4 Vector Bundles

Fibre bundles In 1934, Herbert Seifert published The *Topology of 3 - Dimensional Fibered Spaces*, which contained a definition of an object that is **a kind of fibre bundle**. Seifert was only considering circles as fibres and 3-manifolds for the total space.

Rational functions over \mathbb{CP}^1 We study function theory on domains in \mathbb{C} , on \mathbb{C} and on the Riemann sphere $\hat{\mathbb{C}} := \mathbb{C} \cup \{\infty\} = \mathbb{CP}^1$, or more generally on Riemann surface (1 dimensional complex manifold) and complex manifolds.

The simplest compact complex manifold is the Riemann sphere $\hat{\mathbb{C}} = \mathbb{CP}^1$. The following fact is well known by the maximum principle:

Theorem 4.1 There is no non-constant holomorphic function on $\hat{\mathbb{C}}$.

Nevertheless, there are lots of polynomials f

$$f := a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0, \quad a_n \neq 0$$
(6)

defined over \mathbb{C} , which can be regarded as a meromorphic function on $\hat{\mathbb{C}}$ with the pole at the infinity.

Functions, graphs and sections of line bundles A function $f : \mathbb{C} \to \mathbb{C}$ can be regarded as a graph:

$$\begin{array}{cccc} \mathbb{C} & \to & \mathbb{C} \times \mathbb{C} \\ z & \mapsto & (z, f(z)) \end{array}$$

so that

 $\{all \ functions \ f \ on \ \mathbb{C}\} \longleftrightarrow \{all \ the \ graph is \ of \ f\}.$

In other words, we have a (trivial) line bundle $\pi : L := \mathbb{C} \times \mathbb{C} \to \mathbb{C}, (z, u) \mapsto z$ and f is a section of this bundle:

$$\begin{array}{c}
L \\
\uparrow f \downarrow \pi \\
\mathbb{C}
\end{array}$$
(7)

 $\{all \ functions \ f \ on \ \mathbb{C}\} \longleftrightarrow \{all \ sections \ of \ the \ trivial \ line \ bundle\}.$

In general, a *fiber bundle* is intuitively a space E which locally "looks" like a product space $B \times F$, but globally may have a different topological structure. More precisely, a fiber bundle with fiber F is a map

$$\pi: E \to E$$

where E is called the *total space* of the fiber bundle and B the *base space* of the fiber bundle. The main condition for the map to be a fiber bundle is that every point in the base space $b \in B$ has a neighborhood U such that $f^{-1}(U)$ is homeomorphic to $U \times F$ in a special way. In particular if each $\pi^{-1}(x)$ is a vector space which changes smoothly, it is called a vector bundle. A Möbius band is the simplest non-trivial example of a vector bundle. If each $\pi^{-1}(x)$ is one dimensional vector space, it is called a line bundle.¹⁴

A section of a fiber bundle, $\pi : E \to B$, over a topological space, B, is a continuous map, $s : B \to E$, such that $\pi(s(x)) = x$ for all $x \in B$. (7) is a line bundle and

 $\{all \ functions \ defined \ on \ M\} \longleftrightarrow \{all \ sections \ of \ the \ trivial \ line \ bundle \ M \times \mathbb{C}\}$

Vector bundles over a manifold Let M be a C^{∞} differentiable manifold of dimension m and let $K = \mathbb{R}$ or $K = \mathbb{C}$ be the scalar field. A (real, complex) *vector bundle of rank r* over M is a C^{∞} manifold E together with

i) a C^{∞} map $\pi: E \to M$ which called the *projection*,

ii) a K-vector space structure of dimension r on each fiber $E_x = \pi^{-1}(x)$ such that the vector space structure is locally trivial. This means that there exists an open covering $\{V_a\}_{a \in I}$ of M and C^{∞} diffeomorphisms called *trivializations*

$$\begin{array}{cccc} E &\supset & \pi^{-1}(V_{\alpha}) & \xrightarrow{\theta_{\alpha} \simeq} & V_{\alpha} \times K^{r} \\ \downarrow & & & \\ X &\supset & V_{\alpha} \end{array}$$

such that for every $x \in V_{\alpha}$ the restriction map $\theta_{\alpha}(x) : \pi^{-1}(x) \to \{x\} \times K^{r}$ is a linear isomorphism.

