
4 Vector Bundles

Fibre bundles In 1934, Herbert Seifert published The Topology of 3 - Dimensional

Fibered Spaces, which contained a definition of an object that is a kind of fibre bundle.
Seifert was only considering circles as fibres and 3-manifolds for the total space.

Rational functions over CP1 We study function theory on domains in C, on C and
on the Riemann sphere Ĉ := C ∪ {∞} = CP1, or more generally on Riemann surface (1
dimensional complex manifold) and complex manifolds.

The simplest compact complex manifold is the Riemann sphere Ĉ = CP
1. The following

fact is well known by the maximum principle:

Theorem 4.1 There is no non-constant holomorphic function on Ĉ.

Nevertheless, there are lots of polynomials f

f := anzn + an−1z
n−1 + ... + a1z + a0, an 6= 0 (6)

defined over C, which can be regarded as a meromorphic function on Ĉ with the pole at the
infinity.

Functions, graphs and sections of line bundles A function f : C → C can be
regardrd as a graph:

C → C× C

z 7→ (z, f(z))

so that
{all functions f on C} ←→ {all the graphis of f}.

In other words, we have a (trivial) line bundle π : L := C × C → C, (z, u) 7→ z and f is a
section of this bundle:

L

↑ f ↓ π

C

(7)

{all functions f on C} ←→ {all sections of the trivial line bundle}.

In general, a fiber bundle is intuitively a space E which locally “looks” like a product
space B×F , but globally may have a different topological structure. More precsiely, a fiber
bundle with fiber F is a map

π : E → B
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where E is called the total space of the fiber bundle and B the base space of the fiber bundle.
The main condition for the map to be a fiber bundle is that every point in the base space
b ∈ B has a neighborhood U such that f−1(U) is homeomorphic to U × F in a special way.
In particular if each π−1(x) is a vector space which changes smoothly, it is called a vector
bundle. A Möbius band is the simplest non-trivial example of a vector bundle. If each
π−1(x) is one dimensional vector space, it is called a line bundle. 14

A section of a fiber bundle, π : E → B, over a topological space, B, is a continuous map,
s : B → E, such that π(s(x)) = x for all x ∈ B. (7) is a line bundle and

{all functions defined on M} ←→ {all sections of the trivial line bundle M ×C}

Vector bundles over a manifold Let M be a C∞ differentiable manifold of dimension
m and let K = R or K = C be the scalar field. A (real, complex) vector bundle of rank r

over M is a C∞ manifold E together with
i) a C∞ map π : E →M which called the projection,
ii) a K-vector space structure of dimension r on each fiber Ex = π−1(x) such that the

vector space structure is locally trivial. This means that there exists an open covering
{Va}a∈I of M and C∞ diffeomorphisms called trivializations

E ⊃ π−1(Vα)
θα≃−−→ Vα ×Kr

↓
X ⊃ Vα

such that for every x ∈ Vα the restriction map θα(x) : π−1(x) → {x} × Kr is a linear
isomorphism.

Then for each α, β ∈ I, the map

θαβ := θα ◦ θ−1

β : (Vα ∩ Vβ)×Kr → (Vα ∩ Vβ)×Kr

(x, ξ) 7→
(

x, gαβ(x) · ξ
) (8)

where {gαβ}α,β∈I is a collection of invertible matrices with coefficients in C∞(Vα ∩ Vβ, K).
They satisfy











gαα = Id, on Vα,

gαβgβα = Id, on Vα ∩ Vβ,

gαβgβγgγα = Id, on Vα ∩ Vβ ∩ Vγ.

(9)

14For more detailed definitions of holomorphic vector bundles and holomorphic line bundles, see [H05],
p.66.
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Such collection {gαβ} is called a system of transition matrices. Any collection of invertible
matrices satisfying (9) defines a vector bundle E, obtained by gluing the charts Vα×Kr via
the identifications θαβ .

When r = 1, a vector bundle is called a line bundle and transition matrices are called
transition functions.

