A conjecture about prime numbers assuming the Riemann hypothesis

E-mail:

Abstract

In this paper we propose a conjecture about prime numbers. Based on the result of Pierre Dusart stating that the n^{th} prime number is smaller than $n(\ln n + \ln \ln n - 0.9484)$ for $n \ge 39017$ we propose that the n^{th} prime number is smaller than $n(\ln n + \ln \ln n - 1^+)$ when $n \to +\infty$.

Keywords: Prime numbers, Dusart, Riemann hypothesis, conjecture

Conjecture. The n^{th} prime number is smaller than $n(\ln n + \ln \ln n - 0.999...)$ when $n \to +\infty$

We write $ln_2 n$ instead of ln ln n.

Let p(n) denote the n^{th} prime number. In this work we try to improve the result of Pierre Dusart, assuming the Riemann hypothesis and stating that for $n \ge 39017$: $p(n) \le n(\ln n + \ln \ln n - 0.9484)$ [1].

Theorem. For $39017 \le n \le 2.10^{17}$,

$$p(n) \le n(\ln n + \ln_2 n - 0.9484)$$

Proof in [1]. We deduce that:

$$n(\ln n + \ln_2 n - 0.9484) = n(\ln n + \ln_2 n - 1 + 0.0516)$$

$$n(\ln n + \ln_2 n - 1 + 0.0516) = n(\ln n + \ln_2 n - 1) + 0.0516n$$

$$n(\ln n + \ln_2 n - 1) + 0.0516n = n(\ln n + \ln_2 n - 1) + \frac{129n}{2500}$$

If $p(n) \le n(\ln n + \ln_2 n - 0.9484)$ we have:

$$p(n) \le n(\ln n + \ln_2 n - 1) + \frac{129n}{2500}$$

Consequently we have

.

$$p(n) - (n(\ln n + \ln_2 n - 1)) \le n(\ln n + \ln_2 n - 1) + \frac{129n}{2500} - (n(\ln n + \ln_2 n - 1)) (A)$$

According to (A) if $p(n) \leq n(\ln n + \ln_2 n - 0.9484)$ we have:

$$\frac{n}{n(\ln n + \ln_2 n - 1) + \frac{129n}{2500} - (n(\ln n + \ln_2 n - 1))} \le \frac{n}{p(n) - (n(\ln n + \ln_2 n - 1))}$$

$$\frac{n}{\frac{129n}{2500}} \le \frac{n}{p(n) - (n(\ln n + \ln_2 n - 1))}$$

$$19.37984496 \le \frac{n}{p(n) - (n(\ln n + \ln_2 n - 1))}(B)$$

We confirmed the result (B) for $39017 \le n \le 2.10^{17}$ by using a statistical approach and we observe that $\frac{n}{p(n)-(n(\ln n+\ln_2 n-1))}$ increases when n increases. The n^{th} prime numbers were found using a list of prime numbers and with a program (see Tools).

Let x and y be two positive real numbers, we deduce:

$$p(n) \le n(\ln n + \ln_2 n - 1) + \frac{x \cdot n}{y} \leftrightarrow \frac{n}{p(n) - (n(\ln n + \ln_2 n - 1))} \ge \frac{y}{x}(C)$$

Examples. For $n = 10^5$ we have $p(10^5) = 1299709$. $\frac{10^5}{1299709 - (10^5(ln \ 10^5 + ln_2 \ 10^5 - 1))} = 24.57354013 \ge 19.37984496$ Consequently $1299709 \le 10^5(ln \ 10^5 + ln_2 \ 10^5 - 0.9484)$ In this first example we have x = 129 and y = 2500 but we can choose other values if $\frac{y}{x} \le 24.57354013$.

For $n = 2.10^{17}$ we have $p(2.10^{17}) = 8512677386048191063$ $\frac{2.10^{17}}{8512677386048191063 - (2.10^{17}(ln \ 2.10^{17} + ln_2 \ 2.10^{17} - 1))} = 24.099471 \ge 19.37984496$ Consequently $8512677386048191063 \le 2.10^{17}(ln \ 2.10^{17} + ln_2 \ 2.10^{17} - 0.9484)$ But if we choose x = 2 and y = 48 we have $\frac{48}{2} = 24 \le 24.099471$ and

$$8512677386048191063 \le 2.10^{17} (ln \ 2.10^{17} + ln_2 \ 2.10^{17} - 1 + \frac{2}{48})$$

$$8512677386048191063 \le 2.10^{17} (ln \ 2.10^{17} + ln_2 \ 2.10^{17} - \frac{23}{24})$$

Conjecture. Based on our previous statistical approach we conjecture that $\frac{n}{p(n)-(n(\ln n+\ln_2 n-1))}$ increases when $n \to +\infty$. More precisely we conjecture that $\frac{n}{p(n)-(n(\ln n+\ln_2 n-1))} \to +\infty$ when $n \to +\infty$. For this reason we have, according to (C): $\frac{y}{x}$ that can be very high, consequently $\frac{x.n}{y} \to 0^+ n$ When $n \to +\infty$ we deduce that: $p(n) \le n(\ln n + \ln_2 n - 1) + 0^+ n \leftrightarrow p(n) \le n(\ln n + \ln_2 n - 1^+)$

Finally we conjecture that, when $n \to +\infty$:

$$p(n) \le n(\ln n + \ln_2 n - 1^+) \leftrightarrow \frac{n}{p(n) - (n(\ln n + \ln_2 n - 1))} \ge \frac{y}{x}$$

It remains to prove that $\frac{n}{p(n)-(n(\ln n+\ln 2 n-1))} \to +\infty$ when $n \to +\infty$.

Tools

Statistics. Statistics were performed using Microsoft Excel 2016 and with a program.

The list of prime numbers used in this study. http://compoasso.free.fr/primelistweb/page/prime/liste_ online.php

Reference

1. PIERRE DUSART, The k^{th} prime is greater than k(lnk + lnlnk - 1) for $k \ge 2$, Math. Comp. 68 (1999), 411-415