Table des matières

Sédénion Conique S 0.1

0.1.1Introduction

L'ensemble des sédénions coniques est une R-algèbre de dimension 16 qui est une variation sur les sédénions, et que l'on retrouve dans les travaux de Musès (niveau 3 des hypernombres de Musès).

Dans certains articles les sédénions coniques sont appelés Sédénions, ce qui peut être source de confusions; c'est le cas en particulier dans les études qui suivent les travaux de Musès.

0.1.2Définition

L'ensemble des sédénions coniques est une R-algèbre de dimension 16 qui peut se construire directement suivant certaines règles (cf. infra le mode de construction), ce qui justifie la notation utilisée ici S, et l'écriture

$$z = \sum_{n=0}^{15} x_n \cdot e_n$$
 (où $e_0 = 1$), ou comme le produit $\mathbb{O} \otimes \mathbb{C}$, ce qui justifie le nom de *Octonions Complexes*, la

notation $\mathbb{O}_{\mathbb{C}}$, ou encore $\mathbb{O} \oplus i\mathbb{O}$, et l'écriture $z = o_0 + i \cdot o_1$. $\widehat{\mathbb{S}}$ est donc le résultat de la complexification des

Les sédénions coniques ne peuvent s'obtenir comme sous-algèbre de $\mathbb{M}_2(\mathbb{C})$, ni comme résultat de la méthode de Cayley-Dickson.

Par contre \widehat{S} peut facilement être reconnu dans une sous-algèbre de $\mathbb{M}_2(\mathbb{O})$, plus exactement, la sous-algèbre des matrices de la forme $\begin{pmatrix} o_1 & -o_2 \\ o_2 & o_1 \end{pmatrix}$ avec $(o_1, o_2) \in \mathbb{O}^2$

Mode de construction

S peut se construire avec les élements suivants :

- 1 élément de base réelle (noté 1 ou e_0).
- 7 éléments de base imaginaires (vérifiant $e_n^2 = -1$, pour n entre 1 et 7, comme d'habitude, nous noterons i, j et k les trois premiers).
- $<1, i, j, k, e_4, e_5, e_6, e_7>=\mathbb{O}$ (cette sous-base engendre les octonions).
- 7 éléments de base « contre-imaginaire » (vérifiant $e_n^2=1$, pour n entre 9 et 15). 1 élément de base « composé » noté e_8 vérifiant $e_8^2=-1$ et $e_8\cdot e_n=e_{n+8}$ pour n entre 0 et 7.

S est souvent décrite sous la forme suivante (en particulier par les mathématiciens qui suivent Musès):

- 1 élément de base réelle (noté 1).

- 7 éléments de base imaginaires (vérifiant i²_n = -1, pour n entre 1 et 7.
 7 éléments de base « contre-imaginaire » (vérifiant ε²_n = 1, pour n entre 1 et 7).
 1 élément de base « composé » noté i₀ vérifiant i²₀ = -1, i₀ · ε_n = i_n et i₀ · i_n = -ε_n pour n entre 1 et 7.

Si on considère les sédénions coniques comme $\mathbb{O}\otimes\mathbb{C}$, alors tout $s\in\widehat{\mathbb{S}}$ peut s'écrire : $s=o_1+\mathfrak{i}\cdot o_2$, où $(1,\mathfrak{i})$ est une base d'une algèbre isomorphe à \mathbb{C}^1 .

C'est à dire que la multiplication est définie par : $(o_1+\mathfrak{i}\cdot o_2)\cdot (o_1'+\mathfrak{i}\cdot o_2')=o_1o_1'-o_2o_2'+\mathfrak{i}\cdot (o_1o_2'+o_2o_1')$ où les mutiplications $o_i o'_j$ sont tout simplement des multiplications entre octonions standard.

^{1.} nous avons noté i le nouveau générateur afin de ne pas le confondre avec le i de $\mathbb O$.

0.1.4 Table de multiplication

La table de multiplication ci-dessous est celle déduite des définitions ci-dessus ; celle de Musès est légèrement différente, mais isomorphe.

