We prove (iii).

The difference of two connections ∇ and ∇′ is linear over the functions, i.e.
(∇′ − ∇)(fs) = f(∇′ − ∇)s for all f ∈ Ω0(M) and all s ∈ Ω0(M,E). We
leave it to the reader to verify that such an operator ∇′ − ∇ is given by
multiplication with an endomorphism valued 1-form. (Hint: See Step 2.)

Step 6. We prove (i).

Choose a partition of unity ρα :M → [0, 1] subordinate to the cover {Uα}α
and define Aα ∈ Ω1(Uα,End(V )) by

Aα :=
∑

γ

ργg
−1
γαdgγα. (10.6)

These 1-forms satisfy (10.5) and hence determine a connection on E, by
Step 4. This proves the proposition.
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Example 10.4. The Levi-Civita connection of a Riemannian metric is an
example of a connection on the tangent bundle E = TM (see [16]).

Exercise 10.5. Let s : M → E be a smooth section and p ∈ M be a zero
of s so that s(p) = 0p ∈ Ep. Then the vertical derivative of s at p is the map

TpM → Ep : v 7→ Ds(p)v = ∇vs(p)
for every connection ∇ on E. (See Definition 9.38.)

Just as the usual differential d : Ω0(M)→ Ω1(M) extends to a family of
linear operators d : Ωk(M)→ Ωk+1(M), so does a connection ∇ on a vector
bundle E induce linear operators d∇ on differential forms with values in E.

Proposition 10.6. Let π : E → M be a vector bundle over a smooth
manifold and ∇ : Ω0(M,E) → Ω1(M,E) be a connection. Then there is a
unique collection of operators

d∇ : Ωk(M,E)→ Ωk+1(M,E)

such that d∇ = ∇ for k = 0 and

d∇(τ ∧ ω) = (dτ) ∧ ω + (−1)deg(τ)τ ∧ d∇ω (10.7)

for every τ ∈ Ω∗(M) and every ω ∈ Ω∗(M,E). In the local trivializations
the operator d∇ is given by

(
d∇ω

)
α
= dωα +Aα ∧ ωα (10.8)

for ω ∈ Ωk(M,E) and ωα := pr2 ◦ πα ◦ ω|Uα ∈ Ωk(Uα, V ).

Proof. Define d∇ω by (10.8) and use equation (10.5) to show that d∇s is well
defined. That this operator satisfies (10.7) is obvious from the definition.
That equation (10.7) determines the operator d∇ uniquely, follows from the
fact that every k-form on M with values in E can be expressed as a finite
sum of products of the form τisi with τi ∈ Ωk(M) and si ∈ Ω0(M,E). This
proves the proposition.

Exercise 10.7. Show that

(d∇ω)(X,Y ) = ∇X(ω(Y ))−∇Y (ω(X)) + ω([X,Y ]) (10.9)

for ω ∈ Ω1(M,E) and X,Y ∈ Vect(M) and

(d∇ω)(X,Y,Z) = ∇X(ω(Y,Z)) +∇Y (ω(Z,X)) +∇Z(ω(X,Y ))

− ω(X, [Y,Z])− ω(Y, [Z,X]) − ω(Z, [X,Y ])
(10.10)

for ω ∈ Ω2(M,E) and X,Y,Z ∈ Vect(M). Hint: Use (7.22) and (7.23).
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10.1.3 Parallel Transport

Let ∇ be a connection on a vector bundle π : E → M over a smooth
manifold. For every smooth path γ : I → M on an interval I ⊂ R the
connection determines a collection of vector space isomorphisms

Φ∇
γ (t1, t0) : Eγ(t0) → Eγ(t1)

between the fibers of E along γ satisfying

Φ∇
γ (t2, t1) ◦Φ∇

γ (t1, t0) = Φ∇
γ (t2, t0), Φ∇

γ (t, t) = id (10.11)

for t, t0, t1, t2 ∈ I. These isomorphisms are called parallel transport of ∇
along γ and are defined as follows.

A section of E along γ is a smooth map s : I → E such that π ◦ s = γ
or, equivalently, s(t) ∈ Eγ(t) for every t ∈ I. Thus a section of E along γ
is a section of the pullback bundle γ∗E → I and the space of sections of E
along γ will be denoted by

Ω0(I, γ∗E) := {s : I → E |π ◦ s = γ} .

The connection determines a linear operator

∇ : Ω0(I, γ∗E)→ Ω0(I, γ∗E),

which is called the covariant derivative, as follows. In the local trivial-
izations ψα : π−1(Uα)→ Uα × V a section s ∈ Ω0(I, γ∗E) is represented by
a collection of smooth curves sα : Iα → V via

sα(t) =: ψα(γ(t))s(t) ∈ V, t ∈ Iα := γ−1(Uα). (10.12)

These curves satisfy

sβ(t) = gβα(γ(t))sα(t), t ∈ Iα ∩ Iβ (10.13)

for all α, β. Conversely, any collection of smooth curves sα : Iα → E sat-
isfying (10.13) determines a smooth section of E along γ via (10.12). The
covariant derivative ∇s(t) ∈ Eγ(t) is defined by

(∇s)α(t) = ṡα(t) +Aα(γ̇(t))sα(t), t ∈ Iα. (10.14)

By (10.5) we have (∇s)β = gβα(γ)(∇s)α on Iα ∩ Iβ and hence the vector

∇s(t) := ψα(γ(t))
−1(∇s)α(t) ∈ Eγ(t), t ∈ Iα, (10.15)

is independent of the choice of α with γ(t) ∈ Uα.
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Let us fix a smooth curve γ : I → M and an initial time t0 ∈ I. Then
it follows from the theory of linear time dependent ordinary differential
equations that, for every e0 ∈ Eγ(t0), there is a unique section s ∈ Ω0(I, γ∗E)
along γ satisfying the initial value problem

∇s = 0, s(t0) = e0. (10.16)

This section is called the horizontal lift of γ through e0.

Definition 10.8 (Parallel Transport). The parallel transport of ∇
along γ from t0 to t ∈ I is the linear map

Φ∇
γ (t, t0) : Eγ(t0) → Eγ(t)

defined by
Φ∇
γ (t, t0)e0 := s(t) (10.17)

for e0 ∈ Eγ(t0), where s ∈ Ω0(I, γ∗E) is the unique horizontal lift of γ
through e0.

Exercise 10.9. Prove that parallel transport satisfies (10.11).

Exercise 10.10 (Reparametrization). If φ : I ′ → I is any smooth map
between intervals and γ : I →M is a smooth curve then

Φ∇
γ◦φ(t1, t0) = Φ∇

γ (φ(t1), φ(t0)) : Eγ(φ(t0)) → Eγ(φ(t1))

for all t0, t1 ∈ I ′.

10.1.4 Structure Groups

Let G ⊂ GL(V ) be a Lie subgroup with Lie algebra

g := Lie(G) = T1lG ⊂ End(V )

Let π : E →M be a vector bundle with structure group G, local trivializa-
tions ψα : π−1(Uα)→ Uα×V , and transition maps gβα : Uα∩Uβ → G. The
bundle of endomorphisms of E is defined by

End(E) :=

{
(p, ξ)

∣∣∣∣
p ∈M, ξ : Ep → Ep is a linear map,
p ∈ Uα =⇒ ψα(p) ◦ ξ ◦ ψα(p)−1 ∈ g

}
. (10.18)

Thus End(E) is a vector bundle whose fibers are isomorphic to the Lie
algebra g. The space of sections of End(E) carries a Lie algebra structure,
understood pointwise. Differential forms with values in End(E) are in local
trivializations represented by differential forms on Uα with values in g.
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Proposition 10.11. Let ∇ : Ω0(M,E) → Ω1(M,E) be a connection on E
with connection potentials Aα ∈ Ω0(Uα,End(V ))

(i) The connection potentials Aα ∈ Ω1(Uα, g) take values in g if and only
if parallel transport preserves the structure group, i.e. for every smooth path
γ : I →M and all t0, t1 ∈ I with γ(t0) ∈ Uα and γ(t1) ∈ Uβ we have

ψβ(γ(t1)) ◦ Φ∇
γ (t1, t0) ◦ ψα(γ(t0))−1 ∈ G. (10.19)

∇ is called a G-connection on E if it satisfies these equivalent conditions.

(ii) If ∇ is a G-connection and A ∈ Ω1(M,End(E)) then ∇ + A is a G
connection. If ∇,∇′ : Ω0(M,E)→ Ω1(M,E) are G-connections then

∇′ −∇ ∈ Ω1(M,End(E)).

(iii) Every G-bundle admits a G-connection.

Proof. It suffices to prove (i) for curves γ : I → Uα. If Aα ∈ Ω1(Uα, g) then

ξ(t) := Aα(γ̇(t)) ∈ g

for every t ∈ I. Thus ξ : I → g is a smooth curve in the Lie algebra of G
and hence the differential equation

ġ(t) + ξ(t)g(t) = 0, g(t0) = 1l,

has a unique solution g : I → G ⊂ GL(V ). Now parallel transport along γ
from t0 to t is given by

Φγ(t, t0) = ψα(γ(t))
−1 ◦ g(t) ◦ ψα(γ(t0)) : Eγ(t0) → Eγ(t)

and hence satisfies (10.19). Reversing this argument we see that (10.19) for
every smooth path γ : I → Uα implies Aα ∈ Ω1(Uα, g). This proves (i).
Assertion (ii) follows follows immediately from (i) and Proposition 10.3.
Assertion (iii) follows from the explicit formula (10.6) in the proof of Propo-
sition 10.3. This proves the proposition.

Example 10.12. Let V be an oriented vector space and G = GL+(V )
be the group of orientation preserving automorphisms of V . Vector bundles
with structure group GL+(V ) are oriented vector bundles (see Section 9.1.5).
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Example 10.13. Let V be a finite dimensional oriented real Hilbert space
and G = SO(V ) be the group of orientation preserving orthogonal transfor-
mations of V . If π : E →M is a vector bundle with structure group SO(V )
then the local trivializations induce orientations as well as inner products

Ep × Ep → R : (e1, e2) 7→ 〈e1, e2〉p
on the fibers. The inner products fit together smoothly in the sense that
the map M → R : p 7→ 〈s1(p), s2(p)〉p is smooth for every pair of smooth
sections s1, s2 ∈ Ω0(M,E). Such a family of inner products is called a
Riemannian structure on E and a vector bundle E with a Riemannian
structure is called a Riemannian vector bundle.

A connection ∇ on a Riemannian vector bundle π : E → M is called a
Riemannian connection if it satisfies the Leibnitz rule

d〈s1, s2〉 = 〈∇s1, s2〉+ 〈s1,∇s2〉 (10.20)

for all s1, s2 ∈ Ω0(M,E). Exercise: Prove that every oriented Rieman-
nian vector bundle admits a system of local trivializations whose transition
maps take values in SO(V ). Prove that Riemannian connections are the
SO(V )-connections in Proposition 10.11. In other words, a connection is
Riemannian if and only if parallel transport preserves the inner product.
Prove that End(E) is the bundle of skew-symmetric endomorphisms of E.

Example 10.14. Let V be a complex vector space and G = GLC(V ) be
the group of complex linear automorphisms of V . If π : E → M is a
vector bundle with structure group GLC(V ) then the local trivializations
induce complex structures on the fibers of the vector bundle that fit together
smoothly, i.e. a vector bundle automorphism

J : E → E, J2 = −1l.

The pair (E, J) is called a complex vector bundle.
A connection ∇ on a complex vector bundle π : E → M is called a

complex connection if it is complex linear, i.e.

∇(Js) = J∇s (10.21)

for all s ∈ Ω0(M,E). Exercise: Prove that every complex vector bundle
admits a system of local trivializations whose transition maps take values
in GLC(V ). Prove that complex connections are the GLC(V )-connections
in Proposition 10.11. In other words, a connection is complex linear if and
only if parallel transport is complex linear. Prove that End(E) is the bundle
of complex linear endomorphisms of E.
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Example 10.15. A Hermitian vector space is a complex vector space
V equipped with a bilinear form

V × V → C : (u, v) 7→ 〈u, v〉c
whose real part is an inner product and that is complex anti-linear in the
first variable and complex linear in the second variable. Thus, for u, v ∈ V
and λ ∈ C, we have

〈λu, v〉c = λ̄〈u, v〉c, 〈u, λv〉c = λ〈u, v〉c.

Such a bilinear form is called a Hermitian form on V . Note that the
complex structure is skew-symmetric with respect to the inner product

〈·, ·〉 := Re 〈·, ·〉c,

and that any such inner product uniquely determines a Hermitian form. The
group of unitary automorphisms of a Hermitian vector space V is

U(V ) := {g ∈ GLC(V ) | 〈gu, gv〉c = 〈u, v〉c ∀u, v ∈ V } .

For V = C
n we use the standard notation U(n) := U(Cn).

If π : E →M is a vector bundle with structure group U(V ) then the local
trivializations induce Hermitian structures on the fibers of the vector bundle
that fit together smoothly. Thus E is both a complex and a Riemannian
vector bundle and the complex structure is skew-symmetric with respect to
the Riemannian structure:

〈e1, Je2〉+ 〈Je1, e2〉 = 0, e1, e2 ∈ Ep.

The Hermitian form on the fibers of E is then given by

〈e1, e2〉c = 〈e1, e2〉+ i〈Je1, e2〉, e1, e2 ∈ Ep.

A complex vector bundle with such a structure is called a Hermitian vec-
tor bundle. Every Hermitian vector bundle admits a system of local trivi-
alizations whose transition maps take values in U(V ). Thus vector bundles
with structure group U(V ) are Hermitian vector bundles.

