4 Vector Bundles

Fibre bundles In 1934, Herbert Seifert published The Topology of 3 - Dimensional Fibered Spaces, which contained a definition of an object that is a kind of fibre bundle. Seifert was only considering circles as fibres and 3 -manifolds for the total space.

Rational functions over $\mathbb{C P}{ }^{1}$ We study function theory on domains in \mathbb{C}, on \mathbb{C} and on the Riemann sphere $\widehat{\mathbb{C}}:=\mathbb{C} \cup\{\infty\}=\mathbb{C P}^{1}$, or more generally on Riemann surface (1 dimensional complex manifold) and complex manifolds.

The simplest compact complex manifold is the Riemann sphere $\widehat{\mathbb{C}}=\mathbb{C P}^{1}$. The following fact is well known by the maximum principle:

Theorem 4.1 There is no non-constant holomorphic function on $\hat{\mathbb{C}}$.
Nevertheless, there are lots of polynomials f

$$
\begin{equation*}
f:=a_{n} z^{n}+a_{n-1} z^{n-1}+\ldots+a_{1} z+a_{0}, \quad a_{n} \neq 0 \tag{6}
\end{equation*}
$$

defined over \mathbb{C}, which can be regarded as a meromorphic function on $\widehat{\mathbb{C}}$ with the pole at the infinity.

Functions, graphs and sections of line bundles A function $f: \mathbb{C} \rightarrow \mathbb{C}$ can be regardrd as a graph:

$$
\begin{array}{ccc}
\mathbb{C} & \rightarrow & \mathbb{C} \times \mathbb{C} \\
z & \mapsto & (z, f(z))
\end{array}
$$

so that

$$
\{\text { all functions } f \text { on } \mathbb{C}\} \longleftrightarrow\{\text { all the graphis of } f\}
$$

In other words, we have a (trivial) line bundle $\pi: L:=\mathbb{C} \times \mathbb{C} \rightarrow \mathbb{C},(z, u) \mapsto z$ and f is a section of this bundle:

$$
\begin{array}{cc}
& L \tag{7}\\
\uparrow f & \downarrow \pi \\
& \mathbb{C}
\end{array}
$$

$$
\{\text { all functions } f \text { on } \mathbb{C}\} \longleftrightarrow\{\text { all sections of the trivial line bundle }\} .
$$

In general, a fiber bundle is intuitively a space E which locally "looks" like a product space $B \times F$, but globally may have a different topological structure. More precsiely, a fiber bundle with fiber F is a map

$$
\pi: E \rightarrow B
$$

where E is called the total space of the fiber bundle and B the base space of the fiber bundle. The main condition for the map to be a fiber bundle is that every point in the base space $b \in B$ has a neighborhood U such that $f^{-1}(U)$ is homeomorphic to $U \times F$ in a special way. In particular if each $\pi^{-1}(x)$ is a vector space which changes smoothly, it is called a vector bundle. A Möbius band is the simplest non-trivial example of a vector bundle. If each $\pi^{-1}(x)$ is one dimensional vector space, it is called a line bundle. ${ }^{14}$

A section of a fiber bundle, $\pi: E \rightarrow B$, over a topological space, B, is a continuous map, $s: B \rightarrow E$, such that $\pi(s(x))=x$ for all $x \in B$. (7) is a line bundle and
$\{$ all functions defined on $M\} \longleftrightarrow$ all sections of the trivial line bundle $M \times \mathbb{C}$ \}

Vector bundles over a manifold Let M be a C^{∞} differentiable manifold of dimension m and let $K=\mathbb{R}$ or $K=\mathbb{C}$ be the scalar field. A (real, complex) vector bundle of rank r over M is a C^{∞} manifold E together with
i) a $C^{\infty} \operatorname{map} \pi: E \rightarrow M$ which called the projection,
ii) a K-vector space structure of dimension r on each fiber $E_{x}=\pi^{-1}(x)$ such that the vector space structure is locally trivial. This means that there exists an open covering $\left\{V_{a}\right\}_{a \in I}$ of M and C^{∞} diffeomorphisms called trivializations

$$
\begin{array}{llcll}
E & \supset & \pi^{-1}\left(V_{\alpha}\right) & \xrightarrow{\theta_{\alpha} \simeq} V_{\alpha} \times K^{r} \\
\downarrow & & & \\
X & \supset & V_{\alpha} & &
\end{array}
$$

such that for every $x \in V_{\alpha}$ the restriction map $\theta_{\alpha}(x): \pi^{-1}(x) \rightarrow\{x\} \times K^{r}$ is a linear isomorphism.