•	1	i	j	k	e_4	e_5	e_6	e_7	e_8	e_9	e_{10}	e_{11}	e_{12}	e_{13}	e_{14}	e_{15}
1	1	i	j	k	e_4	e_5	e_6	e_7	e_8	e_9	e_{10}	e_{11}	e_{12}	e_{13}	e_{14}	e_{15}
i	i	-1	k	- <i>j</i>	e_5	-e ₄	$-e_{7}$	e_6	e_9	-e ₈	e_{11}	$-e_{10}$	e_{13}	$-e_{12}$	$-e_{15}$	e_{14}
j	j	-k	-1	i	e_6	e_7	$-e_{4}$	-e ₅	e_{10}	$-e_{11}$	-e ₈	e_9	e_{14}	e_{15}	$-e_{12}$	$-e_{13}$
k	k	j	- <i>i</i>	-1	e_7	-e ₆	e_5	$-e_4$	e_{11}	e_{10}	-e ₉	-e ₈	e_{15}	$-e_{14}$	e_{13}	$-e_{12}$
e_4	e_4	-e ₅	-e ₆	-e ₇	-1	i	j	k	e_{12}	$-e_{13}$	$-e_{14}$	$-e_{15}$	-e ₈	e_9	e_{10}	e_{11}
e_5	e_5	e_4	$-e_7$	e_6	- <i>i</i>	-1	- <i>k</i>	j	e_{13}	e_{12}	$-e_{15}$	e_{14}	-e ₉	-e ₈	$-e_{11}$	e_{10}
e_6	e_6	e_7	e_4	-e ₅	- <i>j</i>	k	-1	- <i>i</i>	e_{14}	e_{15}	e_{12}	-e ₁₃	-e ₁₀	e_{11}	-e ₈	-e ₉
e_7	e_7	-e ₆	e_5	e_4	-k	- <i>j</i>	i	-1	e_{15}	$-e_{14}$	e_{13}	e_{12}	$-e_{11}$	$-e_{10}$	e_9	-e ₈
e_8	e_8	e_9	e_{10}	e_{11}	e_{12}	e_{13}	e_{14}	e_{15}	-1	- <i>i</i>	- <i>j</i>	-k	-e ₄	-e ₅	-e ₆	-e ₇
e_9	e_9	-e ₈	e_{11}	-e ₁₀	e_{13}	$-e_{12}$	$-e_{15}$	e_{14}	- <i>i</i>	1	-k	j	$-e_5$	e_4	e_7	-e ₆
e_{10}	e_{10}	$-e_{11}$	-e ₈	e_9	e_{14}	e_{15}	$-e_{12}$	-e ₁₃	- <i>j</i>	k	1	- <i>i</i>	$-e_6$	$-e_7$	e_4	e_5
e_{11}	e_{11}	e_{10}	-e ₉	-e ₈	e_{15}	$-e_{14}$	e_{13}	$-e_{12}$	-k	- <i>j</i>	i	1	$-e_7$	e_6	$-e_5$	e_4
e_{12}	e_{12}	-e ₁₃	$-e_{14}$	$-e_{15}$	-e ₈	e_9	e_{10}	e_{11}	$-e_4$	e_5	e_6	e_7	1	- <i>i</i>	- <i>j</i>	-k
e_{13}	e_{13}	e_{12}	$-e_{15}$	e_{14}	-e ₉	-e ₈	$-e_{11}$	e_{10}	$-e_5$	-e ₄	e_7	-e ₆	i	1	k	- <i>j</i>
e_{14}	e_{14}	e_{15}	e_{12}	$-e_{13}$	$-e_{10}$	e_{11}	-e ₈	-e ₉	$-e_6$	-e ₇	$-e_4$	e_5	j	- <i>k</i>	1	i
e_{15}	e_{15}	$-e_{14}$	e_{13}	e_{12}	$-e_{11}$	-e ₁₀	e_9	-e ₈	$-e_7$	e_6	$-e_5$	$-e_{4}$	k	j	- <i>i</i>	1

Table de multiplication de $\widehat{\mathbb{S}}$.