A connection ∇ on a Hermitian vector bundle π : E → M is called a
Hermitian connection if it is complex linear and Riemannian, i.e. if it
satisfies (10.20) and (10.21). Thus the Hermitian connections are the U(V )-
connections in Proposition 10.11. In other words, a connection is Hermitian
if and only if parallel transport preserves the Hermitian structure. Moreover,
End(E) is the bundle of skew-Hermitian endomorphisms of E.
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Exercise 10.16. Every complex vector bundle E admits a Hermitian struc-
ture. Any two Hermitian structures on E are related by a complex linear
automorphism of E. Hint: Let V be a complex vector space and H (V )
be the space of Hermitian forms on V compatible with the given complex
structure. Show that H (V ) is a convex subset of a (real) vector space and
that GLC(V ) acts tansitively on H (V ). Describe Hermitian structures in
local trivializations.

10.1.5 Pullback Connections

Let π : E → M be a vector bundle with structure group G ⊂ GL(V ), local
trivializations ψα : E|Uα → Uα × V, and transition maps

gβα : Uα × Uβ → G.

Let ∇ be a G-connection on E with connection potentials

A∇
α ∈ Ω1(Uα, g).

Let
f :M ′ →M

be a smooth map between manifolds. We show that the pullback bundle

f∗E =
{
(p; , e) ∈M ′ × E | f(p′) = π(e)

}

is a G-bundle over M ′ and that the G connection ∇ on E induces a G-
connection f∗∇ on f∗E. To see this note that the local trivializations of E
induce local trivializations of the pullback bundle over f−1(Uα) given by

f∗ψα : f∗E|f−1(Uα) → f−1(Uα)× V, (f∗ψα)(p
′, e) := (p′,pr2 ◦ ψα(e)).

Thus
(f∗ψα)(p

′) = ψα(f(p
′)) : (f∗E)p′ = Ef(p′) → V

for p′ ∈ f−1(Uα) and the resulting transition maps are given by

f∗gβα = gβα ◦ f : f−1(Uα) ∩ f−1(Uβ)→ G.

The connection potentials of the pullback connection f∗∇ are, by defini-
tion, the 1-forms

Af
∗∇
α := f∗A∇

α ∈ Ω1(f−1(Uα), g).

Thus f∗E is a G-bundle and f∗∇ is a G-connection on f∗E.
Exercise: Show that the 1-forms Af

∗∇
α satisfy equation (10.5) with gβα

replaced by f∗gβα and hence define a G-connection on f∗E.
Exercise: Show that the covariant derivative of a section along a curve is
an example of a pullback connection.
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10.2 Curvature

10.2.1 Definition and basic properties

In contrast to the exterior differential on differential forms, the operator d∇

does not, in general, define a cochain complex. The failure of d∇ ◦ d∇ to
vanish gives rise to the definition of the curvature of a connection.

Proposition 10.17. Let π : E → M be a vector bundle over a smooth
manifold and ∇ : Ω0(M,E)→ Ω1(M,E) be a connection.

(i) There is a unique endomorphism valued 2-form F∇ ∈ Ω2(M,End(E)),
called the curvature of the connection ∇, such that

d∇d∇s = F∇s (10.22)

for every s ∈ Ω0(M,E). In local trivializations the curvature is given by

(F∇s)α = Fαsα, Fα := dAα +Aα ∧Aα ∈ Ω2(Uα,End(V )). (10.23)

Moreover, on Uα ∩ Uβ we have

gβαFα = Fβgβα. (10.24)

(ii) For every ω ∈ Ωk(M,E) we have

d∇d∇ω = F∇ ∧ ω. (10.25)

(iii) For X,Y ∈ Vect(M) and s ∈ Ω0(M,E) we have

F∇(X,Y )s = ∇X∇Y s−∇Y∇Xs+∇[X,Y ]s. (10.26)

(iv) If ∇ is a G-connection then F∇ ∈ Ω2(M,End(E)). (See (10.18).)

Proof. We prove (i). Define Fα ∈ Ω2(Uα,End(V )) by (10.23). Then, for
every s ∈ Ω0(M,E), we have

(d∇d∇s)α = d
(
dsα +Aαsα

)
+Aα ∧

(
dsα +Aαsα

)

= d(Aαsα) +Aα ∧ dsα + (Aα ∧Aα)sα
=
(
dAα +Aα ∧Aα

)
sα

= Fαsα.

(10.27)

Hence on Uα ∩ Uβ:

gβαFαsα = gβα
(
d∇d∇s

)
α
=
(
d∇d∇s

)
β
= Fβsβ = Fβgβαsα.
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This shows that the Fα satisfy equation (10.24) and therefore determine a
global endomorphism valued 2-form F∇ ∈ Ω2(M,End(E)) via

(F∇s)α := Fαsα

for s ∈ Ω0(M, .E). By (10.27) this global 2-form satisfies (10.22) and it is
uniquely determined by this condition. Thus we have proved (i).

We prove (ii). Given τ ∈ Ωℓ(M) and s ∈ Ω0(M,E), we have

d∇d∇(τs) = d∇
(
(dτ)s + (−1)ℓτ ∧ d∇s

)

= τ ∧ d∇d∇s
= τF∇s

= F∇ ∧ (τs).

Since every k-form ω ∈ Ωk(M,E) can be expressed as a finite sum of k-forms
of the form τs we deduce that F∇ satisfies (10.25) for all k. This proves (ii).

We prove (iii). Let X,Y ∈ Vect(M) and s ∈ Ω0(M,E). It follows from
equation 10.9 in Exercise 10.7 that

F∇(X,Y )s = ∇X
(
d∇s(Y )

)
−∇Y

(
d∇s(X)

)
+ d∇s([X,Y ])

= ∇X∇Y s−∇Y∇Xs+∇[X,Y ]s.

This proves (iii) and the proposition.
We prove (iv). If ∇ is a G-connection then

(Fα)p(u, v) = (dAα)p(u, v) + [Aα(u), Aα(v)] ∈ g

for all p ∈ Uα and u, v ∈ TpM . This proves (iv) and the proposition.

Remark 10.18. A connection on a vector bundle π : E → M induces a
connection on the endomorphism bundle End(E)→M . The corresponding
operator

d∇ : Ωk(M,End(E))→ Ωk+1(M,End(E))

is uniquely determined by the Leibnitz rule

d∇(Φs) = (d∇Φ)s+ (−1)deg(Φ)Φ ∧ d∇s
for Φ ∈ Ωk(M,End(E)) and s ∈ Ω0(M,E). Exercise: If the operator d∇

on Ω∗(M,End(E)) is defined by this formula, prove that

d∇(Φ ∧Ψ) = (d∇Φ) ∧Ψ+ (−1)deg(Φ)Φ ∧ d∇Ψ
for Φ,Ψ ∈ Ω∗(M,End(E)). Deduce that the operator d∇ on Ω∗(M,End(E))
arises from a connection on End(E).
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10.2.2 The Bianchi Identity

Proposition 10.19 (Bianchi Identity). Every connection ∇ on a vector
bundle π : E →M satisfies the Bianchi identity

d∇F∇ = 0. (10.28)

Proof 1. By definition of the operator

d∇ : Ω2(M,End(E))→ Ω3(M,End(E))

we have

(d∇F∇)s = d∇(F∇s)− F∇ ∧ d∇s = d∇(d∇d∇s)− (d∇d∇)d∇s = 0

for s ∈ Ω0(M,E).

Proof 2. In the local trivializations we have

(d∇F∇s)α = (d∇F∇s− F∇ ∧ d∇s)α
= d(Fαsα) +Aα ∧ Fαsα − Fα ∧ (dsα +Aαsα)

=
(
dFα +Aα ∧ Fα − Fα ∧Aα

)
sα

=
(
d(Aα ∧Aα) +Aα ∧ dAα − (dAα) ∧Aα

)
sα

= 0

for s ∈ Ω0(M,E).

Proof 3. It follows from (10.10) that

(d∇F∇s)(X,Y,Z)

= d∇(F∇s)(X,Y,Z)− (F∇ ∧ d∇s)(X,Y,Z)
= ∇X

(
F∇(Y,Z)s

)
+∇Y

(
F∇(Z,X)s

)
+∇Z

(
F∇(X,Y )s

)

−F∇(X, [Y,Z])s − F∇(Y, [Z,X])s − F∇(Z, [X,Y ])s

−F∇(Y,Z)∇Xs− F∇(Z,X)∇Y s− F∇(X,Y )∇Zs
= 0.

for X,Y,Z ∈ Vect(M) and s ∈ Ω0(M,E). Here the last equation follows
from (10.26) by direct calculation.

Example 10.20. If ∇ is the Levi-Civita connection on the tangent bundle
of a Riemannian manifold then (10.26) shows that F∇ ∈ Ω2(M,End(TM))
is the Riemann curvature tensor and (10.28) is the second Bianchi identity.
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10.2.3 Gauge Transformations

Let π : E → V be a vector bundle with structure group G ⊂ GL(V ), local
trivializations ψα : π−1(Uα)→ Uα × V , and transition maps

gβα : Uα ∩ Uβ → G.

A gauge transformation of E is a vector bundle automorphism u : E → E
such that the vector space isomorphism

uα(p) := ψα(p) ◦ u(p) ◦ ψα(p)−1 : V → V (10.29)

is an element of G for every α and every p ∈ Uα. The group

G (E) :=
{
u : E → E |ψα(p) ◦ u(p) ◦ ψα(p)−1 ∈ G ∀α ∀ p ∈ Uα

}
,

of gauge transformations is called the gauge group of E.
In the local trivializations a gauge transformation is represented by the

maps uα : Uα → G in (10.29). For all α and β these maps satisfy

gβαuα = uβgβα (10.30)

on Uα ∩ Uβ. Conversely, every collection of smooth maps uα : Uα → G
satisfying (10.30) determines a gauge transformation u ∈ G (E) via (10.29).
The gauge group can be thought of as an infinite dimensional analogue of a
Lie group with Lie algebra

Lie(G (E)) = Ω0(M,End(E)).

If ξ : M → End(E) is a section the pointwise exponential map gives rise to
a gauge transformation u = exp(ξ). This shows that the gauge group G (E)
is infinite dimensional (unless G is a discrete group or M is a finite set).

Let us denote the space of G-connections on E by

A (E) :=
{
∇ : Ω0(M,E)→ Ω1(M,E) |∇ is a G-connection

}
.

By Proposition 10.11 this space is nonempty and the difference of two G-
connections is a 1-form onM with values in End(E). Thus A (E) is an affine
space with corresponding vector space Ω1(M,End(E)). The gauge group
G (E) acts on the space of k-forms with values in E in the obvious manner
by composition and it acts on the space of G-connections (contravariantly)
by conjugation. We denote this action by

u∗∇ = u−1 ◦ ∇ ◦ u : Ω0(M,E)→ Ω1(M,E)

for ∇ ∈ A (E) and u ∈ G (E). The connection potentials of u∗∇ are

Au
∗∇
α = u−1

α duα + u−1
α A∇

α uα ∈ Ω1(Uα, g). (10.31)
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Lemma 10.21. The curvature of the connection u∗∇ is given by

F u
∗∇ = u−1 ◦ F∇ ◦ u ∈ Ω2(M,End(E)) (10.32)

and in the local trivialisations by

F u
∗∇

α = u−1
α F∇

α uα ∈ Ω2(Uα, g).

The parallel transport of the connection u∗∇ is given by

Φu
∗∇
γ (t1, t0) = u(γ(t1))

−1 ◦ Φγ(t1, t0) ◦ u(γ(t0)) : Eγ(t0) → Eγ(t1) (10.33)

for every smooth path γ : I →M and all t0, t1 ∈ I.

Proof. Equation (10.32) follows directly from the definitions. To prove equa-
tion (10.33) we choose a smooth curve γ : I → Uα and a smooth vector field
s(t) ∈ Eγ(t) along γ and abbreviate

s̃ := u−1s, ∇̃ := u∗∇, Ãα := u−1
α duα + u−1

α Aαuα.

In the local trivialization over Uα we have

sα(t) = ψα(γ(t))
−1s(t)

and
s̃α(t) = ψα(γ(t))

−1u(γ(t))s(t)

and hence
sα(t) = uα(γ(t))s̃α(t).

Differentiating this equation we obtain

(∇s)α = ṡα +Aα(γ̇)sα

= uα(γ)
d

dt
s̃α +

(
duα(γ)γ̇

)
s̃α +Aα(γ̇)uα(γ)s̃α

= uα(γ)

(
d

dt
s̃α + Ãα(γ̇)s̃α

)

=
(
u∇̃s̃

)
α
.

Thus we have proved that

(u∗∇)(u−1s) = u−1(∇s). (10.34)

In particular, ∇s ≡ 0 if and only if (u∗∇)(u−1s) ≡ 0. This proves (10.33)
and the lemma
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10.2.4 Flat Connections

A connection ∇ : Ω0(M,E) → Ω1(M,E) on a vector bundle π : E → M is
called a flat connection if its curvature vanishes. By Proposition 10.17 a
flat connection gives rise to a cochain complex

Ω0(M,E)
d∇−→ Ω1(M,E)

d∇−→ Ω2(M,E)
d∇−→ · · · d

∇

−→ Ωm(M,E). (10.35)

The cohomology of this complex will be denoted by

Hk(M,∇) := ker d∇ : Ωk(M,E)→ Ωk+1(M,E)

im d∇ : Ωk−1(M,E)→ Ωk(M,E)
.

The deRham cohomology of M is the cohomology associated to the trivial
connection ∇ = d on the vector bundle E = M × R. The cohomology of
the cochain complex (10.35) for a general flat connection ∇ on E is also
called deRham cohomology with twisted coefficients in E. We shall
see that a vector bundle need not admit a flat connection.

To understand flat connections geometrically, we observe that any con-
nection ∇ on a vector bundle π : E → M determines a horizontal sub-
bundle H ⊂ TE of the tangent bundle of E. It is defined by

He :=

{
d

dt

∣∣∣∣
t=0

s(t)

∣∣∣∣ s : R→ E, s(0) = e, ∇s ≡ 0

}
(10.36)

for e ∈ E. Note that the function s : R→ E in this definition is a section of
E along the curve γ := π◦s : R→M . The image of He under the derivative
of a local trivialization ψα : π−1(Uα)→ Uα × V with

p := π(e) ∈ Uα

is the subspace

dψα(e)He = {(p̂, v̂) ∈ TpM × V | v̂ + (Aα)p(p̂)v = 0} .