Then for each $\alpha, \beta \in I$, the map

$$
\begin{align*}
\theta_{\alpha \beta}:=\theta_{\alpha} \circ \theta_{\beta}^{-1}:\left(V_{\alpha} \cap V_{\beta}\right) \times K^{r} & \rightarrow\left(V_{\alpha} \cap V_{\beta}\right) \times K^{r} \\
(x, \xi) & \mapsto\left(x, g_{\alpha \beta}(x) \cdot \xi\right) \tag{8}
\end{align*}
$$

where $\left\{g_{\alpha \beta}\right\}_{\alpha, \beta \in I}$ is a collection of invertible matrices with coefficients in $C^{\infty}\left(V_{\alpha} \cap V_{\beta}, K\right)$. They satisfy

$$
\left\{\begin{array}{l}
g_{\alpha \alpha}=I d, \text { on } V_{\alpha}, \tag{9}\\
g_{\alpha \beta} g_{\beta \alpha}=I d, \text { on } V_{\alpha} \cap V_{\beta}, \\
g_{\alpha \beta} g_{\beta \gamma} g_{\gamma \alpha}=I d, \text { on } V_{\alpha} \cap V_{\beta} \cap V_{\gamma} .
\end{array}\right.
$$

[^0]Such collection $\left\{g_{\alpha \beta}\right\}$ is called a system of transition matrices. Any collection of invertible matrices satisfying (9) defines a vector bundle E, obtained by gluing the charts $V_{\alpha} \times K^{r}$ via the identifications $\theta_{\alpha \beta}$.

When $r=1$, a vector bundle is called a line bundle and transition matrices are called transition functions.

Let X be a complex manifold and E be a vector bundle over X with $K=\mathbb{C}$. Suppose that all $g_{\alpha \beta}$ as above are matrices whose entries are all holomorphic functions. Then E is called a holomorphic vector bundle over X. A holomorphic line bundle L over X is called a line bundle for simplicity.

Each vector bundle $\pi: E \rightarrow B$, we can define its dual vector bundle $\pi_{*}: E^{*} \rightarrow B$ whose fiber $\pi_{*}^{-1}(x)$ is the dual vector space of $\pi^{-1}(x)$ for any point $x \in B$. ${ }^{15}$ For any two vector bundles $\pi: E \rightarrow B$ and $\pi^{\prime}: E^{\prime} \rightarrow B$, we can define the tensor product $E \otimes E^{\prime}$, still a vector bundle, over B, whose fiber is equal to the tensor product of vector spaces $\pi^{-1}(x) \otimes \pi^{\prime-1}(x)$ for any point $x \in B$. ${ }^{16}$

Line bundles over complex manifolds A holomorphic line bundle L over a complex manifold X can be defined locally by $\left(U_{\alpha}, g_{\alpha \beta}\right)$,

$$
L \longleftrightarrow\left(U_{\alpha}, g_{\alpha \beta}\right)
$$

where $\left\{U_{\alpha}\right\}$ is an open covering of X and $g_{\alpha \beta}$ are transition functions, i.e., $g_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \rightarrow \mathbb{C}^{*}$ is holomorphic functions such that $g_{\alpha \alpha}=1$ on $U_{\alpha}, g_{\alpha \beta} g_{\beta \alpha}=1$ on $U_{\alpha} \cap U_{\beta}$ and $g_{\alpha \beta} \cdot g_{\beta \gamma} \cdot g_{\gamma \alpha}=1$ on $U_{\alpha} \cap U_{\beta} \cap U_{\gamma}$.
L and L^{\prime} are isomorphic holomorphic line bundles over $\mathrm{X} \Leftrightarrow \exists$ a common open covering refinement $\left\{U_{\alpha}\right\}$ of X such that L and L^{\prime} are given by $\left\{U_{\alpha}, g_{\alpha \beta}\right\}$ and $\left\{U_{\alpha}, g_{\alpha \beta}^{\prime}\right\}$ respectively, and holomorphic functions $f_{\alpha}: U_{\alpha} \rightarrow \mathbb{C}^{*}$ such that