On peut facilement identifier quelques \mathbb{R} -algèbres de dimension 8 comme sous-algèbres de $\widehat{\mathbb{S}}$:

La table de multiplication ci-dessous reprend les conventions de Musès.

•	1	i_1	i_2	i_3	i_4	i_5	i_6	i_7	i_0	ε_1	$arepsilon_2$	ε_3	$arepsilon_4$	ε_5	ε_6	ε_7
1	1	i_1	i_2	i_3	i_4	i_5	i_6	i_7	i_0	ε_1	ε_2	ε_3	ε_4	ε_5	ε_6	ε_7
i_1	i_1	-1	i_3	-i ₂	i_5	-i ₄	-i ₇	i_6	-ε ₁	i_0	ε_3	-ε ₂	ε_5	-ε ₄	-ε ₇	ε_6
i_2	i_2	-i ₃	-1	i_1	i_6	i_7	-i ₄	-i ₅	- ε_2	-ε ₃	i_0	ε_1	ε_6	ε_7	-ε ₄	<i>-€</i> 5
i_3	i_3	i_2	-i ₁	-1	i_7	-i ₆	i_5	$-i_4$	<i>-</i> €3	ε_2	$-\varepsilon_1$	i_0	ε_7	-ε ₆	ε_5	-ε ₄
i_4	i_4	-i ₅	-i ₆	-i ₇	-1	i_1	i_2	i_3	- ε ₄	-€ ₅	-ε ₆	-ε ₇	i_0	ε_1	ε_2	ε_3
i_5	i_5	i_4	$-i_7$	i_6	$-i_1$	-1	-i ₃	i_2	-ε ₅	ε_4	-ε ₇	ε_6	-ε ₁	i_0	-ε ₃	ε_2
i_6	i_6	i_7	i_4	-i ₅	-i ₂	i_3	-1	$-i_1$	-ε ₆	ε_7	ε_4	-ε ₅	$-\varepsilon_2$	ε_3	i_0	-ε ₁
i_7	i_7	-i ₆	i_5	i_4	-i ₃	-i ₂	i_1	-1	-ε ₇	-ε ₆	ε_5	ε_4	-ε ₃	-ε ₂	ε_1	i_0
i_0	i_0	-ε ₁	-ε ₂	-ε ₃	-ε ₄	-ε ₅	-ε ₆	-ε ₇	-1	i_1	i_2	i_3	i_4	i_5	i_6	i_7
$arepsilon_1$	ε_1	i_0	ε_3	$-\varepsilon_2$	ε_5	-ε ₄	-ε ₇	ε_6	i_1	1	-i ₃	i_2	-i ₅	i_4	i_7	-i ₆
$arepsilon_2$	ε_2	-ε ₃	i_0	ε_1	ε_6	ε_7	-ε ₄	-ε ₅	i_2	i_3	1	-i ₁	-i ₆	$-i_7$	i_4	i_5
ε_3	ε_3	ε_2	-ε ₁	i_0	ε_7	-ε ₆	ε_5	-ε ₄	i_3	$-i_2$	i_1	1	-i ₇	i_6	-i ₅	i_4
ε_4	ε_4	-ε ₅	-ε ₆	-ε ₇	i_0	ε_1	ε_2	ε_3	i_4	i_5	i_6	i_7	1	-i ₁	-i ₂	-i ₃
ε_5	ε_5	ε_4	-ε ₇	ε_6	-ε ₁	i_0	-ε ₃	ε_2	i_5	$-i_4$	i_7	-i ₆	i_1	1	i_3	$-i_2$
ε_6	ε_6	ε_7	$arepsilon_4$	-ε ₅	- ε_2	ε_3	i_0	- ε_1	i_6	$-i_7$	$-i_4$	i_5	i_2	-i ₃	1	i_1
ε_7	ε_7	-ε ₆	ε_5	ε_4	-ε ₃	- ε_2	ε_1	i_0	i_7	i_6	-i ₅	-i ₄	i_3	i_2	$-i_1$	1

Table de multiplication de $\widehat{\mathbb{S}}$ à la mode de Musès.