Here Aα ∈ Ω1(Uα,End(V )) is the connection potential of ∇.

Theorem 10.22. Let ∇ be a connection on a vector bundle π : E → M .
The following are equivalent.

(i) The curvature of ∇ vanishes.

(ii) The horizontal subbundle H ⊂ TE is involutive.

(iii) The parallel transport isomorphism Φ∇
γ (1, 0) : Eγ(0) → Eγ(1) depends

only on the homotopy class of γ : [0, 1]→M with fixed endpoints.
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Proof. We prove that (i) implies (iii). Let p0, p1 ∈M and

[0, 1] × [0, 1]→M : (λ, t) 7→ γ(λ, t) = γλ(t)

be a smooth homotopy with fixed endpoints

γλ(0) = p0, γλ(1) = p1, 0 ≤ λ ≤ 1.

Fix an element e0 ∈ Ep0 and, for 0 ≤ λ ≤ 1, denote by sλ : [0, 1] → E the
horizontal lift of γλ through e0. Then it follows from the theory of ordinary
differential equations that the map

[0, 1] × [0, 1]→ E : (λ, t) 7→ s(λ, t) := sλ(t)

is smooth. Let ∇λs be the covariant dervative of the vector field λ 7→ s(λ, t)
along the curve λ 7→ γ(λ, t) with t fixed and similarly with λ and t inter-
changed. Then

F∇(∂λγ, ∂tγ)s = ∇λ∇ts−∇t∇λs (10.37)

This is the analogue of equation (10.26) for sections along 2-parameter
curves. The proof is left as an exercise for the reader. Since ∇ts ≡ 0,
by defintion, and F∇ ≡ 0, by (i), we obtain

∇t∇λs ≡ 0.

For t = 1 this implies that the curve [0, 1] → Ep1 : λ 7→ sλ(1) is constant.
Thus we have proved that (i) implies (iii).

We prove that (iii) implies (ii). Choose a Riemannian metric on M
and fix an element e0 ∈ E. Let U0 ⊂ M be a geodesic ball centered at
p0 := π(e0), whose radius is smaller than the injectivity radius r0 of M at
p0. Then there is a unique smooth map ξ : U0 → Tp0M such that

expp0(ξ(p)) = p, |ξ(p)| < r0

We define a smooth section s : U0 → E over U0 by

s(p) := Φγp(1, 0)e0 ∈ Ep, γp(t) := expp0(tξ(p))

If γ : [0, 1] → U0 is any smooth curve connecting p0 to p then γ is homo-
topic to γp with fixed endpoints and hence s(γ(1)) = Φγ(1, 0)e0. The same
argument for the restriction of γ to the interval [0, t] shows that

s(γ(t)) = Φγ(t, 0)e0, 0 ≤ t ≤ 1.
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Differentiating this equation at t = 1 we obtain

ds(p)γ̇(1) =
d

dt

∣∣∣∣
t=1

s(γ(t)) ∈ Hs(p).

This holds for every smooth path γ : [0, 1]→M with γ(0) = p0 and γ(1) = p.
Since γ̇(1) can be chosen arbitrarily we obtain im ds(p) ⊂ Hs(p). Since
dimHs(p) = dimM = dimTpM for every p ∈M we have

s(p0) = e0, im ds(p) = Hs(p) ∀ p ∈ U0.

Thus we have found a submanifold of E through e0 that is tangent to H.
Hence H is integrable and, by the Theorem of Frobenius, it is therefore
involutive. Thus we have proved that (iii) implies (ii).

We prove that (ii) implies (i). A vector field X ∈ Vect(M) has a unique
horizontal lift X# ∈ Vect(E) such that

dπ ◦X# = X ◦ π, X#(e) ∈ He ∀ e ∈ E.

We show that the Lie bracket of two such lifts is given by

[X#, Y #](e) = [X,Y ]#(e) + F∇
(
X(π(e)), Y (π(e))

)
. (10.38)

This equation is meaningful because F∇(X(π(e)), Y (π(e)) ∈ Ee ⊂ TeE.
To prove (10.38) we observe that the restriction of X# to π−1(Uα) is the

pullback under ψα of the vector field X#
α ∈ Vect(Uα × V ) given by

X#
α (p, v) = (X(p),−(Aα ◦X)(p)v)

for p ∈ Uα and v ∈ V . Hence pr1 ◦ [X#
α , Y

#
α ] = [X,Y ] and

pr2[X
#
α , Y

#
α ](p, v) = (Aα ◦X)(p)(Aα ◦ Y )(p)v

−LY (Aα ◦X)(p)v

−(Aα ◦ Y )(p)(Aα ◦X)(p)v

+LX(Aα ◦ Y )(p)v

= [Aα(X(p)), Aα(Y (p))]v

+dAα(X(p), Y (p))v −Aα([X,Y ](p))v

= Fα(X(p), Y (p))v −Aα([X,Y ](p))v.

Here the second equation follows from (10.9) for the trivial connection on
Uα×End(V ) and the last equation follows from (10.23). This proves (10.38).
It follows immediately from (10.38) that the connection ∇ is flat whenever
the horizontal subbundle H ⊂ TE is involutive. Thus we have proved
that (ii) implies (i). This proves the theorem.
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Fix a vector space V and a Lie subgroup G ⊂ GL(V ). Every flat G-
connection ∇ on a vector bundle π : E → M with structure group G gives
rise to a group homomorphism

ρ∇ : π1(M,p0)→ G,

defined by

ρ∇(γ) := ψα(p0) ◦ Φγ(1, 0) ◦ ψα(p0)−1 ∈ G ⊂ GL(V ) (10.39)

for every smooth loop γ : [0, 1]→M with endpoints γ(0) = γ(1) = p0. Here
ψα : π−1(Uα) → Uα × V is a local trivialization with p0 ∈ Uα. By Proposi-
tion 10.11, the right hand side of (10.39) is an element of the structure group
G and, by Theorem 10.22, it depends only on the homotopy class of γ with
fixed endpoints. The notation ρ∇ is slightly misleading as the homomor-
phism depends on a choice of the local trivialization ψα. However, different
choices of the local trivialization result in conjugate homomorphisms. More-
over, different choices of the base point result in conjugate representations,
by equation (10.11). And Lemma 10.21 shows that the gauge group G (E)
acts on the space A flat(E) of flat G-connections on E and that the rep-
resentations ρ∇ and ρu

∗∇ are conjugate for every ∇ ∈ A flat(E) and every
u ∈ G (E). Thus the correspondence ∇ 7→ ρ∇ defines a map

M
flat(E) :=

A flat(E)

G (E)
→ Hom(π1(M),G)

conjugacy
. (10.40)

This map need not be bijective as different representations ρ : π1(M) → G
may arise from flat connections on non-isomorphic G-bundles. However it
extends to a bijective correspondence in the following sense.

Exercise 10.23. Prove the following assertions.

(I) For every homomorphism ρ : π1(M)→ G there is a flat G-connection ∇
on some G-bundle E →M such that ρ∇ is conjugate to ρ.

(II) If (E,∇) and (E′,∇′) are flat G-bundles with fibers isomorphic to V
such that ρ∇ and ρ∇

′

are conjugate then (E,∇) and (E′,∇′) are isomorphic.
In particular, the map (10.40) is injective.

Hint: Use parallel transport to prove (II). To prove (I) choose a universal

cover M̃ →M and define E as the quotient

E =
M̃ × V
π1(M,p0)

.

Here the fundamental group acts on V throught ρ. Sections of E are ρ-
equivariant maps s : M̃ → V . As the additive group R is isomorphic to
GL+(R) via the exponential map, this gives another proof of Exercise 8.74.
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10.3 Chern–Weil Theory

10.3.1 Invariant Polynomials

We assume throughout that V is a real vector space and G ⊂ GL(V ) is
a Lie subgroup with Lie algebra g := Lie(G) ⊂ End(V ). An invariant
polynomial of degree d on g is a degree-d polynomial p : g→ R such that

p(gξg−1) = p(ξ) (10.41)

for every ξ ∈ g and every g ∈ G. The polynomial condition can be expressed
as follows. Choose a basis e1, . . . , eN of g and write the elements of g as

ξ =
N∑

i=1

ξiei, ξi ∈ R.

Then a polynomial of degree d on g is a map of the form

p(ξ) =
∑

|ν|=d

aνξ
ν , ξν := (ξ1)ν1(ξ2)ν2 · · · (ξN )νN , (10.42)

where the sum runs over all multi-indices ν = (ν1, . . . , νN ) ∈ N
N
0 satisfying

|ν| := ν1 + ν2 + · · · + νN = d.

Definition 10.24. Let p : g → R be an invariant polynomial of degree
d. Let π : E → M be a vector bundle with structure group G and local
trivializations

ψα : π−1(Uα)→ Uα × V.
Let ∇ be a G-connection on E. We define the differential form

p(F∇) ∈ Ω2d(M)

as follows. Let Fα ∈ Ω2(Uα, g) be given by (10.23) and write

Fα =:
N∑

i=1

ωiαei, ωiα ∈ Ω2(Uα).

If p has the form (10.42) we define

p(F∇)|Uα :=
∑

|ν|=d

aνω
ν
α, ωνα := (ω1

α)
ν1 ∧ (ω2

α)
ν2 ∧ · · · ∧ (ωNα )νN .

It follows from (10.24) and the invariance of p that these definitions agree
on the intersection Uα ∩Uβ for all α and β. The reader may verify that the
differential form p(F∇) ∈ Ω2d(M) is independent of the choice of the basis
of g used to define it.
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10.3.2 Characteristic Classes

Theorem 10.25 (Chern–Weil). Let p : g→ R be an invariant polynomial
of degree d and π : E →M be a vector bundle with structure group G.

(i) The form p(F∇) ∈ Ω2d(M) is closed for every G-conection ∇ on E.

(ii) The deRham cohomology class of p(F∇) ∈ Ω2d(M) is independent of
the choice of the G-conection ∇.
(iii) If f :M ′ →M is a smooth map then p(F f

∗∇) = f∗p(F∇).

By Theorem 10.25 every invariant polynmial p : g→ R of degree d on the
Lie algebra of the structure group G determines a characteristic deRham
cohomology class

p(E) := [p(F∇)] ∈ H2d(M)

for every vector bundle π : E → M with structure group G. Namely, by
Proposition 10.11, there is a G-connection ∇ on E and, by Theorem 10.25,
the differential form p(F∇) ∈ Ω2d(M) associated to such a connection is
closed and its cohomology class is independent of ∇. It follows also from
Theorem 10.25 that the characteristic classes of G-bundles over different
manifolds are related under pullback by smooth maps f :M ′ →M via

p(f∗E) = f∗p(E).

Since p(F∇) = 0 for every flat G-connection ∇, a G-bundle with a nontrivial
characteristic class does not admit a flat G-connection.

Proof of Theorem 10.25. We prove (i). The Lie bracket on g determines
structure constants ckij ∈ R such that

[ei, ej ] =

N∑

k=1

ckijek, i, j = 1, . . . , N.

It follows from the invariance of the polynomial that

p(exp(tη)ξ exp(−η)) = p(ξ)

for all ξ, η ∈ g and all t ∈ R. Differentiating this identity at t = 0 we obtain

dp(ξ)[η, ξ] =
d

dt

∣∣∣∣
t=0

p(exp(tη)ξ exp(−η)) = 0.
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For k = 1, . . . , N define the polynomial pk : g→ R of degree d− 1 by

pk(ξ) := dp(ξ)ek

Then, for i = 1, . . . , N , we have

0 = dp(ξ)[ei, ξ] =

N∑

j=1

ξjdp(ξ)[ei, ej ] =

N∑

j,k=1

ckijξ
jpk(ξ).

Replacing ξ by the 2-form

ωα =

N∑

i=1

ωiαei = F∇
α ∈ Ω2(Uα, g)

of Definition 10.24 we obtain
m∑

j,k=1

ckijpk(ωα) ∧ ωiα, i = 1, . . . , N. (10.43)

Now write the connection potentials A∇
α ∈ Ω1(Uα, g) in the form

A∇
α =

N∑

i=1

aiαei, aiα ∈ Ω1(Uα).

Then the Bianchi identity takes the form

0 = (d∇F∇)α = dF∇
α + [A∇

α ∧ F∇
α ]

=

N∑

k=1

(dωkα)ek +

N∑

i,j=1

aiα ∧ ωjα[ei, ej ]

=

N∑

k=1


dωkα +

N∑

i,j=1

ckija
i
α ∧ ωjα


 ek.

Hence

dωkα +

N∑

i,j=1

ckija
i
α ∧ ωjα = 0, k = 1, . . . , N. (10.44)

Combining equations (10.43) and (10.44) we obtain

d(p(ωα)) =

N∑

k=1

pk(ωα) ∧ dωαk = −
N∑

i,j,k=1

ckijpk(ωα) ∧ aiα ∧ ωjα = 0.

Here the first equation is left as an exercise for the reader, the second equa-
tion follows from (10.44), and the last equation follows from (10.43). Thus
we have proved (i).
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We prove (ii). Let ∇0 and ∇1 be two G-connections on E with con-
nection potentials A0

α ∈ Ω1(Uα, g) and A1
α ∈ Ω1(Uα, g), respectively. Then

Proposition 10.11 shows that, for t ∈ R, the operator

∇t := (1− t)∇0 + t∇1 : Ω0(M,E)→ Ω1(M,E)

is a G-connection on E with connection potentials

Atα := tA1
α + (1− t)A0

α ∈ Ω1(Uα, g).

Define a connection ∇̃ on the vector bundle Ẽ := E × R over M̃ :=M × R

as follows. The local trivializations are given by

ψ̃α : π−1(Uα)× R→ (Uα × R)× V, ψ̃(e, t) := ((p, t),pr2 ◦ ψα(e)).