$$
g_{\alpha \beta}=f_{\alpha}^{-1} \cdot g_{\alpha \beta}^{\prime} \cdot f_{\beta}, \quad \text { on } U_{\alpha} \cap U_{\beta}
$$

where $f_{\alpha}^{-1}=\frac{1}{f_{\alpha}}$.
L is trivial line bundle if and only if the corresponding transition functions $g_{\alpha \beta}=\frac{f_{\beta}}{f_{\alpha}}$ on $U_{\alpha} \cap U_{\beta}$ where $f_{\alpha}: U_{\alpha} \rightarrow \mathbb{C}^{*}$.

[^1]If L and L^{\prime} are holomorphic line bundles given by $\left\{U_{\alpha}, g_{\alpha \beta}\right\}_{\alpha \in I}$ and $\left\{U_{\alpha}, g_{\alpha \beta}^{\prime}\right\}_{\alpha \in I}$ respectively, then we define its tensor product, denoted as $L \otimes L^{\prime}$ or $L+L^{\prime}$, given by $\left\{U_{\alpha}, g_{\alpha \beta} g_{\alpha \beta}^{\prime}\right\}_{\alpha \in I}$.

If a holomorphic line bundle L over a complex manifold X is defined by $\left\{U_{\alpha}, g_{\alpha \beta}\right\}_{\alpha \in I}$, then its dual line bundle, denoted by $-L$, or L^{*}, or L^{-1}, is defined by $\left\{U_{\alpha}, \frac{1}{g_{\alpha \beta}}\right\}$. Clearly, $L \otimes\left(L^{-1}\right)$, or $L+(-L)$, is a trivial line bundle.

Holomorphic sections of a line bundle Let $\pi: L \rightarrow X$ be a holomorphic line bunlde over a complex manifold X. A holomorphic section of L is a holomorphic map $s: X \rightarrow L$ such that $\pi \circ s=I d$. We denote by $\Gamma(X, L)$, or $H^{0}(X, L)$, the set of all holomorphic sections of L over X.

Let L be given by local data $\left\{U_{\alpha}, g_{\alpha \beta}\right\}$.

On each U_{α}, we find a unique holomorphic function $s_{\alpha} \in \mathcal{O}\left(U_{\alpha}\right)$ so that $s(z)=\theta_{\alpha}^{-1}\left(z, s_{\alpha}(z)\right)$. Then on any $U_{\alpha} \cap U_{\beta} \neq \emptyset$, we have $\theta_{\alpha}^{-1}\left(z, s_{\alpha}(z)\right)=\theta_{\beta}^{-1}\left(z, s_{\beta}(z)\right)$. By the linearity, we have

$$
\begin{equation*}
s_{\alpha}(z) \theta_{\alpha}^{-1}(z, 1)=s_{\beta}(z) \theta_{\beta}^{-1}(z, 1), \tag{10}
\end{equation*}
$$

i.e.,

$$
\left(z, s_{\beta}(z)\right)=s_{\alpha}(z) \theta_{\beta} \circ \theta_{\alpha}^{-1}(z, 1)
$$

which implies

$$
s_{\beta}(z)=g_{\beta \alpha} s_{\alpha}(z), \text { i.e., } s_{\alpha}=g_{\alpha \beta} s_{\beta}, \quad \text { on } U_{\alpha} \cap U_{\beta} .
$$

Conversely, any collection $\left\{s_{\alpha}\right\}_{\alpha \in I}$ satisfying the above identity defines a holomorphic section $s \in \Gamma(X, L)$ by setting $s:=s_{\alpha} e_{\alpha}$, where $e_{\alpha}(z):=\theta_{\alpha}^{-1}(z, 1)$.

Every bundle has a trivial section, given by $\zeta^{i}=0$; the graph of this section is often called the zero section. If there are no other sections, we say that the bundle is said to have no sections.

[^0]: ${ }^{14}$ For more detailed definitions of holomorphic vector bundles and holomorphic line bundles, see [H05], p.66.

[^1]: ${ }^{15}$ cf. [H05], p. 67.
 ${ }^{16}$ cf. [H05], p. 67.