Sous cette dernière forme, on peut calculer quelques fonctions (dans ce qui suit, $\alpha \in \mathbb{R}$):

$$e^{\varepsilon_n \alpha} = \sum_{k=0}^{+\infty} \frac{\varepsilon_n^k \alpha^k}{k!}$$
 Définition de l'exponentielle
$$= \sum_{k=0}^{+\infty} \left(\frac{\varepsilon_n^{2k} \alpha^{2k}}{(2k)!} + \frac{\varepsilon_n^{2k+1} \alpha^{2k+1}}{(2k+1)!} \right)$$
 Ré-écriture de la somme.
$$= \sum_{k=0}^{+\infty} \left(\frac{(\varepsilon_n^2)^k \alpha^{2k}}{(2k)!} + \frac{\varepsilon_n (\varepsilon_n^2)^k \alpha^{2k+1}}{(2k+1)!} \right)$$
 Associativité des puissances.
$$= \sum_{k=0}^{+\infty} \left(\frac{\alpha^{2k}}{(2k)!} \right) + \varepsilon_n \sum_{k=0}^{+\infty} \left(\frac{\alpha^{2k+1}}{(2k+1)!} \right)$$
 $\varepsilon_n^2 = 1$.
$$= \operatorname{ch}(\alpha) + \varepsilon_n \operatorname{sh}(\alpha)$$
 Définition de ch et de sh.

Calcul de $e^{\frac{\pi}{2}(i_0-i_n)}$

Par définition de l'exponentielle par des séries entières : $e^{\frac{\pi}{2}(i_0-i_n)} = \sum_{k=0}^{\infty} \left(\frac{\pi}{2}\right)^k \cdot \frac{(i_0-i_n)^k}{k!}$

Afin de simplifier cette expression nous devons établir quelque résultats simples :

$$\begin{array}{rclrcl} (i_0-i_n)^0 & = & 1 \\ (i_0-i_n)^1 & = & i_0-i_n \\ (i_0-i_n)^2 & = & i_0^2-i_0i_n-i_ni_0+i_n^2 & = & -2(1-\varepsilon_n) \\ (i_0-i_n)^3 & = & -2(1-\varepsilon_n)(i_0-i_n) & = & -2(i_0-i_n-\varepsilon_ni_0+\varepsilon_ni_n) & = & -4(i_0-i_n) \end{array}$$

Ces relations permettent de démontrer, pour k > 0

$$(i_0 - i_n)^{k+2} = (i_0 - i_n)^{k-1}(i_0 - i_n)^3 = (i_0 - i_n)^{k-1}(-4)(i_0 - i_n) = (-4)(i_0 - i_n)^k$$

et en particulier:

$$\begin{aligned} &(i_0-i_n)^{2k+1} = (-4)^k (i_0-i_n) \\ &(i_0-i_n)^{2k+2} = (-4)^k (i_0-i_n)^2 = (-2)(-4)^k (1-\varepsilon_n) \end{aligned}$$

Ces résultats permettent d'écrire :

$$e^{\frac{\pi}{2}(i_0 - i_n)} = \left(\frac{\pi}{2}\right)^0 \frac{(i_0 - i_n)^0}{0!} + \sum_{k=0}^{\infty} \left(\frac{\pi}{2}\right)^{2k+1} \frac{(i_0 - i_n)^{2k+1}}{(2k+1)!} + \sum_{k=0}^{\infty} \left(\frac{\pi}{2}\right)^{2k+2} \frac{(i_0 - i_n)^{2k+2}}{(2k+2)!}$$

$$e^{\frac{\pi}{2}(i_0 - i_n)} = 1 + \sum_{k=0}^{\infty} \left(\frac{\pi}{2}\right)^{2k+1} \frac{(-4)^k (i_0 - i_n)}{(2k+1)!} + \sum_{k=0}^{\infty} \left(\frac{\pi}{2}\right)^{2k+2} \frac{(-2)(-4)^k (1 - \varepsilon_n)}{(2k+2)!}$$

$$e^{\frac{\pi}{2}(i_0 - i_n)} = 1 + (i_0 - i_n) \sum_{k=0}^{\infty} \left(\frac{\pi}{2}\right)^{2k+1} \frac{(-4)^k}{(2k+1)!} + (1 - \varepsilon_n) \sum_{k=0}^{\infty} \left(\frac{\pi}{2}\right)^{2k+2} \frac{(-2)(-4)^k}{(2k+2)!}$$