Then for each $\alpha, \beta \in I$, the map

$$\theta_{\alpha\beta} := \theta_{\alpha} \circ \theta_{\beta}^{-1} : \quad (V_{\alpha} \cap V_{\beta}) \times K^{r} \to (V_{\alpha} \cap V_{\beta}) \times K^{r} \\ (x,\xi) \mapsto (x,g_{\alpha\beta}(x) \cdot \xi)$$

$$(8)$$

where $\{g_{\alpha\beta}\}_{\alpha,\beta\in I}$ is a collection of invertible matrices with coefficients in $C^{\infty}(V_{\alpha} \cap V_{\beta}, K)$. They satisfy

$$\begin{cases} g_{\alpha\alpha} = Id, & on \ V_{\alpha}, \\ g_{\alpha\beta}g_{\beta\alpha} = Id, & on \ V_{\alpha} \cap V_{\beta}, \\ g_{\alpha\beta}g_{\beta\gamma}g_{\gamma\alpha} = Id, & on \ V_{\alpha} \cap V_{\beta} \cap V_{\gamma}. \end{cases}$$
(9)

¹⁴For more detailed definitions of holomorphic vector bundles and holomorphic line bundles, see [H05], p.66.

Such collection $\{g_{\alpha\beta}\}$ is called a system of transition matrices. Any collection of invertible matrices satisfying (9) defines a vector bundle E, obtained by gluing the charts $V_{\alpha} \times K^r$ via the identifications $\theta_{\alpha\beta}$.

When r = 1, a vector bundle is called a *line bundle* and transition matrices are called *transition functions*.

Let X be a complex manifold and E be a vector bundle over X with $K = \mathbb{C}$. Suppose that all $g_{\alpha\beta}$ as above are matrices whose entries are all holomorphic functions. Then E is called a *holomorphic vector bundle* over X. A holomorphic line bundle L over X is called a *line bundle* for simplicity.

Each vector bundle $\pi : E \to B$, we can define its *dual vector bundle* $\pi_* : E^* \to B$ whose fiber $\pi_*^{-1}(x)$ is the dual vector space of $\pi^{-1}(x)$ for any point $x \in B$. ¹⁵ For any two vector bundles $\pi : E \to B$ and $\pi' : E' \to B$, we can define the *tensor product* $E \otimes E'$, still a vector bundle, over B, whose fiber is equal to the tensor product of vector spaces $\pi^{-1}(x) \otimes \pi'^{-1}(x)$ for any point $x \in B$. ¹⁶

Line bundles over complex manifolds A holomorphic line bundle L over a complex manifold X can be defined locally by $(U_{\alpha}, g_{\alpha\beta})$,

$$L \longleftrightarrow (U_{\alpha}, g_{\alpha\beta})$$

where $\{U_{\alpha}\}$ is an open covering of X and $g_{\alpha\beta}$ are transition functions, i.e., $g_{\alpha\beta} : U_{\alpha} \cap U_{\beta} \to \mathbb{C}^*$ is holomorphic functions such that $g_{\alpha\alpha} = 1$ on U_{α} , $g_{\alpha\beta}g_{\beta\alpha} = 1$ on $U_{\alpha} \cap U_{\beta}$ and $g_{\alpha\beta} \cdot g_{\beta\gamma} \cdot g_{\gamma\alpha} = 1$ on $U_{\alpha} \cap U_{\beta} \cap U_{\gamma}$.

L and L' are isomorphic holomorphic line bundles over $X \Leftrightarrow \exists$ a common open covering refinement $\{U_{\alpha}\}$ of X such that L and L' are given by $\{U_{\alpha}, g_{\alpha\beta}\}$ and $\{U_{\alpha}, g'_{\alpha\beta}\}$ respectively, and holomorphic functions $f_{\alpha}: U_{\alpha} \to \mathbb{C}^*$ such that

$$g_{\alpha\beta} = f_{\alpha}^{-1} \cdot g'_{\alpha\beta} \cdot f_{\beta}, \quad on \ U_{\alpha} \cap U_{\beta}$$

where $f_{\alpha}^{-1} = \frac{1}{f_{\alpha}}$.