Let X be a complex manifold and E be a vector bundle over X with K = C. Suppose
that all gαβ as above are matrices whose entries are all holomorphic functions. Then E is
called a holomorphic vector bundle over X. A holomorphic line bundle L over X is called a
line bundle for simplicity.

Each vector bundle π : E → B, we can define its dual vector bundle π∗ : E∗ → B whose
fiber π−1

∗
(x) is the dual vector space of π−1(x)for any point x ∈ B. 15 For any two vector

bundles π : E → B and π′ : E ′ → B, we can define the tensor product E ⊗E ′, still a vector
bundle, over B, whose fiber is equal to the tensor product of vector spaces π−1(x)⊗ π′−1(x)
for any point x ∈ B. 16

Line bundles over complex manifolds A holomorphic line bundle L over a complex
manifold X can be defined locally by (Uα, gαβ),

L←→ (Uα, gαβ)

where {Uα} is an open covering of X and gαβ are transition functions, i.e., gαβ : Uα∩Uβ → C∗

is holomorphic functions such that gαα = 1 on Uα, gαβgβα = 1 on Uα∩Uβ and gαβ ·gβγ ·gγα = 1
on Uα ∩ Uβ ∩ Uγ .

L and L
′

are isomorphic holomorphic line bundles over X ⇔ ∃ a common open covering
refinement {Uα} of X such that L and L

′

are given by {Uα, gαβ} and {Uα, g′

αβ} respectively,
and holomorphic functions fα : Uα → C∗ such that

gαβ = f−1

α · g
′

αβ · fβ , on Uα ∩ Uβ

where f−1

α = 1

fα
.

L is trivial line bundle if and only if the corresponding transition functions gαβ =
fβ

fα
on

Uα ∩ Uβ where fα : Uα → C∗.

15cf. [H05], p. 67.
16cf. [H05], p. 67.
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If L and L
′

are holomorphic line bundles given by {Uα, gαβ}α∈I and {Uα, g′

αβ}α∈I respec-
tively, then we define its tensor product, denoted as L⊗L′ or L+L′, given by {Uα, gαβg

′

αβ}α∈I .

If a holomorphic line bundle L over a complex manifold X is defined by {Uα, gαβ}α∈I ,
then its dual line bundle, denoted by −L, or L∗, or L−1, is defined by {Uα, 1

gαβ
}. Clearly,

L⊗ (L−1), or L + (−L), is a trivial line bundle.

Holomorphic sections of a line bundle Let π : L→ X be a holomorphic line bunlde
over a complex manifold X. A holomorphic section of L is a holomorphic map s : X → L

such that π◦s = Id. We denote by Γ(X, L), or H0(X, L), the set of all holomorphic sections
of L over X.

Let L be given by local data {Uα, gαβ}.

L ⊃ π−1(Uα)
θα≃−−→ Uα ×C∋ (z, sα(z))

↓ π ↑ s ր
X ⊃ Uα∋ z

On each Uα, we find a unique holomorphic function sα ∈ O(Uα) so that s(z) = θ−1

α (z, sα(z)).
Then on any Uα ∩ Uβ 6= ∅, we have θ−1

α (z, sα(z)) = θ−1

β (z, sβ(z)). By the linearity, we have

sα(z)θ−1

α (z, 1) = sβ(z)θ−1

β (z, 1), (10)

i.e.,
(z, sβ(z)) = sα(z)θβ ◦ θ−1

α (z, 1),

which implies
sβ(z) = gβαsα(z), i.e., sα = gαβsβ, on Uα ∩ Uβ.

Conversely, any collection {sα}α∈I satisfying the above identity defines a holomorphic section
s ∈ Γ(X, L) by setting s := sαeα, where eα(z) := θ−1

α (z, 1).

Every bundle has a trivial section, given by ζ i = 0; the graph of this section is often
called the zero section. If there are no other sections, we say that the bundle is said to have

no sections.
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