On rappelle les définitions suivantes :
$$\cos x = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!} = 1 + \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+2}}{(2k+2)!}$$
$$\sin x = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!}$$

$$\sum_{k=0}^{\infty} \left(\frac{\pi}{2}\right)^{2k+1} \frac{(-4)^k}{(2k+1)!} = \sum_{k=0}^{\infty} \left(\frac{\pi}{2}\right)^{2k+1} \frac{(-1)^k 2^{2k+1}}{2(2k+1)!} = \frac{1}{2} \sum_{k=0}^{\infty} (-1)^k \frac{\pi^{2k+1}}{(2k+1)!} = \frac{1}{2} \sin(\pi)$$

$$\sum_{k=0}^{\infty} \left(\frac{\pi}{2}\right)^{2k+2} \frac{(-2)(-4)^k}{(2k+2)!} = \sum_{k=0}^{\infty} \left(\frac{\pi}{2}\right)^{2k+2} \frac{(-1)^{k+1}(2)^{2k+2}}{2(2k+2)!} = \frac{1}{2} \sum_{k=0}^{\infty} (-1)^k \frac{\pi^{2k+2}}{(2k+2)!} = \frac{1}{2} (\cos(\pi) - 1)$$

Ce qui donne au final :

$$e^{\frac{\pi}{2}(i_0-i_n)} = 1 + \frac{(i_0-i_n)}{2}\sin(\pi) + \frac{1-\varepsilon_n}{2}(\cos(\pi)-1) \text{ d'où } e^{\frac{\pi}{2}(i_0-i_n)} = 1 + 0 - (1-\varepsilon_n) = \varepsilon_n$$

0.1.5 Conjugué, Module, Norme, Forme Polaire et Inverse

Si l'on écrit les octonions complexes sous la forme $z = o_0 + i \cdot o_1$, trois définitions de conjugaisons paraissent naturelles, nous les noterons \dagger_1, \dagger_2 , et \dagger_3 :

$$\begin{array}{rcl} z^{\dagger_1} & = & \overline{o_0} + i \cdot \overline{o_1} & \text{(Conjugaison octonionique)} \\ z^{\dagger_2} & = & o_0 - i \cdot o_1 & \text{(Conjugaison complexe)} \\ z^{\dagger_3} & = & \overline{o_0} - i \cdot \overline{o_1} & \text{(Conjugaison hermitienne)} \end{array}$$

Où $\overline{o_i}$ désigne la conjugaison standard sur \mathbb{O} .

En posant $o_0 = \sum_{n=0}^{\ell} x_n \cdot e_n$ et $o_1 = \sum_{n=0}^{\ell} x_{n+8} \cdot e_n$ (où $e_0 = 1$), on peut définir une pseudo-norme qui possède l'excellent qualité d'être multiplicative : $|z| = \sqrt[4]{zz^{\dagger_1}z^{\dagger_2}z^{\dagger_3}}$

La définition donne directement, en posant $z = z_0 + iz_1$:

$$|z|^4 = (z_0\overline{z_0} - z_1\overline{z_1})^2 + 2\left((z_1\overline{z_0})\overline{(z_1\overline{z_0})} + \overline{(z_1\overline{z_0})}\overline{(z_1\overline{z_0})}\right)$$

Ce qui, après quelques calculs élémentaires donne :

$$|z| = \sqrt[4]{zz^{\dagger_1}z^{\dagger_2}z^{\dagger_3}} = \sqrt[4]{\left(\sum_{n=0}^7 x_n^2 - \sum_{n=8}^{15} x_n^2\right)^2 + 4\left(x_0x_8 - \sum_{n=1}^7 x_nx_{n+8}\right)^2}$$

0.1.6 Propriétés algébriques

 $(\widehat{\mathbb{S}},+,\cdot,\times)$ est une \mathbb{R} -algèbre de dimension 16 qui est non commutative, non associative $((i\cdot e_4)\cdot e_7=e_5\cdot e_7=j\,;\,i\cdot (e_4\cdot e_7)=i\cdot k=-j)$, mais altenative et flexible et possédant une pseudo-norme multiplicative. De plus $\widehat{\mathbb{S}}$ contient des éléments particuliers.