The connection potentials of ∇̃ in these trivializations are the 1-forms

Ãα ∈ Ω1(Uα × R, g), (Ãα)(p,t)(p̂, t̂) := (Atα)p(p̂)

for p ∈ Uα, p̂ ∈ TpM , and t, t̂ ∈ R. Then

F
e∇
α = F∇t

α − ∂tAtα ∧ dt ∈ Ω2(Uα × R, g)

and hence
p(F

e∇) = ω(t) + τ(t) ∧ dt ∈ Ω2d(M × R),

where
ω(t) := p(F∇t

) ∈ Ω2d(M), t ∈ R,

and
R→ Ω2d−1(M) : t 7→ τ(t)

is a smooth family of (2d − 1)-forms on M . By (i) the 2d-form p(F
e∇) on

M̃ =M ×R is closed. Thus, by equation (8.12) in the proof of Lemma 8.31,
we have

0 = dM×Rp(F
e∇) = dMω(t) +

(
dMβ(t) + ∂tω(t)

)
∧ dt.

This implies ∂tω(t) = −dMβ(t) for every t and hence

p(F∇1
)− p(F∇0

) = ω(1)− ω(0) =
∫ 1

0
∂tom(t) dt = −dM

∫ 1

0
β(t) dt.

Thus p(F∇1
)− p(F∇0

) is exact and this proves (ii).
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We prove (iii). In Section 10.1.5 we have seen that the curvature of the
pullback connection f∗∇ is in the local trivializations f∗ψα given by the
2-forms

F f
∗∇

α = f∗F∇
α ∈ Ω1(f−1(Uα), g).

Hence it follows directly from the definitions that p(F f
∗∇) = f∗p(F∇). This

proves (iii) and the theorem.

10.3.3 The Euler Class of an Oriented Rank-2 Bundle

Let π : E →M be an oriented Riemannian real rank-2 bundle over a smooth
manifold. By Example 10.13 E is a vector bundle with structure group

SO(2) =

{
g =

(
a −c
c a

) ∣∣∣∣ a, c ∈ R, a2 + c2 = 1

}
.

Its Lie algebra consists of all skew-symmetric real 2× 2-matrices:

so(2) =

{
ξ =

(
0 −λ
λ 0

) ∣∣∣∣λ ∈ R

}
.

The linear map e : so(2)→ R defined by

e(ξ) :=
−λ
2π

is invariant under conjugation. (However, e(g−1ξg) = −e(ξ) whenever
g ∈ O(n) has determinant −1. Thus we must assume that E is oriented.)
Hence there is a characteristic class

e(E) := [e(F∇)] ∈ H2(M), (10.45)

where ∇ is Riemannian connection on E. If we change the Riemannian
structure on E then there is an orientation preserving automorphism of E
intertwining the two inner products. (Prove this!) Thus the characteristic
class e(E) is independent of the choice of the Riemannian metric. We prove
below that (10.45) is the Euler class of E wheneverM is a compact oriented
manifold without boundary. Thus we have extended the definition of the
Euler class of an oriented real rank-2 bundle to arbitrary base manifolds.

Theorem 10.26. If E is an oriented real rank-2 bundle over a compact
oriented manifold M without boundary then (10.45) is the Euler class of E.
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Proof. Choose a smooth section s : M → E that is transverse to the zero
section and denote

Q := s−1(0).

Choose a Riemannian metric on M and let

exp : TQ⊥
ε → Uε

be the tubular neighborhood diffeomorphism in (9.18). Multiplying s by a
suitable positive function on M we may assume that

p ∈M \ Uε/3 =⇒ |s(p)| = 1.

Next we claim that there is a Riemannian connection ∇ on E such that

∇s = 0 on M \ Uε/2. (10.46)

To see this, we choose on open cover {Uα} of M such that one of the sets is
Uα0 =M \U ε/3 and E admits a trivialization over each set Uα. In particular,
we can use s to trivialize E over Uα0 . Next we choose a partition of unity
where ρα0 = 1 on M \ Uε/2. Then the formula (10.6) in Step 6 of the proof
of Proposition 10.3 defines a Riemannian connection that satisfies (10.46).
It follows from (10.46) that F∇s = d∇∇s = 0 on M \ Uε/2. Since F∇ is a
2-form with values in the skew-symmetric endomorphisms of E we deduce
that

F∇ = 0 on M \ Uε/2. (10.47)

The key observation is that, under this assumption, the 2-form

τε := exp∗ e(F∇) ∈ Ω2
c(TQ

⊥
ε )

is a Thom form on the normal bundle of Q. With this understood we obtain
from Lemma 9.35 with τQ = e(F∇) that

∫

M
ω ∧ e(F∇) =

∫

Q
ω =

∫

M
ω ∧ s∗τ

for every closed form ω ∈ Ωm−2(M) and every Thom form τ ∈ Ω2
c(E),

where the last equation follows from Theorem 9.47. By Poincaré duality
in Theorem 8.38 this implies that e(F∇) − s∗τ is exact, which proves the
assertion. Thus it remains to prove that τε is indeed a Thom form on TQ⊥.
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To see this, fix a point q0 ∈ Q and choose a positive orthonormal basis

u, v ∈ Tq0Q⊥, |u| = |v| = 1, 〈u, v〉 = 0.

We define a smooth map γ : D→ Uε on the closed unit disc D ⊂ R
2 by

γ(z) := expq0(ε(xu + yv)).

for z = (x, y) ∈ D. (The exponential map extends to the closure of TQ⊥
ε .)

This is an orientation preserving embedding of D into a fiber of the normal

bundle TQ
⊥
ε followed by the exponential map. The integral of the 2-form

e(F∇) over γ is given by
∫

D

γ∗e(F∇) =

∫

D

e(F γ
∗∇) = 1.

Here the first equality follows from (iii) in Theorem 10.25 and the second
equality follows from Lemma 10.27 below by choosing a positive orthonormal
trivialization of the pullback bundle γ∗E → D (for example via radial paral-
lel transport). Hence π∗τε = 1 and this proves the theorem.

Lemma 10.27. Let D ⊂ R
2 be the closed unit disc with coordinates z =

(x, y) and let s : D→ R
2 and ξ, η : D→ so(2) be smooth functions. Suppose

that 



s(z) = 0, for z = 0,
s(z) 6= 0, for z 6= 0,
|s(z)| = 1, for |z| ≥ 1/2,

det(ds(0)) > 0,

and that the Riemannian connection

∇ := d+A, A := ξdx+ ηdy ∈ Ω1(D, so(2))

satisfies ∇s = 0 for |z| ≥ 1/2. Then
∫

D

e(F∇) = 1.

Proof. Identify R
2 with C via z = x + iy and think of s as a vector field

on D. For 0 ≤ r < 1 define the curve γr : S
1 → S1 by

γr(e
iθ) := s(reiθ).

Then the index formula for vector fields shows that

1 = deg
(
γr
)
=

1

2πi

∫ 2π

0
γr(θ)

−1γ̇r(θ) dθ, 1/2 ≤ r ≤ 1. (10.48)

To see this, choose a smooth function φ : R→ R such that γr(θ) = eiφ(θ) for
all θ. Then φ(θ + 2π) = φ(θ) + 2π deg(γr) and this proves (10.48).
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At this point it is convenien to identify so(2) with the imaginary axis
via the isomorphism

ι : so(2)→ iR, ι

((
0 −λ
λ 0

))
:= iλ.

Thus ξ ∈ so(2) acts on R
2 ∼= C by multiplication with ι(ξ) and

e(F∇) =
i

2π
ι(F∇) =

i

2π
dι(A), ι(A) = ι(ξ) dx+ ι(η) dy.

The condition ∇s = 0 for |z| = 1 takes the form

∂xs(e
iθ) + ι(ξ(eiθ))s(eiθ) = 0, ∂ys(e

iθ) + ι(η(eiθ))s(eiθ) = 0

and this gives γ̇1(θ) =
(
sin(θ)ι(ξ(eiθ))− cos(θ)ι(η(eiθ))

)
γ1(θ). Hence

∫

D

e(F∇) =
i

2π

∫

D

dι(A) =
i

2π

∫

S1

(
ι(ξ) dx + ι(η) dy

)

=
i

2π

∫ 2π

0

(
cos(θ)ι(η(eiθ))− sin(θ)ι(ξ(eiθ))

)
dθ

= − i

2π

∫ 2π

0
γ1(θ)

−1γ̇1(θ) dθ = 1.

The last equation follows from (10.48) and this proves the lemma.

Corollary 10.28. An oriented Riemannian rank-2 vector bundle E over
M admits a flat Riemannian connection if and only if its Euler class e(E)
vanishes in the deRham cohomology group H2(M).

Proof. If E admits a flat Riemannian connection ∇ then e(F∇) = 0 and
hence its Euler class vanishes by Theorem 10.26. Conversely, suppose that
e(E) = 0 and let ∇ be any Riemannian connection on E. Then e(F∇) is
exact. Hence there is a 1-form α ∈ Ω1(M) such that e(F∇) = dα. Since the
linear map e : so(2) → R is a vector space isomorphism there is a unique
1-form A ∈ Ω1(M,End(E)) such that e(A) = α. Hence ∇ − A is a flat
Riemannian connection. This proves the corollary.

Exercise 10.29. Let π : E → M be an oriented real rank-2 bundle over a
connected simply connected manifoldM with vanishing Euler class e(E) = 0
in deRham cohomology. Prove that E admits a global trivialization. Hint:
Use the existence of a flat Riemannian connection in Corollary 10.28.
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10.3.4 Two Examples

Example 10.30. Consider the vector bundle

E :=
S2 ×R

2

∼ → RP 2

where the equivalence relation on S2 × R
2 is given by (x, ζ) ∼ (−x,−ζ)

for x ∈ S2 and ζ ∈ R
2. By the Borsuk–Ulam Theorem this vector bundle

does not admit a nonzero section and hence has no global trivialization.
It is oriented as a vector bundle (although the base manifold RP2 is not
orientable) and its Euler class vanishes in the deRham cohomology group
H2(RP2) = 0. Exercise: Find a flat Riemannian connection on E.

Example 10.30 shows that the assertion of Exercise 10.29 does not extend
non simply connected manifolds. The problem is that the Euler class in
Chern–Weil theory is only defined with real coefficients. The definition of
the Euler class can be refined with integer coefficients. This requires a
cohomology theory over the integers which we do not develop here. The
Euler class of an oriented rank-2 bundle is then an integral cohomology
class. In particular, H2(RP 2;Z) ∼= Z/2 and the Euler class of the bundle
in Example 10.30 is the unique nontrivial element of H2(RP 2;Z). More
generally, oriented rank-2 bundles are classified by their Euler classes in
integral cohomology: two oriented rank-2 bundles over M are isomorphic if
and only if they have the same Euler class in H2(M ;Z).

Example 10.31 (Complex Line Bundles over the Torus). A complex
line bundle over the torus Tm = R

m/Zm can be described by a cocycle

Z
m → C∞(Rm, S1) : k 7→ φk

which satisfies
φk+ℓ(x) = φℓ(x+ k)φk(x)

for x ∈ R
m and k, ℓ ∈ Z

m. The associated complex line bundle is

Eφ :=
R
m × C

Zm
, [x, ζ] ≡ [x+ k, φk(x)z] ∀ k ∈ Z

m.

A section of Eφ is a smooth map s : Rm → C such that

s(x+ k) = φk(x)s(x)

for x ∈ R
m and k ∈ Z

m.
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A Hermitian connection on Eφ has the form

∇ = d+A, A =
n∑

i=1

Ai(x)dx
i,

where the functions Ai : R
m → iR satisfy the condition

Ai(x+ k)−Ai(x) = −φk(x)−1 ∂φk
∂xi

(x).

for all x ∈ R
m and all k ∈ Z

m. This can be used to compute the Euler class
of the bundle.

For example, any integer matrix B ∈ Z
m×m determines a cocycle

φBk (x) = exp(2πikTBx). (10.49)

A Hermitian connection on EφB is then given by

∇B = d+A, A := −2πi
m∑

i,j=1

xiBijdx
j . (10.50)

Its curvature is the imaginary valued 2-form

F∇B

= dA = −2πi
∑

i<j

(Bij −Bji) dxi ∧ dxj .

Hence the bundle Eφ
B
has the Euler class

e(EφB ) =

m∑

i<j

Cij [dx
i ∧ dxj] ∈ H2(Tm), C := B −BT .

This bundle admits a trivialization whenever B is symmetric and it admits
a square root whenever B is skew-symmetric. (Prove this.) Another cocycle
with the same Euler class is given by

φk(x) = ε(k) exp(πikTCx), ε(k + ℓ) = ε(k)ε(ℓ) exp(πikTCℓ),

with ε(k) = ±1. If C = B −BT then the numbers

ε(k) = exp(πikTBk)

satisfy this condition.
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Two cocycles φ and ψ are called equivalent if there is a function

u : Rm → S1

such that
ψk(x) = u(x+ k)−1φk(x)u(x)

for all x ∈ R
m and k ∈ Z

m. We claim that every cocycle φ is equivalent to
one of the form (10.49). To see this, we use the fact that every 2-dimensional
deRham cohomology class on T

m with integer periods can be represented by
a 2-form with constant integer coefficients (see Example 8.48). This implies
that there is a skew-symmetric integer matrix C = −CT ∈ Z

m×m such that
the Euler class of Eφ is e(Eφ) =

∑
i<j Cij [dx

i ∧ dxj]. Now the argument in
the Proof of Corollary 10.28 shows that there is Hermitian connection ∇ on
Eφ with constant curvature

F∇ = −2πi
∑

i<j

Cijdx
i ∧ dxj.

Choose an integer matrix B ∈ Z
m×m such that C = B − BT and consider

the connection ∇B in (10.50). It has the same curvature as ∇ and hence
∇ = ∇B + dξ for some function ξ : Rm → iR. Then u := exp(ξ) : Rm → S1

transforms φB into φ. Exercise: Fill in the details. Prove that the complex
line bundles Eφ and Eψ associated to equivalent cocycles are isomorphic.