L is *trivial line bundle* if and only if the corresponding transition functions $g_{\alpha\beta} = \frac{f_{\beta}}{f_{\alpha}}$ on $U_{\alpha} \cap U_{\beta}$ where $f_{\alpha} : U_{\alpha} \to \mathbb{C}^*$.

 $^{^{15}{\}rm cf.}$ [H05], p. 67.

¹⁶cf. [H05], p. 67.

If L and L' are holomorphic line bundles given by $\{U_{\alpha}, g_{\alpha\beta}\}_{\alpha\in I}$ and $\{U_{\alpha}, g'_{\alpha\beta}\}_{\alpha\in I}$ respectively, then we define its *tensor product*, denoted as $L\otimes L'$ or L+L', given by $\{U_{\alpha}, g_{\alpha\beta}g'_{\alpha\beta}\}_{\alpha\in I}$.

If a holomorphic line bundle L over a complex manifold X is defined by $\{U_{\alpha}, g_{\alpha\beta}\}_{\alpha \in I}$, then its *dual line bundle*, denoted by -L, or L^* , or L^{-1} , is defined by $\{U_{\alpha}, \frac{1}{g_{\alpha\beta}}\}$. Clearly, $L \otimes (L^{-1})$, or L + (-L), is a trivial line bundle.

Holomorphic sections of a line bundle Let $\pi : L \to X$ be a holomorphic line bundle over a complex manifold X. A *holomorphic section* of L is a holomorphic map $s : X \to L$ such that $\pi \circ s = Id$. We denote by $\Gamma(X, L)$, or $H^0(X, L)$, the set of all holomorphic sections of L over X.

Let L be given by local data $\{U_{\alpha}, g_{\alpha\beta}\}$.

$$\begin{array}{cccc} L & \supset & \pi^{-1}(U_{\alpha}) & \xrightarrow{\theta_{\alpha} \simeq} & U_{\alpha} \times \mathbb{C} \ni (z, s_{\alpha}(z)) \\ & \downarrow \pi & \uparrow s & \swarrow \\ X & \supset & U_{\alpha} \ni z \end{array}$$

On each U_{α} , we find a unique holomorphic function $s_{\alpha} \in \mathcal{O}(U_{\alpha})$ so that $s(z) = \theta_{\alpha}^{-1}(z, s_{\alpha}(z))$. Then on any $U_{\alpha} \cap U_{\beta} \neq \emptyset$, we have $\theta_{\alpha}^{-1}(z, s_{\alpha}(z)) = \theta_{\beta}^{-1}(z, s_{\beta}(z))$. By the linearity, we have

$$s_{\alpha}(z)\theta_{\alpha}^{-1}(z,1) = s_{\beta}(z)\theta_{\beta}^{-1}(z,1),$$
(10)

i.e.,

$$(z, s_{\beta}(z)) = s_{\alpha}(z)\theta_{\beta} \circ \theta_{\alpha}^{-1}(z, 1),$$

which implies

$$s_{\beta}(z) = g_{\beta\alpha}s_{\alpha}(z), \ i.e., \ s_{\alpha} = g_{\alpha\beta}s_{\beta}, \quad on \ U_{\alpha} \cap U_{\beta}.$$

Conversely, any collection $\{s_{\alpha}\}_{\alpha \in I}$ satisfying the above identity defines a holomorphic section $s \in \Gamma(X, L)$ by setting $s := s_{\alpha} e_{\alpha}$, where $e_{\alpha}(z) := \theta_{\alpha}^{-1}(z, 1)$.

Every bundle has a trivial section, given by $\zeta^i = 0$; the graph of this section is often called the zero section. If there are no other sections, we say that the bundle is said to have no sections.