Avec les notations standard des hypercomplexes :

Eléments idempotents : $\left(\frac{1+e_9}{2}\right)^2 = \frac{1+e_9+e_9+e_9^2}{4} = \frac{1+e_9}{2}$

Diviseurs de 0 : $(\sqrt{3} + i + 2e_{10})(-\sqrt{3} + i + 2e_{10}) = (i + 2e_{10})^2 - 3 =$

 $i^2 + 4e_{10}^2 + 2(ie_{10} + e_{10}i) - 3 =$

 $-1 + 4 + 2(e_{11} - e_{11}) - 3 = 0$

Eléments nilpotents : $(i + e_{10})^2 = i^2 + ie_{10} + e_{10}i + e_{10}^2 = -1 + e_{11} - e_{11} + 1 = 0$

Avec les notations de Musès ³:

Eléments idempotents : $\left(\frac{1\pm\varepsilon_n}{2}\right)^2 = \frac{1\pm\varepsilon_n\pm\varepsilon_n+\varepsilon_n^2}{4} = \frac{2\pm2\varepsilon_n}{4} = \frac{1\pm\varepsilon_n}{2}$

Diviseurs de 0 : $((1+i_0) + (i_k + \varepsilon_k))((1+i_0) - (i_k + \varepsilon_k)) = (1+i_0)^2 - (i_k + \varepsilon_k)^2 = (i_0 + \varepsilon_k)^2 - (i_0 (i_0 +$

 $(1^{2} + 2i_{0} + i_{0}^{2}) - (i_{k}^{2} + 2i_{0} + \varepsilon_{k}^{2}) = 0$

Eléments nilpotents : pour $n \neq m$: $(i_m \pm e_n)^2 = i_m^2 \pm (\varepsilon_k - \varepsilon_k) + \varepsilon_n^2 = -1 + 1 = 0$

Au prix de quelques calculs supplémentaires on peut montrer que ⁴ pour $(a,b,c) \in \mathbb{R}$ tels que $a^2 = b^2 + c^2$

$$(a(1+i_0) + b(i_1 + \varepsilon_1) + c(i_2 + \varepsilon_2)) (a(1+i_0) - b(i_1 + \varepsilon_1) - c(i_2 + \varepsilon_2)) = 0$$

^{3. 1} et i_0 commutent avec tout

^{4.} Ce n'est pas la forme la plus générale des diviseurs de 0 des Sédénions Coniques

0.1.7 Synonymes, Isomorphismes, Exemples

Les sédénions coniques sont aussi appelés Octonions complexes (cf. les modes de construction, ci-dessus), mais aussi BiOctonions.

Ils forment aussi une M-algèbre de Musès (de niveau 3) et de dimension 16.

0.1.8 Utilisation en physique

- Equation de la conservation de l'énergie électromagnétique locale.
- Opérateurs de spin 1/2.
- Gravité quantique.
- L'électromagnétisme, peut s'exprimer avec les Octonions Fendus (\mathbb{Q}), et la gravité quantique euclidienne en dimension 4 peut s'exprimer avec les Octonions Circulaires (c'est à dire les Octonions standard \mathbb{Q}), deux sous-algèbres des Sédénions coniques (\mathbb{S}), d'où l'idée de les unir.

0.1.9 Références

- J. Köplinger, Gravity and electromagnetism on conic sedenions, Applied Mathematics and Computation, 2006.
- 2. M. E. Kansu, M. Tanişli & S. Demir, *Electromagnetic energy conservation with complex octonions*, Turkish Journal of Physics, volume 36, pages 438-445, 2012.