10.4 Chern Classes

10.4.1 Definition and Properties

We have already used the fact that a complex Hermitian line bundle can
be regarded as an oriented real rank-2 bundle. Conversely, an oriented real
Riemannian rank-2 bundle has a unique complex structure compatible with
the inner product and the orientation, and can therefore be considered as a
complex Hermitian line bundle. In this setting a Hermitian connection
is the same as a Riemannian connection. In the complex notation the curva-
ture F∇ of a Hermitian connection is an imaginary valued 2-form on M , the
Bianchi identity asserts that it is closed, and the real valued closed 2-form

e(F∇) =
i

2π
F∇ ∈ Ω2(M)

is a representative of the Euler class. (See Lemma 10.27.) This is also the
first Chern class of E, when regarded as a complex complex line bundle.
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More generally, the Chern classes of complex vector bundles are char-
acteristic classes in the even dimensional cohomology of the base manifold.
They are uniquely characterized by certain axioms which we now formulate
in our deRham cohomology setting. We will see that, in order to compute
the Chern classes of specific vector bundles, it suffices in many cases to
know that they exist and which axioms they satisfy, without knowing how
they are constructed. Just as in the case of the Euler class, the definition
of the Chern classes can be extended to cohomology theories with integer
coefficients, but this goes beyond the scope of the present manuscript.

Theorem 10.32 (Chern Class). There is a unique functor, called the
Chern class, which assigns to every complex rank-n bundle π : E → M
over a compact manifold a deRham cohomology class

c(E) = c0(E) + c1(E) + · · · + cn(E) ∈ H∗(M)

with
ci(E) ∈ H2i(M), c0(E) = 1,

and satisfies the following axioms.

(Naturality) Isomorphic vector bundles overM have the same Chern class.

(Zero) The Chern class of the trivial bundle E =M × C
n is c(E) = 1.

(Functoriality) The Chern class of the pullback of a complex vector bundle
π : E →M under a smooth map is the pullback of the Chern class of E:

c(f∗E) = f∗c(E).

(Sum) The Chern class of the Whitney sum E1⊕E2 of two complex vector
bundles over M is the cup product of the Chern classes:

c(E1 ⊕ E2) = c(E1) ∪ c(E2).

(Euler Class) The top Chern class of a complex rank-n bundle π : E →M
over a compact oriented manifold M without boundary is the Euler class

cn(E) = e(E).

It follows from the (Euler Class) axiom that the anti-tautological line
bundle H → CPn with fiber Hℓ = ℓ∗ over ℓ ∈ CPn has first Chern class

c1(H) = h ∈ H2(CPn) (10.51)

where h is the positive integral generator of H2(CPn) whose integral over
the submanifold CP1 ⊂ CPn with its complex orientation is equal to one.
(See Theorem 9.51.) In fact, the proof of Theorem 10.32 shows that the
Euler Class) axiom can be replaced by the (Normalization) axiom (10.51).
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10.4.2 Construction of the Chern Classes

We now give an explicit construction of the Chern classes via Chern–Weil
theory which works equally well for arbitrary base manifolds M , compact
or not. We observe that every complex vector bundle E admits a Hermitian
structure and that any two Hermitian structures on E are related by a
complex automorphism of E (see Example 10.15 and Exercise 10.16). A
Hermitian vector bundle of complex rank n is a vector bundle with structure
group

G = U(n) =
{
g ∈ C

n×n | g∗g = 1l
}
.

Here g∗ := ḡT denotes the conjugate transpose of g ∈ C
n×n. The Lie algebra

of U(n) is the real vector space of skew-Hermitian complex n× n-matrices

g = u(n) =
{
ξ ∈ C

n×n | ξ∗ + ξ = 1l
}
.

The eigenvalues of a matrix ξ ∈ u(n) are imaginary and those of the matrix
iξ/2π are real. The kth Chern polynomial

ck : u(n)→ R

is defined as the kth symmetric function in the eigenvalues of iξ/2π. Thus

ck(ξ) :=
∑

i1<i2<···<ik

xi1xi2 · · · xik

where the real numbers x1, . . . , xn denote the eigenvalues of iξ/2π with repe-
titions according to multiplicity. In particular, we have

c0(ξ) = 1,

c1(ξ) =
∑

i

xi = trace

(
iξ

2π

)
,

c2(ξ) =
∑

i<j

xixj,

cn(ξ) = x1x2 · · · xn = det

(
iξ

2π

)
.

Thus ck : u(n)→ R is an invariant polynomial of degree k and we define the
kth Chern class of a rank-n Hermitian vector bundle π : E →M by

ck(E) := [ck(F
∇)] ∈ H2k(M), (10.52)

where∇ is a Hermitian connection on E. By Theorem 10.25 this cohomology
class is independent of the choice of the Hermitian connection ∇. We will
now prove that these classes satisfy the axioms of Theorem 10.32.
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10.4.3 Proof of Existence and Uniqueness

We begin with a technical lemma which will be needed later in the proof. It
is the only place where the compactness assumption on the base enters the
proof of Theorem 10.32

Lemma 10.33. Every complex vector bundle over a compact manifold M
admits an embedding into the trivial bundle M × C

N for some N ∈ N.

Proof. Let π : E →M be a complex rank-n bundle over a compact manifold.
Choose a system of local trivializations

ψi : π
−1(Ui)→ Ui × C

n, i = 1, . . . , ℓ,

such that the Ui cover M , and a partition of unity ρi : M → [0, 1] subordi-
nate to this cover. Define the map ι : E →M × C

ℓn by

ι(e) :=
(
π(e), ρ1(π(e))pr2(ψ1(e)), . . . , ρn(π(e))pr2(ψn(e))

)

This map is a smooth injective immersion (verify this), restricts to a linear
embedding into {p} × C

ℓn on each fiber Ep, and it is proper (verify this as
well). This proves the lemma.

Proof of Theorem 10.32. The cohomology classes (10.52) are well defined
invariants of complex vector bundles, because every complex vector bundle
admits a Hermitian structure and any two Hermitian structures on a com-
plex vector bundle are isomorphic (see Exercise 10.16). That these classes
satisfy the (Naturality) and (Zero) axioms follow directly from the defini-
tions and that they satisfy the (Functoriality) axiom follows immediately
from Theorem 10.25. To prove the (Sum) axiom we observe that the Chern
polynomials are the coefficients of the characteristic polynomial

pt(ξ) := det

(
1l + t

iξ

2π

)
=

n∑

k=0

ck(ξ)t
k.

In particular, for t = 1, we have

c(ξ) =

n∑

k=0

ck(ξ) =

n∏

i=1

(1 + xi) = det

(
1l +

iξ

2π

)

and hence

c(ξ ⊕ η) = c(ξ)c(η)
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for the direct sum of two skew-Hermitian matrices. This implies

c(F∇1⊕∇2) = c(F∇1 ⊕ F∇2) = c(F∇1) ∧ c(F∇2)

for the direct sum of two Hermitian connections on two Hermitian vector
bundles over M and this proves the (Sum) axiom.

It remains to prove the (Euler Class) axiom. By Theorem 10.26 the first
Chern class of a complex line bundle is equal to the Euler class in H2(M).
With this understood, it follows from the (Sum) axiom for the Euler class
(Theorem 9.50) and for the Chern class (already established) that the (Euler
Class) axiom holds for Whitney sums of complex line bundles.

An example is the partial flag manifold

F(n,N) :=

{
(Λi)

n
i=0

∣∣∣∣
Λi is a complex subspace of CN ,
dimC Λi = i, Λ0 ⊂ Λ1 ⊂ · · · ⊂ Λn

}
.

There is a complex rank-n bundle E(n,N)→ F(n,N) whose fiber over the
flag Λ0 ⊂ Λ1 ⊂ · · · ⊂ Λn is the subspace Λn. It is a direct sum of the
complex line bundles Li → F(n,N), i = 1, . . . , n, whose fiber over the same
flag is the intersection Λi∩Λ⊥

i−1. Hence it follows from what we have already
proved that the top Chern class of the bundle E(n,N) → F(n,N) agrees
with its Euler class:

cn(E(n,N)) = e(E(n,N)) ∈ H2n(F(n,N)).

Now consider the Grassmannian

Gn(C
N ) :=

{
Λ ⊂ C

N |Λ is an n-dimensional complex subspace
}

of complex n-planes in C
N . It carries a tautological bundle

En(C
N )→ Gn(C

N )

whose fiber over an n-dimensional complex subspace Λ ⊂ C
N is the subspace

itself. There is an obvious map

π : F(n,N)→ Gn(C
N )

which sends a partial flag Λ0 ⊂ Λ1 ⊂ · · · ⊂ Λn in C
N with dimC Λi = i to

the subspace Λn. We have

π∗En(C
n) = E(n,N)
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and hence, by (Functoriality),

π∗cn(En(C
N )) = cn(E(n,N)) = e(E(n,N)) = π∗e(En(C

N )).

At this point we use (without proof) the fact that the map

π∗ : H∗(Gn(C
N ))→ H∗(F(n,N)) (10.53)

is injective. This implies

cn(En(C
N )) = e(En(C

N )) ∈ H2n(Gn(C
N )) (10.54)

for every pair of integers N ≥ n ≥ 0.
By Lemma 10.33 below, a complex line bundle π : E → M over a

compact manifold can be embedded into the trivial bundle M × C
N for a

suitable integer N ∈ N. Such an embedding can be expressed as a smooth
map

f :M → Gn(C
N )

into the Grassmannian of complex n-planes in C
N such that E is isomorphic

to the pullback of the tautological bundle En(C
N ) → Gn(C

N ). Hence it
follows from (10.54) and (Functoriality) that

cn(E) = f∗cn(En(C
N )) = f∗e(En(C

N )) = e(E).

This proves the existence of Chern classes satisfying the five axioms.
To prove uniqueness, we first observe that the Chern classes of complex

line bundles over compact oriented manifolds without boundary are deter-
mined by the (Euler Class) axiom. Second, the Chern classes of the bundle
E(n,N) are determined by those of line bundles via the (Naturality) and
(Sum) axioms, as it is isomorphic to a direct sum of complex line bundles.
Third, the Chern classes of the bundle En(C

N ) are determined by those
of E(n,N) via (Functoriality), because the homomorphism (10.53) is in-
jective. Fourth, the Chern classes of any complex vector bundle E over a
compact manifold M are determined by those of En(C

N ) via (Naturality)
and (Functoriality), as there is a map

f :M → Gn(C
N )

for some N such that E is isomorphic to the pullback bundle f∗En(C
N ):

E ∼= f∗En(C
N ).

This proves the theorem.
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We remark that the map

π : F(n,N)→ Gn(C
N )

is a fibration with fibers diffeomorphic to the flag manifold F(n, n). One
can use the spectral sequence of this fibration to prove that the map (10.53)
is injective. This can be viewed as an extension of the Künneth formula,
but it goes beyond the scope of the present manuscript. For details see Bott
and Tu [2].

We also remark that Theorem 10.32 continues to hold for noncompact
base manifolds M . The only place where we have used compactness of M
is in Lemma 10.33, which in turn was used for proving uniqueness. If we re-
place the Grassmannian with the classifying space of the unitary group U(n)
(which can be represented as the direct limit of the Grassmanians Gn(C

N )
as N tends to∞), then complex rank-n bundles over noncompact manifolds
M can be represented as pullbacks of the tautological bundle under maps
to this classifying space or, equivalently, be embedded into the product of
M with an infinite dimensional complex vector space. This can be used
to extend Theorem 10.32 to complex vector bundles over noncompact base
manifolds or, in fact, over arbitrary topological spaces.

Exercise 10.34 (Euler Number). Let π : E → M be a complex rank-n
bundle over compact oriented 2n-manifold without boundary. Show directly
that the top Chern number

∫

M
cn(E) =

∫

M
det

(
i

2π
F∇

)
=

∑

s(p)=0p

ι(p, s)

is the Euler number of E, without using the (Euler Class) axiom. Hint:
Assume s is transverse to the zero section and let pi be the zeros of s.
Show that s can be chosen with norm one outside of a disjoint collection of
neighborhoods Ui of the pi and that the connection can be chosen such that
∇s = 0 on the complement of the Ui. Show that

det(iF∇/2π) = 0 on M \
⋃

i

Ui.

Now use the argument in the proof Lemma 10.27 to show that
∫

Ui

det

(
i

2π
F∇

)
= ι(pi, s)

for each i.
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Exercise 10.35 (First Pontryagin Class). Let π : E → M be a real
vector bundle and consider the tensor product E ⊗R C. This is a complex
vector bundle and Pontryagin classes of E are defined as the even Chern
classes of E ⊗R C:

pi(E) := (−1)ic2i(E ⊗R C) ∈ H4i(X).

Show that the odd Chern classes of E ⊗R C vanish. Show that

p1(E) = c1(E)2 − 2c2(E)

whenever E is itself a complex vector bundle. If E is a Hermitian vector
bundle and ∇ is a Hermitian connection on E show that the first Pontryagin
class can be represented by the real valued closed 4-form 1

4π trace(F
∇∧F∇):

p1(E) =
1

4π

[
trace

(
F∇ ∧ F∇

)]
∈ H4(M). (10.55)

Hint: The endomorphism valued 4-form F∇ ∧ F∇ ∈ Ω4(M,End(E)) is
defined like the exterior product of scalar 2-forms, with the product of real
numbers replaced by the composition of endomorphisms. Express the 4-
form (10.55) in the form p1(F

∇) for a suitable invariant degree-2 polynomial
p1 : u(2)→ R.

10.4.4 Tensor Products of Complex Line Bundles

Let

π1 : E1 →M, π2 : E2 →M

be complex line bundles and consider the tensor product

E := E1 ⊗ E2 :=

{
(p, e1 ⊗ e2)

∣∣∣∣
p ∈M, e1 ∈ E1, e2 ∈ E2,
π1(e1) = π2(e2) = p

}
.

This is again a complex line bundle over M and its first Chern class is the
sum of the first Chern classes of E1 and E2:

c1(E1 ⊗ E2) = c1(E1) + c1(E2). (10.56)

(Here we use the formula (10.52) as the definition of the first Chern class in
the case of a noncompact base manifold.) To see this, we choose Hermitian
structures on E1 and E2 and Hermitian local trivializations over an open
cover {Uα}α of M with transition maps gi,βα : Uα∩Uβ → U(1) = S1. These
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give rise, in an obvious manner, to a Hermitian structure on the tensor
product E = E1 ⊗E2 and to local trivializations of E with transition maps

gβα = g1,βα · g2,βα : Uα ∩ Uβ → S1.

For i = 1, 2 choose a Hermitian connection ∇i on Ei with connection po-
tentials Ai,α ∈ Ω1(Uα, iR). They determine a connection ∇ on E via the
Leibnitz rule

∇(s1 ⊗ s2) := (∇1s1)⊗ s2 + s1 ⊗ (∇2s2)

for s1 ∈ Ω0(M,E1) and s2 ∈ Ω0(M,E2). The connection potentials of ∇ are

Aα = A1,α +A2,α ∈ Ω1(Uα, iR).

Hence the curvature of F∇ is given by

F∇ = F∇1 + F∇2 ∈ Ω2(M, iR).

In fact, the restriction of F∇ to Uα is just the differential of Aα. Since c1(E)
is the cohomology class of the real valued closed 2-form i

2πF
∇ ∈ Ω2(M),

this implies equation (10.56).

Example 10.36 (The Inverse of a Complex Line Bundle). Let E→M
be a complex line bundle with transition maps gβα : Uα∩Uβ → C

∗ = C\{0}.
Then there is a complex line bundle E−1 →M , unique up to isomorphism,
with transition maps g−1

βα : Uα ∩ Uβ → C
∗. Its tensor product with E is

isomorphic to the trivial bundle. Hence it follows from equation 10.56 that

c1(E
−1) = −c1(E).

Example 10.37 (Complex Line Bundles over CPn). For d ∈ Z consider
the complex line bundle

Hd :=
S2n+1 × C

S1
→ CPn, [z0 : z1 : · · · : zn; ζ] ≡ [λz0 : λz1 : · · · : λzn;λdζ].

For d = 0 this is the trivial bundle, for d > 0 it is the d-fold tensor product
of the line bundle H → CPn in Theorem 9.51, and we have H−d ∼= (Hd)−1.
Hence, by Theorem 9.51, equation (10.56), and Example 10.36, we have

c1(H
d) = dh

for every d ∈ Z. Here h ∈ H2(CPn) is the positive integral generator with
integral one over the submanifold CP1 ⊂ CPn.
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10.5 Chern Classes in Geometry

10.5.1 Complex Manifolds

A complex n-manifold is a real 2n-dimensional manifold X equipped with
an atlas φα : Uα → C

n such that the transition maps

φβ ◦ φ−1
α : φα(Uα ∩ Uβ)→ φβ(Uα ∩ Uβ)

are holomorphic maps between open subsets of Cn. This means that the
real derivative of φβ ◦ φ−1

α at every point is given by multiplication with a
complex n × n-matrix. A complex 1-manifold is called a complex curve
and a complex 2-manifold is called a complex surface. Thus a complex
curve has real dimension two and a complex surface has real dimension four.
Complex manifolds are always oriented and their tangent bundles inherit
complex structures from the coordinate charts. Thus the tangent bundle
TX of a complex manifold has Chern classes. If X is a complex n-manifold
with an atlas as above, a smooth function f : U → C on an open subset
U ⊂ X is called holomorphic if f ◦ φ−1

α : φα(U ∩ Uα)→ C is holomorphic
for each α. Equivalently, the derivative df(p) : TpX → C is complex linear
for every p ∈ U .

Example 10.38 (The Chern Class of CPn). The complex projective
space CPn is a complex manifold and hence its tangent bundle has Chern
classes. In the geometric description of CPn as the space of complex lines
in C

n+1 the tangent space of CPn at a point ℓ ∈ CPn is given by

TℓCP
n = HomC(ℓ, ℓ⊥).

Geometrically, every line in C
n+1 sufficiently close to ℓ is the graph of a

complex linear map from ℓ to ℓ⊥. Moreover, each complex linear map from
ℓ to itself is given by multiplication with a complex number. In other words,
HomC(ℓ, ℓ) = C and so there is an isomorphism

TℓCP
n ⊕ C ∼= HomC(ℓ, ℓ⊥ ⊕ ℓ) = HomC(ℓ,Cn+1)

Thus the direct sum of TCPn with the trivial bundle H0 = CPn × C is the
(n+1)-fold direct sum of the bundle H → CPn in Theorem 9.51 with itself:

TCPn ⊕H0 = H ⊕H ⊕ · · · ⊕H︸ ︷︷ ︸
n+1 times

.

Since c(H) = 1 + h it follows from the (Zero) and (Sum) axioms that

c(TCPn) = (1 + h)n+1,

where h ∈ H2(CPn) is the positive integral generator as in Theorem 9.51.
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10.5.2 Holomorphic Line Bundles

A holomorphic line bundle over a complex manifold X is a complex line
bundle π : E → X equipped with local trivializations such that the tran-
sition maps gβα : Uα ∩ Uβ → C

∗ = C \ {0} are holomorphic. A holomor-
phic section of such a holomorphic line bundle E is a section s : X → C

that, in the local trivializations, is represented by holomorphic functions
sα : Uα → C. This notion makes sense because the sα are related by

sβ = gβαsα

on Uα∩Uβ and the gβα are holomorphic. If we choose a Hermitian structure
on a holomorphic line bundle and Hermitian trivializations, the transition
maps will no longer be holomorphic, by the maximum principle, unless they
are locally constant. It is therefore often more convenient to use the original
holomorphic trivializations.

Example 10.39 (Holomorphic Line Bundles over CPn). The line bun-
dle Hd → CPn in Example 10.37 admits the structure of a holomorphic line
bundle. More precisely, the standard atlas φi : Ui → C

n defined by

Ui := {[z0 : · · · : zn] ∈ CPn | zi 6= 0}
and

φi([z0 : · · · : zn]) :=
(
z0
zi
, . . . ,

zi−1

zi
,
zi+1

zi
, . . . ,

zn
zi

)

has holomorphic transition maps. A trivialization of Hd over Ui is the map
ψi : H

d|Ui
→ Ui × C defined by

ψi([z0 : · · · : zn; ζ]) :=
(
[z0 : · · · : zn],

ζ

zdi

)
.

The transition maps gji : Ui ∩ Uj → C
∗ are then given by

gji([z0 : · · · : zn]) =
(
zi
zj

)d

and they are evidently holomorphic. For d ≥ 0 every homogeneous complex
polynomial p : Cn+1 → C of degree d determines a holomorphic section

s([z0 : · · · : zn]) = [z0 : · · · : zn; p(z0, . . . , zn)]
ofHd. It turns out that these are all the holomorphic sections ofHd and that
the only holomorphic section ofHd for d < 0 is the zero section. However the
proof of these facts would take us too far afield into the realm of algebraic
geometry. An excellent reference is the book [4] by Griffiths and Harris.
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10.5.3 The Adjunction Formula

Let X be a compact connected complex surface and

C ⊂ X

be a smooth complex curve. Thus C is a compact submanifold without
boundary whose tangent space TxC at each point x ∈ C is a one dimensional
complex subspace of TxX. In particular, C is a compact oriented 2-manifold
without boundary. The adjunction formula asserts

〈c1(TX), C〉 = χ(C) + C · C, (10.57)

where C ·C denotes the self-intersection number of C, χ(C) denotes the Euler
characteristic of C, and 〈c1(TX), C〉 denotes the integral of (a representative
of) the first Chern class c1(TX) ∈ H2(X) over C.

To prove the adjunction formula we choose a Riemannian metric on
X such that the complex structure on each tangent space TxX is a skew
symmetric automorphism. Thus both the tangent bundle of C and the
normal bundle TC⊥ are complex vector bundles over C and the restriction
of TX to C is the direct sum

TX|C = TC ⊕ TC⊥.

By the (Euler Class) axiom for the Chern classes and Example 9.45 we have

〈c1(TC), C〉 = 〈e(TC), C〉 = χ(C).

Using the (Euler Class) axiom again we obtain

〈c1(TC⊥), C〉 = 〈e(TC⊥), C〉 = C · C,

where the last equation follows from Theorem 9.42. Here we use the diffeo-
morphism

exp : TC⊥
ε → Uε

in (9.18) to identity the self-intersection number of the zero section in TC⊥

with the self-intersection number of C in X. Now it follows from the (Sum)
axiom for the Chern classes that

〈c1(TX), C〉 = 〈c1(TC), C〉+ 〈c1(TC⊥), C〉

and this proves (10.57).



180 CHAPTER 10. CONNECTIONS AND CURVATURE

Now suppose that π : E → X is a holomorphic line bundle over a
compact connected complex surface without boundary and s : X → E is a
holomorphic section that is transverse to the zero section. Then it follows
directly from the definitions that its zero set

C := s−1(0)

is a compact complex curve without boundary. Let us also assume that
C is connected and denote by g the genus of C, understood as a compact
connected oriented 2-manifold without boundary. By Example 8.51 we have

χ(C) = 2− 2g

and hence the adjunction formula (10.57) takes the form

2− 2g = 〈c1(TX), C〉 − C · C
= 〈c1(TX)− c1(E), C〉

=

∫

X

(
c1(TX) − c1(E)

)
∪ c1(E)

(10.58)

Here the second equality follows from the fact that the vertical differential
Ds along C = s−1(0) furnishes an isomorphism form the normal bundle
TC⊥ to the restriction E|C . The last equality follows from the fact that the
Euler class c1(E) = e(E) is dual to C, by Theorem 9.47.

Example 10.40 (Degree-d Curves in CP2). As a specific example we
take

X = CP2, E = Hd.

Suppose that p : C3 → C is a homogeneous complex degree-d polynomial
and that the resulting holomorphic section s : CP2 → Hd is transverse to
the zero section (see Example 10.39). Then the zero set of s is a smooth
degree-d curve

Cd =
{
[z0 : z1 : z2] ∈ CP2 | p(z0, z1, z2) = 0

}
.

By Example 10.37 we have c1(H
d) = dh and by Example 10.38 we have

c1(TCP
2) = 3h. Thus equation (10.58) asserts that the genus g = g(Cd) of

the complex curve Cd satisfies the equation

2− 2g = (3− d)d
∫

CP2
h ∪ h = 3d− d2.
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Here the second equality follows from (9.33). Thus we have proved that

g(Cd) =
(d− 1)(d− 2)

2
. (10.59)

This is the original version of the adjunction formula. One can verify it
geometrically by deforming a degree-d curve to a union of d generic lines
in CP2. Any two of these lines intersect in exactly one point and “generic”
means here that these points are pairwise distinct. Thus we end up with a
total of d(d−1)/2 intersection points. Performing a connected sum operation
at each of the intersection points one can verify the formula (10.59).

A compact connected oriented 2-dimensional submanifold Σ ⊂ CP2 with-
out boundary is said to represent the cohomology class dh if dh = [τΣ] is
dual to Σ as in Section 8.4.3. Thus our complex degree-d curve Cd is such a
representative of the class dh. A remarkable fact is that every representative
of the class dh has at least the genus of Cd:

g(Σ) ≥ (d− 1)(d − 2)

2
. (10.60)

This is the socalled Thom Conjecture which was open for many years
and was finally settled in the nineties by Kronheimer and Mrowka [8], using
Donaldson theory. They later extended their result to much greater gen-
erality and proved, with the help of Seiberg–Witten theory, that every 2-
dimensional symplectic submanifold with nonnegative self-intersection num-
ber in a symplectic 4-manifold minimizes the genus in its cohomology class.
For an exposition see their book [9]. The case of negative self-intersection
number was later settled by Ozsvath and Szabo [15].

10.5.4 Chern Class and Self-Intersection

Let X be a complex surface and Σ ⊂ X be a compact oriented 2-dimensional
submanifold without boundary. Then the integral of the first Chern class of
TX over Σ agrees modulo two with the self-intersection number:

〈c1(TX),Σ〉 ≡ Σ · Σ mod 2. (10.61)

To see this, choose any complex structure on each of the real rank-2 bundles
TΣ and TΣ⊥. Then the same argument as in the proof of the adjunction
formula (10.57) shows that the integral of the first Chern class of this new
complex structure on TX|Σ over Σ is the sum χ(Σ) + Σ · Σ. Since the
Euler characteristic χ(Σ) is even and the integrals of the first Chern classes
of TX|Σ with both complex structures agree modulo two, by Exercise 10.41
below, this proves (10.61).



182 CHAPTER 10. CONNECTIONS AND CURVATURE

Exercise 10.41 (Complex Rank-2 Bundles over Real 2-Manifolds).
Let Σ be compact connected oriented 2-manifold without boundary.

(i) There are precisely two oriented real rank 4-bundles over Σ, one trivial
and one nontrivial.

(ii) Every oriented real rank 4-bundle admits a complex structure compat-
ible with the orientation.

(iii) A complex rank-2-bundle π : E → Σ admits a real trivialization if and
only if its first Chern number 〈c1(E),Σ〉 =

∫
Σ c1(E) is even.

Hint 1: An elegant proof of these facts can be given by means of the
Stiefel–Whitney classes (see Milnor–Stasheff [12]).

Hint 2: Consider the trivial bundle Σ×R
4 and identify R

4 with the quater-
nions H via x = x0+ix1+jx2+kx3 where i

2+j2+k2 = −1 and ij = −ji = k.
Show that every complex structure on H that is compatible with the inner
product and orientation has the form

Jλ = λ1i+ λ2j+ λ3k, λ21 + λ22 + λ23 = 1.

Thus a complex structure on E = Σ×H that is compatible with the metric
and orientation has the form z 7→ Jλ(z) where λ : Σ→ S2 is a smooth map.
Prove that the first Chern number of (E, Jλ) is given by

∫

Σ
c1(E, Jλ) = 2deg(λ : Σ→ S2).

Use the ideas in the next Hint.

Hint 3: Here is a sketch of a proof that the first Chern numbers of any
two complex structures on an oriented real rank 4-bundle π : E → Σ agree
modulo two. By transversality every real vector bundle whose rank is bigger
than the dimension of the base has a nonvanishing section (see Chapter 5).
Hence E has two linearly independent sections s1 and s2. Denote by Λ ⊂ E
the subbundle spanned by s1 and s2. Given a complex structure J on E
denote by E1 ⊂ E the complex subbundle spanned by s1 and Js1. Thus E1

has a global trivialization and so the first Chern number of the complex line
bundle E/E1 agrees with the first Chern number of (E, J). Show that this
number agrees modulo two with the Euler number of the oriented real rank-
2 bundle E/Λ. To see this, think of s2 as a section of E/E1 and of Js1 as a
section of E/Λ. Both sections have the same zeros: the points z ∈ Σ where
Λz is a complex subspace of Ez. Prove that the transversality conditions for
both sections are equivalent. Compare the indices of the zeros.
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Hint 4: Choose an closed disc D ⊂ Σ and show via parallel transport that
the restrictions of E to both D and Σ \D admit global trivializations. This
requires the existence of a pair-of-pants decomposition of Σ (see Hirsch [6]).
Assuming this we obtain two trivializations over the boundary Γ := ∂D ∼=
S1. These differ by a loop in the structure group. In the complex case this
construction gives rise to a loop g : S1 → U(2) ⊂ SO(4). In the real case we
get a loop in SO(4). Prove that, in the complex case with the appropriate
choice of orientations, the first Chern number of E is given by

∫

Σ
c1(E) = deg(det ◦g : S1 → S1).

Prove that a loop g : S1 → U(2) is contractible in SO(4) if and only if the
degree of the composition det ◦g : S1 → S1 has even degree.

10.5.5 The Hirzebruch Signature Theorem

Let X be a compact connected oriented smooth 4-manifold without bound-
ary. Then Poincaré duality (Theorem 8.38) asserts that the Poincaré pairing

H2(X) ×H2(X)→ R : ([ω], [τ ]) 7→
∫

X
ω ∧ τ, (10.62)

is nondegenerate. The pairing (10.62) is a symmetric bilinear form, also
called the intersection form of X and denoted by

QX : H2(X)×H2(X)→ R.

Thus the second Betti number b2(X) = dimH2(X) is a sum

b2(X) = b+(X) + b−(X)

where b+(X) is the maximal dimension of a subspace of H2(X) on which the
intersection form QX is positive definite and b−(X) is the maximal dimen-
sion of a subspace of H2(X) on which QX is negative definite. Equivalently,
b+(X) is the number of positive entries and b−(X) is the number of negative
entries in any diagonalization of QX . The signature of X is defined by

σ(X) := b+(X) − b−(X).

The Hirzebruch Signature Theorem asserts that, if X is a complex
surface, then ∫

X
c1(TX) ∪ c1(TX) = 2χ(X) + 3σ(X). (10.63)
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Equivalently, the signature is one third of the integral of the cohomology
class c1(TX)2 − 2c2(TX) ∈ H4(X) over X. The class c21 − 2c2 is the first
Pontryagin class and is also defined for arbitrary real vector bundles E → X
(see Exercise 10.35). Thus equation (10.63) can be expressed in the form

σ(X) =
1

3
p1(TX).

(Here we use the same notation p1(TX) for a 4-dimensional deRham co-
homology class and for its integral over X.) In this form the Hirzebruch
Signature Theorem remains valid for all compact connected oriented smooth
4-manifold without boundary. It is a deep theorem in differential topology
and its proof goes beyond the scope of this manuscript.

As an explicit example consider the complex projective plane

X = CP2, c1(X) = 3h, χ(X) = 3, σ(X) = 1,

Another example is

X = S2 × S2, c1(X) = 2a+ 2b, χ(X) = 4, σ(X) = 0.

Here we choose as a basis of H2(S2×S2) the cohomology classes a and b of
two volume forms with integral one on the two factors, pulled back to the
product. The intersection form is in this basis given by

QX ∼=
(

0 1
1 0

)
.

A third example is the 4-torus X = T
4 = C

2/Z4 with its standard complex
structure. In this case both Chern classes are zero and χ(T4) = σ(T4) = 0.
Exercise: Verify the last equality by choosing a suitable basis of H2(T4).
Verify the Hirzebruch signature formula in all three cases.

10.5.6 Hypersurfaces of CP3

An interesting class of complex 4-manifolds is given by complex hyper-
surfaces of CP3. More precisely, consider the holomorphic line bundle
Hd → CP3 in Example 10.39, let p : C

4 → C be a homogeneous com-
plex degree-d polynomial, and assume that the resulting holomorphic sec-
tion s : CP3 → Hd is transverse to the zero section. Denote the zero set of
s by

Xd :=
{
[z0 : z1 : z2 : z3] ∈ CP3 | p(z0, z1, z2, z3) = 0

}
.



10.5. CHERN CLASSES IN GEOMETRY 185

This is a complex submanifold of CP3 and hence is a complex surface. in
this case the Hard Lefschetz Theorem asserts that Xd is connected and
simply connected. (More generally, the Hard Lefschetz Theorem asserts that
the zero set of a transverse holomorphic section of a “sufficiently nice” holo-
morphic line bundle inherits the homotopy and cohomology groups of the
ambient manifold below the middle dimension; “nice” means that the line
bundle has lots of holomorphic sections or, in technical terms, is “ample”.
The holomorphic line bundle Hd → CPn satisfies this condition for d > 0.)
We prove that

χ(Xd) = d3 − 4d2 + 6d,

σ(Xd) =
4d− d3

3
,

b+(Xd) =
d3 − 6d2 + 11d− 3

3
,

b−(Xd) =
2d3 − 6d2 + 7d− 3

3
.

(10.64)

To see this, we first observe that, by Poincaré duality and the the Hard
Lefschetz theorem, we have b0(Xd) = b4(Xd) = 1 and b1(Xd) = b3(Xd) = 0.
Hence

χ(Xd) = 2 + b+ + b−

and so the last two equations in (10.64) follow from the first two. Next
we choose a Riemannian metric on CP3 with respect to which the stan-
dard complex structure is skew-symmetric (for example the Fubini–Study
metric [4]). This gives a splitting

TCP3|Xd
= TXd ⊕ TX⊥

d

into complex subbundles. The vertical differential of s along X again pro-
vides us with an isomorphism Ds : TX⊥

d → E|Xd
. Thus, by the (Sum)

axiom for the Chern classes and Example 10.38, we have

(1 + h)4 = c(TCP3) = c(TXd)c(TX
⊥
d ) = c(TXd)(1 + dh).

Here we think of the cohomology classes on CP3 as their restrictions to Xd.
Abbreviating c1 := c1(TXd) and c2 := c2(TXd) we obtain

1 + 4h+ 6h2 = (1 + c1 + c2)(1 + dh) = 1 + (c1 + dh) + (c2 + dhc1)

and hence

c1 = (4− d)h, c2 = 6h2 − dhc1 = (d2 − 4d+ 6)h2.
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Since Xd is the zero set of a smooth section of Hd it is dual to the Euler
class e(Hd) = c1(H

d) = dh (see Example 10.37), by Theorem 9.47. Hence
∫

Xd

h ∪ h = d

∫

CP3
h ∪ h ∪ h = d.

Here the second equality follows from (9.33). Combining the last three
equations we find

χ(Xd) =

∫

Xd

c2(TX) = (d2 − 4d+ 6)

∫

Xd

h ∪ h = d3 − 4d2 + 6d

and ∫

Xd

c1(TXd) ∪ c1(Xd) = (d− 4)2
∫

Xd

h ∪ h = d(d− 4)2.

Hence the Hirzebruch signature formula gives

σ(Xd) =
d(d − 4)2 − 2d3 + 8d2 − 12d

3
=

4d− d3
3

and this proves (10.64).
The first two examples are X1

∼= CP2 and X2
∼= S2 × S2. The reader

may verify that the numbers in equation (10.64) match in these cases. The
cubic surfaces in CP3 are all diffeomorphic to CP2 with six points blown up.
This blowup construction is an operation in algebraic geometry, where one
removes a point in the manifold and replaces it by the set of all complex lines
through the origin in the tangent space at that point. Such a blowup admits
in a canonical way the structure of a complex manifold [4]. An alternative
description of X3 is as a connected sum

X3 = CP2#6CP
2
.

Here CP
2
refers to the complex projective plane with the orientation re-

versed, which is not a complex manifold. (Its signature is minus one and

the number 2χ(CP
2
) + 3σ(CP

2
) = 3 is not the integral of the square of any

2-dimensional cohomology class.) The symbol # refers to the connected
sum operation where one cuts out balls from the two manifolds and glues
the complements together along their boundaries, which are diffeomorphic
to the 3-sphere. The resulting manifold is oriented and the numbers b± are
additive under this operation Thus

χ(X3) = 9, σ(X3) = −5, b+(X3) = 1, b−(X3) = 6

and this coincides with (10.64) for d = 3.
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Particularly interesting examples are the quartic surfaces in CP3. They
are K3-surfaces. These can be uniquely characterized (up to diffeomor-
phism) as compact connected simply connected complex surfaces without
boundary whose first Chern classes vanish. These manifolds do not all ad-
mit complex embeddings into CP3 but the surfaces of type X4 are examples.
They have characteristic numbers

χ(X4) = 24, σ(X4) = −16, b+(X4) = 3, b−(X4) = 19,

which one can read off equation (10.64). One can also deduce these numbers
from the Hirzebruch signature formula, which in this case takes the form
0 = 2χ + 3σ = 4 + 5b+ − b−. That the number b+ must be equal to 3
follows from the existence of a Ricci-flat Kähler metric, a deep theorem of
Yau, and this implies that the complex exterior power Λ2,0T ∗X has a global
nonvanishing holomorphic section. Therefore the dimension pg of the space
of holomorphic sections of this bundle is equal to one, and it then follows
from Hodge theory that b+ = 1+2pg = 3. The details of this lie again much
beyond what is covered in the present manuscript.

The distinction between the cases

d < 4, d = 4, d > 4

for hypersurfaces of CP3 is analogous to the distinction of complex curves
in terms of the genus. For curves in CP2 these are the cases d < 3 (genus
zero/positive curvature), d = 3 (genus one/zero curvature), and d > 3
(higher genus/negative curvature). In the present situation the case d < 4
gives examples of Fano surfaces analogous to the 2-sphere, the K3-surfaces
with d = 4 correspond to the 2-torus allthough they do not admit flat
metrics, and for d > 4 the manifold Xd is an example of a surface of
general type in analogy with higher genus curves.

Exercise 10.42. Show that the polynomial p(z0, . . . , zn) = zd0 + · · · + zdn
on C

n+1 gives rise to a holomorphic section s : CPn → Hd that is transverse
to the zero section. Hence its zero set Xd is a smooth complex hypersurface
of CPn. Prove that its first Chern class is zero whenever d = n+ 1. Kähler
manifolds with this property are called Calabi–Yau manifolds. The K3-
surfaces are examples. The quintic hypersurfaces of CP4 are examples of
Calabi–Yau 3-folds and they play an important role in geometry and physics.

Exercise 10.43. Compute the Betti numbers of a degree-d hypersurface
in CP4. Hint: The Hard Lefschetz Theorem asserts in this case that
b0(Xd) = b2(Xd) = 1 and b1(Xd) = 0.
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10.5.7 Almost complex structures on 4-manifolds

Let X be an oriented 2n-manifold. An almost complex structure on X
is an automorphism of the tangent bundle TX with square minus one:

J : TX → TX, J2 = −1l.
The tangent bundle of any complex manifold has such a structure, as the
multiplication by i =

√
−1 in the coordinate charts carries over to the tan-

gent bundle. However, not every almost complex structure arises from a
complex structure (except in real dimension two).

Let us now assume that X is a compact connected oriented smooth 4-
manifold without boundary. Let J be an almost complex structure on X
and denote its first Chern class in deRham cohomology by

c := c1(TX, J) ∈ H2(X).

This is an integral class in that the number c ·Σ = 〈c,Σ〉 =
∫
Σ c is an integer

for every compact oriented 2-dimensional submanifold Σ ⊂ X. Moreover,
equation (10.61) carries over to the almost complex setting so that

c · Σ ≡ Σ · Σ mod 2 (10.65)

for every Σ as above. The Hirzebruch signature formula also continues to
hold in the almost complex setting and hence

c2 = 2χ(X) + 3σ(X). (10.66)

Here we abbreviate c2 := 〈c2,X〉 =
∫
X c

2 ∈ Z. It turns out that, conversely,
for every integral deRham cohomology class c ∈ H2(X) that satisfies (10.65)
and (10.66) there is an almost complex structure J onX with c1(TX, J) = c.
We will not prove this here. However, this can be used to examine which
4-manifolds admit almost complex structures and to understand their first
Chern classes.

Exercise 10.44. Consider the 4-manifold X = CP2#kCP
2
(the projective

plane with k points blown up). This manifold admits a complex structure
by a direct construction in algebraic geometry [4]. Verify that it admits
an almost complex structure by finding all integral classes c ∈ H2(X) that
satisfy (10.65) and (10.66). Start with k = 0, 1, 2.

Exercise 10.45. The k-fold connected sum X = kCP2 = CP2# · · ·#CP2

admits an almost complex structure if and only if k is odd.

Exercise 10.46. Which integral class c ∈ H2(T4) is the first Chern class of
an almost complex structure on T

4.
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10.6 Low Dimensional Manifolds

The examples in the previous section show that there is a rich world of
manifolds out there whose study is the subject of differential topology and
other related areas of mathematics, including complex, symplectic, and alge-
braic topology. The present notes only scratch the surface of some of these
areas. One fundamental question in differential topology is how to tell if
two manifolds of the same dimension m are diffeomorphic, or perhaps not
diffeomorphic as the case may be. In this closing section we discuss some
classical and more recent answers to this question.

The easiest case is of course m = 1. We have proved in Chapter 2 that
every compact connected smooth 1-manifold without boundary is diffeomor-
phic to the circle and in the case of nonempty boundary is diffeomorphic to
the closed unit interval. We have seen that this observation plays a cen-
tral role in the definitions of degree and intersection number, and in fact
throughout differential topology.

The next case is m = 2, where this question is also completely under-
stood, although the proof is considerably harder. Two compact connected
oriented smooth 2-manifolds without boundary are diffeomorphic if and only
if they have the same genus. As pointed out in Example 8.51, a beautiful
proof of this theorem, based on Morse theory, is contained in the book of
Hirsch [6]. The result generalizes to all compact 2-manifolds with or without
boundary, and orientable or not. Both in the orientable and in the nonori-
entable case the diffeomorphism type of a compact connected 2-manifold is
determined by the Euler characteristic and the number of boundary compo-
nents. The proof is also contained in [6]. This does not mean, however, that
the study of 2-manifolds has now been settled. For example the study of real
2-manifolds equipped with complex structures (called Riemann surfaces)
is a rich field of research with connections to many areas of mathematics such
as algebraic geometry, number theory, and dynamical systems. A classical
result is the uniformization theorem, which asserts that every connected
simply connected Riemann surface is holomorphically diffeomorphic to ei-
ther the complex plane, or the open unit disc in the complex plane, or the
2-sphere with its standard complex structure. In particular, it is not neces-
sary to assume that the Riemann surface is paracompact; paracompactness
is a consequence of uniformization. This is a partial answer to a complex
analogue of the aforementioned question. We remark that interesting objects
associated to oriented 2-manifolds are, for example, the mapping class group
(diffeomorphisms up to isotopy) and Teichmüller space (complex structures
up to diffeomorphisms isotopic to the identity).
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The compact connected manifolds without boundary in dimensions one
and two are not simply connected except for the 2-sphere. Let us now turn
to the higher dimensional case and focus on simply connected manifolds. In
dimension three a central question, which was open for about a century, is
the following.

Three Dimensional Poincaré Conjecture. Every compact connected
simply connected 3-manifold M without boundary is diffeomorphic to S3.

This conjecture has recently (in the early years of the 21st century) been
confirmed by Grigory Perelman. His proof is a modification of an earlier pro-
gram by Richard Hamilton to use the socalled Ricci flow on the space of all
Riemannian metrics on M . The idea is, roughly speaking, to start with an
arbitrary Riemannian metric and use it as an initial condition for the Ricci
flow. It is then a hard problem in geometry and nonlinear parabolic partial
differential equations to understand the behavior of the metric under this
flow. The upshot is that, through lot of hard analysis and deep geometric
insight, Perelman succeded in proving that the flow does converge to a round
metric (with constant sectional curvature). Then a standard result in differ-
ential geometry provides a diffeomorphism to the 3-sphere. The proof of the
Poincaré conjecture is one of the deepest theorems in differential topology
and is an example of the power of analytical tools to settle questions in ge-
ometry and topology. There are now many expositions of Perelman’s proof
of the three dimensional Poincaré conjecture, beyond Perelman’s original
papers, too numerous to discuss here. An example is the detailed book by
Morgan and Tian [13].

The higher dimensional analogue of the the Poincaré conjecture asserts
that every compact connected simply connected smooth m-manifold M
without boundary whose integral cohomology is isomorphic to that of the
m-sphere, i.e.

Hk(M ;Z) =

{
Z, for k = 0 and m,
0, for 1 ≤ k ≤ m− 1,

is diffeomorphic to the m-sphere. This question is still open in dimension
four. However, by the work of Michael Freedman, it is known that every such
4-manifold is homeomorphic to the the 4-sphere. In fact one distingushes
between the smooth Poincaré conjecture (which asserts the existence
of a diffeomorphism) and the topological Poincaré conjecture (which
asserts the existence of a homeomorphism). Remarkably, the higher dimen-
sional Poincaré conjecture is much easier to understand than in dimensions
three and four. It was settled long ago by Stephen Smale with the methods
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of Morse theory. A beautiful exposition is Milnor’s book [11]. The topo-
logical Poincaré conjecture holds in all dimensions m ≥ 5. But in certain
dimensions there are socalled exotic spheres that are homeomorphic but
not diffeomorphic to the m-sphere. Examples are Milnor’s famous exotic 7-
spheres. Later work by Kervaire and Milnor showed that there are precisely
27 exotic spheres in dimension seven.

Let us now turn to compact connected simply connected smooth 4-
manifolds X without boundary and with H2(X) 6= 0. The intersection form

QX : H2(X) ×H2(X)→ R

is then a diffeomorphism invariant and so are the numbers b+(X) and b−(X)
(see Section 10.5.5). They are determined by the Euler characteristic and
signature of X. In fact, more is true. The intersection form can be defined
on integral cohomology and Poincaré duality over the integers asserts that it
remains nondegenerate over the integers (which can be proved with the same
methods as Theorem 8.38 once an integral cohomology theory has been set
up). This means that it is represented by a symmetric integer matrix with
determinant ±1 in any integral basis of H2(X;Z).

This leads to the issue of understanding quadratic forms over the inte-
gers. One must distinguish between the even and odd case, where even
means that Q(a, a) is even for every integer vector a and odd means that
Q(a, a) is odd for some integer vector a. Thus an oriented 4-manifold X
is called even if the self-intersection number of every compact oriented 2-
dimensional submanifold Σ ⊂ X without boundary is even and it is called
odd is the self-intersection number is odd for some Σ. This property (being
even or odd) is called the parity of X. For example, it follows from the
formula (10.61) that a hypersurface Xd ⊂ CP3 of degree d is odd if and only
if d is odd. (Exercise: Prove this using the fact that c1(Xd) = (4−d)h. Find
a surface with odd self-intersection number when d is odd.)

Examples of even quadratic forms are

H :=

(
0 1
1 0

)
, E8 :=




2 −1 0 0 0 0 0 0
−1 2 −1 0 0 0 0 0
0 −1 2 −1 0 0 0 −1
0 0 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 0
0 0 −1 0 0 0 0 2




.
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Both matrices are symmetric and have determinant ±1. The second matrix
is the Cartan matrix associated to the Dynkin diagram E8 and is positive
definite. A quadratic form (over the integers) is called indefinite if both b+

and b− are nonzero. The classification theorem for nondegenerate quadratic
forms over the integers asserts that every indefinite nondegenerate quadratic
form is diagonalizable over the integers in the odd case (with entries ±1 on
the diagonal) and in the even case is isomorphic to a direct sum of copies
of H and ±E8. It follows, for example, that the self-intersection form of a
K3-surface is isomorphic to 3H − 2E8. However, there are many positive
(or negative) definite exotic quadratic forms. A deep theorem of Donaldson,
that he proved in the early eighties, asserts that the intersection form of
a smooth 4-manifold is diagonalizable, whenever it is positive or negative
definite. Thus the exotic forms do not appear as intersection forms of smooth
4-manifolds.

Donaldson’s Diagonalizability Theorem. If X is a compact connected
oriented smooth 4-manifold without boundary with definite intersection form
QX , then QX is diagonalizable over the integers.

Combining this with the aforementioned known facts about quadratic forms
over the integers, we see that two compact connected simply connected
oriented smooth 4-manifolds without boundary have isomorphic intersection
forms over the integers if and only if they have the same Euler characteristic,
signature, and parity. Now a deep theorem of Michael Freedman asserts
that two compact connected simply connected oriented smooth 4-manifolds
without boundary are homeomorphic if and only if they have isomorphic
intersection forms over the integers. In the light of Donaldson’s theorem
Freedman’s result can be rephrased as follows.

Freedman’s Theorem. Two compact connected simply connected oriented
smooth 4-manifold without boundary are homeomorphic if and only if they
have the same Euler characteristic, signature, and parity.

A corollary is the Topological Poincaré Conjecture in Dimension Four. A
natural question is if Freedman’s theorem can be strengthened to provide a
diffeomorphism. The answer is negative. In the early eighties, around the
same time when Freedman proved his theorem, Donaldson discovered re-
markable invariants of compact oriented smooth 4-manifolds without bound-
ary by studying the anti-self-dual Yang–Mills equations with structure group
SU(2). He proved that the resulting invariants are nontrivial for Kähler
surfaces whereas they are trivial for every connected sum X1#X2 with
b+(Xi) > 0. Thus two such manifolds cannot be diffeomorphic.
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Donaldson’s Theorem. Let X be a compact connected simply connected
Kähler surface without boundary and assume

b+(X) ≥ 2.

Then X is not diffeomorphic to any connected sum kCP2#ℓCP
2
.

If course, the only candidate for such a connected sum would be with

k = b+(X), ℓ = b−(X).

This manifold has trivial Donaldson invariants because k ≥ 2, and therefore
cannot be diffeomorphic to X. To make the statement interesting we also
have to assume that X is odd. Then the two manifolds are homeomorphic,
by Freedman’s theorem. An infinite sequence of examples is provided by
hypersurfaces Xd ⊂ CP3 of odd degree d ≥ 5 (see Section 10.5.6). These
are connected simply connected Kähler surfaces, satisfy b+(Xd) ≥ 2, and
they are odd. Hence Donaldson’s theorem applies, and Friedmans theorem

furnishes a homeomorphism to a suitable connected sum of CP2’s and CP
2
’s.

A beautiful introduction to Donaldson theory can be found in the book
by Donaldson and Kronheimer [3]. The book includes a proof of Donald-
son’s Diagonalizability Theorem, which is also based on the study of anti-
self-dual SU(2)-instantons. When Seiberg–Witten theory was discovered in
the mid nineties, Taubes proved that all symplectic 4-manifolds have non-
trivial Seiberg–Witten invariants. Since the Seiberg–Witten invariants of
connected sums have the same vanishing properties as Donaldson invari-
ants, this gave rise to an extension of Donaldson’s theorem with the word
Kähler surface replaced by symplectic 4-manifold. Both Donaldson theory
and Seiberg–Witten theory are important topics in the study of 3- and 4-
dimensional manifolds with a wealth of results in various directions, the
Kronheimer–Mrowka proof of the Thom conjecture being just one example
(see Section 10.5.3). In a nutshell one can think of these as intersection the-
ories in suitable infninite dimensional settings. This shows again the power
of analytical methods in topology and geometry.
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Calabi–Yau manifold, 187

Čech
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complex, 87

Čech–deRham

cohomology, 92

complex, 92

chain homotopy

equivalence, 51

equivalent, 51

chain map, 51

characteristic class, 159

Chern class, 169

Chern polynomial, 170

compact support

vertical, 112

complex

curve, 177

manifold, 177

surface, 177

complex line bundle

Hermitian, 168

over CPn, 132

over RP2, 166

over the torus, 166

tautological, 133
connection

complex, 146

flat, 154

Hermitian, 147

on a vector bundle, 138

potential, 139
Riemannian, 146

contractible, 53

cotangent bundle, 106

covariant derivative, 143

cup product, 50

in Čech cohomology, 97
in deRham cohomology, 27

curvature

of a connection, 149

degree

of a differential form, 19

of an alternating form, 14
deRham cohomolgy class

dual to a map, 77

dual to a submanifold, 77

deRham cohomology, 27

compactly supported, 64

cup product, 27
integral class, 134

integral lattice, 134

of CPn, 84

of RPm, 85

of Tm, 82
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with twisted coefficients, 154
deRham complex, 27
DeRham’s Theorem, 99
determinant theorem, 18
differential form, 19

closed, 27
exact, 27
with compact support, 19
with values in a vector bundle,

137
double grading, 91
dual bundle, 106

endomorphism
of a G-bundle, 144

Euler characteristic, 78
Euler class, 128, 162

pullback, 131
sum formula, 131
vanishing for odd rank, 128

Euler number, 126
exotic spheres, 191
exterior differential, 22, 26
exterior power

of a vector bundle, 107
exterior product, 16

of differential forms, 20

fiber
of a vector bundle, 104

flat connection, 154

gauge
group, 152
transformation, 152

Gauss map, 43
Gaussian curvature, 43
G-connection

on a vector bundle, 145
genus, 83
good cover, 60

finite, 60

Hard Lefschetz Theorem, 185
Hermitian

form, 147
vector bundle, 147

vector space, 147
Hirzebruch Signature Theorem, 183
holomorphic

function, 177
line bundle, 178

section, 178
homotopy

equivalence, 52
equivalent, 52

inverse, 52
horizontal lift

of a curve, 144
of a vector field, 156

horizontal subbundle, 154

indefinite quadratic form, 192
integral of a differential form, 28
interior product

of a vector field and a differential
form, 36

intersection form
of 4-manifold, 183

invariant polynomial
on a Lie algebra, 158

K3-surface, 187

Lie derivatine
of a differential form, 36

local trivialization, 104
long exact sequence, 57
lower semicontinuous, 60

Mayer–Vietoris sequence

for Ω∗, 56
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for Ω∗
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for H∗, 58

for H∗
c , 69

Möbius strip, 106
Moreau envelope, 60
Moser isotopy, 46

normal bundle, 108

orientable
vector bundle, 110

oriented
vector bundle, 110

parallel transport, 143
parity of a 4-manifold, 191

Poincaré
Conjecture, 190

Poincaré duality, 73
Poincaré Lemma, 53
Poincaré pairing, 72

Pontryagin class, 175
proper, 64
pullback

of a connection, 148

of a differential form, 20
of a vector bundle, 107
of an alternating form, 18

Riemann surface, 189

section
of a vector bundle, 108
along a curve, 143

short exact sequence, 57

shuffle, 16
signature

of a 4-manifold, 183
star shaped, 60, 115
structure group

of a vector bundle, 104

support
of a differential form, 19

tensor product
of vector bundles, 107

Thom class, 118
Thom Conjecture, 181
Thom form, 114
transition map, 104
transverse

to the zero section, 126
trivial bundle, 106

uniformization, 189
unitary group, 147

vector bundle, 104
complex, 146
homomorphism, 109
isomorphic, 109
isomorphism, 109
Riemannian, 146
with structure group G, 104

vertical differential
of a section at a zero, 125

volume form, 45
on an oriented Riemannian man-

ifold, 43

Whitney sum
of vector bundles, 107

zero of a section, 125
zero section, 109
zero set of a section, 126
zeta function

of a dynamical system, 81


